ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.142 by root, Tue Nov 27 06:19:08 2007 UTC vs.
Revision 1.281 by root, Mon Mar 16 21:15:06 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
46# endif 67# endif
47# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
49# endif 70# endif
50# else 71# else
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
54# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
56# endif 85# endif
57# endif 86# endif
58 87
59# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 123# else
95# define EV_USE_PORT 0 124# define EV_USE_PORT 0
96# endif 125# endif
97# endif 126# endif
98 127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
99#endif 144#endif
100 145
101#include <math.h> 146#include <math.h>
102#include <stdlib.h> 147#include <stdlib.h>
103#include <fcntl.h> 148#include <fcntl.h>
109#include <errno.h> 154#include <errno.h>
110#include <sys/types.h> 155#include <sys/types.h>
111#include <time.h> 156#include <time.h>
112 157
113#include <signal.h> 158#include <signal.h>
159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
114 165
115#ifndef _WIN32 166#ifndef _WIN32
116# include <sys/time.h> 167# include <sys/time.h>
117# include <sys/wait.h> 168# include <sys/wait.h>
118# include <unistd.h> 169# include <unistd.h>
119#else 170#else
171# include <io.h>
120# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 173# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
124# endif 176# endif
125#endif 177#endif
126 178
127/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
128 188
129#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
130# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
131#endif 195#endif
132 196
133#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
135#endif 207#endif
136 208
137#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
139#endif 211#endif
145# define EV_USE_POLL 1 217# define EV_USE_POLL 1
146# endif 218# endif
147#endif 219#endif
148 220
149#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
150# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
151#endif 227#endif
152 228
153#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
155#endif 231#endif
156 232
157#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 234# define EV_USE_PORT 0
159#endif 235#endif
160 236
161/**/ 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
241# define EV_USE_INOTIFY 0
242# endif
243#endif
244
245#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif
252
253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 288
163#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
166#endif 292#endif
168#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
171#endif 297#endif
172 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
173#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 322# include <winsock.h>
175#endif 323#endif
176 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
177/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 363
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 367
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 368#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
200#else 371#else
201# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
202# define inline_speed static
203# define inline_minimal static
204# define noinline 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
205#endif 377#endif
206 378
207#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
208#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
209 388
210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
211#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
212 391
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 392#define EMPTY /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */ 393#define EMPTY2(a,b) /* used to suppress some warnings */
215 394
216typedef ev_watcher *W; 395typedef ev_watcher *W;
217typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
218typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
219 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
221 411
222#ifdef _WIN32 412#ifdef _WIN32
223# include "ev_win32.c" 413# include "ev_win32.c"
224#endif 414#endif
225 415
232{ 422{
233 syserr_cb = cb; 423 syserr_cb = cb;
234} 424}
235 425
236static void noinline 426static void noinline
237syserr (const char *msg) 427ev_syserr (const char *msg)
238{ 428{
239 if (!msg) 429 if (!msg)
240 msg = "(libev) system error"; 430 msg = "(libev) system error";
241 431
242 if (syserr_cb) 432 if (syserr_cb)
246 perror (msg); 436 perror (msg);
247 abort (); 437 abort ();
248 } 438 }
249} 439}
250 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
251static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
252 457
253void 458void
254ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
255{ 460{
256 alloc = cb; 461 alloc = cb;
257} 462}
258 463
259static void * 464inline_speed void *
260ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
261{ 466{
262 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
263 468
264 if (!ptr && size) 469 if (!ptr && size)
265 { 470 {
266 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
267 abort (); 472 abort ();
278typedef struct 483typedef struct
279{ 484{
280 WL head; 485 WL head;
281 unsigned char events; 486 unsigned char events;
282 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
283#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
284 SOCKET handle; 494 SOCKET handle;
285#endif 495#endif
286} ANFD; 496} ANFD;
287 497
288typedef struct 498typedef struct
289{ 499{
290 W w; 500 W w;
291 int events; 501 int events;
292} ANPENDING; 502} ANPENDING;
503
504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
506typedef struct
507{
508 WL head;
509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
528#endif
293 529
294#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
295 531
296 struct ev_loop 532 struct ev_loop
297 { 533 {
321 557
322ev_tstamp 558ev_tstamp
323ev_time (void) 559ev_time (void)
324{ 560{
325#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
326 struct timespec ts; 564 struct timespec ts;
327 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
328 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
329#else 567 }
568#endif
569
330 struct timeval tv; 570 struct timeval tv;
331 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
332 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
333#endif
334} 573}
335 574
336ev_tstamp inline_size 575ev_tstamp inline_size
337get_clock (void) 576get_clock (void)
338{ 577{
354{ 593{
355 return ev_rt_now; 594 return ev_rt_now;
356} 595}
357#endif 596#endif
358 597
359#define array_roundsize(type,n) (((n) | 4) & ~3) 598void
599ev_sleep (ev_tstamp delay)
600{
601 if (delay > 0.)
602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
625
626/*****************************************************************************/
627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630int inline_size
631array_nextsize (int elem, int cur, int cnt)
632{
633 int ncur = cur + 1;
634
635 do
636 ncur <<= 1;
637 while (cnt > ncur);
638
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 {
642 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4;
645 ncur /= elem;
646 }
647
648 return ncur;
649}
650
651static noinline void *
652array_realloc (int elem, void *base, int *cur, int cnt)
653{
654 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur);
656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
360 660
361#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
362 if (expect_false ((cnt) > cur)) \ 662 if (expect_false ((cnt) > (cur))) \
363 { \ 663 { \
364 int newcnt = cur; \ 664 int ocur_ = (cur); \
365 do \ 665 (base) = (type *)array_realloc \
366 { \ 666 (sizeof (type), (base), &(cur), (cnt)); \
367 newcnt = array_roundsize (type, newcnt << 1); \ 667 init ((base) + (ocur_), (cur) - ocur_); \
368 } \
369 while ((cnt) > newcnt); \
370 \
371 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
372 init (base + cur, newcnt - cur); \
373 cur = newcnt; \
374 } 668 }
375 669
670#if 0
376#define array_slim(type,stem) \ 671#define array_slim(type,stem) \
377 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
378 { \ 673 { \
379 stem ## max = array_roundsize (stem ## cnt >> 1); \ 674 stem ## max = array_roundsize (stem ## cnt >> 1); \
380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 675 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
382 } 677 }
678#endif
383 679
384#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
386 682
387/*****************************************************************************/ 683/*****************************************************************************/
388 684
389void noinline 685void noinline
390ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
391{ 687{
392 W w_ = (W)w; 688 W w_ = (W)w;
689 int pri = ABSPRI (w_);
393 690
394 if (expect_false (w_->pending)) 691 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents;
693 else
395 { 694 {
695 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_;
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 698 pendings [pri][w_->pending - 1].events = revents;
397 return;
398 } 699 }
399
400 w_->pending = ++pendingcnt [ABSPRI (w_)];
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404} 700}
405 701
406void inline_size 702void inline_speed
407queue_events (EV_P_ W *events, int eventcnt, int type) 703queue_events (EV_P_ W *events, int eventcnt, int type)
408{ 704{
409 int i; 705 int i;
410 706
411 for (i = 0; i < eventcnt; ++i) 707 for (i = 0; i < eventcnt; ++i)
412 ev_feed_event (EV_A_ events [i], type); 708 ev_feed_event (EV_A_ events [i], type);
413} 709}
414 710
415/*****************************************************************************/ 711/*****************************************************************************/
416 712
417void inline_size
418anfds_init (ANFD *base, int count)
419{
420 while (count--)
421 {
422 base->head = 0;
423 base->events = EV_NONE;
424 base->reify = 0;
425
426 ++base;
427 }
428}
429
430void inline_speed 713void inline_speed
431fd_event (EV_P_ int fd, int revents) 714fd_event (EV_P_ int fd, int revents)
432{ 715{
433 ANFD *anfd = anfds + fd; 716 ANFD *anfd = anfds + fd;
434 ev_io *w; 717 ev_io *w;
443} 726}
444 727
445void 728void
446ev_feed_fd_event (EV_P_ int fd, int revents) 729ev_feed_fd_event (EV_P_ int fd, int revents)
447{ 730{
731 if (fd >= 0 && fd < anfdmax)
448 fd_event (EV_A_ fd, revents); 732 fd_event (EV_A_ fd, revents);
449} 733}
450 734
451void inline_size 735void inline_size
452fd_reify (EV_P) 736fd_reify (EV_P)
453{ 737{
457 { 741 {
458 int fd = fdchanges [i]; 742 int fd = fdchanges [i];
459 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
460 ev_io *w; 744 ev_io *w;
461 745
462 int events = 0; 746 unsigned char events = 0;
463 747
464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
465 events |= w->events; 749 events |= (unsigned char)w->events;
466 750
467#if EV_SELECT_IS_WINSOCKET 751#if EV_SELECT_IS_WINSOCKET
468 if (events) 752 if (events)
469 { 753 {
470 unsigned long argp; 754 unsigned long arg;
755 #ifdef EV_FD_TO_WIN32_HANDLE
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
757 #else
471 anfd->handle = _get_osfhandle (fd); 758 anfd->handle = _get_osfhandle (fd);
759 #endif
472 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
473 } 761 }
474#endif 762#endif
475 763
764 {
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
476 anfd->reify = 0; 768 anfd->reify = 0;
477
478 backend_modify (EV_A_ fd, anfd->events, events);
479 anfd->events = events; 769 anfd->events = events;
770
771 if (o_events != events || o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events);
773 }
480 } 774 }
481 775
482 fdchangecnt = 0; 776 fdchangecnt = 0;
483} 777}
484 778
485void inline_size 779void inline_size
486fd_change (EV_P_ int fd) 780fd_change (EV_P_ int fd, int flags)
487{ 781{
488 if (expect_false (anfds [fd].reify)) 782 unsigned char reify = anfds [fd].reify;
489 return;
490
491 anfds [fd].reify = 1; 783 anfds [fd].reify |= flags;
492 784
785 if (expect_true (!reify))
786 {
493 ++fdchangecnt; 787 ++fdchangecnt;
494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
495 fdchanges [fdchangecnt - 1] = fd; 789 fdchanges [fdchangecnt - 1] = fd;
790 }
496} 791}
497 792
498void inline_speed 793void inline_speed
499fd_kill (EV_P_ int fd) 794fd_kill (EV_P_ int fd)
500{ 795{
523{ 818{
524 int fd; 819 int fd;
525 820
526 for (fd = 0; fd < anfdmax; ++fd) 821 for (fd = 0; fd < anfdmax; ++fd)
527 if (anfds [fd].events) 822 if (anfds [fd].events)
528 if (!fd_valid (fd) == -1 && errno == EBADF) 823 if (!fd_valid (fd) && errno == EBADF)
529 fd_kill (EV_A_ fd); 824 fd_kill (EV_A_ fd);
530} 825}
531 826
532/* called on ENOMEM in select/poll to kill some fds and retry */ 827/* called on ENOMEM in select/poll to kill some fds and retry */
533static void noinline 828static void noinline
547static void noinline 842static void noinline
548fd_rearm_all (EV_P) 843fd_rearm_all (EV_P)
549{ 844{
550 int fd; 845 int fd;
551 846
552 /* this should be highly optimised to not do anything but set a flag */
553 for (fd = 0; fd < anfdmax; ++fd) 847 for (fd = 0; fd < anfdmax; ++fd)
554 if (anfds [fd].events) 848 if (anfds [fd].events)
555 { 849 {
556 anfds [fd].events = 0; 850 anfds [fd].events = 0;
851 anfds [fd].emask = 0;
557 fd_change (EV_A_ fd); 852 fd_change (EV_A_ fd, EV__IOFDSET | 1);
558 } 853 }
559} 854}
560 855
561/*****************************************************************************/ 856/*****************************************************************************/
562 857
858/*
859 * the heap functions want a real array index. array index 0 uis guaranteed to not
860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
861 * the branching factor of the d-tree.
862 */
863
864/*
865 * at the moment we allow libev the luxury of two heaps,
866 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
867 * which is more cache-efficient.
868 * the difference is about 5% with 50000+ watchers.
869 */
870#if EV_USE_4HEAP
871
872#define DHEAP 4
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k))
876
877/* away from the root */
563void inline_speed 878void inline_speed
564upheap (WT *heap, int k) 879downheap (ANHE *heap, int N, int k)
565{ 880{
566 WT w = heap [k]; 881 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0;
567 883
568 while (k && heap [k >> 1]->at > w->at) 884 for (;;)
569 {
570 heap [k] = heap [k >> 1];
571 ((W)heap [k])->active = k + 1;
572 k >>= 1;
573 } 885 {
886 ev_tstamp minat;
887 ANHE *minpos;
888 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
574 889
890 /* find minimum child */
891 if (expect_true (pos + DHEAP - 1 < E))
892 {
893 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
894 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else if (pos < E)
899 {
900 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
901 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
902 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
903 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
904 }
905 else
906 break;
907
908 if (ANHE_at (he) <= minat)
909 break;
910
911 heap [k] = *minpos;
912 ev_active (ANHE_w (*minpos)) = k;
913
914 k = minpos - heap;
915 }
916
575 heap [k] = w; 917 heap [k] = he;
576 ((W)heap [k])->active = k + 1; 918 ev_active (ANHE_w (he)) = k;
577
578} 919}
579 920
921#else /* 4HEAP */
922
923#define HEAP0 1
924#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p))
926
927/* away from the root */
580void inline_speed 928void inline_speed
581downheap (WT *heap, int N, int k) 929downheap (ANHE *heap, int N, int k)
582{ 930{
583 WT w = heap [k]; 931 ANHE he = heap [k];
584 932
585 while (k < (N >> 1)) 933 for (;;)
586 { 934 {
587 int j = k << 1; 935 int c = k << 1;
588 936
589 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 937 if (c > N + HEAP0 - 1)
590 ++j;
591
592 if (w->at <= heap [j]->at)
593 break; 938 break;
594 939
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0;
942
943 if (ANHE_at (he) <= ANHE_at (heap [c]))
944 break;
945
595 heap [k] = heap [j]; 946 heap [k] = heap [c];
596 ((W)heap [k])->active = k + 1; 947 ev_active (ANHE_w (heap [k])) = k;
948
597 k = j; 949 k = c;
598 } 950 }
599 951
600 heap [k] = w; 952 heap [k] = he;
601 ((W)heap [k])->active = k + 1; 953 ev_active (ANHE_w (he)) = k;
954}
955#endif
956
957/* towards the root */
958void inline_speed
959upheap (ANHE *heap, int k)
960{
961 ANHE he = heap [k];
962
963 for (;;)
964 {
965 int p = HPARENT (k);
966
967 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
968 break;
969
970 heap [k] = heap [p];
971 ev_active (ANHE_w (heap [k])) = k;
972 k = p;
973 }
974
975 heap [k] = he;
976 ev_active (ANHE_w (he)) = k;
602} 977}
603 978
604void inline_size 979void inline_size
605adjustheap (WT *heap, int N, int k) 980adjustheap (ANHE *heap, int N, int k)
606{ 981{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
607 upheap (heap, k); 983 upheap (heap, k);
984 else
608 downheap (heap, N, k); 985 downheap (heap, N, k);
986}
987
988/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size
990reheap (ANHE *heap, int N)
991{
992 int i;
993
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
995 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
996 for (i = 0; i < N; ++i)
997 upheap (heap, i + HEAP0);
609} 998}
610 999
611/*****************************************************************************/ 1000/*****************************************************************************/
612 1001
613typedef struct 1002typedef struct
614{ 1003{
615 WL head; 1004 WL head;
616 sig_atomic_t volatile gotsig; 1005 EV_ATOMIC_T gotsig;
617} ANSIG; 1006} ANSIG;
618 1007
619static ANSIG *signals; 1008static ANSIG *signals;
620static int signalmax; 1009static int signalmax;
621 1010
622static int sigpipe [2]; 1011static EV_ATOMIC_T gotsig;
623static sig_atomic_t volatile gotsig;
624static ev_io sigev;
625 1012
1013/*****************************************************************************/
1014
626void inline_size 1015void inline_speed
627signals_init (ANSIG *base, int count)
628{
629 while (count--)
630 {
631 base->head = 0;
632 base->gotsig = 0;
633
634 ++base;
635 }
636}
637
638static void
639sighandler (int signum)
640{
641#if _WIN32
642 signal (signum, sighandler);
643#endif
644
645 signals [signum - 1].gotsig = 1;
646
647 if (!gotsig)
648 {
649 int old_errno = errno;
650 gotsig = 1;
651 write (sigpipe [1], &signum, 1);
652 errno = old_errno;
653 }
654}
655
656void noinline
657ev_feed_signal_event (EV_P_ int signum)
658{
659 WL w;
660
661#if EV_MULTIPLICITY
662 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
663#endif
664
665 --signum;
666
667 if (signum < 0 || signum >= signalmax)
668 return;
669
670 signals [signum].gotsig = 0;
671
672 for (w = signals [signum].head; w; w = w->next)
673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
674}
675
676static void
677sigcb (EV_P_ ev_io *iow, int revents)
678{
679 int signum;
680
681 read (sigpipe [0], &revents, 1);
682 gotsig = 0;
683
684 for (signum = signalmax; signum--; )
685 if (signals [signum].gotsig)
686 ev_feed_signal_event (EV_A_ signum + 1);
687}
688
689void inline_size
690fd_intern (int fd) 1016fd_intern (int fd)
691{ 1017{
692#ifdef _WIN32 1018#ifdef _WIN32
693 int arg = 1; 1019 unsigned long arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
695#else 1021#else
696 fcntl (fd, F_SETFD, FD_CLOEXEC); 1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
697 fcntl (fd, F_SETFL, O_NONBLOCK); 1023 fcntl (fd, F_SETFL, O_NONBLOCK);
698#endif 1024#endif
699} 1025}
700 1026
701static void noinline 1027static void noinline
702siginit (EV_P) 1028evpipe_init (EV_P)
703{ 1029{
1030 if (!ev_is_active (&pipeev))
1031 {
1032#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0)
1034 {
1035 evpipe [0] = -1;
1036 fd_intern (evfd);
1037 ev_io_set (&pipeev, evfd, EV_READ);
1038 }
1039 else
1040#endif
1041 {
1042 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe");
1044
704 fd_intern (sigpipe [0]); 1045 fd_intern (evpipe [0]);
705 fd_intern (sigpipe [1]); 1046 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ);
1048 }
706 1049
707 ev_io_set (&sigev, sigpipe [0], EV_READ);
708 ev_io_start (EV_A_ &sigev); 1050 ev_io_start (EV_A_ &pipeev);
709 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1051 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 }
1053}
1054
1055void inline_size
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{
1058 if (!*flag)
1059 {
1060 int old_errno = errno; /* save errno because write might clobber it */
1061
1062 *flag = 1;
1063
1064#if EV_USE_EVENTFD
1065 if (evfd >= 0)
1066 {
1067 uint64_t counter = 1;
1068 write (evfd, &counter, sizeof (uint64_t));
1069 }
1070 else
1071#endif
1072 write (evpipe [1], &old_errno, 1);
1073
1074 errno = old_errno;
1075 }
1076}
1077
1078static void
1079pipecb (EV_P_ ev_io *iow, int revents)
1080{
1081#if EV_USE_EVENTFD
1082 if (evfd >= 0)
1083 {
1084 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t));
1086 }
1087 else
1088#endif
1089 {
1090 char dummy;
1091 read (evpipe [0], &dummy, 1);
1092 }
1093
1094 if (gotsig && ev_is_default_loop (EV_A))
1095 {
1096 int signum;
1097 gotsig = 0;
1098
1099 for (signum = signalmax; signum--; )
1100 if (signals [signum].gotsig)
1101 ev_feed_signal_event (EV_A_ signum + 1);
1102 }
1103
1104#if EV_ASYNC_ENABLE
1105 if (gotasync)
1106 {
1107 int i;
1108 gotasync = 0;
1109
1110 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent)
1112 {
1113 asyncs [i]->sent = 0;
1114 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1115 }
1116 }
1117#endif
710} 1118}
711 1119
712/*****************************************************************************/ 1120/*****************************************************************************/
713 1121
1122static void
1123ev_sighandler (int signum)
1124{
1125#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct;
1127#endif
1128
1129#if _WIN32
1130 signal (signum, ev_sighandler);
1131#endif
1132
1133 signals [signum - 1].gotsig = 1;
1134 evpipe_write (EV_A_ &gotsig);
1135}
1136
1137void noinline
1138ev_feed_signal_event (EV_P_ int signum)
1139{
1140 WL w;
1141
1142#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1144#endif
1145
1146 --signum;
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return;
1150
1151 signals [signum].gotsig = 0;
1152
1153 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155}
1156
1157/*****************************************************************************/
1158
714static ev_child *childs [PID_HASHSIZE]; 1159static WL childs [EV_PID_HASHSIZE];
715 1160
716#ifndef _WIN32 1161#ifndef _WIN32
717 1162
718static ev_signal childev; 1163static ev_signal childev;
719 1164
1165#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0
1167#endif
1168
720void inline_speed 1169void inline_speed
721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1170child_reap (EV_P_ int chain, int pid, int status)
722{ 1171{
723 ev_child *w; 1172 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
724 1174
725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 {
726 if (w->pid == pid || !w->pid) 1177 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1)))
727 { 1179 {
728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
729 w->rpid = pid; 1181 w->rpid = pid;
730 w->rstatus = status; 1182 w->rstatus = status;
731 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1183 ev_feed_event (EV_A_ (W)w, EV_CHILD);
732 } 1184 }
1185 }
733} 1186}
734 1187
735#ifndef WCONTINUED 1188#ifndef WCONTINUED
736# define WCONTINUED 0 1189# define WCONTINUED 0
737#endif 1190#endif
746 if (!WCONTINUED 1199 if (!WCONTINUED
747 || errno != EINVAL 1200 || errno != EINVAL
748 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1201 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
749 return; 1202 return;
750 1203
751 /* make sure we are called again until all childs have been reaped */ 1204 /* make sure we are called again until all children have been reaped */
752 /* we need to do it this way so that the callback gets called before we continue */ 1205 /* we need to do it this way so that the callback gets called before we continue */
753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
754 1207
755 child_reap (EV_A_ sw, pid, pid, status); 1208 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1)
756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
757} 1211}
758 1212
759#endif 1213#endif
760 1214
761/*****************************************************************************/ 1215/*****************************************************************************/
823 /* kqueue is borked on everything but netbsd apparently */ 1277 /* kqueue is borked on everything but netbsd apparently */
824 /* it usually doesn't work correctly on anything but sockets and pipes */ 1278 /* it usually doesn't work correctly on anything but sockets and pipes */
825 flags &= ~EVBACKEND_KQUEUE; 1279 flags &= ~EVBACKEND_KQUEUE;
826#endif 1280#endif
827#ifdef __APPLE__ 1281#ifdef __APPLE__
828 // flags &= ~EVBACKEND_KQUEUE; for documentation 1282 /* only select works correctly on that "unix-certified" platform */
829 flags &= ~EVBACKEND_POLL; 1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
830#endif 1285#endif
831 1286
832 return flags; 1287 return flags;
833} 1288}
834 1289
835unsigned int 1290unsigned int
836ev_embeddable_backends (void) 1291ev_embeddable_backends (void)
837{ 1292{
838 return EVBACKEND_EPOLL 1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
839 | EVBACKEND_KQUEUE 1294
840 | EVBACKEND_PORT; 1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */
1297 flags &= ~EVBACKEND_EPOLL;
1298
1299 return flags;
841} 1300}
842 1301
843unsigned int 1302unsigned int
844ev_backend (EV_P) 1303ev_backend (EV_P)
845{ 1304{
846 return backend; 1305 return backend;
847} 1306}
848 1307
849static void 1308unsigned int
1309ev_loop_count (EV_P)
1310{
1311 return loop_count;
1312}
1313
1314void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{
1317 io_blocktime = interval;
1318}
1319
1320void
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{
1323 timeout_blocktime = interval;
1324}
1325
1326static void noinline
850loop_init (EV_P_ unsigned int flags) 1327loop_init (EV_P_ unsigned int flags)
851{ 1328{
852 if (!backend) 1329 if (!backend)
853 { 1330 {
1331#if EV_USE_REALTIME
1332 if (!have_realtime)
1333 {
1334 struct timespec ts;
1335
1336 if (!clock_gettime (CLOCK_REALTIME, &ts))
1337 have_realtime = 1;
1338 }
1339#endif
1340
854#if EV_USE_MONOTONIC 1341#if EV_USE_MONOTONIC
1342 if (!have_monotonic)
855 { 1343 {
856 struct timespec ts; 1344 struct timespec ts;
1345
857 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
858 have_monotonic = 1; 1347 have_monotonic = 1;
859 } 1348 }
860#endif 1349#endif
861 1350
862 ev_rt_now = ev_time (); 1351 ev_rt_now = ev_time ();
863 mn_now = get_clock (); 1352 mn_now = get_clock ();
864 now_floor = mn_now; 1353 now_floor = mn_now;
865 rtmn_diff = ev_rt_now - mn_now; 1354 rtmn_diff = ev_rt_now - mn_now;
1355
1356 io_blocktime = 0.;
1357 timeout_blocktime = 0.;
1358 backend = 0;
1359 backend_fd = -1;
1360 gotasync = 0;
1361#if EV_USE_INOTIFY
1362 fs_fd = -2;
1363#endif
1364
1365 /* pid check not overridable via env */
1366#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid ();
1369#endif
866 1370
867 if (!(flags & EVFLAG_NOENV) 1371 if (!(flags & EVFLAG_NOENV)
868 && !enable_secure () 1372 && !enable_secure ()
869 && getenv ("LIBEV_FLAGS")) 1373 && getenv ("LIBEV_FLAGS"))
870 flags = atoi (getenv ("LIBEV_FLAGS")); 1374 flags = atoi (getenv ("LIBEV_FLAGS"));
871 1375
872 if (!(flags & 0x0000ffffUL)) 1376 if (!(flags & 0x0000ffffU))
873 flags |= ev_recommended_backends (); 1377 flags |= ev_recommended_backends ();
874 1378
875 backend = 0;
876#if EV_USE_PORT 1379#if EV_USE_PORT
877 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
878#endif 1381#endif
879#if EV_USE_KQUEUE 1382#if EV_USE_KQUEUE
880 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1383 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
887#endif 1390#endif
888#if EV_USE_SELECT 1391#if EV_USE_SELECT
889 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
890#endif 1393#endif
891 1394
892 ev_init (&sigev, sigcb); 1395 ev_init (&pipeev, pipecb);
893 ev_set_priority (&sigev, EV_MAXPRI); 1396 ev_set_priority (&pipeev, EV_MAXPRI);
894 } 1397 }
895} 1398}
896 1399
897static void 1400static void noinline
898loop_destroy (EV_P) 1401loop_destroy (EV_P)
899{ 1402{
900 int i; 1403 int i;
1404
1405 if (ev_is_active (&pipeev))
1406 {
1407 ev_ref (EV_A); /* signal watcher */
1408 ev_io_stop (EV_A_ &pipeev);
1409
1410#if EV_USE_EVENTFD
1411 if (evfd >= 0)
1412 close (evfd);
1413#endif
1414
1415 if (evpipe [0] >= 0)
1416 {
1417 close (evpipe [0]);
1418 close (evpipe [1]);
1419 }
1420 }
1421
1422#if EV_USE_INOTIFY
1423 if (fs_fd >= 0)
1424 close (fs_fd);
1425#endif
1426
1427 if (backend_fd >= 0)
1428 close (backend_fd);
901 1429
902#if EV_USE_PORT 1430#if EV_USE_PORT
903 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1431 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
904#endif 1432#endif
905#if EV_USE_KQUEUE 1433#if EV_USE_KQUEUE
914#if EV_USE_SELECT 1442#if EV_USE_SELECT
915 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1443 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
916#endif 1444#endif
917 1445
918 for (i = NUMPRI; i--; ) 1446 for (i = NUMPRI; i--; )
1447 {
919 array_free (pending, [i]); 1448 array_free (pending, [i]);
1449#if EV_IDLE_ENABLE
1450 array_free (idle, [i]);
1451#endif
1452 }
1453
1454 ev_free (anfds); anfdmax = 0;
920 1455
921 /* have to use the microsoft-never-gets-it-right macro */ 1456 /* have to use the microsoft-never-gets-it-right macro */
922 array_free (fdchange, EMPTY0); 1457 array_free (fdchange, EMPTY);
923 array_free (timer, EMPTY0); 1458 array_free (timer, EMPTY);
924#if EV_PERIODIC_ENABLE 1459#if EV_PERIODIC_ENABLE
925 array_free (periodic, EMPTY0); 1460 array_free (periodic, EMPTY);
926#endif 1461#endif
1462#if EV_FORK_ENABLE
927 array_free (idle, EMPTY0); 1463 array_free (fork, EMPTY);
1464#endif
928 array_free (prepare, EMPTY0); 1465 array_free (prepare, EMPTY);
929 array_free (check, EMPTY0); 1466 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY);
1469#endif
930 1470
931 backend = 0; 1471 backend = 0;
932} 1472}
933 1473
934static void 1474#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P);
1476#endif
1477
1478void inline_size
935loop_fork (EV_P) 1479loop_fork (EV_P)
936{ 1480{
937#if EV_USE_PORT 1481#if EV_USE_PORT
938 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
939#endif 1483#endif
941 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1485 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
942#endif 1486#endif
943#if EV_USE_EPOLL 1487#if EV_USE_EPOLL
944 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1488 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
945#endif 1489#endif
1490#if EV_USE_INOTIFY
1491 infy_fork (EV_A);
1492#endif
946 1493
947 if (ev_is_active (&sigev)) 1494 if (ev_is_active (&pipeev))
948 { 1495 {
949 /* default loop */ 1496 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */
1498 gotsig = 1;
1499#if EV_ASYNC_ENABLE
1500 gotasync = 1;
1501#endif
950 1502
951 ev_ref (EV_A); 1503 ev_ref (EV_A);
952 ev_io_stop (EV_A_ &sigev); 1504 ev_io_stop (EV_A_ &pipeev);
1505
1506#if EV_USE_EVENTFD
1507 if (evfd >= 0)
1508 close (evfd);
1509#endif
1510
1511 if (evpipe [0] >= 0)
1512 {
953 close (sigpipe [0]); 1513 close (evpipe [0]);
954 close (sigpipe [1]); 1514 close (evpipe [1]);
1515 }
955 1516
956 while (pipe (sigpipe))
957 syserr ("(libev) error creating pipe");
958
959 siginit (EV_A); 1517 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ);
960 } 1520 }
961 1521
962 postfork = 0; 1522 postfork = 0;
963} 1523}
964 1524
965#if EV_MULTIPLICITY 1525#if EV_MULTIPLICITY
1526
966struct ev_loop * 1527struct ev_loop *
967ev_loop_new (unsigned int flags) 1528ev_loop_new (unsigned int flags)
968{ 1529{
969 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
970 1531
986} 1547}
987 1548
988void 1549void
989ev_loop_fork (EV_P) 1550ev_loop_fork (EV_P)
990{ 1551{
991 postfork = 1; 1552 postfork = 1; /* must be in line with ev_default_fork */
992} 1553}
993 1554
1555#if EV_VERIFY
1556static void noinline
1557verify_watcher (EV_P_ W w)
1558{
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560
1561 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563}
1564
1565static void noinline
1566verify_heap (EV_P_ ANHE *heap, int N)
1567{
1568 int i;
1569
1570 for (i = HEAP0; i < N + HEAP0; ++i)
1571 {
1572 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1573 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1574 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1575
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 }
1578}
1579
1580static void noinline
1581array_verify (EV_P_ W *ws, int cnt)
1582{
1583 while (cnt--)
1584 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]);
1587 }
1588}
1589#endif
1590
1591void
1592ev_loop_verify (EV_P)
1593{
1594#if EV_VERIFY
1595 int i;
1596 WL w;
1597
1598 assert (activecnt >= -1);
1599
1600 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603
1604 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i)
1606 for (w = anfds [i].head; w; w = w->next)
1607 {
1608 verify_watcher (EV_A_ (W)w);
1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1611 }
1612
1613 assert (timermax >= timercnt);
1614 verify_heap (EV_A_ timers, timercnt);
1615
1616#if EV_PERIODIC_ENABLE
1617 assert (periodicmax >= periodiccnt);
1618 verify_heap (EV_A_ periodics, periodiccnt);
1619#endif
1620
1621 for (i = NUMPRI; i--; )
1622 {
1623 assert (pendingmax [i] >= pendingcnt [i]);
1624#if EV_IDLE_ENABLE
1625 assert (idleall >= 0);
1626 assert (idlemax [i] >= idlecnt [i]);
1627 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1628#endif
1629 }
1630
1631#if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt);
1634#endif
1635
1636#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif
1640
1641 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt);
1643
1644 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt);
1646
1647# if 0
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
994#endif 1650# endif
1651#endif
1652}
1653
1654#endif /* multiplicity */
995 1655
996#if EV_MULTIPLICITY 1656#if EV_MULTIPLICITY
997struct ev_loop * 1657struct ev_loop *
998ev_default_loop_init (unsigned int flags) 1658ev_default_loop_init (unsigned int flags)
999#else 1659#else
1000int 1660int
1001ev_default_loop (unsigned int flags) 1661ev_default_loop (unsigned int flags)
1002#endif 1662#endif
1003{ 1663{
1004 if (sigpipe [0] == sigpipe [1])
1005 if (pipe (sigpipe))
1006 return 0;
1007
1008 if (!ev_default_loop_ptr) 1664 if (!ev_default_loop_ptr)
1009 { 1665 {
1010#if EV_MULTIPLICITY 1666#if EV_MULTIPLICITY
1011 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1012#else 1668#else
1015 1671
1016 loop_init (EV_A_ flags); 1672 loop_init (EV_A_ flags);
1017 1673
1018 if (ev_backend (EV_A)) 1674 if (ev_backend (EV_A))
1019 { 1675 {
1020 siginit (EV_A);
1021
1022#ifndef _WIN32 1676#ifndef _WIN32
1023 ev_signal_init (&childev, childcb, SIGCHLD); 1677 ev_signal_init (&childev, childcb, SIGCHLD);
1024 ev_set_priority (&childev, EV_MAXPRI); 1678 ev_set_priority (&childev, EV_MAXPRI);
1025 ev_signal_start (EV_A_ &childev); 1679 ev_signal_start (EV_A_ &childev);
1026 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1680 ev_unref (EV_A); /* child watcher should not keep loop alive */
1038{ 1692{
1039#if EV_MULTIPLICITY 1693#if EV_MULTIPLICITY
1040 struct ev_loop *loop = ev_default_loop_ptr; 1694 struct ev_loop *loop = ev_default_loop_ptr;
1041#endif 1695#endif
1042 1696
1697 ev_default_loop_ptr = 0;
1698
1043#ifndef _WIN32 1699#ifndef _WIN32
1044 ev_ref (EV_A); /* child watcher */ 1700 ev_ref (EV_A); /* child watcher */
1045 ev_signal_stop (EV_A_ &childev); 1701 ev_signal_stop (EV_A_ &childev);
1046#endif 1702#endif
1047 1703
1048 ev_ref (EV_A); /* signal watcher */
1049 ev_io_stop (EV_A_ &sigev);
1050
1051 close (sigpipe [0]); sigpipe [0] = 0;
1052 close (sigpipe [1]); sigpipe [1] = 0;
1053
1054 loop_destroy (EV_A); 1704 loop_destroy (EV_A);
1055} 1705}
1056 1706
1057void 1707void
1058ev_default_fork (void) 1708ev_default_fork (void)
1059{ 1709{
1060#if EV_MULTIPLICITY 1710#if EV_MULTIPLICITY
1061 struct ev_loop *loop = ev_default_loop_ptr; 1711 struct ev_loop *loop = ev_default_loop_ptr;
1062#endif 1712#endif
1063 1713
1064 if (backend) 1714 postfork = 1; /* must be in line with ev_loop_fork */
1065 postfork = 1;
1066} 1715}
1067 1716
1068/*****************************************************************************/ 1717/*****************************************************************************/
1069 1718
1070int inline_size 1719void
1071any_pending (EV_P) 1720ev_invoke (EV_P_ void *w, int revents)
1072{ 1721{
1073 int pri; 1722 EV_CB_INVOKE ((W)w, revents);
1074
1075 for (pri = NUMPRI; pri--; )
1076 if (pendingcnt [pri])
1077 return 1;
1078
1079 return 0;
1080} 1723}
1081 1724
1082void inline_speed 1725void inline_speed
1083call_pending (EV_P) 1726call_pending (EV_P)
1084{ 1727{
1089 { 1732 {
1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1091 1734
1092 if (expect_true (p->w)) 1735 if (expect_true (p->w))
1093 { 1736 {
1094 assert (("non-pending watcher on pending list", p->w->pending)); 1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1095 1738
1096 p->w->pending = 0; 1739 p->w->pending = 0;
1097 EV_CB_INVOKE (p->w, p->events); 1740 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK;
1098 } 1742 }
1099 } 1743 }
1100} 1744}
1101 1745
1746#if EV_IDLE_ENABLE
1747void inline_size
1748idle_reify (EV_P)
1749{
1750 if (expect_false (idleall))
1751 {
1752 int pri;
1753
1754 for (pri = NUMPRI; pri--; )
1755 {
1756 if (pendingcnt [pri])
1757 break;
1758
1759 if (idlecnt [pri])
1760 {
1761 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1762 break;
1763 }
1764 }
1765 }
1766}
1767#endif
1768
1102void inline_size 1769void inline_size
1103timers_reify (EV_P) 1770timers_reify (EV_P)
1104{ 1771{
1772 EV_FREQUENT_CHECK;
1773
1105 while (timercnt && ((WT)timers [0])->at <= mn_now) 1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1106 { 1775 {
1107 ev_timer *w = timers [0]; 1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1108 1777
1109 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1110 1779
1111 /* first reschedule or stop timer */ 1780 /* first reschedule or stop timer */
1112 if (w->repeat) 1781 if (w->repeat)
1113 { 1782 {
1783 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now;
1786
1114 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1115 1788
1116 ((WT)w)->at += w->repeat; 1789 ANHE_at_cache (timers [HEAP0]);
1117 if (((WT)w)->at < mn_now)
1118 ((WT)w)->at = mn_now;
1119
1120 downheap ((WT *)timers, timercnt, 0); 1790 downheap (timers, timercnt, HEAP0);
1121 } 1791 }
1122 else 1792 else
1123 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 1794
1795 EV_FREQUENT_CHECK;
1125 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1126 } 1797 }
1127} 1798}
1128 1799
1129#if EV_PERIODIC_ENABLE 1800#if EV_PERIODIC_ENABLE
1130void inline_size 1801void inline_size
1131periodics_reify (EV_P) 1802periodics_reify (EV_P)
1132{ 1803{
1804 EV_FREQUENT_CHECK;
1805
1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1134 { 1807 {
1135 ev_periodic *w = periodics [0]; 1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1136 1809
1137 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1138 1811
1139 /* first reschedule or stop timer */ 1812 /* first reschedule or stop timer */
1140 if (w->reschedule_cb) 1813 if (w->reschedule_cb)
1141 { 1814 {
1142 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816
1143 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1144 downheap ((WT *)periodics, periodiccnt, 0); 1820 downheap (periodics, periodiccnt, HEAP0);
1145 } 1821 }
1146 else if (w->interval) 1822 else if (w->interval)
1147 { 1823 {
1148 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1149 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1150 downheap ((WT *)periodics, periodiccnt, 0); 1839 downheap (periodics, periodiccnt, HEAP0);
1151 } 1840 }
1152 else 1841 else
1153 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1154 1843
1844 EV_FREQUENT_CHECK;
1155 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1156 } 1846 }
1157} 1847}
1158 1848
1159static void noinline 1849static void noinline
1160periodics_reschedule (EV_P) 1850periodics_reschedule (EV_P)
1161{ 1851{
1162 int i; 1852 int i;
1163 1853
1164 /* adjust periodics after time jump */ 1854 /* adjust periodics after time jump */
1165 for (i = 0; i < periodiccnt; ++i) 1855 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1166 { 1856 {
1167 ev_periodic *w = periodics [i]; 1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1168 1858
1169 if (w->reschedule_cb) 1859 if (w->reschedule_cb)
1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1171 else if (w->interval) 1861 else if (w->interval)
1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1863
1864 ANHE_at_cache (periodics [i]);
1865 }
1866
1867 reheap (periodics, periodiccnt);
1868}
1869#endif
1870
1871void inline_speed
1872time_update (EV_P_ ev_tstamp max_block)
1873{
1874 int i;
1875
1876#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic))
1173 } 1878 {
1879 ev_tstamp odiff = rtmn_diff;
1174 1880
1175 /* now rebuild the heap */
1176 for (i = periodiccnt >> 1; i--; )
1177 downheap ((WT *)periodics, periodiccnt, i);
1178}
1179#endif
1180
1181int inline_size
1182time_update_monotonic (EV_P)
1183{
1184 mn_now = get_clock (); 1881 mn_now = get_clock ();
1185 1882
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1884 /* interpolate in the meantime */
1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1885 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1187 { 1886 {
1188 ev_rt_now = rtmn_diff + mn_now; 1887 ev_rt_now = rtmn_diff + mn_now;
1189 return 0; 1888 return;
1190 } 1889 }
1191 else 1890
1192 {
1193 now_floor = mn_now; 1891 now_floor = mn_now;
1194 ev_rt_now = ev_time (); 1892 ev_rt_now = ev_time ();
1195 return 1;
1196 }
1197}
1198 1893
1199void inline_size 1894 /* loop a few times, before making important decisions.
1200time_update (EV_P) 1895 * on the choice of "4": one iteration isn't enough,
1201{ 1896 * in case we get preempted during the calls to
1202 int i; 1897 * ev_time and get_clock. a second call is almost guaranteed
1203 1898 * to succeed in that case, though. and looping a few more times
1204#if EV_USE_MONOTONIC 1899 * doesn't hurt either as we only do this on time-jumps or
1205 if (expect_true (have_monotonic)) 1900 * in the unlikely event of having been preempted here.
1206 { 1901 */
1207 if (time_update_monotonic (EV_A)) 1902 for (i = 4; --i; )
1208 { 1903 {
1209 ev_tstamp odiff = rtmn_diff;
1210
1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
1220 {
1221 rtmn_diff = ev_rt_now - mn_now; 1904 rtmn_diff = ev_rt_now - mn_now;
1222 1905
1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1224 return; /* all is well */ 1907 return; /* all is well */
1225 1908
1226 ev_rt_now = ev_time (); 1909 ev_rt_now = ev_time ();
1227 mn_now = get_clock (); 1910 mn_now = get_clock ();
1228 now_floor = mn_now; 1911 now_floor = mn_now;
1229 } 1912 }
1230 1913
1231# if EV_PERIODIC_ENABLE 1914# if EV_PERIODIC_ENABLE
1232 periodics_reschedule (EV_A); 1915 periodics_reschedule (EV_A);
1233# endif 1916# endif
1234 /* no timer adjustment, as the monotonic clock doesn't jump */ 1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1236 }
1237 } 1919 }
1238 else 1920 else
1239#endif 1921#endif
1240 { 1922 {
1241 ev_rt_now = ev_time (); 1923 ev_rt_now = ev_time ();
1242 1924
1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1244 { 1926 {
1245#if EV_PERIODIC_ENABLE 1927#if EV_PERIODIC_ENABLE
1246 periodics_reschedule (EV_A); 1928 periodics_reschedule (EV_A);
1247#endif 1929#endif
1248
1249 /* adjust timers. this is easy, as the offset is the same for all */ 1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1250 for (i = 0; i < timercnt; ++i) 1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1251 ((WT)timers [i])->at += ev_rt_now - mn_now; 1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1252 } 1937 }
1253 1938
1254 mn_now = ev_rt_now; 1939 mn_now = ev_rt_now;
1255 } 1940 }
1256} 1941}
1265ev_unref (EV_P) 1950ev_unref (EV_P)
1266{ 1951{
1267 --activecnt; 1952 --activecnt;
1268} 1953}
1269 1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1270static int loop_done; 1961static int loop_done;
1271 1962
1272void 1963void
1273ev_loop (EV_P_ int flags) 1964ev_loop (EV_P_ int flags)
1274{ 1965{
1275 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1966 loop_done = EVUNLOOP_CANCEL;
1276 ? EVUNLOOP_ONE
1277 : EVUNLOOP_CANCEL;
1278 1967
1279 while (activecnt) 1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1969
1970 do
1280 { 1971 {
1972#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A);
1974#endif
1975
1976#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid))
1979 {
1980 curpid = getpid ();
1981 postfork = 1;
1982 }
1983#endif
1984
1985#if EV_FORK_ENABLE
1986 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork))
1988 if (forkcnt)
1989 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A);
1992 }
1993#endif
1994
1281 /* queue check watchers (and execute them) */ 1995 /* queue prepare watchers (and execute them) */
1282 if (expect_false (preparecnt)) 1996 if (expect_false (preparecnt))
1283 { 1997 {
1284 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1285 call_pending (EV_A); 1999 call_pending (EV_A);
1286 } 2000 }
1287 2001
2002 if (expect_false (!activecnt))
2003 break;
2004
1288 /* we might have forked, so reify kernel state if necessary */ 2005 /* we might have forked, so reify kernel state if necessary */
1289 if (expect_false (postfork)) 2006 if (expect_false (postfork))
1290 loop_fork (EV_A); 2007 loop_fork (EV_A);
1291 2008
1292 /* update fd-related kernel structures */ 2009 /* update fd-related kernel structures */
1293 fd_reify (EV_A); 2010 fd_reify (EV_A);
1294 2011
1295 /* calculate blocking time */ 2012 /* calculate blocking time */
1296 { 2013 {
1297 double block; 2014 ev_tstamp waittime = 0.;
2015 ev_tstamp sleeptime = 0.;
1298 2016
1299 if (flags & EVLOOP_NONBLOCK || idlecnt) 2017 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1300 block = 0.; /* do not block at all */
1301 else
1302 { 2018 {
1303 /* update time to cancel out callback processing overhead */ 2019 /* update time to cancel out callback processing overhead */
1304#if EV_USE_MONOTONIC
1305 if (expect_true (have_monotonic))
1306 time_update_monotonic (EV_A); 2020 time_update (EV_A_ 1e100);
1307 else
1308#endif
1309 {
1310 ev_rt_now = ev_time ();
1311 mn_now = ev_rt_now;
1312 }
1313 2021
1314 block = MAX_BLOCKTIME; 2022 waittime = MAX_BLOCKTIME;
1315 2023
1316 if (timercnt) 2024 if (timercnt)
1317 { 2025 {
1318 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2026 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1319 if (block > to) block = to; 2027 if (waittime > to) waittime = to;
1320 } 2028 }
1321 2029
1322#if EV_PERIODIC_ENABLE 2030#if EV_PERIODIC_ENABLE
1323 if (periodiccnt) 2031 if (periodiccnt)
1324 { 2032 {
1325 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2033 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1326 if (block > to) block = to; 2034 if (waittime > to) waittime = to;
1327 } 2035 }
1328#endif 2036#endif
1329 2037
1330 if (expect_false (block < 0.)) block = 0.; 2038 if (expect_false (waittime < timeout_blocktime))
2039 waittime = timeout_blocktime;
2040
2041 sleeptime = waittime - backend_fudge;
2042
2043 if (expect_true (sleeptime > io_blocktime))
2044 sleeptime = io_blocktime;
2045
2046 if (sleeptime)
2047 {
2048 ev_sleep (sleeptime);
2049 waittime -= sleeptime;
2050 }
1331 } 2051 }
1332 2052
2053 ++loop_count;
1333 backend_poll (EV_A_ block); 2054 backend_poll (EV_A_ waittime);
2055
2056 /* update ev_rt_now, do magic */
2057 time_update (EV_A_ waittime + sleeptime);
1334 } 2058 }
1335
1336 /* update ev_rt_now, do magic */
1337 time_update (EV_A);
1338 2059
1339 /* queue pending timers and reschedule them */ 2060 /* queue pending timers and reschedule them */
1340 timers_reify (EV_A); /* relative timers called last */ 2061 timers_reify (EV_A); /* relative timers called last */
1341#if EV_PERIODIC_ENABLE 2062#if EV_PERIODIC_ENABLE
1342 periodics_reify (EV_A); /* absolute timers called first */ 2063 periodics_reify (EV_A); /* absolute timers called first */
1343#endif 2064#endif
1344 2065
2066#if EV_IDLE_ENABLE
1345 /* queue idle watchers unless other events are pending */ 2067 /* queue idle watchers unless other events are pending */
1346 if (idlecnt && !any_pending (EV_A)) 2068 idle_reify (EV_A);
1347 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2069#endif
1348 2070
1349 /* queue check watchers, to be executed first */ 2071 /* queue check watchers, to be executed first */
1350 if (expect_false (checkcnt)) 2072 if (expect_false (checkcnt))
1351 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2073 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1352 2074
1353 call_pending (EV_A); 2075 call_pending (EV_A);
1354
1355 if (expect_false (loop_done))
1356 break;
1357 } 2076 }
2077 while (expect_true (
2078 activecnt
2079 && !loop_done
2080 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2081 ));
1358 2082
1359 if (loop_done == EVUNLOOP_ONE) 2083 if (loop_done == EVUNLOOP_ONE)
1360 loop_done = EVUNLOOP_CANCEL; 2084 loop_done = EVUNLOOP_CANCEL;
1361} 2085}
1362 2086
1389 head = &(*head)->next; 2113 head = &(*head)->next;
1390 } 2114 }
1391} 2115}
1392 2116
1393void inline_speed 2117void inline_speed
1394ev_clear_pending (EV_P_ W w) 2118clear_pending (EV_P_ W w)
1395{ 2119{
1396 if (w->pending) 2120 if (w->pending)
1397 { 2121 {
1398 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2122 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1399 w->pending = 0; 2123 w->pending = 0;
1400 } 2124 }
1401} 2125}
1402 2126
2127int
2128ev_clear_pending (EV_P_ void *w)
2129{
2130 W w_ = (W)w;
2131 int pending = w_->pending;
2132
2133 if (expect_true (pending))
2134 {
2135 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2136 w_->pending = 0;
2137 p->w = 0;
2138 return p->events;
2139 }
2140 else
2141 return 0;
2142}
2143
2144void inline_size
2145pri_adjust (EV_P_ W w)
2146{
2147 int pri = w->priority;
2148 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2149 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2150 w->priority = pri;
2151}
2152
1403void inline_speed 2153void inline_speed
1404ev_start (EV_P_ W w, int active) 2154ev_start (EV_P_ W w, int active)
1405{ 2155{
1406 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2156 pri_adjust (EV_A_ w);
1407 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1408
1409 w->active = active; 2157 w->active = active;
1410 ev_ref (EV_A); 2158 ev_ref (EV_A);
1411} 2159}
1412 2160
1413void inline_size 2161void inline_size
1417 w->active = 0; 2165 w->active = 0;
1418} 2166}
1419 2167
1420/*****************************************************************************/ 2168/*****************************************************************************/
1421 2169
1422void 2170void noinline
1423ev_io_start (EV_P_ ev_io *w) 2171ev_io_start (EV_P_ ev_io *w)
1424{ 2172{
1425 int fd = w->fd; 2173 int fd = w->fd;
1426 2174
1427 if (expect_false (ev_is_active (w))) 2175 if (expect_false (ev_is_active (w)))
1428 return; 2176 return;
1429 2177
1430 assert (("ev_io_start called with negative fd", fd >= 0)); 2178 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2179 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2180
2181 EV_FREQUENT_CHECK;
1431 2182
1432 ev_start (EV_A_ (W)w, 1); 2183 ev_start (EV_A_ (W)w, 1);
1433 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2184 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1434 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2185 wlist_add (&anfds[fd].head, (WL)w);
1435 2186
1436 fd_change (EV_A_ fd); 2187 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1437} 2188 w->events &= ~EV__IOFDSET;
1438 2189
1439void 2190 EV_FREQUENT_CHECK;
2191}
2192
2193void noinline
1440ev_io_stop (EV_P_ ev_io *w) 2194ev_io_stop (EV_P_ ev_io *w)
1441{ 2195{
1442 ev_clear_pending (EV_A_ (W)w); 2196 clear_pending (EV_A_ (W)w);
1443 if (expect_false (!ev_is_active (w))) 2197 if (expect_false (!ev_is_active (w)))
1444 return; 2198 return;
1445 2199
1446 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2200 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1447 2201
2202 EV_FREQUENT_CHECK;
2203
1448 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2204 wlist_del (&anfds[w->fd].head, (WL)w);
1449 ev_stop (EV_A_ (W)w); 2205 ev_stop (EV_A_ (W)w);
1450 2206
1451 fd_change (EV_A_ w->fd); 2207 fd_change (EV_A_ w->fd, 1);
1452}
1453 2208
1454void 2209 EV_FREQUENT_CHECK;
2210}
2211
2212void noinline
1455ev_timer_start (EV_P_ ev_timer *w) 2213ev_timer_start (EV_P_ ev_timer *w)
1456{ 2214{
1457 if (expect_false (ev_is_active (w))) 2215 if (expect_false (ev_is_active (w)))
1458 return; 2216 return;
1459 2217
1460 ((WT)w)->at += mn_now; 2218 ev_at (w) += mn_now;
1461 2219
1462 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2220 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1463 2221
2222 EV_FREQUENT_CHECK;
2223
2224 ++timercnt;
1464 ev_start (EV_A_ (W)w, ++timercnt); 2225 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1465 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2226 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1466 timers [timercnt - 1] = w; 2227 ANHE_w (timers [ev_active (w)]) = (WT)w;
1467 upheap ((WT *)timers, timercnt - 1); 2228 ANHE_at_cache (timers [ev_active (w)]);
2229 upheap (timers, ev_active (w));
1468 2230
2231 EV_FREQUENT_CHECK;
2232
1469 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2233 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1470} 2234}
1471 2235
1472void 2236void noinline
1473ev_timer_stop (EV_P_ ev_timer *w) 2237ev_timer_stop (EV_P_ ev_timer *w)
1474{ 2238{
1475 ev_clear_pending (EV_A_ (W)w); 2239 clear_pending (EV_A_ (W)w);
1476 if (expect_false (!ev_is_active (w))) 2240 if (expect_false (!ev_is_active (w)))
1477 return; 2241 return;
1478 2242
2243 EV_FREQUENT_CHECK;
2244
2245 {
2246 int active = ev_active (w);
2247
1479 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2248 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1480 2249
2250 --timercnt;
2251
1481 if (expect_true (((W)w)->active < timercnt--)) 2252 if (expect_true (active < timercnt + HEAP0))
1482 { 2253 {
1483 timers [((W)w)->active - 1] = timers [timercnt]; 2254 timers [active] = timers [timercnt + HEAP0];
1484 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2255 adjustheap (timers, timercnt, active);
1485 } 2256 }
2257 }
1486 2258
1487 ((WT)w)->at -= mn_now; 2259 EV_FREQUENT_CHECK;
2260
2261 ev_at (w) -= mn_now;
1488 2262
1489 ev_stop (EV_A_ (W)w); 2263 ev_stop (EV_A_ (W)w);
1490} 2264}
1491 2265
1492void 2266void noinline
1493ev_timer_again (EV_P_ ev_timer *w) 2267ev_timer_again (EV_P_ ev_timer *w)
1494{ 2268{
2269 EV_FREQUENT_CHECK;
2270
1495 if (ev_is_active (w)) 2271 if (ev_is_active (w))
1496 { 2272 {
1497 if (w->repeat) 2273 if (w->repeat)
1498 { 2274 {
1499 ((WT)w)->at = mn_now + w->repeat; 2275 ev_at (w) = mn_now + w->repeat;
2276 ANHE_at_cache (timers [ev_active (w)]);
1500 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2277 adjustheap (timers, timercnt, ev_active (w));
1501 } 2278 }
1502 else 2279 else
1503 ev_timer_stop (EV_A_ w); 2280 ev_timer_stop (EV_A_ w);
1504 } 2281 }
1505 else if (w->repeat) 2282 else if (w->repeat)
1506 { 2283 {
1507 w->at = w->repeat; 2284 ev_at (w) = w->repeat;
1508 ev_timer_start (EV_A_ w); 2285 ev_timer_start (EV_A_ w);
1509 } 2286 }
2287
2288 EV_FREQUENT_CHECK;
1510} 2289}
1511 2290
1512#if EV_PERIODIC_ENABLE 2291#if EV_PERIODIC_ENABLE
1513void 2292void noinline
1514ev_periodic_start (EV_P_ ev_periodic *w) 2293ev_periodic_start (EV_P_ ev_periodic *w)
1515{ 2294{
1516 if (expect_false (ev_is_active (w))) 2295 if (expect_false (ev_is_active (w)))
1517 return; 2296 return;
1518 2297
1519 if (w->reschedule_cb) 2298 if (w->reschedule_cb)
1520 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2299 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1521 else if (w->interval) 2300 else if (w->interval)
1522 { 2301 {
1523 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2302 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1524 /* this formula differs from the one in periodic_reify because we do not always round up */ 2303 /* this formula differs from the one in periodic_reify because we do not always round up */
1525 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2304 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1526 } 2305 }
2306 else
2307 ev_at (w) = w->offset;
1527 2308
2309 EV_FREQUENT_CHECK;
2310
2311 ++periodiccnt;
1528 ev_start (EV_A_ (W)w, ++periodiccnt); 2312 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1529 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2313 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1530 periodics [periodiccnt - 1] = w; 2314 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1531 upheap ((WT *)periodics, periodiccnt - 1); 2315 ANHE_at_cache (periodics [ev_active (w)]);
2316 upheap (periodics, ev_active (w));
1532 2317
2318 EV_FREQUENT_CHECK;
2319
1533 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2320 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1534} 2321}
1535 2322
1536void 2323void noinline
1537ev_periodic_stop (EV_P_ ev_periodic *w) 2324ev_periodic_stop (EV_P_ ev_periodic *w)
1538{ 2325{
1539 ev_clear_pending (EV_A_ (W)w); 2326 clear_pending (EV_A_ (W)w);
1540 if (expect_false (!ev_is_active (w))) 2327 if (expect_false (!ev_is_active (w)))
1541 return; 2328 return;
1542 2329
2330 EV_FREQUENT_CHECK;
2331
2332 {
2333 int active = ev_active (w);
2334
1543 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2335 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1544 2336
2337 --periodiccnt;
2338
1545 if (expect_true (((W)w)->active < periodiccnt--)) 2339 if (expect_true (active < periodiccnt + HEAP0))
1546 { 2340 {
1547 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2341 periodics [active] = periodics [periodiccnt + HEAP0];
1548 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2342 adjustheap (periodics, periodiccnt, active);
1549 } 2343 }
2344 }
2345
2346 EV_FREQUENT_CHECK;
1550 2347
1551 ev_stop (EV_A_ (W)w); 2348 ev_stop (EV_A_ (W)w);
1552} 2349}
1553 2350
1554void 2351void noinline
1555ev_periodic_again (EV_P_ ev_periodic *w) 2352ev_periodic_again (EV_P_ ev_periodic *w)
1556{ 2353{
1557 /* TODO: use adjustheap and recalculation */ 2354 /* TODO: use adjustheap and recalculation */
1558 ev_periodic_stop (EV_A_ w); 2355 ev_periodic_stop (EV_A_ w);
1559 ev_periodic_start (EV_A_ w); 2356 ev_periodic_start (EV_A_ w);
1560} 2357}
1561#endif 2358#endif
1562 2359
1563void 2360#ifndef SA_RESTART
2361# define SA_RESTART 0
2362#endif
2363
2364void noinline
1564ev_idle_start (EV_P_ ev_idle *w) 2365ev_signal_start (EV_P_ ev_signal *w)
1565{ 2366{
2367#if EV_MULTIPLICITY
2368 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2369#endif
1566 if (expect_false (ev_is_active (w))) 2370 if (expect_false (ev_is_active (w)))
1567 return; 2371 return;
1568 2372
1569 ev_start (EV_A_ (W)w, ++idlecnt); 2373 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
1570 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1571 idles [idlecnt - 1] = w;
1572}
1573 2374
1574void 2375 evpipe_init (EV_A);
1575ev_idle_stop (EV_P_ ev_idle *w) 2376
1576{ 2377 EV_FREQUENT_CHECK;
1577 ev_clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w)))
1579 return;
1580 2378
1581 { 2379 {
1582 int active = ((W)w)->active; 2380#ifndef _WIN32
1583 idles [active - 1] = idles [--idlecnt]; 2381 sigset_t full, prev;
1584 ((W)idles [active - 1])->active = active; 2382 sigfillset (&full);
2383 sigprocmask (SIG_SETMASK, &full, &prev);
2384#endif
2385
2386 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2387
2388#ifndef _WIN32
2389 sigprocmask (SIG_SETMASK, &prev, 0);
2390#endif
1585 } 2391 }
1586 2392
1587 ev_stop (EV_A_ (W)w);
1588}
1589
1590void
1591ev_prepare_start (EV_P_ ev_prepare *w)
1592{
1593 if (expect_false (ev_is_active (w)))
1594 return;
1595
1596 ev_start (EV_A_ (W)w, ++preparecnt);
1597 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1598 prepares [preparecnt - 1] = w;
1599}
1600
1601void
1602ev_prepare_stop (EV_P_ ev_prepare *w)
1603{
1604 ev_clear_pending (EV_A_ (W)w);
1605 if (expect_false (!ev_is_active (w)))
1606 return;
1607
1608 {
1609 int active = ((W)w)->active;
1610 prepares [active - 1] = prepares [--preparecnt];
1611 ((W)prepares [active - 1])->active = active;
1612 }
1613
1614 ev_stop (EV_A_ (W)w);
1615}
1616
1617void
1618ev_check_start (EV_P_ ev_check *w)
1619{
1620 if (expect_false (ev_is_active (w)))
1621 return;
1622
1623 ev_start (EV_A_ (W)w, ++checkcnt);
1624 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1625 checks [checkcnt - 1] = w;
1626}
1627
1628void
1629ev_check_stop (EV_P_ ev_check *w)
1630{
1631 ev_clear_pending (EV_A_ (W)w);
1632 if (expect_false (!ev_is_active (w)))
1633 return;
1634
1635 {
1636 int active = ((W)w)->active;
1637 checks [active - 1] = checks [--checkcnt];
1638 ((W)checks [active - 1])->active = active;
1639 }
1640
1641 ev_stop (EV_A_ (W)w);
1642}
1643
1644#ifndef SA_RESTART
1645# define SA_RESTART 0
1646#endif
1647
1648void
1649ev_signal_start (EV_P_ ev_signal *w)
1650{
1651#if EV_MULTIPLICITY
1652 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1653#endif
1654 if (expect_false (ev_is_active (w)))
1655 return;
1656
1657 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1658
1659 ev_start (EV_A_ (W)w, 1); 2393 ev_start (EV_A_ (W)w, 1);
1660 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1661 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2394 wlist_add (&signals [w->signum - 1].head, (WL)w);
1662 2395
1663 if (!((WL)w)->next) 2396 if (!((WL)w)->next)
1664 { 2397 {
1665#if _WIN32 2398#if _WIN32
1666 signal (w->signum, sighandler); 2399 signal (w->signum, ev_sighandler);
1667#else 2400#else
1668 struct sigaction sa; 2401 struct sigaction sa;
1669 sa.sa_handler = sighandler; 2402 sa.sa_handler = ev_sighandler;
1670 sigfillset (&sa.sa_mask); 2403 sigfillset (&sa.sa_mask);
1671 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2404 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1672 sigaction (w->signum, &sa, 0); 2405 sigaction (w->signum, &sa, 0);
1673#endif 2406#endif
1674 } 2407 }
1675}
1676 2408
1677void 2409 EV_FREQUENT_CHECK;
2410}
2411
2412void noinline
1678ev_signal_stop (EV_P_ ev_signal *w) 2413ev_signal_stop (EV_P_ ev_signal *w)
1679{ 2414{
1680 ev_clear_pending (EV_A_ (W)w); 2415 clear_pending (EV_A_ (W)w);
1681 if (expect_false (!ev_is_active (w))) 2416 if (expect_false (!ev_is_active (w)))
1682 return; 2417 return;
1683 2418
2419 EV_FREQUENT_CHECK;
2420
1684 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2421 wlist_del (&signals [w->signum - 1].head, (WL)w);
1