ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.135 by root, Sat Nov 24 06:23:27 2007 UTC vs.
Revision 1.141 by root, Mon Nov 26 20:33:58 2007 UTC

111#include <time.h> 111#include <time.h>
112 112
113#include <signal.h> 113#include <signal.h>
114 114
115#ifndef _WIN32 115#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 116# include <sys/time.h>
118# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
119#else 119#else
120# define WIN32_LEAN_AND_MEAN 120# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 123# define EV_SELECT_IS_WINSOCKET 1
187# include "ev.h" 187# include "ev.h"
188#endif 188#endif
189 189
190#if __GNUC__ >= 3 190#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
192# define inline static inline 198# define inline_speed static inline
199# endif
193#else 200#else
194# define expect(expr,value) (expr) 201# define expect(expr,value) (expr)
195# define inline static 202# define inline_speed static
203# define inline_minimal static
204# define noinline
196#endif 205#endif
197 206
198#define expect_false(expr) expect ((expr) != 0, 0) 207#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 208#define expect_true(expr) expect ((expr) != 0, 1)
200 209
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 211#define ABSPRI(w) ((w)->priority - EV_MINPRI)
203 212
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 214#define EMPTY2(a,b) /* used to suppress some warnings */
206 215
207typedef struct ev_watcher *W; 216typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 217typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 218typedef ev_watcher_time *WT;
210 219
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
212 221
213#ifdef _WIN32 222#ifdef _WIN32
214# include "ev_win32.c" 223# include "ev_win32.c"
216 225
217/*****************************************************************************/ 226/*****************************************************************************/
218 227
219static void (*syserr_cb)(const char *msg); 228static void (*syserr_cb)(const char *msg);
220 229
230void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 231ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 232{
223 syserr_cb = cb; 233 syserr_cb = cb;
224} 234}
225 235
226static void 236static void noinline
227syserr (const char *msg) 237syserr (const char *msg)
228{ 238{
229 if (!msg) 239 if (!msg)
230 msg = "(libev) system error"; 240 msg = "(libev) system error";
231 241
238 } 248 }
239} 249}
240 250
241static void *(*alloc)(void *ptr, long size); 251static void *(*alloc)(void *ptr, long size);
242 252
253void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 254ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 255{
245 alloc = cb; 256 alloc = cb;
246} 257}
247 258
248static void * 259static void *
320 gettimeofday (&tv, 0); 331 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 332 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 333#endif
323} 334}
324 335
325inline ev_tstamp 336ev_tstamp inline_size
326get_clock (void) 337get_clock (void)
327{ 338{
328#if EV_USE_MONOTONIC 339#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 340 if (expect_true (have_monotonic))
330 { 341 {
373#define array_free(stem, idx) \ 384#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 386
376/*****************************************************************************/ 387/*****************************************************************************/
377 388
378static void 389void noinline
379anfds_init (ANFD *base, int count)
380{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389}
390
391void
392ev_feed_event (EV_P_ void *w, int revents) 390ev_feed_event (EV_P_ void *w, int revents)
393{ 391{
394 W w_ = (W)w; 392 W w_ = (W)w;
395 393
396 if (expect_false (w_->pending)) 394 if (expect_false (w_->pending))
397 { 395 {
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
399 return; 397 return;
400 } 398 }
401
402 if (expect_false (!w_->cb))
403 return;
404 399
405 w_->pending = ++pendingcnt [ABSPRI (w_)]; 400 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2); 401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409} 404}
410 405
411static void 406void inline_size
412queue_events (EV_P_ W *events, int eventcnt, int type) 407queue_events (EV_P_ W *events, int eventcnt, int type)
413{ 408{
414 int i; 409 int i;
415 410
416 for (i = 0; i < eventcnt; ++i) 411 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type); 412 ev_feed_event (EV_A_ events [i], type);
418} 413}
419 414
420inline void 415/*****************************************************************************/
416
417void inline_size
418anfds_init (ANFD *base, int count)
419{
420 while (count--)
421 {
422 base->head = 0;
423 base->events = EV_NONE;
424 base->reify = 0;
425
426 ++base;
427 }
428}
429
430void inline_speed
421fd_event (EV_P_ int fd, int revents) 431fd_event (EV_P_ int fd, int revents)
422{ 432{
423 ANFD *anfd = anfds + fd; 433 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 434 ev_io *w;
425 435
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 436 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 437 {
428 int ev = w->events & revents; 438 int ev = w->events & revents;
429 439
430 if (ev) 440 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 441 ev_feed_event (EV_A_ (W)w, ev);
436ev_feed_fd_event (EV_P_ int fd, int revents) 446ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 447{
438 fd_event (EV_A_ fd, revents); 448 fd_event (EV_A_ fd, revents);
439} 449}
440 450
441/*****************************************************************************/ 451void inline_size
442
443inline void
444fd_reify (EV_P) 452fd_reify (EV_P)
445{ 453{
446 int i; 454 int i;
447 455
448 for (i = 0; i < fdchangecnt; ++i) 456 for (i = 0; i < fdchangecnt; ++i)
449 { 457 {
450 int fd = fdchanges [i]; 458 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 459 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 460 ev_io *w;
453 461
454 int events = 0; 462 int events = 0;
455 463
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 465 events |= w->events;
458 466
459#if EV_SELECT_IS_WINSOCKET 467#if EV_SELECT_IS_WINSOCKET
460 if (events) 468 if (events)
461 { 469 {
472 } 480 }
473 481
474 fdchangecnt = 0; 482 fdchangecnt = 0;
475} 483}
476 484
477static void 485void inline_size
478fd_change (EV_P_ int fd) 486fd_change (EV_P_ int fd)
479{ 487{
480 if (expect_false (anfds [fd].reify)) 488 if (expect_false (anfds [fd].reify))
481 return; 489 return;
482 490
485 ++fdchangecnt; 493 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 495 fdchanges [fdchangecnt - 1] = fd;
488} 496}
489 497
490static void 498void inline_speed
491fd_kill (EV_P_ int fd) 499fd_kill (EV_P_ int fd)
492{ 500{
493 struct ev_io *w; 501 ev_io *w;
494 502
495 while ((w = (struct ev_io *)anfds [fd].head)) 503 while ((w = (ev_io *)anfds [fd].head))
496 { 504 {
497 ev_io_stop (EV_A_ w); 505 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 506 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 507 }
500} 508}
501 509
502inline int 510int inline_size
503fd_valid (int fd) 511fd_valid (int fd)
504{ 512{
505#ifdef _WIN32 513#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 514 return _get_osfhandle (fd) != -1;
507#else 515#else
508 return fcntl (fd, F_GETFD) != -1; 516 return fcntl (fd, F_GETFD) != -1;
509#endif 517#endif
510} 518}
511 519
512/* called on EBADF to verify fds */ 520/* called on EBADF to verify fds */
513static void 521static void noinline
514fd_ebadf (EV_P) 522fd_ebadf (EV_P)
515{ 523{
516 int fd; 524 int fd;
517 525
518 for (fd = 0; fd < anfdmax; ++fd) 526 for (fd = 0; fd < anfdmax; ++fd)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 528 if (!fd_valid (fd) == -1 && errno == EBADF)
521 fd_kill (EV_A_ fd); 529 fd_kill (EV_A_ fd);
522} 530}
523 531
524/* called on ENOMEM in select/poll to kill some fds and retry */ 532/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 533static void noinline
526fd_enomem (EV_P) 534fd_enomem (EV_P)
527{ 535{
528 int fd; 536 int fd;
529 537
530 for (fd = anfdmax; fd--; ) 538 for (fd = anfdmax; fd--; )
534 return; 542 return;
535 } 543 }
536} 544}
537 545
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 546/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 547static void noinline
540fd_rearm_all (EV_P) 548fd_rearm_all (EV_P)
541{ 549{
542 int fd; 550 int fd;
543 551
544 /* this should be highly optimised to not do anything but set a flag */ 552 /* this should be highly optimised to not do anything but set a flag */
550 } 558 }
551} 559}
552 560
553/*****************************************************************************/ 561/*****************************************************************************/
554 562
555static void 563void inline_speed
556upheap (WT *heap, int k) 564upheap (WT *heap, int k)
557{ 565{
558 WT w = heap [k]; 566 WT w = heap [k];
559 567
560 while (k && heap [k >> 1]->at > w->at) 568 while (k && heap [k >> 1]->at > w->at)
567 heap [k] = w; 575 heap [k] = w;
568 ((W)heap [k])->active = k + 1; 576 ((W)heap [k])->active = k + 1;
569 577
570} 578}
571 579
572static void 580void inline_speed
573downheap (WT *heap, int N, int k) 581downheap (WT *heap, int N, int k)
574{ 582{
575 WT w = heap [k]; 583 WT w = heap [k];
576 584
577 while (k < (N >> 1)) 585 while (k < (N >> 1))
591 599
592 heap [k] = w; 600 heap [k] = w;
593 ((W)heap [k])->active = k + 1; 601 ((W)heap [k])->active = k + 1;
594} 602}
595 603
596inline void 604void inline_size
597adjustheap (WT *heap, int N, int k) 605adjustheap (WT *heap, int N, int k)
598{ 606{
599 upheap (heap, k); 607 upheap (heap, k);
600 downheap (heap, N, k); 608 downheap (heap, N, k);
601} 609}
611static ANSIG *signals; 619static ANSIG *signals;
612static int signalmax; 620static int signalmax;
613 621
614static int sigpipe [2]; 622static int sigpipe [2];
615static sig_atomic_t volatile gotsig; 623static sig_atomic_t volatile gotsig;
616static struct ev_io sigev; 624static ev_io sigev;
617 625
618static void 626void inline_size
619signals_init (ANSIG *base, int count) 627signals_init (ANSIG *base, int count)
620{ 628{
621 while (count--) 629 while (count--)
622 { 630 {
623 base->head = 0; 631 base->head = 0;
643 write (sigpipe [1], &signum, 1); 651 write (sigpipe [1], &signum, 1);
644 errno = old_errno; 652 errno = old_errno;
645 } 653 }
646} 654}
647 655
648void 656void noinline
649ev_feed_signal_event (EV_P_ int signum) 657ev_feed_signal_event (EV_P_ int signum)
650{ 658{
651 WL w; 659 WL w;
652 660
653#if EV_MULTIPLICITY 661#if EV_MULTIPLICITY
664 for (w = signals [signum].head; w; w = w->next) 672 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666} 674}
667 675
668static void 676static void
669sigcb (EV_P_ struct ev_io *iow, int revents) 677sigcb (EV_P_ ev_io *iow, int revents)
670{ 678{
671 int signum; 679 int signum;
672 680
673 read (sigpipe [0], &revents, 1); 681 read (sigpipe [0], &revents, 1);
674 gotsig = 0; 682 gotsig = 0;
676 for (signum = signalmax; signum--; ) 684 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig) 685 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1); 686 ev_feed_signal_event (EV_A_ signum + 1);
679} 687}
680 688
681static void 689void inline_size
682fd_intern (int fd) 690fd_intern (int fd)
683{ 691{
684#ifdef _WIN32 692#ifdef _WIN32
685 int arg = 1; 693 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 696 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 697 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 698#endif
691} 699}
692 700
693static void 701static void noinline
694siginit (EV_P) 702siginit (EV_P)
695{ 703{
696 fd_intern (sigpipe [0]); 704 fd_intern (sigpipe [0]);
697 fd_intern (sigpipe [1]); 705 fd_intern (sigpipe [1]);
698 706
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 709 ev_unref (EV_A); /* child watcher should not keep loop alive */
702} 710}
703 711
704/*****************************************************************************/ 712/*****************************************************************************/
705 713
706static struct ev_child *childs [PID_HASHSIZE]; 714static ev_child *childs [PID_HASHSIZE];
707 715
708#ifndef _WIN32 716#ifndef _WIN32
709 717
710static struct ev_signal childev; 718static ev_signal childev;
711 719
712#ifndef WCONTINUED 720#ifndef WCONTINUED
713# define WCONTINUED 0 721# define WCONTINUED 0
714#endif 722#endif
715 723
716static void 724void inline_speed
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 725child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
718{ 726{
719 struct ev_child *w; 727 ev_child *w;
720 728
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 729 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid) 730 if (w->pid == pid || !w->pid)
723 { 731 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 732 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid; 733 w->rpid = pid;
726 w->rstatus = status; 734 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD); 735 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 } 736 }
729} 737}
730 738
731static void 739static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 740childcb (EV_P_ ev_signal *sw, int revents)
733{ 741{
734 int pid, status; 742 int pid, status;
735 743
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 744 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 745 {
775{ 783{
776 return EV_VERSION_MINOR; 784 return EV_VERSION_MINOR;
777} 785}
778 786
779/* return true if we are running with elevated privileges and should ignore env variables */ 787/* return true if we are running with elevated privileges and should ignore env variables */
780static int 788int inline_size
781enable_secure (void) 789enable_secure (void)
782{ 790{
783#ifdef _WIN32 791#ifdef _WIN32
784 return 0; 792 return 0;
785#else 793#else
907 array_free (pending, [i]); 915 array_free (pending, [i]);
908 916
909 /* have to use the microsoft-never-gets-it-right macro */ 917 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0); 918 array_free (fdchange, EMPTY0);
911 array_free (timer, EMPTY0); 919 array_free (timer, EMPTY0);
912#if EV_PERIODICS 920#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 921 array_free (periodic, EMPTY0);
914#endif 922#endif
915 array_free (idle, EMPTY0); 923 array_free (idle, EMPTY0);
916 array_free (prepare, EMPTY0); 924 array_free (prepare, EMPTY0);
917 array_free (check, EMPTY0); 925 array_free (check, EMPTY0);
1053 postfork = 1; 1061 postfork = 1;
1054} 1062}
1055 1063
1056/*****************************************************************************/ 1064/*****************************************************************************/
1057 1065
1058static int 1066int inline_size
1059any_pending (EV_P) 1067any_pending (EV_P)
1060{ 1068{
1061 int pri; 1069 int pri;
1062 1070
1063 for (pri = NUMPRI; pri--; ) 1071 for (pri = NUMPRI; pri--; )
1065 return 1; 1073 return 1;
1066 1074
1067 return 0; 1075 return 0;
1068} 1076}
1069 1077
1070inline void 1078void inline_speed
1071call_pending (EV_P) 1079call_pending (EV_P)
1072{ 1080{
1073 int pri; 1081 int pri;
1074 1082
1075 for (pri = NUMPRI; pri--; ) 1083 for (pri = NUMPRI; pri--; )
1077 { 1085 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1086 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1087
1080 if (expect_true (p->w)) 1088 if (expect_true (p->w))
1081 { 1089 {
1090 assert (("non-pending watcher on pending list", p->w->pending));
1091
1082 p->w->pending = 0; 1092 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1093 EV_CB_INVOKE (p->w, p->events);
1084 } 1094 }
1085 } 1095 }
1086} 1096}
1087 1097
1088inline void 1098void inline_size
1089timers_reify (EV_P) 1099timers_reify (EV_P)
1090{ 1100{
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1101 while (timercnt && ((WT)timers [0])->at <= mn_now)
1092 { 1102 {
1093 struct ev_timer *w = timers [0]; 1103 ev_timer *w = timers [0];
1094 1104
1095 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1105 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1096 1106
1097 /* first reschedule or stop timer */ 1107 /* first reschedule or stop timer */
1098 if (w->repeat) 1108 if (w->repeat)
1110 1120
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1121 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1112 } 1122 }
1113} 1123}
1114 1124
1115#if EV_PERIODICS 1125#if EV_PERIODIC_ENABLE
1116inline void 1126void inline_size
1117periodics_reify (EV_P) 1127periodics_reify (EV_P)
1118{ 1128{
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1129 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1120 { 1130 {
1121 struct ev_periodic *w = periodics [0]; 1131 ev_periodic *w = periodics [0];
1122 1132
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1133 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1124 1134
1125 /* first reschedule or stop timer */ 1135 /* first reschedule or stop timer */
1126 if (w->reschedule_cb) 1136 if (w->reschedule_cb)
1140 1150
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1151 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 } 1152 }
1143} 1153}
1144 1154
1145static void 1155static void noinline
1146periodics_reschedule (EV_P) 1156periodics_reschedule (EV_P)
1147{ 1157{
1148 int i; 1158 int i;
1149 1159
1150 /* adjust periodics after time jump */ 1160 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i) 1161 for (i = 0; i < periodiccnt; ++i)
1152 { 1162 {
1153 struct ev_periodic *w = periodics [i]; 1163 ev_periodic *w = periodics [i];
1154 1164
1155 if (w->reschedule_cb) 1165 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1166 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval) 1167 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1168 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1162 for (i = periodiccnt >> 1; i--; ) 1172 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i); 1173 downheap ((WT *)periodics, periodiccnt, i);
1164} 1174}
1165#endif 1175#endif
1166 1176
1167inline int 1177int inline_size
1168time_update_monotonic (EV_P) 1178time_update_monotonic (EV_P)
1169{ 1179{
1170 mn_now = get_clock (); 1180 mn_now = get_clock ();
1171 1181
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1182 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1180 ev_rt_now = ev_time (); 1190 ev_rt_now = ev_time ();
1181 return 1; 1191 return 1;
1182 } 1192 }
1183} 1193}
1184 1194
1185inline void 1195void inline_size
1186time_update (EV_P) 1196time_update (EV_P)
1187{ 1197{
1188 int i; 1198 int i;
1189 1199
1190#if EV_USE_MONOTONIC 1200#if EV_USE_MONOTONIC
1192 { 1202 {
1193 if (time_update_monotonic (EV_A)) 1203 if (time_update_monotonic (EV_A))
1194 { 1204 {
1195 ev_tstamp odiff = rtmn_diff; 1205 ev_tstamp odiff = rtmn_diff;
1196 1206
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1207 /* loop a few times, before making important decisions.
1208 * on the choice of "4": one iteration isn't enough,
1209 * in case we get preempted during the calls to
1210 * ev_time and get_clock. a second call is almost guarenteed
1211 * to succeed in that case, though. and looping a few more times
1212 * doesn't hurt either as we only do this on time-jumps or
1213 * in the unlikely event of getting preempted here.
1214 */
1215 for (i = 4; --i; )
1198 { 1216 {
1199 rtmn_diff = ev_rt_now - mn_now; 1217 rtmn_diff = ev_rt_now - mn_now;
1200 1218
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1219 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1202 return; /* all is well */ 1220 return; /* all is well */
1204 ev_rt_now = ev_time (); 1222 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 1223 mn_now = get_clock ();
1206 now_floor = mn_now; 1224 now_floor = mn_now;
1207 } 1225 }
1208 1226
1209# if EV_PERIODICS 1227# if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 1228 periodics_reschedule (EV_A);
1211# endif 1229# endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */ 1230 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1231 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 } 1232 }
1218 { 1236 {
1219 ev_rt_now = ev_time (); 1237 ev_rt_now = ev_time ();
1220 1238
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1239 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 { 1240 {
1223#if EV_PERIODICS 1241#if EV_PERIODIC_ENABLE
1224 periodics_reschedule (EV_A); 1242 periodics_reschedule (EV_A);
1225#endif 1243#endif
1226 1244
1227 /* adjust timers. this is easy, as the offset is the same for all */ 1245 /* adjust timers. this is easy, as the offset is the same for all */
1228 for (i = 0; i < timercnt; ++i) 1246 for (i = 0; i < timercnt; ++i)
1295 { 1313 {
1296 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1314 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1297 if (block > to) block = to; 1315 if (block > to) block = to;
1298 } 1316 }
1299 1317
1300#if EV_PERIODICS 1318#if EV_PERIODIC_ENABLE
1301 if (periodiccnt) 1319 if (periodiccnt)
1302 { 1320 {
1303 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1321 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1304 if (block > to) block = to; 1322 if (block > to) block = to;
1305 } 1323 }
1314 /* update ev_rt_now, do magic */ 1332 /* update ev_rt_now, do magic */
1315 time_update (EV_A); 1333 time_update (EV_A);
1316 1334
1317 /* queue pending timers and reschedule them */ 1335 /* queue pending timers and reschedule them */
1318 timers_reify (EV_A); /* relative timers called last */ 1336 timers_reify (EV_A); /* relative timers called last */
1319#if EV_PERIODICS 1337#if EV_PERIODIC_ENABLE
1320 periodics_reify (EV_A); /* absolute timers called first */ 1338 periodics_reify (EV_A); /* absolute timers called first */
1321#endif 1339#endif
1322 1340
1323 /* queue idle watchers unless io or timers are pending */ 1341 /* queue idle watchers unless other events are pending */
1324 if (idlecnt && !any_pending (EV_A)) 1342 if (idlecnt && !any_pending (EV_A))
1325 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1343 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1326 1344
1327 /* queue check watchers, to be executed first */ 1345 /* queue check watchers, to be executed first */
1328 if (expect_false (checkcnt)) 1346 if (expect_false (checkcnt))
1344 loop_done = how; 1362 loop_done = how;
1345} 1363}
1346 1364
1347/*****************************************************************************/ 1365/*****************************************************************************/
1348 1366
1349inline void 1367void inline_size
1350wlist_add (WL *head, WL elem) 1368wlist_add (WL *head, WL elem)
1351{ 1369{
1352 elem->next = *head; 1370 elem->next = *head;
1353 *head = elem; 1371 *head = elem;
1354} 1372}
1355 1373
1356inline void 1374void inline_size
1357wlist_del (WL *head, WL elem) 1375wlist_del (WL *head, WL elem)
1358{ 1376{
1359 while (*head) 1377 while (*head)
1360 { 1378 {
1361 if (*head == elem) 1379 if (*head == elem)
1366 1384
1367 head = &(*head)->next; 1385 head = &(*head)->next;
1368 } 1386 }
1369} 1387}
1370 1388
1371inline void 1389void inline_speed
1372ev_clear_pending (EV_P_ W w) 1390ev_clear_pending (EV_P_ W w)
1373{ 1391{
1374 if (w->pending) 1392 if (w->pending)
1375 { 1393 {
1376 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1394 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1377 w->pending = 0; 1395 w->pending = 0;
1378 } 1396 }
1379} 1397}
1380 1398
1381inline void 1399void inline_speed
1382ev_start (EV_P_ W w, int active) 1400ev_start (EV_P_ W w, int active)
1383{ 1401{
1384 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1402 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1385 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1403 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1386 1404
1387 w->active = active; 1405 w->active = active;
1388 ev_ref (EV_A); 1406 ev_ref (EV_A);
1389} 1407}
1390 1408
1391inline void 1409void inline_size
1392ev_stop (EV_P_ W w) 1410ev_stop (EV_P_ W w)
1393{ 1411{
1394 ev_unref (EV_A); 1412 ev_unref (EV_A);
1395 w->active = 0; 1413 w->active = 0;
1396} 1414}
1397 1415
1398/*****************************************************************************/ 1416/*****************************************************************************/
1399 1417
1400void 1418void
1401ev_io_start (EV_P_ struct ev_io *w) 1419ev_io_start (EV_P_ ev_io *w)
1402{ 1420{
1403 int fd = w->fd; 1421 int fd = w->fd;
1404 1422
1405 if (expect_false (ev_is_active (w))) 1423 if (expect_false (ev_is_active (w)))
1406 return; 1424 return;
1413 1431
1414 fd_change (EV_A_ fd); 1432 fd_change (EV_A_ fd);
1415} 1433}
1416 1434
1417void 1435void
1418ev_io_stop (EV_P_ struct ev_io *w) 1436ev_io_stop (EV_P_ ev_io *w)
1419{ 1437{
1420 ev_clear_pending (EV_A_ (W)w); 1438 ev_clear_pending (EV_A_ (W)w);
1421 if (expect_false (!ev_is_active (w))) 1439 if (expect_false (!ev_is_active (w)))
1422 return; 1440 return;
1423 1441
1428 1446
1429 fd_change (EV_A_ w->fd); 1447 fd_change (EV_A_ w->fd);
1430} 1448}
1431 1449
1432void 1450void
1433ev_timer_start (EV_P_ struct ev_timer *w) 1451ev_timer_start (EV_P_ ev_timer *w)
1434{ 1452{
1435 if (expect_false (ev_is_active (w))) 1453 if (expect_false (ev_is_active (w)))
1436 return; 1454 return;
1437 1455
1438 ((WT)w)->at += mn_now; 1456 ((WT)w)->at += mn_now;
1439 1457
1440 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1458 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1441 1459
1442 ev_start (EV_A_ (W)w, ++timercnt); 1460 ev_start (EV_A_ (W)w, ++timercnt);
1443 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1461 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1444 timers [timercnt - 1] = w; 1462 timers [timercnt - 1] = w;
1445 upheap ((WT *)timers, timercnt - 1); 1463 upheap ((WT *)timers, timercnt - 1);
1446 1464
1447 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1465 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1448} 1466}
1449 1467
1450void 1468void
1451ev_timer_stop (EV_P_ struct ev_timer *w) 1469ev_timer_stop (EV_P_ ev_timer *w)
1452{ 1470{
1453 ev_clear_pending (EV_A_ (W)w); 1471 ev_clear_pending (EV_A_ (W)w);
1454 if (expect_false (!ev_is_active (w))) 1472 if (expect_false (!ev_is_active (w)))
1455 return; 1473 return;
1456 1474
1466 1484
1467 ev_stop (EV_A_ (W)w); 1485 ev_stop (EV_A_ (W)w);
1468} 1486}
1469 1487
1470void 1488void
1471ev_timer_again (EV_P_ struct ev_timer *w) 1489ev_timer_again (EV_P_ ev_timer *w)
1472{ 1490{
1473 if (ev_is_active (w)) 1491 if (ev_is_active (w))
1474 { 1492 {
1475 if (w->repeat) 1493 if (w->repeat)
1476 { 1494 {
1485 w->at = w->repeat; 1503 w->at = w->repeat;
1486 ev_timer_start (EV_A_ w); 1504 ev_timer_start (EV_A_ w);
1487 } 1505 }
1488} 1506}
1489 1507
1490#if EV_PERIODICS 1508#if EV_PERIODIC_ENABLE
1491void 1509void
1492ev_periodic_start (EV_P_ struct ev_periodic *w) 1510ev_periodic_start (EV_P_ ev_periodic *w)
1493{ 1511{
1494 if (expect_false (ev_is_active (w))) 1512 if (expect_false (ev_is_active (w)))
1495 return; 1513 return;
1496 1514
1497 if (w->reschedule_cb) 1515 if (w->reschedule_cb)
1502 /* this formula differs from the one in periodic_reify because we do not always round up */ 1520 /* this formula differs from the one in periodic_reify because we do not always round up */
1503 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1521 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1504 } 1522 }
1505 1523
1506 ev_start (EV_A_ (W)w, ++periodiccnt); 1524 ev_start (EV_A_ (W)w, ++periodiccnt);
1507 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1525 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1508 periodics [periodiccnt - 1] = w; 1526 periodics [periodiccnt - 1] = w;
1509 upheap ((WT *)periodics, periodiccnt - 1); 1527 upheap ((WT *)periodics, periodiccnt - 1);
1510 1528
1511 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1529 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1512} 1530}
1513 1531
1514void 1532void
1515ev_periodic_stop (EV_P_ struct ev_periodic *w) 1533ev_periodic_stop (EV_P_ ev_periodic *w)
1516{ 1534{
1517 ev_clear_pending (EV_A_ (W)w); 1535 ev_clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w))) 1536 if (expect_false (!ev_is_active (w)))
1519 return; 1537 return;
1520 1538
1528 1546
1529 ev_stop (EV_A_ (W)w); 1547 ev_stop (EV_A_ (W)w);
1530} 1548}
1531 1549
1532void 1550void
1533ev_periodic_again (EV_P_ struct ev_periodic *w) 1551ev_periodic_again (EV_P_ ev_periodic *w)
1534{ 1552{
1535 /* TODO: use adjustheap and recalculation */ 1553 /* TODO: use adjustheap and recalculation */
1536 ev_periodic_stop (EV_A_ w); 1554 ev_periodic_stop (EV_A_ w);
1537 ev_periodic_start (EV_A_ w); 1555 ev_periodic_start (EV_A_ w);
1538} 1556}
1539#endif 1557#endif
1540 1558
1541void 1559void
1542ev_idle_start (EV_P_ struct ev_idle *w) 1560ev_idle_start (EV_P_ ev_idle *w)
1543{ 1561{
1544 if (expect_false (ev_is_active (w))) 1562 if (expect_false (ev_is_active (w)))
1545 return; 1563 return;
1546 1564
1547 ev_start (EV_A_ (W)w, ++idlecnt); 1565 ev_start (EV_A_ (W)w, ++idlecnt);
1548 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 1566 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1549 idles [idlecnt - 1] = w; 1567 idles [idlecnt - 1] = w;
1550} 1568}
1551 1569
1552void 1570void
1553ev_idle_stop (EV_P_ struct ev_idle *w) 1571ev_idle_stop (EV_P_ ev_idle *w)
1554{ 1572{
1555 ev_clear_pending (EV_A_ (W)w); 1573 ev_clear_pending (EV_A_ (W)w);
1556 if (expect_false (!ev_is_active (w))) 1574 if (expect_false (!ev_is_active (w)))
1557 return; 1575 return;
1558 1576
1577 {
1578 int active = ((W)w)->active;
1559 idles [((W)w)->active - 1] = idles [--idlecnt]; 1579 idles [active - 1] = idles [--idlecnt];
1580 ((W)idles [active - 1])->active = active;
1581 }
1582
1560 ev_stop (EV_A_ (W)w); 1583 ev_stop (EV_A_ (W)w);
1561} 1584}
1562 1585
1563void 1586void
1564ev_prepare_start (EV_P_ struct ev_prepare *w) 1587ev_prepare_start (EV_P_ ev_prepare *w)
1565{ 1588{
1566 if (expect_false (ev_is_active (w))) 1589 if (expect_false (ev_is_active (w)))
1567 return; 1590 return;
1568 1591
1569 ev_start (EV_A_ (W)w, ++preparecnt); 1592 ev_start (EV_A_ (W)w, ++preparecnt);
1570 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 1593 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1571 prepares [preparecnt - 1] = w; 1594 prepares [preparecnt - 1] = w;
1572} 1595}
1573 1596
1574void 1597void
1575ev_prepare_stop (EV_P_ struct ev_prepare *w) 1598ev_prepare_stop (EV_P_ ev_prepare *w)
1576{ 1599{
1577 ev_clear_pending (EV_A_ (W)w); 1600 ev_clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w))) 1601 if (expect_false (!ev_is_active (w)))
1579 return; 1602 return;
1580 1603
1604 {
1605 int active = ((W)w)->active;
1581 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1606 prepares [active - 1] = prepares [--preparecnt];
1607 ((W)prepares [active - 1])->active = active;
1608 }
1609
1582 ev_stop (EV_A_ (W)w); 1610 ev_stop (EV_A_ (W)w);
1583} 1611}
1584 1612
1585void 1613void
1586ev_check_start (EV_P_ struct ev_check *w) 1614ev_check_start (EV_P_ ev_check *w)
1587{ 1615{
1588 if (expect_false (ev_is_active (w))) 1616 if (expect_false (ev_is_active (w)))
1589 return; 1617 return;
1590 1618
1591 ev_start (EV_A_ (W)w, ++checkcnt); 1619 ev_start (EV_A_ (W)w, ++checkcnt);
1592 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 1620 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1593 checks [checkcnt - 1] = w; 1621 checks [checkcnt - 1] = w;
1594} 1622}
1595 1623
1596void 1624void
1597ev_check_stop (EV_P_ struct ev_check *w) 1625ev_check_stop (EV_P_ ev_check *w)
1598{ 1626{
1599 ev_clear_pending (EV_A_ (W)w); 1627 ev_clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w))) 1628 if (expect_false (!ev_is_active (w)))
1601 return; 1629 return;
1602 1630
1631 {
1632 int active = ((W)w)->active;
1603 checks [((W)w)->active - 1] = checks [--checkcnt]; 1633 checks [active - 1] = checks [--checkcnt];
1634 ((W)checks [active - 1])->active = active;
1635 }
1636
1604 ev_stop (EV_A_ (W)w); 1637 ev_stop (EV_A_ (W)w);
1605} 1638}
1606 1639
1607#ifndef SA_RESTART 1640#ifndef SA_RESTART
1608# define SA_RESTART 0 1641# define SA_RESTART 0
1609#endif 1642#endif
1610 1643
1611void 1644void
1612ev_signal_start (EV_P_ struct ev_signal *w) 1645ev_signal_start (EV_P_ ev_signal *w)
1613{ 1646{
1614#if EV_MULTIPLICITY 1647#if EV_MULTIPLICITY
1615 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1648 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1616#endif 1649#endif
1617 if (expect_false (ev_is_active (w))) 1650 if (expect_false (ev_is_active (w)))
1636#endif 1669#endif
1637 } 1670 }
1638} 1671}
1639 1672
1640void 1673void
1641ev_signal_stop (EV_P_ struct ev_signal *w) 1674ev_signal_stop (EV_P_ ev_signal *w)
1642{ 1675{
1643 ev_clear_pending (EV_A_ (W)w); 1676 ev_clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w))) 1677 if (expect_false (!ev_is_active (w)))
1645 return; 1678 return;
1646 1679
1650 if (!signals [w->signum - 1].head) 1683 if (!signals [w->signum - 1].head)
1651 signal (w->signum, SIG_DFL); 1684 signal (w->signum, SIG_DFL);
1652} 1685}
1653 1686
1654void 1687void
1655ev_child_start (EV_P_ struct ev_child *w) 1688ev_child_start (EV_P_ ev_child *w)
1656{ 1689{
1657#if EV_MULTIPLICITY 1690#if EV_MULTIPLICITY
1658 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1691 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1659#endif 1692#endif
1660 if (expect_false (ev_is_active (w))) 1693 if (expect_false (ev_is_active (w)))
1663 ev_start (EV_A_ (W)w, 1); 1696 ev_start (EV_A_ (W)w, 1);
1664 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1697 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1665} 1698}
1666 1699
1667void 1700void
1668ev_child_stop (EV_P_ struct ev_child *w) 1701ev_child_stop (EV_P_ ev_child *w)
1669{ 1702{
1670 ev_clear_pending (EV_A_ (W)w); 1703 ev_clear_pending (EV_A_ (W)w);
1671 if (expect_false (!ev_is_active (w))) 1704 if (expect_false (!ev_is_active (w)))
1672 return; 1705 return;
1673 1706
1674 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1707 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1675 ev_stop (EV_A_ (W)w); 1708 ev_stop (EV_A_ (W)w);
1676} 1709}
1677 1710
1678#if EV_MULTIPLICITY 1711#if EV_EMBED_ENABLE
1712void noinline
1713ev_embed_sweep (EV_P_ ev_embed *w)
1714{
1715 ev_loop (w->loop, EVLOOP_NONBLOCK);
1716}
1717
1679static void 1718static void
1680embed_cb (EV_P_ struct ev_io *io, int revents) 1719embed_cb (EV_P_ ev_io *io, int revents)
1681{ 1720{
1682 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 1721 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1683 1722
1723 if (ev_cb (w))
1684 ev_feed_event (EV_A_ (W)w, EV_EMBED); 1724 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1685 ev_loop (w->loop, EVLOOP_NONBLOCK); 1725 else
1726 ev_embed_sweep (loop, w);
1686} 1727}
1687 1728
1688void 1729void
1689ev_embed_start (EV_P_ struct ev_embed *w) 1730ev_embed_start (EV_P_ ev_embed *w)
1690{ 1731{
1691 if (expect_false (ev_is_active (w))) 1732 if (expect_false (ev_is_active (w)))
1692 return; 1733 return;
1693 1734
1694 { 1735 {
1695 struct ev_loop *loop = w->loop; 1736 struct ev_loop *loop = w->loop;
1696 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 1737 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1697 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 1738 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1698 } 1739 }
1699 1740
1741 ev_set_priority (&w->io, ev_priority (w));
1700 ev_io_start (EV_A_ &w->io); 1742 ev_io_start (EV_A_ &w->io);
1743
1701 ev_start (EV_A_ (W)w, 1); 1744 ev_start (EV_A_ (W)w, 1);
1702} 1745}
1703 1746
1704void 1747void
1705ev_embed_stop (EV_P_ struct ev_embed *w) 1748ev_embed_stop (EV_P_ ev_embed *w)
1706{ 1749{
1707 ev_clear_pending (EV_A_ (W)w); 1750 ev_clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 1751 if (expect_false (!ev_is_active (w)))
1709 return; 1752 return;
1710 1753
1711 ev_io_stop (EV_A_ &w->io); 1754 ev_io_stop (EV_A_ &w->io);
1755
1712 ev_stop (EV_A_ (W)w); 1756 ev_stop (EV_A_ (W)w);
1713} 1757}
1714#endif 1758#endif
1715 1759
1760#if EV_STAT_ENABLE
1761
1762# ifdef _WIN32
1763# define lstat(a,b) stat(a,b)
1764# endif
1765
1766void
1767ev_stat_stat (EV_P_ ev_stat *w)
1768{
1769 if (lstat (w->path, &w->attr) < 0)
1770 w->attr.st_nlink = 0;
1771 else if (!w->attr.st_nlink)
1772 w->attr.st_nlink = 1;
1773}
1774
1775static void
1776stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1777{
1778 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1779
1780 /* we copy this here each the time so that */
1781 /* prev has the old value when the callback gets invoked */
1782 w->prev = w->attr;
1783 ev_stat_stat (EV_A_ w);
1784
1785 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1786 ev_feed_event (EV_A_ w, EV_STAT);
1787}
1788
1789void
1790ev_stat_start (EV_P_ ev_stat *w)
1791{
1792 if (expect_false (ev_is_active (w)))
1793 return;
1794
1795 /* since we use memcmp, we need to clear any padding data etc. */
1796 memset (&w->prev, 0, sizeof (ev_statdata));
1797 memset (&w->attr, 0, sizeof (ev_statdata));
1798
1799 ev_stat_stat (EV_A_ w);
1800
1801 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1802 ev_set_priority (&w->timer, ev_priority (w));
1803 ev_timer_start (EV_A_ &w->timer);
1804
1805 ev_start (EV_A_ (W)w, 1);
1806}
1807
1808void
1809ev_stat_stop (EV_P_ ev_stat *w)
1810{
1811 ev_clear_pending (EV_A_ (W)w);
1812 if (expect_false (!ev_is_active (w)))
1813 return;
1814
1815 ev_timer_stop (EV_A_ &w->timer);
1816
1817 ev_stop (EV_A_ (W)w);
1818}
1819#endif
1820
1716/*****************************************************************************/ 1821/*****************************************************************************/
1717 1822
1718struct ev_once 1823struct ev_once
1719{ 1824{
1720 struct ev_io io; 1825 ev_io io;
1721 struct ev_timer to; 1826 ev_timer to;
1722 void (*cb)(int revents, void *arg); 1827 void (*cb)(int revents, void *arg);
1723 void *arg; 1828 void *arg;
1724}; 1829};
1725 1830
1726static void 1831static void
1735 1840
1736 cb (revents, arg); 1841 cb (revents, arg);
1737} 1842}
1738 1843
1739static void 1844static void
1740once_cb_io (EV_P_ struct ev_io *w, int revents) 1845once_cb_io (EV_P_ ev_io *w, int revents)
1741{ 1846{
1742 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1847 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1743} 1848}
1744 1849
1745static void 1850static void
1746once_cb_to (EV_P_ struct ev_timer *w, int revents) 1851once_cb_to (EV_P_ ev_timer *w, int revents)
1747{ 1852{
1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1853 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1749} 1854}
1750 1855
1751void 1856void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines