ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.141 by root, Mon Nov 26 20:33:58 2007 UTC vs.
Revision 1.264 by root, Mon Oct 13 23:20:12 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 111# else
95# define EV_USE_PORT 0 112# define EV_USE_PORT 0
96# endif 113# endif
97# endif 114# endif
98 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
99#endif 132#endif
100 133
101#include <math.h> 134#include <math.h>
102#include <stdlib.h> 135#include <stdlib.h>
103#include <fcntl.h> 136#include <fcntl.h>
109#include <errno.h> 142#include <errno.h>
110#include <sys/types.h> 143#include <sys/types.h>
111#include <time.h> 144#include <time.h>
112 145
113#include <signal.h> 146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
114 153
115#ifndef _WIN32 154#ifndef _WIN32
116# include <sys/time.h> 155# include <sys/time.h>
117# include <sys/wait.h> 156# include <sys/wait.h>
118# include <unistd.h> 157# include <unistd.h>
119#else 158#else
159# include <io.h>
120# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 161# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
124# endif 164# endif
125#endif 165#endif
126 166
127/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
128 168
129#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
130# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
131#endif 175#endif
132 176
133#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
135#endif 187#endif
136 188
137#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
139#endif 191#endif
145# define EV_USE_POLL 1 197# define EV_USE_POLL 1
146# endif 198# endif
147#endif 199#endif
148 200
149#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
150# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
151#endif 207#endif
152 208
153#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
155#endif 211#endif
156 212
157#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 214# define EV_USE_PORT 0
159#endif 215#endif
160 216
161/**/ 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
221# define EV_USE_INOTIFY 0
222# endif
223#endif
224
225#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif
232
233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 268
163#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
166#endif 272#endif
168#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
171#endif 277#endif
172 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
298#endif
299
173#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 301# include <winsock.h>
175#endif 302#endif
176 303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
177/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
323
324/*
325 * This is used to avoid floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 333
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 337
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 338#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline)) 340# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
200#else 341#else
201# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
202# define inline_speed static
203# define inline_minimal static
204# define noinline 343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif
205#endif 347#endif
206 348
207#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
208#define expect_true(expr) expect ((expr) != 0, 1) 350#define expect_true(expr) expect ((expr) != 0, 1)
351#define inline_size static inline
352
353#if EV_MINIMAL
354# define inline_speed static noinline
355#else
356# define inline_speed static inline
357#endif
209 358
210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
211#define ABSPRI(w) ((w)->priority - EV_MINPRI) 360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
212 361
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 362#define EMPTY /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */ 363#define EMPTY2(a,b) /* used to suppress some warnings */
215 364
216typedef ev_watcher *W; 365typedef ev_watcher *W;
217typedef ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
218typedef ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
219 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
221 377
222#ifdef _WIN32 378#ifdef _WIN32
223# include "ev_win32.c" 379# include "ev_win32.c"
224#endif 380#endif
225 381
246 perror (msg); 402 perror (msg);
247 abort (); 403 abort ();
248 } 404 }
249} 405}
250 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
251static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
252 423
253void 424void
254ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
255{ 426{
256 alloc = cb; 427 alloc = cb;
257} 428}
258 429
259static void * 430inline_speed void *
260ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
261{ 432{
262 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
263 434
264 if (!ptr && size) 435 if (!ptr && size)
265 { 436 {
266 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
267 abort (); 438 abort ();
288typedef struct 459typedef struct
289{ 460{
290 W w; 461 W w;
291 int events; 462 int events;
292} ANPENDING; 463} ANPENDING;
464
465#if EV_USE_INOTIFY
466/* hash table entry per inotify-id */
467typedef struct
468{
469 WL head;
470} ANFS;
471#endif
472
473/* Heap Entry */
474#if EV_HEAP_CACHE_AT
475 typedef struct {
476 ev_tstamp at;
477 WT w;
478 } ANHE;
479
480 #define ANHE_w(he) (he).w /* access watcher, read-write */
481 #define ANHE_at(he) (he).at /* access cached at, read-only */
482 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
483#else
484 typedef WT ANHE;
485
486 #define ANHE_w(he) (he)
487 #define ANHE_at(he) (he)->at
488 #define ANHE_at_cache(he)
489#endif
293 490
294#if EV_MULTIPLICITY 491#if EV_MULTIPLICITY
295 492
296 struct ev_loop 493 struct ev_loop
297 { 494 {
354{ 551{
355 return ev_rt_now; 552 return ev_rt_now;
356} 553}
357#endif 554#endif
358 555
359#define array_roundsize(type,n) (((n) | 4) & ~3) 556void
557ev_sleep (ev_tstamp delay)
558{
559 if (delay > 0.)
560 {
561#if EV_USE_NANOSLEEP
562 struct timespec ts;
563
564 ts.tv_sec = (time_t)delay;
565 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
566
567 nanosleep (&ts, 0);
568#elif defined(_WIN32)
569 Sleep ((unsigned long)(delay * 1e3));
570#else
571 struct timeval tv;
572
573 tv.tv_sec = (time_t)delay;
574 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
575
576 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
577 /* somehting nto guaranteed by newer posix versions, but guaranteed */
578 /* by older ones */
579 select (0, 0, 0, 0, &tv);
580#endif
581 }
582}
583
584/*****************************************************************************/
585
586#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
587
588int inline_size
589array_nextsize (int elem, int cur, int cnt)
590{
591 int ncur = cur + 1;
592
593 do
594 ncur <<= 1;
595 while (cnt > ncur);
596
597 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
598 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
599 {
600 ncur *= elem;
601 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
602 ncur = ncur - sizeof (void *) * 4;
603 ncur /= elem;
604 }
605
606 return ncur;
607}
608
609static noinline void *
610array_realloc (int elem, void *base, int *cur, int cnt)
611{
612 *cur = array_nextsize (elem, *cur, cnt);
613 return ev_realloc (base, elem * *cur);
614}
360 615
361#define array_needsize(type,base,cur,cnt,init) \ 616#define array_needsize(type,base,cur,cnt,init) \
362 if (expect_false ((cnt) > cur)) \ 617 if (expect_false ((cnt) > (cur))) \
363 { \ 618 { \
364 int newcnt = cur; \ 619 int ocur_ = (cur); \
365 do \ 620 (base) = (type *)array_realloc \
366 { \ 621 (sizeof (type), (base), &(cur), (cnt)); \
367 newcnt = array_roundsize (type, newcnt << 1); \ 622 init ((base) + (ocur_), (cur) - ocur_); \
368 } \
369 while ((cnt) > newcnt); \
370 \
371 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
372 init (base + cur, newcnt - cur); \
373 cur = newcnt; \
374 } 623 }
375 624
625#if 0
376#define array_slim(type,stem) \ 626#define array_slim(type,stem) \
377 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 627 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
378 { \ 628 { \
379 stem ## max = array_roundsize (stem ## cnt >> 1); \ 629 stem ## max = array_roundsize (stem ## cnt >> 1); \
380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 630 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 631 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
382 } 632 }
633#endif
383 634
384#define array_free(stem, idx) \ 635#define array_free(stem, idx) \
385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 636 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
386 637
387/*****************************************************************************/ 638/*****************************************************************************/
388 639
389void noinline 640void noinline
390ev_feed_event (EV_P_ void *w, int revents) 641ev_feed_event (EV_P_ void *w, int revents)
391{ 642{
392 W w_ = (W)w; 643 W w_ = (W)w;
644 int pri = ABSPRI (w_);
393 645
394 if (expect_false (w_->pending)) 646 if (expect_false (w_->pending))
647 pendings [pri][w_->pending - 1].events |= revents;
648 else
395 { 649 {
650 w_->pending = ++pendingcnt [pri];
651 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
652 pendings [pri][w_->pending - 1].w = w_;
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 653 pendings [pri][w_->pending - 1].events = revents;
397 return;
398 } 654 }
399
400 w_->pending = ++pendingcnt [ABSPRI (w_)];
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404} 655}
405 656
406void inline_size 657void inline_speed
407queue_events (EV_P_ W *events, int eventcnt, int type) 658queue_events (EV_P_ W *events, int eventcnt, int type)
408{ 659{
409 int i; 660 int i;
410 661
411 for (i = 0; i < eventcnt; ++i) 662 for (i = 0; i < eventcnt; ++i)
443} 694}
444 695
445void 696void
446ev_feed_fd_event (EV_P_ int fd, int revents) 697ev_feed_fd_event (EV_P_ int fd, int revents)
447{ 698{
699 if (fd >= 0 && fd < anfdmax)
448 fd_event (EV_A_ fd, revents); 700 fd_event (EV_A_ fd, revents);
449} 701}
450 702
451void inline_size 703void inline_size
452fd_reify (EV_P) 704fd_reify (EV_P)
453{ 705{
457 { 709 {
458 int fd = fdchanges [i]; 710 int fd = fdchanges [i];
459 ANFD *anfd = anfds + fd; 711 ANFD *anfd = anfds + fd;
460 ev_io *w; 712 ev_io *w;
461 713
462 int events = 0; 714 unsigned char events = 0;
463 715
464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 716 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
465 events |= w->events; 717 events |= (unsigned char)w->events;
466 718
467#if EV_SELECT_IS_WINSOCKET 719#if EV_SELECT_IS_WINSOCKET
468 if (events) 720 if (events)
469 { 721 {
470 unsigned long argp; 722 unsigned long arg;
723 #ifdef EV_FD_TO_WIN32_HANDLE
724 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
725 #else
471 anfd->handle = _get_osfhandle (fd); 726 anfd->handle = _get_osfhandle (fd);
727 #endif
472 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 728 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
473 } 729 }
474#endif 730#endif
475 731
732 {
733 unsigned char o_events = anfd->events;
734 unsigned char o_reify = anfd->reify;
735
476 anfd->reify = 0; 736 anfd->reify = 0;
477
478 backend_modify (EV_A_ fd, anfd->events, events);
479 anfd->events = events; 737 anfd->events = events;
738
739 if (o_events != events || o_reify & EV_IOFDSET)
740 backend_modify (EV_A_ fd, o_events, events);
741 }
480 } 742 }
481 743
482 fdchangecnt = 0; 744 fdchangecnt = 0;
483} 745}
484 746
485void inline_size 747void inline_size
486fd_change (EV_P_ int fd) 748fd_change (EV_P_ int fd, int flags)
487{ 749{
488 if (expect_false (anfds [fd].reify)) 750 unsigned char reify = anfds [fd].reify;
489 return;
490
491 anfds [fd].reify = 1; 751 anfds [fd].reify |= flags;
492 752
753 if (expect_true (!reify))
754 {
493 ++fdchangecnt; 755 ++fdchangecnt;
494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 756 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
495 fdchanges [fdchangecnt - 1] = fd; 757 fdchanges [fdchangecnt - 1] = fd;
758 }
496} 759}
497 760
498void inline_speed 761void inline_speed
499fd_kill (EV_P_ int fd) 762fd_kill (EV_P_ int fd)
500{ 763{
523{ 786{
524 int fd; 787 int fd;
525 788
526 for (fd = 0; fd < anfdmax; ++fd) 789 for (fd = 0; fd < anfdmax; ++fd)
527 if (anfds [fd].events) 790 if (anfds [fd].events)
528 if (!fd_valid (fd) == -1 && errno == EBADF) 791 if (!fd_valid (fd) && errno == EBADF)
529 fd_kill (EV_A_ fd); 792 fd_kill (EV_A_ fd);
530} 793}
531 794
532/* called on ENOMEM in select/poll to kill some fds and retry */ 795/* called on ENOMEM in select/poll to kill some fds and retry */
533static void noinline 796static void noinline
547static void noinline 810static void noinline
548fd_rearm_all (EV_P) 811fd_rearm_all (EV_P)
549{ 812{
550 int fd; 813 int fd;
551 814
552 /* this should be highly optimised to not do anything but set a flag */
553 for (fd = 0; fd < anfdmax; ++fd) 815 for (fd = 0; fd < anfdmax; ++fd)
554 if (anfds [fd].events) 816 if (anfds [fd].events)
555 { 817 {
556 anfds [fd].events = 0; 818 anfds [fd].events = 0;
557 fd_change (EV_A_ fd); 819 fd_change (EV_A_ fd, EV_IOFDSET | 1);
558 } 820 }
559} 821}
560 822
561/*****************************************************************************/ 823/*****************************************************************************/
562 824
825/*
826 * the heap functions want a real array index. array index 0 uis guaranteed to not
827 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
828 * the branching factor of the d-tree.
829 */
830
831/*
832 * at the moment we allow libev the luxury of two heaps,
833 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
834 * which is more cache-efficient.
835 * the difference is about 5% with 50000+ watchers.
836 */
837#if EV_USE_4HEAP
838
839#define DHEAP 4
840#define HEAP0 (DHEAP - 1) /* index of first element in heap */
841#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
842#define UPHEAP_DONE(p,k) ((p) == (k))
843
844/* away from the root */
563void inline_speed 845void inline_speed
564upheap (WT *heap, int k) 846downheap (ANHE *heap, int N, int k)
565{ 847{
566 WT w = heap [k]; 848 ANHE he = heap [k];
849 ANHE *E = heap + N + HEAP0;
567 850
568 while (k && heap [k >> 1]->at > w->at) 851 for (;;)
569 {
570 heap [k] = heap [k >> 1];
571 ((W)heap [k])->active = k + 1;
572 k >>= 1;
573 } 852 {
853 ev_tstamp minat;
854 ANHE *minpos;
855 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
574 856
857 /* find minimum child */
858 if (expect_true (pos + DHEAP - 1 < E))
859 {
860 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
861 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 }
865 else if (pos < E)
866 {
867 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
868 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
869 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
871 }
872 else
873 break;
874
875 if (ANHE_at (he) <= minat)
876 break;
877
878 heap [k] = *minpos;
879 ev_active (ANHE_w (*minpos)) = k;
880
881 k = minpos - heap;
882 }
883
575 heap [k] = w; 884 heap [k] = he;
576 ((W)heap [k])->active = k + 1; 885 ev_active (ANHE_w (he)) = k;
577
578} 886}
579 887
888#else /* 4HEAP */
889
890#define HEAP0 1
891#define HPARENT(k) ((k) >> 1)
892#define UPHEAP_DONE(p,k) (!(p))
893
894/* away from the root */
580void inline_speed 895void inline_speed
581downheap (WT *heap, int N, int k) 896downheap (ANHE *heap, int N, int k)
582{ 897{
583 WT w = heap [k]; 898 ANHE he = heap [k];
584 899
585 while (k < (N >> 1)) 900 for (;;)
586 { 901 {
587 int j = k << 1; 902 int c = k << 1;
588 903
589 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 904 if (c > N + HEAP0 - 1)
590 ++j;
591
592 if (w->at <= heap [j]->at)
593 break; 905 break;
594 906
907 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0;
909
910 if (ANHE_at (he) <= ANHE_at (heap [c]))
911 break;
912
595 heap [k] = heap [j]; 913 heap [k] = heap [c];
596 ((W)heap [k])->active = k + 1; 914 ev_active (ANHE_w (heap [k])) = k;
915
597 k = j; 916 k = c;
598 } 917 }
599 918
600 heap [k] = w; 919 heap [k] = he;
601 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (he)) = k;
921}
922#endif
923
924/* towards the root */
925void inline_speed
926upheap (ANHE *heap, int k)
927{
928 ANHE he = heap [k];
929
930 for (;;)
931 {
932 int p = HPARENT (k);
933
934 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
935 break;
936
937 heap [k] = heap [p];
938 ev_active (ANHE_w (heap [k])) = k;
939 k = p;
940 }
941
942 heap [k] = he;
943 ev_active (ANHE_w (he)) = k;
602} 944}
603 945
604void inline_size 946void inline_size
605adjustheap (WT *heap, int N, int k) 947adjustheap (ANHE *heap, int N, int k)
606{ 948{
949 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
607 upheap (heap, k); 950 upheap (heap, k);
951 else
608 downheap (heap, N, k); 952 downheap (heap, N, k);
953}
954
955/* rebuild the heap: this function is used only once and executed rarely */
956void inline_size
957reheap (ANHE *heap, int N)
958{
959 int i;
960
961 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
962 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
963 for (i = 0; i < N; ++i)
964 upheap (heap, i + HEAP0);
609} 965}
610 966
611/*****************************************************************************/ 967/*****************************************************************************/
612 968
613typedef struct 969typedef struct
614{ 970{
615 WL head; 971 WL head;
616 sig_atomic_t volatile gotsig; 972 EV_ATOMIC_T gotsig;
617} ANSIG; 973} ANSIG;
618 974
619static ANSIG *signals; 975static ANSIG *signals;
620static int signalmax; 976static int signalmax;
621 977
622static int sigpipe [2]; 978static EV_ATOMIC_T gotsig;
623static sig_atomic_t volatile gotsig;
624static ev_io sigev;
625 979
626void inline_size 980void inline_size
627signals_init (ANSIG *base, int count) 981signals_init (ANSIG *base, int count)
628{ 982{
629 while (count--) 983 while (count--)
633 987
634 ++base; 988 ++base;
635 } 989 }
636} 990}
637 991
638static void 992/*****************************************************************************/
639sighandler (int signum)
640{
641#if _WIN32
642 signal (signum, sighandler);
643#endif
644 993
645 signals [signum - 1].gotsig = 1;
646
647 if (!gotsig)
648 {
649 int old_errno = errno;
650 gotsig = 1;
651 write (sigpipe [1], &signum, 1);
652 errno = old_errno;
653 }
654}
655
656void noinline
657ev_feed_signal_event (EV_P_ int signum)
658{
659 WL w;
660
661#if EV_MULTIPLICITY
662 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
663#endif
664
665 --signum;
666
667 if (signum < 0 || signum >= signalmax)
668 return;
669
670 signals [signum].gotsig = 0;
671
672 for (w = signals [signum].head; w; w = w->next)
673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
674}
675
676static void
677sigcb (EV_P_ ev_io *iow, int revents)
678{
679 int signum;
680
681 read (sigpipe [0], &revents, 1);
682 gotsig = 0;
683
684 for (signum = signalmax; signum--; )
685 if (signals [signum].gotsig)
686 ev_feed_signal_event (EV_A_ signum + 1);
687}
688
689void inline_size 994void inline_speed
690fd_intern (int fd) 995fd_intern (int fd)
691{ 996{
692#ifdef _WIN32 997#ifdef _WIN32
693 int arg = 1; 998 unsigned long arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 999 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
695#else 1000#else
696 fcntl (fd, F_SETFD, FD_CLOEXEC); 1001 fcntl (fd, F_SETFD, FD_CLOEXEC);
697 fcntl (fd, F_SETFL, O_NONBLOCK); 1002 fcntl (fd, F_SETFL, O_NONBLOCK);
698#endif 1003#endif
699} 1004}
700 1005
701static void noinline 1006static void noinline
702siginit (EV_P) 1007evpipe_init (EV_P)
703{ 1008{
1009 if (!ev_is_active (&pipeev))
1010 {
1011#if EV_USE_EVENTFD
1012 if ((evfd = eventfd (0, 0)) >= 0)
1013 {
1014 evpipe [0] = -1;
1015 fd_intern (evfd);
1016 ev_io_set (&pipeev, evfd, EV_READ);
1017 }
1018 else
1019#endif
1020 {
1021 while (pipe (evpipe))
1022 syserr ("(libev) error creating signal/async pipe");
1023
704 fd_intern (sigpipe [0]); 1024 fd_intern (evpipe [0]);
705 fd_intern (sigpipe [1]); 1025 fd_intern (evpipe [1]);
1026 ev_io_set (&pipeev, evpipe [0], EV_READ);
1027 }
706 1028
707 ev_io_set (&sigev, sigpipe [0], EV_READ);
708 ev_io_start (EV_A_ &sigev); 1029 ev_io_start (EV_A_ &pipeev);
709 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1030 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 }
1032}
1033
1034void inline_size
1035evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1036{
1037 if (!*flag)
1038 {
1039 int old_errno = errno; /* save errno because write might clobber it */
1040
1041 *flag = 1;
1042
1043#if EV_USE_EVENTFD
1044 if (evfd >= 0)
1045 {
1046 uint64_t counter = 1;
1047 write (evfd, &counter, sizeof (uint64_t));
1048 }
1049 else
1050#endif
1051 write (evpipe [1], &old_errno, 1);
1052
1053 errno = old_errno;
1054 }
1055}
1056
1057static void
1058pipecb (EV_P_ ev_io *iow, int revents)
1059{
1060#if EV_USE_EVENTFD
1061 if (evfd >= 0)
1062 {
1063 uint64_t counter;
1064 read (evfd, &counter, sizeof (uint64_t));
1065 }
1066 else
1067#endif
1068 {
1069 char dummy;
1070 read (evpipe [0], &dummy, 1);
1071 }
1072
1073 if (gotsig && ev_is_default_loop (EV_A))
1074 {
1075 int signum;
1076 gotsig = 0;
1077
1078 for (signum = signalmax; signum--; )
1079 if (signals [signum].gotsig)
1080 ev_feed_signal_event (EV_A_ signum + 1);
1081 }
1082
1083#if EV_ASYNC_ENABLE
1084 if (gotasync)
1085 {
1086 int i;
1087 gotasync = 0;
1088
1089 for (i = asynccnt; i--; )
1090 if (asyncs [i]->sent)
1091 {
1092 asyncs [i]->sent = 0;
1093 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1094 }
1095 }
1096#endif
710} 1097}
711 1098
712/*****************************************************************************/ 1099/*****************************************************************************/
713 1100
1101static void
1102ev_sighandler (int signum)
1103{
1104#if EV_MULTIPLICITY
1105 struct ev_loop *loop = &default_loop_struct;
1106#endif
1107
1108#if _WIN32
1109 signal (signum, ev_sighandler);
1110#endif
1111
1112 signals [signum - 1].gotsig = 1;
1113 evpipe_write (EV_A_ &gotsig);
1114}
1115
1116void noinline
1117ev_feed_signal_event (EV_P_ int signum)
1118{
1119 WL w;
1120
1121#if EV_MULTIPLICITY
1122 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1123#endif
1124
1125 --signum;
1126
1127 if (signum < 0 || signum >= signalmax)
1128 return;
1129
1130 signals [signum].gotsig = 0;
1131
1132 for (w = signals [signum].head; w; w = w->next)
1133 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1134}
1135
1136/*****************************************************************************/
1137
714static ev_child *childs [PID_HASHSIZE]; 1138static WL childs [EV_PID_HASHSIZE];
715 1139
716#ifndef _WIN32 1140#ifndef _WIN32
717 1141
718static ev_signal childev; 1142static ev_signal childev;
1143
1144#ifndef WIFCONTINUED
1145# define WIFCONTINUED(status) 0
1146#endif
1147
1148void inline_speed
1149child_reap (EV_P_ int chain, int pid, int status)
1150{
1151 ev_child *w;
1152 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1153
1154 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1155 {
1156 if ((w->pid == pid || !w->pid)
1157 && (!traced || (w->flags & 1)))
1158 {
1159 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1160 w->rpid = pid;
1161 w->rstatus = status;
1162 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1163 }
1164 }
1165}
719 1166
720#ifndef WCONTINUED 1167#ifndef WCONTINUED
721# define WCONTINUED 0 1168# define WCONTINUED 0
722#endif 1169#endif
723 1170
724void inline_speed
725child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
726{
727 ev_child *w;
728
729 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
730 if (w->pid == pid || !w->pid)
731 {
732 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
733 w->rpid = pid;
734 w->rstatus = status;
735 ev_feed_event (EV_A_ (W)w, EV_CHILD);
736 }
737}
738
739static void 1171static void
740childcb (EV_P_ ev_signal *sw, int revents) 1172childcb (EV_P_ ev_signal *sw, int revents)
741{ 1173{
742 int pid, status; 1174 int pid, status;
743 1175
1176 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
744 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1177 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
745 { 1178 if (!WCONTINUED
1179 || errno != EINVAL
1180 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1181 return;
1182
746 /* make sure we are called again until all childs have been reaped */ 1183 /* make sure we are called again until all children have been reaped */
747 /* we need to do it this way so that the callback gets called before we continue */ 1184 /* we need to do it this way so that the callback gets called before we continue */
748 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1185 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
749 1186
750 child_reap (EV_A_ sw, pid, pid, status); 1187 child_reap (EV_A_ pid, pid, status);
1188 if (EV_PID_HASHSIZE > 1)
751 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1189 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
752 }
753} 1190}
754 1191
755#endif 1192#endif
756 1193
757/*****************************************************************************/ 1194/*****************************************************************************/
829} 1266}
830 1267
831unsigned int 1268unsigned int
832ev_embeddable_backends (void) 1269ev_embeddable_backends (void)
833{ 1270{
834 return EVBACKEND_EPOLL 1271 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
835 | EVBACKEND_KQUEUE 1272
836 | EVBACKEND_PORT; 1273 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1274 /* please fix it and tell me how to detect the fix */
1275 flags &= ~EVBACKEND_EPOLL;
1276
1277 return flags;
837} 1278}
838 1279
839unsigned int 1280unsigned int
840ev_backend (EV_P) 1281ev_backend (EV_P)
841{ 1282{
842 return backend; 1283 return backend;
843} 1284}
844 1285
845static void 1286unsigned int
1287ev_loop_count (EV_P)
1288{
1289 return loop_count;
1290}
1291
1292void
1293ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1294{
1295 io_blocktime = interval;
1296}
1297
1298void
1299ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1300{
1301 timeout_blocktime = interval;
1302}
1303
1304static void noinline
846loop_init (EV_P_ unsigned int flags) 1305loop_init (EV_P_ unsigned int flags)
847{ 1306{
848 if (!backend) 1307 if (!backend)
849 { 1308 {
850#if EV_USE_MONOTONIC 1309#if EV_USE_MONOTONIC
853 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1312 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
854 have_monotonic = 1; 1313 have_monotonic = 1;
855 } 1314 }
856#endif 1315#endif
857 1316
858 ev_rt_now = ev_time (); 1317 ev_rt_now = ev_time ();
859 mn_now = get_clock (); 1318 mn_now = get_clock ();
860 now_floor = mn_now; 1319 now_floor = mn_now;
861 rtmn_diff = ev_rt_now - mn_now; 1320 rtmn_diff = ev_rt_now - mn_now;
1321
1322 io_blocktime = 0.;
1323 timeout_blocktime = 0.;
1324 backend = 0;
1325 backend_fd = -1;
1326 gotasync = 0;
1327#if EV_USE_INOTIFY
1328 fs_fd = -2;
1329#endif
1330
1331 /* pid check not overridable via env */
1332#ifndef _WIN32
1333 if (flags & EVFLAG_FORKCHECK)
1334 curpid = getpid ();
1335#endif
862 1336
863 if (!(flags & EVFLAG_NOENV) 1337 if (!(flags & EVFLAG_NOENV)
864 && !enable_secure () 1338 && !enable_secure ()
865 && getenv ("LIBEV_FLAGS")) 1339 && getenv ("LIBEV_FLAGS"))
866 flags = atoi (getenv ("LIBEV_FLAGS")); 1340 flags = atoi (getenv ("LIBEV_FLAGS"));
867 1341
868 if (!(flags & 0x0000ffffUL)) 1342 if (!(flags & 0x0000ffffU))
869 flags |= ev_recommended_backends (); 1343 flags |= ev_recommended_backends ();
870 1344
871 backend = 0;
872#if EV_USE_PORT 1345#if EV_USE_PORT
873 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1346 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
874#endif 1347#endif
875#if EV_USE_KQUEUE 1348#if EV_USE_KQUEUE
876 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1349 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
883#endif 1356#endif
884#if EV_USE_SELECT 1357#if EV_USE_SELECT
885 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1358 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
886#endif 1359#endif
887 1360
888 ev_init (&sigev, sigcb); 1361 ev_init (&pipeev, pipecb);
889 ev_set_priority (&sigev, EV_MAXPRI); 1362 ev_set_priority (&pipeev, EV_MAXPRI);
890 } 1363 }
891} 1364}
892 1365
893static void 1366static void noinline
894loop_destroy (EV_P) 1367loop_destroy (EV_P)
895{ 1368{
896 int i; 1369 int i;
1370
1371 if (ev_is_active (&pipeev))
1372 {
1373 ev_ref (EV_A); /* signal watcher */
1374 ev_io_stop (EV_A_ &pipeev);
1375
1376#if EV_USE_EVENTFD
1377 if (evfd >= 0)
1378 close (evfd);
1379#endif
1380
1381 if (evpipe [0] >= 0)
1382 {
1383 close (evpipe [0]);
1384 close (evpipe [1]);
1385 }
1386 }
1387
1388#if EV_USE_INOTIFY
1389 if (fs_fd >= 0)
1390 close (fs_fd);
1391#endif
1392
1393 if (backend_fd >= 0)
1394 close (backend_fd);
897 1395
898#if EV_USE_PORT 1396#if EV_USE_PORT
899 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1397 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
900#endif 1398#endif
901#if EV_USE_KQUEUE 1399#if EV_USE_KQUEUE
910#if EV_USE_SELECT 1408#if EV_USE_SELECT
911 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1409 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
912#endif 1410#endif
913 1411
914 for (i = NUMPRI; i--; ) 1412 for (i = NUMPRI; i--; )
1413 {
915 array_free (pending, [i]); 1414 array_free (pending, [i]);
1415#if EV_IDLE_ENABLE
1416 array_free (idle, [i]);
1417#endif
1418 }
1419
1420 ev_free (anfds); anfdmax = 0;
916 1421
917 /* have to use the microsoft-never-gets-it-right macro */ 1422 /* have to use the microsoft-never-gets-it-right macro */
918 array_free (fdchange, EMPTY0); 1423 array_free (fdchange, EMPTY);
919 array_free (timer, EMPTY0); 1424 array_free (timer, EMPTY);
920#if EV_PERIODIC_ENABLE 1425#if EV_PERIODIC_ENABLE
921 array_free (periodic, EMPTY0); 1426 array_free (periodic, EMPTY);
922#endif 1427#endif
1428#if EV_FORK_ENABLE
923 array_free (idle, EMPTY0); 1429 array_free (fork, EMPTY);
1430#endif
924 array_free (prepare, EMPTY0); 1431 array_free (prepare, EMPTY);
925 array_free (check, EMPTY0); 1432 array_free (check, EMPTY);
1433#if EV_ASYNC_ENABLE
1434 array_free (async, EMPTY);
1435#endif
926 1436
927 backend = 0; 1437 backend = 0;
928} 1438}
929 1439
930static void 1440#if EV_USE_INOTIFY
1441void inline_size infy_fork (EV_P);
1442#endif
1443
1444void inline_size
931loop_fork (EV_P) 1445loop_fork (EV_P)
932{ 1446{
933#if EV_USE_PORT 1447#if EV_USE_PORT
934 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1448 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
935#endif 1449#endif
937 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1451 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
938#endif 1452#endif
939#if EV_USE_EPOLL 1453#if EV_USE_EPOLL
940 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1454 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
941#endif 1455#endif
1456#if EV_USE_INOTIFY
1457 infy_fork (EV_A);
1458#endif
942 1459
943 if (ev_is_active (&sigev)) 1460 if (ev_is_active (&pipeev))
944 { 1461 {
945 /* default loop */ 1462 /* this "locks" the handlers against writing to the pipe */
1463 /* while we modify the fd vars */
1464 gotsig = 1;
1465#if EV_ASYNC_ENABLE
1466 gotasync = 1;
1467#endif
946 1468
947 ev_ref (EV_A); 1469 ev_ref (EV_A);
948 ev_io_stop (EV_A_ &sigev); 1470 ev_io_stop (EV_A_ &pipeev);
1471
1472#if EV_USE_EVENTFD
1473 if (evfd >= 0)
1474 close (evfd);
1475#endif
1476
1477 if (evpipe [0] >= 0)
1478 {
949 close (sigpipe [0]); 1479 close (evpipe [0]);
950 close (sigpipe [1]); 1480 close (evpipe [1]);
1481 }
951 1482
952 while (pipe (sigpipe))
953 syserr ("(libev) error creating pipe");
954
955 siginit (EV_A); 1483 evpipe_init (EV_A);
1484 /* now iterate over everything, in case we missed something */
1485 pipecb (EV_A_ &pipeev, EV_READ);
956 } 1486 }
957 1487
958 postfork = 0; 1488 postfork = 0;
959} 1489}
960 1490
961#if EV_MULTIPLICITY 1491#if EV_MULTIPLICITY
1492
962struct ev_loop * 1493struct ev_loop *
963ev_loop_new (unsigned int flags) 1494ev_loop_new (unsigned int flags)
964{ 1495{
965 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1496 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
966 1497
982} 1513}
983 1514
984void 1515void
985ev_loop_fork (EV_P) 1516ev_loop_fork (EV_P)
986{ 1517{
987 postfork = 1; 1518 postfork = 1; /* must be in line with ev_default_fork */
988} 1519}
989 1520
1521#if EV_VERIFY
1522static void noinline
1523verify_watcher (EV_P_ W w)
1524{
1525 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1526
1527 if (w->pending)
1528 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1529}
1530
1531static void noinline
1532verify_heap (EV_P_ ANHE *heap, int N)
1533{
1534 int i;
1535
1536 for (i = HEAP0; i < N + HEAP0; ++i)
1537 {
1538 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1539 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1540 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1541
1542 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1543 }
1544}
1545
1546static void noinline
1547array_verify (EV_P_ W *ws, int cnt)
1548{
1549 while (cnt--)
1550 {
1551 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1552 verify_watcher (EV_A_ ws [cnt]);
1553 }
1554}
1555#endif
1556
1557void
1558ev_loop_verify (EV_P)
1559{
1560#if EV_VERIFY
1561 int i;
1562 WL w;
1563
1564 assert (activecnt >= -1);
1565
1566 assert (fdchangemax >= fdchangecnt);
1567 for (i = 0; i < fdchangecnt; ++i)
1568 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1569
1570 assert (anfdmax >= 0);
1571 for (i = 0; i < anfdmax; ++i)
1572 for (w = anfds [i].head; w; w = w->next)
1573 {
1574 verify_watcher (EV_A_ (W)w);
1575 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1576 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1577 }
1578
1579 assert (timermax >= timercnt);
1580 verify_heap (EV_A_ timers, timercnt);
1581
1582#if EV_PERIODIC_ENABLE
1583 assert (periodicmax >= periodiccnt);
1584 verify_heap (EV_A_ periodics, periodiccnt);
1585#endif
1586
1587 for (i = NUMPRI; i--; )
1588 {
1589 assert (pendingmax [i] >= pendingcnt [i]);
1590#if EV_IDLE_ENABLE
1591 assert (idleall >= 0);
1592 assert (idlemax [i] >= idlecnt [i]);
1593 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1594#endif
1595 }
1596
1597#if EV_FORK_ENABLE
1598 assert (forkmax >= forkcnt);
1599 array_verify (EV_A_ (W *)forks, forkcnt);
1600#endif
1601
1602#if EV_ASYNC_ENABLE
1603 assert (asyncmax >= asynccnt);
1604 array_verify (EV_A_ (W *)asyncs, asynccnt);
1605#endif
1606
1607 assert (preparemax >= preparecnt);
1608 array_verify (EV_A_ (W *)prepares, preparecnt);
1609
1610 assert (checkmax >= checkcnt);
1611 array_verify (EV_A_ (W *)checks, checkcnt);
1612
1613# if 0
1614 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1615 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
990#endif 1616# endif
1617#endif
1618}
1619
1620#endif /* multiplicity */
991 1621
992#if EV_MULTIPLICITY 1622#if EV_MULTIPLICITY
993struct ev_loop * 1623struct ev_loop *
994ev_default_loop_init (unsigned int flags) 1624ev_default_loop_init (unsigned int flags)
995#else 1625#else
996int 1626int
997ev_default_loop (unsigned int flags) 1627ev_default_loop (unsigned int flags)
998#endif 1628#endif
999{ 1629{
1000 if (sigpipe [0] == sigpipe [1])
1001 if (pipe (sigpipe))
1002 return 0;
1003
1004 if (!ev_default_loop_ptr) 1630 if (!ev_default_loop_ptr)
1005 { 1631 {
1006#if EV_MULTIPLICITY 1632#if EV_MULTIPLICITY
1007 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1633 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1008#else 1634#else
1011 1637
1012 loop_init (EV_A_ flags); 1638 loop_init (EV_A_ flags);
1013 1639
1014 if (ev_backend (EV_A)) 1640 if (ev_backend (EV_A))
1015 { 1641 {
1016 siginit (EV_A);
1017
1018#ifndef _WIN32 1642#ifndef _WIN32
1019 ev_signal_init (&childev, childcb, SIGCHLD); 1643 ev_signal_init (&childev, childcb, SIGCHLD);
1020 ev_set_priority (&childev, EV_MAXPRI); 1644 ev_set_priority (&childev, EV_MAXPRI);
1021 ev_signal_start (EV_A_ &childev); 1645 ev_signal_start (EV_A_ &childev);
1022 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1646 ev_unref (EV_A); /* child watcher should not keep loop alive */
1039#ifndef _WIN32 1663#ifndef _WIN32
1040 ev_ref (EV_A); /* child watcher */ 1664 ev_ref (EV_A); /* child watcher */
1041 ev_signal_stop (EV_A_ &childev); 1665 ev_signal_stop (EV_A_ &childev);
1042#endif 1666#endif
1043 1667
1044 ev_ref (EV_A); /* signal watcher */
1045 ev_io_stop (EV_A_ &sigev);
1046
1047 close (sigpipe [0]); sigpipe [0] = 0;
1048 close (sigpipe [1]); sigpipe [1] = 0;
1049
1050 loop_destroy (EV_A); 1668 loop_destroy (EV_A);
1051} 1669}
1052 1670
1053void 1671void
1054ev_default_fork (void) 1672ev_default_fork (void)
1056#if EV_MULTIPLICITY 1674#if EV_MULTIPLICITY
1057 struct ev_loop *loop = ev_default_loop_ptr; 1675 struct ev_loop *loop = ev_default_loop_ptr;
1058#endif 1676#endif
1059 1677
1060 if (backend) 1678 if (backend)
1061 postfork = 1; 1679 postfork = 1; /* must be in line with ev_loop_fork */
1062} 1680}
1063 1681
1064/*****************************************************************************/ 1682/*****************************************************************************/
1065 1683
1066int inline_size 1684void
1067any_pending (EV_P) 1685ev_invoke (EV_P_ void *w, int revents)
1068{ 1686{
1069 int pri; 1687 EV_CB_INVOKE ((W)w, revents);
1070
1071 for (pri = NUMPRI; pri--; )
1072 if (pendingcnt [pri])
1073 return 1;
1074
1075 return 0;
1076} 1688}
1077 1689
1078void inline_speed 1690void inline_speed
1079call_pending (EV_P) 1691call_pending (EV_P)
1080{ 1692{
1085 { 1697 {
1086 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1698 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1087 1699
1088 if (expect_true (p->w)) 1700 if (expect_true (p->w))
1089 { 1701 {
1090 assert (("non-pending watcher on pending list", p->w->pending)); 1702 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1091 1703
1092 p->w->pending = 0; 1704 p->w->pending = 0;
1093 EV_CB_INVOKE (p->w, p->events); 1705 EV_CB_INVOKE (p->w, p->events);
1706 EV_FREQUENT_CHECK;
1094 } 1707 }
1095 } 1708 }
1096} 1709}
1097 1710
1711#if EV_IDLE_ENABLE
1712void inline_size
1713idle_reify (EV_P)
1714{
1715 if (expect_false (idleall))
1716 {
1717 int pri;
1718
1719 for (pri = NUMPRI; pri--; )
1720 {
1721 if (pendingcnt [pri])
1722 break;
1723
1724 if (idlecnt [pri])
1725 {
1726 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1727 break;
1728 }
1729 }
1730 }
1731}
1732#endif
1733
1098void inline_size 1734void inline_size
1099timers_reify (EV_P) 1735timers_reify (EV_P)
1100{ 1736{
1737 EV_FREQUENT_CHECK;
1738
1101 while (timercnt && ((WT)timers [0])->at <= mn_now) 1739 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1102 { 1740 {
1103 ev_timer *w = timers [0]; 1741 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1104 1742
1105 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1743 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1106 1744
1107 /* first reschedule or stop timer */ 1745 /* first reschedule or stop timer */
1108 if (w->repeat) 1746 if (w->repeat)
1109 { 1747 {
1748 ev_at (w) += w->repeat;
1749 if (ev_at (w) < mn_now)
1750 ev_at (w) = mn_now;
1751
1110 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1752 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1111 1753
1112 ((WT)w)->at += w->repeat; 1754 ANHE_at_cache (timers [HEAP0]);
1113 if (((WT)w)->at < mn_now)
1114 ((WT)w)->at = mn_now;
1115
1116 downheap ((WT *)timers, timercnt, 0); 1755 downheap (timers, timercnt, HEAP0);
1117 } 1756 }
1118 else 1757 else
1119 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1758 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1120 1759
1760 EV_FREQUENT_CHECK;
1121 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1761 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1122 } 1762 }
1123} 1763}
1124 1764
1125#if EV_PERIODIC_ENABLE 1765#if EV_PERIODIC_ENABLE
1126void inline_size 1766void inline_size
1127periodics_reify (EV_P) 1767periodics_reify (EV_P)
1128{ 1768{
1769 EV_FREQUENT_CHECK;
1770
1129 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1771 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1130 { 1772 {
1131 ev_periodic *w = periodics [0]; 1773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1132 1774
1133 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1775 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1134 1776
1135 /* first reschedule or stop timer */ 1777 /* first reschedule or stop timer */
1136 if (w->reschedule_cb) 1778 if (w->reschedule_cb)
1137 { 1779 {
1138 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1780 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1781
1139 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1782 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1140 downheap ((WT *)periodics, periodiccnt, 0); 1785 downheap (periodics, periodiccnt, HEAP0);
1141 } 1786 }
1142 else if (w->interval) 1787 else if (w->interval)
1143 { 1788 {
1144 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1789 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1145 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1790 /* if next trigger time is not sufficiently in the future, put it there */
1791 /* this might happen because of floating point inexactness */
1792 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1793 {
1794 ev_at (w) += w->interval;
1795
1796 /* if interval is unreasonably low we might still have a time in the past */
1797 /* so correct this. this will make the periodic very inexact, but the user */
1798 /* has effectively asked to get triggered more often than possible */
1799 if (ev_at (w) < ev_rt_now)
1800 ev_at (w) = ev_rt_now;
1801 }
1802
1803 ANHE_at_cache (periodics [HEAP0]);
1146 downheap ((WT *)periodics, periodiccnt, 0); 1804 downheap (periodics, periodiccnt, HEAP0);
1147 } 1805 }
1148 else 1806 else
1149 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1807 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1150 1808
1809 EV_FREQUENT_CHECK;
1151 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1810 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1152 } 1811 }
1153} 1812}
1154 1813
1155static void noinline 1814static void noinline
1156periodics_reschedule (EV_P) 1815periodics_reschedule (EV_P)
1157{ 1816{
1158 int i; 1817 int i;
1159 1818
1160 /* adjust periodics after time jump */ 1819 /* adjust periodics after time jump */
1161 for (i = 0; i < periodiccnt; ++i) 1820 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1162 { 1821 {
1163 ev_periodic *w = periodics [i]; 1822 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1164 1823
1165 if (w->reschedule_cb) 1824 if (w->reschedule_cb)
1166 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1825 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1167 else if (w->interval) 1826 else if (w->interval)
1168 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1827 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1828
1829 ANHE_at_cache (periodics [i]);
1830 }
1831
1832 reheap (periodics, periodiccnt);
1833}
1834#endif
1835
1836void inline_speed
1837time_update (EV_P_ ev_tstamp max_block)
1838{
1839 int i;
1840
1841#if EV_USE_MONOTONIC
1842 if (expect_true (have_monotonic))
1169 } 1843 {
1844 ev_tstamp odiff = rtmn_diff;
1170 1845
1171 /* now rebuild the heap */
1172 for (i = periodiccnt >> 1; i--; )
1173 downheap ((WT *)periodics, periodiccnt, i);
1174}
1175#endif
1176
1177int inline_size
1178time_update_monotonic (EV_P)
1179{
1180 mn_now = get_clock (); 1846 mn_now = get_clock ();
1181 1847
1848 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1849 /* interpolate in the meantime */
1182 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1850 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1183 { 1851 {
1184 ev_rt_now = rtmn_diff + mn_now; 1852 ev_rt_now = rtmn_diff + mn_now;
1185 return 0; 1853 return;
1186 } 1854 }
1187 else 1855
1188 {
1189 now_floor = mn_now; 1856 now_floor = mn_now;
1190 ev_rt_now = ev_time (); 1857 ev_rt_now = ev_time ();
1191 return 1;
1192 }
1193}
1194 1858
1195void inline_size 1859 /* loop a few times, before making important decisions.
1196time_update (EV_P) 1860 * on the choice of "4": one iteration isn't enough,
1197{ 1861 * in case we get preempted during the calls to
1198 int i; 1862 * ev_time and get_clock. a second call is almost guaranteed
1199 1863 * to succeed in that case, though. and looping a few more times
1200#if EV_USE_MONOTONIC 1864 * doesn't hurt either as we only do this on time-jumps or
1201 if (expect_true (have_monotonic)) 1865 * in the unlikely event of having been preempted here.
1202 { 1866 */
1203 if (time_update_monotonic (EV_A)) 1867 for (i = 4; --i; )
1204 { 1868 {
1205 ev_tstamp odiff = rtmn_diff;
1206
1207 /* loop a few times, before making important decisions.
1208 * on the choice of "4": one iteration isn't enough,
1209 * in case we get preempted during the calls to
1210 * ev_time and get_clock. a second call is almost guarenteed
1211 * to succeed in that case, though. and looping a few more times
1212 * doesn't hurt either as we only do this on time-jumps or
1213 * in the unlikely event of getting preempted here.
1214 */
1215 for (i = 4; --i; )
1216 {
1217 rtmn_diff = ev_rt_now - mn_now; 1869 rtmn_diff = ev_rt_now - mn_now;
1218 1870
1219 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1871 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1220 return; /* all is well */ 1872 return; /* all is well */
1221 1873
1222 ev_rt_now = ev_time (); 1874 ev_rt_now = ev_time ();
1223 mn_now = get_clock (); 1875 mn_now = get_clock ();
1224 now_floor = mn_now; 1876 now_floor = mn_now;
1225 } 1877 }
1226 1878
1227# if EV_PERIODIC_ENABLE 1879# if EV_PERIODIC_ENABLE
1228 periodics_reschedule (EV_A); 1880 periodics_reschedule (EV_A);
1229# endif 1881# endif
1230 /* no timer adjustment, as the monotonic clock doesn't jump */ 1882 /* no timer adjustment, as the monotonic clock doesn't jump */
1231 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1883 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1232 }
1233 } 1884 }
1234 else 1885 else
1235#endif 1886#endif
1236 { 1887 {
1237 ev_rt_now = ev_time (); 1888 ev_rt_now = ev_time ();
1238 1889
1239 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1890 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1240 { 1891 {
1241#if EV_PERIODIC_ENABLE 1892#if EV_PERIODIC_ENABLE
1242 periodics_reschedule (EV_A); 1893 periodics_reschedule (EV_A);
1243#endif 1894#endif
1244
1245 /* adjust timers. this is easy, as the offset is the same for all */ 1895 /* adjust timers. this is easy, as the offset is the same for all of them */
1246 for (i = 0; i < timercnt; ++i) 1896 for (i = 0; i < timercnt; ++i)
1897 {
1898 ANHE *he = timers + i + HEAP0;
1247 ((WT)timers [i])->at += ev_rt_now - mn_now; 1899 ANHE_w (*he)->at += ev_rt_now - mn_now;
1900 ANHE_at_cache (*he);
1901 }
1248 } 1902 }
1249 1903
1250 mn_now = ev_rt_now; 1904 mn_now = ev_rt_now;
1251 } 1905 }
1252} 1906}
1261ev_unref (EV_P) 1915ev_unref (EV_P)
1262{ 1916{
1263 --activecnt; 1917 --activecnt;
1264} 1918}
1265 1919
1920void
1921ev_now_update (EV_P)
1922{
1923 time_update (EV_A_ 1e100);
1924}
1925
1266static int loop_done; 1926static int loop_done;
1267 1927
1268void 1928void
1269ev_loop (EV_P_ int flags) 1929ev_loop (EV_P_ int flags)
1270{ 1930{
1271 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1931 loop_done = EVUNLOOP_CANCEL;
1272 ? EVUNLOOP_ONE
1273 : EVUNLOOP_CANCEL;
1274 1932
1275 while (activecnt) 1933 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1934
1935 do
1276 { 1936 {
1937#if EV_VERIFY >= 2
1938 ev_loop_verify (EV_A);
1939#endif
1940
1941#ifndef _WIN32
1942 if (expect_false (curpid)) /* penalise the forking check even more */
1943 if (expect_false (getpid () != curpid))
1944 {
1945 curpid = getpid ();
1946 postfork = 1;
1947 }
1948#endif
1949
1950#if EV_FORK_ENABLE
1951 /* we might have forked, so queue fork handlers */
1952 if (expect_false (postfork))
1953 if (forkcnt)
1954 {
1955 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1956 call_pending (EV_A);
1957 }
1958#endif
1959
1277 /* queue check watchers (and execute them) */ 1960 /* queue prepare watchers (and execute them) */
1278 if (expect_false (preparecnt)) 1961 if (expect_false (preparecnt))
1279 { 1962 {
1280 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1963 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1281 call_pending (EV_A); 1964 call_pending (EV_A);
1282 } 1965 }
1283 1966
1967 if (expect_false (!activecnt))
1968 break;
1969
1284 /* we might have forked, so reify kernel state if necessary */ 1970 /* we might have forked, so reify kernel state if necessary */
1285 if (expect_false (postfork)) 1971 if (expect_false (postfork))
1286 loop_fork (EV_A); 1972 loop_fork (EV_A);
1287 1973
1288 /* update fd-related kernel structures */ 1974 /* update fd-related kernel structures */
1289 fd_reify (EV_A); 1975 fd_reify (EV_A);
1290 1976
1291 /* calculate blocking time */ 1977 /* calculate blocking time */
1292 { 1978 {
1293 double block; 1979 ev_tstamp waittime = 0.;
1980 ev_tstamp sleeptime = 0.;
1294 1981
1295 if (flags & EVLOOP_NONBLOCK || idlecnt) 1982 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1296 block = 0.; /* do not block at all */
1297 else
1298 { 1983 {
1299 /* update time to cancel out callback processing overhead */ 1984 /* update time to cancel out callback processing overhead */
1300#if EV_USE_MONOTONIC
1301 if (expect_true (have_monotonic))
1302 time_update_monotonic (EV_A); 1985 time_update (EV_A_ 1e100);
1303 else
1304#endif
1305 {
1306 ev_rt_now = ev_time ();
1307 mn_now = ev_rt_now;
1308 }
1309 1986
1310 block = MAX_BLOCKTIME; 1987 waittime = MAX_BLOCKTIME;
1311 1988
1312 if (timercnt) 1989 if (timercnt)
1313 { 1990 {
1314 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1315 if (block > to) block = to; 1992 if (waittime > to) waittime = to;
1316 } 1993 }
1317 1994
1318#if EV_PERIODIC_ENABLE 1995#if EV_PERIODIC_ENABLE
1319 if (periodiccnt) 1996 if (periodiccnt)
1320 { 1997 {
1321 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1322 if (block > to) block = to; 1999 if (waittime > to) waittime = to;
1323 } 2000 }
1324#endif 2001#endif
1325 2002
1326 if (expect_false (block < 0.)) block = 0.; 2003 if (expect_false (waittime < timeout_blocktime))
2004 waittime = timeout_blocktime;
2005
2006 sleeptime = waittime - backend_fudge;
2007
2008 if (expect_true (sleeptime > io_blocktime))
2009 sleeptime = io_blocktime;
2010
2011 if (sleeptime)
2012 {
2013 ev_sleep (sleeptime);
2014 waittime -= sleeptime;
2015 }
1327 } 2016 }
1328 2017
2018 ++loop_count;
1329 backend_poll (EV_A_ block); 2019 backend_poll (EV_A_ waittime);
2020
2021 /* update ev_rt_now, do magic */
2022 time_update (EV_A_ waittime + sleeptime);
1330 } 2023 }
1331
1332 /* update ev_rt_now, do magic */
1333 time_update (EV_A);
1334 2024
1335 /* queue pending timers and reschedule them */ 2025 /* queue pending timers and reschedule them */
1336 timers_reify (EV_A); /* relative timers called last */ 2026 timers_reify (EV_A); /* relative timers called last */
1337#if EV_PERIODIC_ENABLE 2027#if EV_PERIODIC_ENABLE
1338 periodics_reify (EV_A); /* absolute timers called first */ 2028 periodics_reify (EV_A); /* absolute timers called first */
1339#endif 2029#endif
1340 2030
2031#if EV_IDLE_ENABLE
1341 /* queue idle watchers unless other events are pending */ 2032 /* queue idle watchers unless other events are pending */
1342 if (idlecnt && !any_pending (EV_A)) 2033 idle_reify (EV_A);
1343 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2034#endif
1344 2035
1345 /* queue check watchers, to be executed first */ 2036 /* queue check watchers, to be executed first */
1346 if (expect_false (checkcnt)) 2037 if (expect_false (checkcnt))
1347 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2038 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1348 2039
1349 call_pending (EV_A); 2040 call_pending (EV_A);
1350
1351 if (expect_false (loop_done))
1352 break;
1353 } 2041 }
2042 while (expect_true (
2043 activecnt
2044 && !loop_done
2045 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2046 ));
1354 2047
1355 if (loop_done == EVUNLOOP_ONE) 2048 if (loop_done == EVUNLOOP_ONE)
1356 loop_done = EVUNLOOP_CANCEL; 2049 loop_done = EVUNLOOP_CANCEL;
1357} 2050}
1358 2051
1385 head = &(*head)->next; 2078 head = &(*head)->next;
1386 } 2079 }
1387} 2080}
1388 2081
1389void inline_speed 2082void inline_speed
1390ev_clear_pending (EV_P_ W w) 2083clear_pending (EV_P_ W w)
1391{ 2084{
1392 if (w->pending) 2085 if (w->pending)
1393 { 2086 {
1394 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2087 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1395 w->pending = 0; 2088 w->pending = 0;
1396 } 2089 }
1397} 2090}
1398 2091
2092int
2093ev_clear_pending (EV_P_ void *w)
2094{
2095 W w_ = (W)w;
2096 int pending = w_->pending;
2097
2098 if (expect_true (pending))
2099 {
2100 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2101 w_->pending = 0;
2102 p->w = 0;
2103 return p->events;
2104 }
2105 else
2106 return 0;
2107}
2108
2109void inline_size
2110pri_adjust (EV_P_ W w)
2111{
2112 int pri = w->priority;
2113 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2114 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2115 w->priority = pri;
2116}
2117
1399void inline_speed 2118void inline_speed
1400ev_start (EV_P_ W w, int active) 2119ev_start (EV_P_ W w, int active)
1401{ 2120{
1402 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2121 pri_adjust (EV_A_ w);
1403 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1404
1405 w->active = active; 2122 w->active = active;
1406 ev_ref (EV_A); 2123 ev_ref (EV_A);
1407} 2124}
1408 2125
1409void inline_size 2126void inline_size
1413 w->active = 0; 2130 w->active = 0;
1414} 2131}
1415 2132
1416/*****************************************************************************/ 2133/*****************************************************************************/
1417 2134
1418void 2135void noinline
1419ev_io_start (EV_P_ ev_io *w) 2136ev_io_start (EV_P_ ev_io *w)
1420{ 2137{
1421 int fd = w->fd; 2138 int fd = w->fd;
1422 2139
1423 if (expect_false (ev_is_active (w))) 2140 if (expect_false (ev_is_active (w)))
1424 return; 2141 return;
1425 2142
1426 assert (("ev_io_start called with negative fd", fd >= 0)); 2143 assert (("ev_io_start called with negative fd", fd >= 0));
1427 2144
2145 EV_FREQUENT_CHECK;
2146
1428 ev_start (EV_A_ (W)w, 1); 2147 ev_start (EV_A_ (W)w, 1);
1429 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2148 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1430 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2149 wlist_add (&anfds[fd].head, (WL)w);
1431 2150
1432 fd_change (EV_A_ fd); 2151 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1433} 2152 w->events &= ~EV_IOFDSET;
1434 2153
1435void 2154 EV_FREQUENT_CHECK;
2155}
2156
2157void noinline
1436ev_io_stop (EV_P_ ev_io *w) 2158ev_io_stop (EV_P_ ev_io *w)
1437{ 2159{
1438 ev_clear_pending (EV_A_ (W)w); 2160 clear_pending (EV_A_ (W)w);
1439 if (expect_false (!ev_is_active (w))) 2161 if (expect_false (!ev_is_active (w)))
1440 return; 2162 return;
1441 2163
1442 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2164 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1443 2165
2166 EV_FREQUENT_CHECK;
2167
1444 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2168 wlist_del (&anfds[w->fd].head, (WL)w);
1445 ev_stop (EV_A_ (W)w); 2169 ev_stop (EV_A_ (W)w);
1446 2170
1447 fd_change (EV_A_ w->fd); 2171 fd_change (EV_A_ w->fd, 1);
1448}
1449 2172
1450void 2173 EV_FREQUENT_CHECK;
2174}
2175
2176void noinline
1451ev_timer_start (EV_P_ ev_timer *w) 2177ev_timer_start (EV_P_ ev_timer *w)
1452{ 2178{
1453 if (expect_false (ev_is_active (w))) 2179 if (expect_false (ev_is_active (w)))
1454 return; 2180 return;
1455 2181
1456 ((WT)w)->at += mn_now; 2182 ev_at (w) += mn_now;
1457 2183
1458 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2184 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1459 2185
2186 EV_FREQUENT_CHECK;
2187
2188 ++timercnt;
1460 ev_start (EV_A_ (W)w, ++timercnt); 2189 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1461 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2190 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1462 timers [timercnt - 1] = w; 2191 ANHE_w (timers [ev_active (w)]) = (WT)w;
1463 upheap ((WT *)timers, timercnt - 1); 2192 ANHE_at_cache (timers [ev_active (w)]);
2193 upheap (timers, ev_active (w));
1464 2194
2195 EV_FREQUENT_CHECK;
2196
1465 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2197 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1466} 2198}
1467 2199
1468void 2200void noinline
1469ev_timer_stop (EV_P_ ev_timer *w) 2201ev_timer_stop (EV_P_ ev_timer *w)
1470{ 2202{
1471 ev_clear_pending (EV_A_ (W)w); 2203 clear_pending (EV_A_ (W)w);
1472 if (expect_false (!ev_is_active (w))) 2204 if (expect_false (!ev_is_active (w)))
1473 return; 2205 return;
1474 2206
2207 EV_FREQUENT_CHECK;
2208
2209 {
2210 int active = ev_active (w);
2211
1475 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2212 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1476 2213
2214 --timercnt;
2215
1477 if (expect_true (((W)w)->active < timercnt--)) 2216 if (expect_true (active < timercnt + HEAP0))
1478 { 2217 {
1479 timers [((W)w)->active - 1] = timers [timercnt]; 2218 timers [active] = timers [timercnt + HEAP0];
1480 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2219 adjustheap (timers, timercnt, active);
1481 } 2220 }
2221 }
1482 2222
1483 ((WT)w)->at -= mn_now; 2223 EV_FREQUENT_CHECK;
2224
2225 ev_at (w) -= mn_now;
1484 2226
1485 ev_stop (EV_A_ (W)w); 2227 ev_stop (EV_A_ (W)w);
1486} 2228}
1487 2229
1488void 2230void noinline
1489ev_timer_again (EV_P_ ev_timer *w) 2231ev_timer_again (EV_P_ ev_timer *w)
1490{ 2232{
2233 EV_FREQUENT_CHECK;
2234
1491 if (ev_is_active (w)) 2235 if (ev_is_active (w))
1492 { 2236 {
1493 if (w->repeat) 2237 if (w->repeat)
1494 { 2238 {
1495 ((WT)w)->at = mn_now + w->repeat; 2239 ev_at (w) = mn_now + w->repeat;
2240 ANHE_at_cache (timers [ev_active (w)]);
1496 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2241 adjustheap (timers, timercnt, ev_active (w));
1497 } 2242 }
1498 else 2243 else
1499 ev_timer_stop (EV_A_ w); 2244 ev_timer_stop (EV_A_ w);
1500 } 2245 }
1501 else if (w->repeat) 2246 else if (w->repeat)
1502 { 2247 {
1503 w->at = w->repeat; 2248 ev_at (w) = w->repeat;
1504 ev_timer_start (EV_A_ w); 2249 ev_timer_start (EV_A_ w);
1505 } 2250 }
2251
2252 EV_FREQUENT_CHECK;
1506} 2253}
1507 2254
1508#if EV_PERIODIC_ENABLE 2255#if EV_PERIODIC_ENABLE
1509void 2256void noinline
1510ev_periodic_start (EV_P_ ev_periodic *w) 2257ev_periodic_start (EV_P_ ev_periodic *w)
1511{ 2258{
1512 if (expect_false (ev_is_active (w))) 2259 if (expect_false (ev_is_active (w)))
1513 return; 2260 return;
1514 2261
1515 if (w->reschedule_cb) 2262 if (w->reschedule_cb)
1516 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2263 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1517 else if (w->interval) 2264 else if (w->interval)
1518 { 2265 {
1519 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2266 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1520 /* this formula differs from the one in periodic_reify because we do not always round up */ 2267 /* this formula differs from the one in periodic_reify because we do not always round up */
1521 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2268 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1522 } 2269 }
2270 else
2271 ev_at (w) = w->offset;
1523 2272
2273 EV_FREQUENT_CHECK;
2274
2275 ++periodiccnt;
1524 ev_start (EV_A_ (W)w, ++periodiccnt); 2276 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1525 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2277 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1526 periodics [periodiccnt - 1] = w; 2278 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1527 upheap ((WT *)periodics, periodiccnt - 1); 2279 ANHE_at_cache (periodics [ev_active (w)]);
2280 upheap (periodics, ev_active (w));
1528 2281
2282 EV_FREQUENT_CHECK;
2283
1529 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2284 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1530} 2285}
1531 2286
1532void 2287void noinline
1533ev_periodic_stop (EV_P_ ev_periodic *w) 2288ev_periodic_stop (EV_P_ ev_periodic *w)
1534{ 2289{
1535 ev_clear_pending (EV_A_ (W)w); 2290 clear_pending (EV_A_ (W)w);
1536 if (expect_false (!ev_is_active (w))) 2291 if (expect_false (!ev_is_active (w)))
1537 return; 2292 return;
1538 2293
2294 EV_FREQUENT_CHECK;
2295
2296 {
2297 int active = ev_active (w);
2298
1539 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2299 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1540 2300
2301 --periodiccnt;
2302
1541 if (expect_true (((W)w)->active < periodiccnt--)) 2303 if (expect_true (active < periodiccnt + HEAP0))
1542 { 2304 {
1543 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2305 periodics [active] = periodics [periodiccnt + HEAP0];
1544 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2306 adjustheap (periodics, periodiccnt, active);
1545 } 2307 }
2308 }
2309
2310 EV_FREQUENT_CHECK;
1546 2311
1547 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
1548} 2313}
1549 2314
1550void 2315void noinline
1551ev_periodic_again (EV_P_ ev_periodic *w) 2316ev_periodic_again (EV_P_ ev_periodic *w)
1552{ 2317{
1553 /* TODO: use adjustheap and recalculation */ 2318 /* TODO: use adjustheap and recalculation */
1554 ev_periodic_stop (EV_A_ w); 2319 ev_periodic_stop (EV_A_ w);
1555 ev_periodic_start (EV_A_ w); 2320 ev_periodic_start (EV_A_ w);
1556} 2321}
1557#endif 2322#endif
1558 2323
1559void 2324#ifndef SA_RESTART
2325# define SA_RESTART 0
2326#endif
2327
2328void noinline
1560ev_idle_start (EV_P_ ev_idle *w) 2329ev_signal_start (EV_P_ ev_signal *w)
1561{ 2330{
2331#if EV_MULTIPLICITY
2332 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2333#endif
1562 if (expect_false (ev_is_active (w))) 2334 if (expect_false (ev_is_active (w)))
1563 return; 2335 return;
1564 2336
1565 ev_start (EV_A_ (W)w, ++idlecnt); 2337 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1566 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1567 idles [idlecnt - 1] = w;
1568}
1569 2338
1570void 2339 evpipe_init (EV_A);
1571ev_idle_stop (EV_P_ ev_idle *w) 2340
1572{ 2341 EV_FREQUENT_CHECK;
1573 ev_clear_pending (EV_A_ (W)w);
1574 if (expect_false (!ev_is_active (w)))
1575 return;
1576 2342
1577 { 2343 {
1578 int active = ((W)w)->active; 2344#ifndef _WIN32
1579 idles [active - 1] = idles [--idlecnt]; 2345 sigset_t full, prev;
1580 ((W)idles [active - 1])->active = active; 2346 sigfillset (&full);
2347 sigprocmask (SIG_SETMASK, &full, &prev);
2348#endif
2349
2350 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2351
2352#ifndef _WIN32
2353 sigprocmask (SIG_SETMASK, &prev, 0);
2354#endif
1581 } 2355 }
1582 2356
1583 ev_stop (EV_A_ (W)w);
1584}
1585
1586void
1587ev_prepare_start (EV_P_ ev_prepare *w)
1588{
1589 if (expect_false (ev_is_active (w)))
1590 return;
1591
1592 ev_start (EV_A_ (W)w, ++preparecnt);
1593 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1594 prepares [preparecnt - 1] = w;
1595}
1596
1597void
1598ev_prepare_stop (EV_P_ ev_prepare *w)
1599{
1600 ev_clear_pending (EV_A_ (W)w);
1601 if (expect_false (!ev_is_active (w)))
1602 return;
1603
1604 {
1605 int active = ((W)w)->active;
1606 prepares [active - 1] = prepares [--preparecnt];
1607 ((W)prepares [active - 1])->active = active;
1608 }
1609
1610 ev_stop (EV_A_ (W)w);
1611}
1612
1613void
1614ev_check_start (EV_P_ ev_check *w)
1615{
1616 if (expect_false (ev_is_active (w)))
1617 return;
1618
1619 ev_start (EV_A_ (W)w, ++checkcnt);
1620 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1621 checks [checkcnt - 1] = w;
1622}
1623
1624void
1625ev_check_stop (EV_P_ ev_check *w)
1626{
1627 ev_clear_pending (EV_A_ (W)w);
1628 if (expect_false (!ev_is_active (w)))
1629 return;
1630
1631 {
1632 int active = ((W)w)->active;
1633 checks [active - 1] = checks [--checkcnt];
1634 ((W)checks [active - 1])->active = active;
1635 }
1636
1637 ev_stop (EV_A_ (W)w);
1638}
1639
1640#ifndef SA_RESTART
1641# define SA_RESTART 0
1642#endif
1643
1644void
1645ev_signal_start (EV_P_ ev_signal *w)
1646{
1647#if EV_MULTIPLICITY
1648 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1649#endif
1650 if (expect_false (ev_is_active (w)))
1651 return;
1652
1653 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1654
1655 ev_start (EV_A_ (W)w, 1); 2357 ev_start (EV_A_ (W)w, 1);
1656 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1657 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2358 wlist_add (&signals [w->signum - 1].head, (WL)w);
1658 2359
1659 if (!((WL)w)->next) 2360 if (!((WL)w)->next)
1660 { 2361 {
1661#if _WIN32 2362#if _WIN32
1662 signal (w->signum, sighandler); 2363 signal (w->signum, ev_sighandler);
1663#else 2364#else
1664 struct sigaction sa; 2365 struct sigaction sa;
1665 sa.sa_handler = sighandler; 2366 sa.sa_handler = ev_sighandler;
1666 sigfillset (&sa.sa_mask); 2367 sigfillset (&sa.sa_mask);
1667 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2368 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1668 sigaction (w->signum, &sa, 0); 2369 sigaction (w->signum, &sa, 0);
1669#endif 2370#endif
1670 } 2371 }
1671}
1672 2372
1673void 2373 EV_FREQUENT_CHECK;
2374}
2375
2376void noinline
1674ev_signal_stop (EV_P_ ev_signal *w) 2377ev_signal_stop (EV_P_ ev_signal *w)
1675{ 2378{
1676 ev_clear_pending (EV_A_ (W)w); 2379 clear_pending (EV_A_ (W)w);
1677 if (expect_false (!ev_is_active (w))) 2380 if (expect_false (!ev_is_active (w)))
1678 return; 2381 return;
1679 2382
2383 EV_FREQUENT_CHECK;
2384
1680 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2385 wlist_del (&signals [w->signum - 1].head, (WL)w);
1681 ev_stop (EV_A_ (W)w); 2386 ev_stop (EV_A_ (W)w);
1682 2387
1683 if (!signals [w->signum - 1].head) 2388 if (!signals [w->signum - 1].head)
1684 signal (w->signum, SIG_DFL); 2389 signal (w->signum, SIG_DFL);
2390
2391 EV_FREQUENT_CHECK;
1685} 2392}
1686 2393
1687void 2394void
1688ev_child_start (EV_P_ ev_child *w) 2395ev_child_start (EV_P_ ev_child *w)
1689{ 2396{
1691 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2398 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1692#endif 2399#endif
1693 if (expect_false (ev_is_active (w))) 2400 if (expect_false (ev_is_active (w)))
1694 return; 2401 return;
1695 2402
2403 EV_FREQUENT_CHECK;
2404
1696 ev_start (EV_A_ (W)w, 1); 2405 ev_start (EV_A_ (W)w, 1);
1697 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2406 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2407
2408 EV_FREQUENT_CHECK;
1698} 2409}
1699 2410
1700void 2411void
1701ev_child_stop (EV_P_ ev_child *w) 2412ev_child_stop (EV_P_ ev_child *w)
1702{ 2413{
1703 ev_clear_pending (EV_A_ (W)w); 2414 clear_pending (EV_A_ (W)w);
1704 if (expect_false (!ev_is_active (w))) 2415 if (expect_false (!ev_is_active (w)))
1705 return; 2416 return;
1706 2417
2418 EV_FREQUENT_CHECK;
2419
1707 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2420 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1708 ev_stop (EV_A_ (W)w); 2421 ev_stop (EV_A_ (W)w);
1709}
1710 2422
2423 EV_FREQUENT_CHECK;
2424}
2425
1711#if EV_EMBED_ENABLE 2426#if EV_STAT_ENABLE
2427
2428# ifdef _WIN32
2429# undef lstat
2430# define lstat(a,b) _stati64 (a,b)
2431# endif
2432
2433#define DEF_STAT_INTERVAL 5.0074891
2434#define MIN_STAT_INTERVAL 0.1074891
2435
2436static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2437
2438#if EV_USE_INOTIFY
2439# define EV_INOTIFY_BUFSIZE 8192
2440
1712void noinline 2441static void noinline
1713ev_embed_sweep (EV_P_ ev_embed *w) 2442infy_add (EV_P_ ev_stat *w)
1714{ 2443{
1715 ev_loop (w->loop, EVLOOP_NONBLOCK); 2444 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2445
2446 if (w->wd < 0)
2447 {
2448 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2449
2450 /* monitor some parent directory for speedup hints */
2451 /* note that exceeding the hardcoded limit is not a correctness issue, */
2452 /* but an efficiency issue only */
2453 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2454 {
2455 char path [4096];
2456 strcpy (path, w->path);
2457
2458 do
2459 {
2460 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2461 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2462
2463 char *pend = strrchr (path, '/');
2464
2465 if (!pend)
2466 break; /* whoops, no '/', complain to your admin */
2467
2468 *pend = 0;
2469 w->wd = inotify_add_watch (fs_fd, path, mask);
2470 }
2471 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2472 }
2473 }
2474 else
2475 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2476
2477 if (w->wd >= 0)
2478 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2479}
2480
2481static void noinline
2482infy_del (EV_P_ ev_stat *w)
2483{
2484 int slot;
2485 int wd = w->wd;
2486
2487 if (wd < 0)
2488 return;
2489
2490 w->wd = -2;
2491 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2492 wlist_del (&fs_hash [slot].head, (WL)w);
2493
2494 /* remove this watcher, if others are watching it, they will rearm */
2495 inotify_rm_watch (fs_fd, wd);
2496}
2497
2498static void noinline
2499infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2500{
2501 if (slot < 0)
2502 /* overflow, need to check for all hash slots */
2503 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2504 infy_wd (EV_A_ slot, wd, ev);
2505 else
2506 {
2507 WL w_;
2508
2509 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2510 {
2511 ev_stat *w = (ev_stat *)w_;
2512 w_ = w_->next; /* lets us remove this watcher and all before it */
2513
2514 if (w->wd == wd || wd == -1)
2515 {
2516 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2517 {
2518 w->wd = -1;
2519 infy_add (EV_A_ w); /* re-add, no matter what */
2520 }
2521
2522 stat_timer_cb (EV_A_ &w->timer, 0);
2523 }
2524 }
2525 }
1716} 2526}
1717 2527
1718static void 2528static void
1719embed_cb (EV_P_ ev_io *io, int revents) 2529infy_cb (EV_P_ ev_io *w, int revents)
1720{ 2530{
1721 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2531 char buf [EV_INOTIFY_BUFSIZE];
2532 struct inotify_event *ev = (struct inotify_event *)buf;
2533 int ofs;
2534 int len = read (fs_fd, buf, sizeof (buf));
1722 2535
1723 if (ev_cb (w)) 2536 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1724 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2537 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1725 else
1726 ev_embed_sweep (loop, w);
1727} 2538}
1728 2539
1729void 2540void inline_size
1730ev_embed_start (EV_P_ ev_embed *w) 2541infy_init (EV_P)
1731{ 2542{
1732 if (expect_false (ev_is_active (w))) 2543 if (fs_fd != -2)
1733 return; 2544 return;
1734 2545
2546 /* kernels < 2.6.25 are borked
2547 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2548 */
1735 { 2549 {
1736 struct ev_loop *loop = w->loop; 2550 struct utsname buf;
1737 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2551 int major, minor, micro;
1738 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2552
2553 fs_fd = -1;
2554
2555 if (uname (&buf))
2556 return;
2557
2558 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2559 return;
2560
2561 if (major < 2
2562 || (major == 2 && minor < 6)
2563 || (major == 2 && minor == 6 && micro < 25))
2564 return;
1739 } 2565 }
1740 2566
1741 ev_set_priority (&w->io, ev_priority (w)); 2567 fs_fd = inotify_init ();
2568
2569 if (fs_fd >= 0)
2570 {
2571 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2572 ev_set_priority (&fs_w, EV_MAXPRI);
1742 ev_io_start (EV_A_ &w->io); 2573 ev_io_start (EV_A_ &fs_w);
1743 2574 }
1744 ev_start (EV_A_ (W)w, 1);
1745} 2575}
1746 2576
1747void 2577void inline_size
1748ev_embed_stop (EV_P_ ev_embed *w) 2578infy_fork (EV_P)
1749{ 2579{
1750 ev_clear_pending (EV_A_ (W)w); 2580 int slot;
1751 if (expect_false (!ev_is_active (w))) 2581
2582 if (fs_fd < 0)
1752 return; 2583 return;
1753 2584
1754 ev_io_stop (EV_A_ &w->io); 2585 close (fs_fd);
2586 fs_fd = inotify_init ();
1755 2587
1756 ev_stop (EV_A_ (W)w); 2588 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1757} 2589 {
1758#endif 2590 WL w_ = fs_hash [slot].head;
2591 fs_hash [slot].head = 0;
1759 2592
1760#if EV_STAT_ENABLE 2593 while (w_)
2594 {
2595 ev_stat *w = (ev_stat *)w_;
2596 w_ = w_->next; /* lets us add this watcher */
1761 2597
2598 w->wd = -1;
2599
2600 if (fs_fd >= 0)
2601 infy_add (EV_A_ w); /* re-add, no matter what */
2602 else
2603 ev_timer_start (EV_A_ &w->timer);
2604 }
2605 }
2606}
2607
2608#endif
2609
1762# ifdef _WIN32 2610#ifdef _WIN32
1763# define lstat(a,b) stat(a,b) 2611# define EV_LSTAT(p,b) _stati64 (p, b)
2612#else
2613# define EV_LSTAT(p,b) lstat (p, b)
1764# endif 2614#endif
1765 2615
1766void 2616void
1767ev_stat_stat (EV_P_ ev_stat *w) 2617ev_stat_stat (EV_P_ ev_stat *w)
1768{ 2618{
1769 if (lstat (w->path, &w->attr) < 0) 2619 if (lstat (w->path, &w->attr) < 0)
1770 w->attr.st_nlink = 0; 2620 w->attr.st_nlink = 0;
1771 else if (!w->attr.st_nlink) 2621 else if (!w->attr.st_nlink)
1772 w->attr.st_nlink = 1; 2622 w->attr.st_nlink = 1;
1773} 2623}
1774 2624
1775static void 2625static void noinline
1776stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2626stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1777{ 2627{
1778 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2628 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1779 2629
1780 /* we copy this here each the time so that */ 2630 /* we copy this here each the time so that */
1781 /* prev has the old value when the callback gets invoked */ 2631 /* prev has the old value when the callback gets invoked */
1782 w->prev = w->attr; 2632 w->prev = w->attr;
1783 ev_stat_stat (EV_A_ w); 2633 ev_stat_stat (EV_A_ w);
1784 2634
1785 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2635 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2636 if (
2637 w->prev.st_dev != w->attr.st_dev
2638 || w->prev.st_ino != w->attr.st_ino
2639 || w->prev.st_mode != w->attr.st_mode
2640 || w->prev.st_nlink != w->attr.st_nlink
2641 || w->prev.st_uid != w->attr.st_uid
2642 || w->prev.st_gid != w->attr.st_gid
2643 || w->prev.st_rdev != w->attr.st_rdev
2644 || w->prev.st_size != w->attr.st_size
2645 || w->prev.st_atime != w->attr.st_atime
2646 || w->prev.st_mtime != w->attr.st_mtime
2647 || w->prev.st_ctime != w->attr.st_ctime
2648 ) {
2649 #if EV_USE_INOTIFY
2650 if (fs_fd >= 0)
2651 {
2652 infy_del (EV_A_ w);
2653 infy_add (EV_A_ w);
2654 ev_stat_stat (EV_A_ w); /* avoid race... */
2655 }
2656 #endif
2657
1786 ev_feed_event (EV_A_ w, EV_STAT); 2658 ev_feed_event (EV_A_ w, EV_STAT);
2659 }
1787} 2660}
1788 2661
1789void 2662void
1790ev_stat_start (EV_P_ ev_stat *w) 2663ev_stat_start (EV_P_ ev_stat *w)
1791{ 2664{
1796 memset (&w->prev, 0, sizeof (ev_statdata)); 2669 memset (&w->prev, 0, sizeof (ev_statdata));
1797 memset (&w->attr, 0, sizeof (ev_statdata)); 2670 memset (&w->attr, 0, sizeof (ev_statdata));
1798 2671
1799 ev_stat_stat (EV_A_ w); 2672 ev_stat_stat (EV_A_ w);
1800 2673
2674 if (w->interval < MIN_STAT_INTERVAL)
2675 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2676
1801 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2677 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1802 ev_set_priority (&w->timer, ev_priority (w)); 2678 ev_set_priority (&w->timer, ev_priority (w));
2679
2680#if EV_USE_INOTIFY
2681 infy_init (EV_A);
2682
2683 if (fs_fd >= 0)
2684 infy_add (EV_A_ w);
2685 else
2686#endif
1803 ev_timer_start (EV_A_ &w->timer); 2687 ev_timer_start (EV_A_ &w->timer);
1804 2688
1805 ev_start (EV_A_ (W)w, 1); 2689 ev_start (EV_A_ (W)w, 1);
2690
2691 EV_FREQUENT_CHECK;
1806} 2692}
1807 2693
1808void 2694void
1809ev_stat_stop (EV_P_ ev_stat *w) 2695ev_stat_stop (EV_P_ ev_stat *w)
1810{ 2696{
1811 ev_clear_pending (EV_A_ (W)w); 2697 clear_pending (EV_A_ (W)w);
1812 if (expect_false (!ev_is_active (w))) 2698 if (expect_false (!ev_is_active (w)))
1813 return; 2699 return;
1814 2700
2701 EV_FREQUENT_CHECK;
2702
2703#if EV_USE_INOTIFY
2704 infy_del (EV_A_ w);
2705#endif
1815 ev_timer_stop (EV_A_ &w->timer); 2706 ev_timer_stop (EV_A_ &w->timer);
1816 2707
1817 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
2709
2710 EV_FREQUENT_CHECK;
2711}
2712#endif
2713
2714#if EV_IDLE_ENABLE
2715void
2716ev_idle_start (EV_P_ ev_idle *w)
2717{
2718 if (expect_false (ev_is_active (w)))
2719 return;
2720
2721 pri_adjust (EV_A_ (W)w);
2722
2723 EV_FREQUENT_CHECK;
2724
2725 {
2726 int active = ++idlecnt [ABSPRI (w)];
2727
2728 ++idleall;
2729 ev_start (EV_A_ (W)w, active);
2730
2731 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2732 idles [ABSPRI (w)][active - 1] = w;
2733 }
2734
2735 EV_FREQUENT_CHECK;
2736}
2737
2738void
2739ev_idle_stop (EV_P_ ev_idle *w)
2740{
2741 clear_pending (EV_A_ (W)w);
2742 if (expect_false (!ev_is_active (w)))
2743 return;
2744
2745 EV_FREQUENT_CHECK;
2746
2747 {
2748 int active = ev_active (w);
2749
2750 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2751 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2752
2753 ev_stop (EV_A_ (W)w);
2754 --idleall;
2755 }
2756
2757 EV_FREQUENT_CHECK;
2758}
2759#endif
2760
2761void
2762ev_prepare_start (EV_P_ ev_prepare *w)
2763{
2764 if (expect_false (ev_is_active (w)))
2765 return;
2766
2767 EV_FREQUENT_CHECK;
2768
2769 ev_start (EV_A_ (W)w, ++preparecnt);
2770 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2771 prepares [preparecnt - 1] = w;
2772
2773 EV_FREQUENT_CHECK;
2774}
2775
2776void
2777ev_prepare_stop (EV_P_ ev_prepare *w)
2778{
2779 clear_pending (EV_A_ (W)w);
2780 if (expect_false (!ev_is_active (w)))
2781 return;
2782
2783 EV_FREQUENT_CHECK;
2784
2785 {
2786 int active = ev_active (w);
2787
2788 prepares [active - 1] = prepares [--preparecnt];
2789 ev_active (prepares [active - 1]) = active;
2790 }
2791
2792 ev_stop (EV_A_ (W)w);
2793
2794 EV_FREQUENT_CHECK;
2795}
2796
2797void
2798ev_check_start (EV_P_ ev_check *w)
2799{
2800 if (expect_false (ev_is_active (w)))
2801 return;
2802
2803 EV_FREQUENT_CHECK;
2804
2805 ev_start (EV_A_ (W)w, ++checkcnt);
2806 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2807 checks [checkcnt - 1] = w;
2808
2809 EV_FREQUENT_CHECK;
2810}
2811
2812void
2813ev_check_stop (EV_P_ ev_check *w)
2814{
2815 clear_pending (EV_A_ (W)w);
2816 if (expect_false (!ev_is_active (w)))
2817 return;
2818
2819 EV_FREQUENT_CHECK;
2820
2821 {
2822 int active = ev_active (w);
2823
2824 checks [active - 1] = checks [--checkcnt];
2825 ev_active (checks [active - 1]) = active;
2826 }
2827
2828 ev_stop (EV_A_ (W)w);
2829
2830 EV_FREQUENT_CHECK;
2831}
2832
2833#if EV_EMBED_ENABLE
2834void noinline
2835ev_embed_sweep (EV_P_ ev_embed *w)
2836{
2837 ev_loop (w->other, EVLOOP_NONBLOCK);
2838}
2839
2840static void
2841embed_io_cb (EV_P_ ev_io *io, int revents)
2842{
2843 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2844
2845 if (ev_cb (w))
2846 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2847 else
2848 ev_loop (w->other, EVLOOP_NONBLOCK);
2849}
2850
2851static void
2852embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2853{
2854 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2855
2856 {
2857 struct ev_loop *loop = w->other;
2858
2859 while (fdchangecnt)
2860 {
2861 fd_reify (EV_A);
2862 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2863 }
2864 }
2865}
2866
2867static void
2868embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2869{
2870 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2871
2872 {
2873 struct ev_loop *loop = w->other;
2874
2875 ev_loop_fork (EV_A);
2876 }
2877}
2878
2879#if 0
2880static void
2881embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2882{
2883 ev_idle_stop (EV_A_ idle);
2884}
2885#endif
2886
2887void
2888ev_embed_start (EV_P_ ev_embed *w)
2889{
2890 if (expect_false (ev_is_active (w)))
2891 return;
2892
2893 {
2894 struct ev_loop *loop = w->other;
2895 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2896 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2897 }
2898
2899 EV_FREQUENT_CHECK;
2900
2901 ev_set_priority (&w->io, ev_priority (w));
2902 ev_io_start (EV_A_ &w->io);
2903
2904 ev_prepare_init (&w->prepare, embed_prepare_cb);
2905 ev_set_priority (&w->prepare, EV_MINPRI);
2906 ev_prepare_start (EV_A_ &w->prepare);
2907
2908 ev_fork_init (&w->fork, embed_fork_cb);
2909 ev_fork_start (EV_A_ &w->fork);
2910
2911 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2912
2913 ev_start (EV_A_ (W)w, 1);
2914
2915 EV_FREQUENT_CHECK;
2916}
2917
2918void
2919ev_embed_stop (EV_P_ ev_embed *w)
2920{
2921 clear_pending (EV_A_ (W)w);
2922 if (expect_false (!ev_is_active (w)))
2923 return;
2924
2925 EV_FREQUENT_CHECK;
2926
2927 ev_io_stop (EV_A_ &w->io);
2928 ev_prepare_stop (EV_A_ &w->prepare);
2929 ev_fork_stop (EV_A_ &w->fork);
2930
2931 EV_FREQUENT_CHECK;
2932}
2933#endif
2934
2935#if EV_FORK_ENABLE
2936void
2937ev_fork_start (EV_P_ ev_fork *w)
2938{
2939 if (expect_false (ev_is_active (w)))
2940 return;
2941
2942 EV_FREQUENT_CHECK;
2943
2944 ev_start (EV_A_ (W)w, ++forkcnt);
2945 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2946 forks [forkcnt - 1] = w;
2947
2948 EV_FREQUENT_CHECK;
2949}
2950
2951void
2952ev_fork_stop (EV_P_ ev_fork *w)
2953{
2954 clear_pending (EV_A_ (W)w);
2955 if (expect_false (!ev_is_active (w)))
2956 return;
2957
2958 EV_FREQUENT_CHECK;
2959
2960 {
2961 int active = ev_active (w);
2962
2963 forks [active - 1] = forks [--forkcnt];
2964 ev_active (forks [active - 1]) = active;
2965 }
2966
2967 ev_stop (EV_A_ (W)w);
2968
2969 EV_FREQUENT_CHECK;
2970}
2971#endif
2972
2973#if EV_ASYNC_ENABLE
2974void
2975ev_async_start (EV_P_ ev_async *w)
2976{
2977 if (expect_false (ev_is_active (w)))
2978 return;
2979
2980 evpipe_init (EV_A);
2981
2982 EV_FREQUENT_CHECK;
2983
2984 ev_start (EV_A_ (W)w, ++asynccnt);
2985 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2986 asyncs [asynccnt - 1] = w;
2987
2988 EV_FREQUENT_CHECK;
2989}
2990
2991void
2992ev_async_stop (EV_P_ ev_async *w)
2993{
2994 clear_pending (EV_A_ (W)w);
2995 if (expect_false (!ev_is_active (w)))
2996 return;
2997
2998 EV_FREQUENT_CHECK;
2999
3000 {
3001 int active = ev_active (w);
3002
3003 asyncs [active - 1] = asyncs [--asynccnt];
3004 ev_active (asyncs [active - 1]) = active;
3005 }
3006
3007 ev_stop (EV_A_ (W)w);
3008
3009 EV_FREQUENT_CHECK;
3010}
3011
3012void
3013ev_async_send (EV_P_ ev_async *w)
3014{
3015 w->sent = 1;
3016 evpipe_write (EV_A_ &gotasync);
1818} 3017}
1819#endif 3018#endif
1820 3019
1821/*****************************************************************************/ 3020/*****************************************************************************/
1822 3021
1832once_cb (EV_P_ struct ev_once *once, int revents) 3031once_cb (EV_P_ struct ev_once *once, int revents)
1833{ 3032{
1834 void (*cb)(int revents, void *arg) = once->cb; 3033 void (*cb)(int revents, void *arg) = once->cb;
1835 void *arg = once->arg; 3034 void *arg = once->arg;
1836 3035
1837 ev_io_stop (EV_A_ &once->io); 3036 ev_io_stop (EV_A_ &once->io);
1838 ev_timer_stop (EV_A_ &once->to); 3037 ev_timer_stop (EV_A_ &once->to);
1839 ev_free (once); 3038 ev_free (once);
1840 3039
1841 cb (revents, arg); 3040 cb (revents, arg);
1842} 3041}
1843 3042
1844static void 3043static void
1845once_cb_io (EV_P_ ev_io *w, int revents) 3044once_cb_io (EV_P_ ev_io *w, int revents)
1846{ 3045{
1847 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3046 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3047
3048 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1848} 3049}
1849 3050
1850static void 3051static void
1851once_cb_to (EV_P_ ev_timer *w, int revents) 3052once_cb_to (EV_P_ ev_timer *w, int revents)
1852{ 3053{
1853 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3054 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3055
3056 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1854} 3057}
1855 3058
1856void 3059void
1857ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3060ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1858{ 3061{
1880 ev_timer_set (&once->to, timeout, 0.); 3083 ev_timer_set (&once->to, timeout, 0.);
1881 ev_timer_start (EV_A_ &once->to); 3084 ev_timer_start (EV_A_ &once->to);
1882 } 3085 }
1883} 3086}
1884 3087
3088#if EV_MULTIPLICITY
3089 #include "ev_wrap.h"
3090#endif
3091
1885#ifdef __cplusplus 3092#ifdef __cplusplus
1886} 3093}
1887#endif 3094#endif
1888 3095

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines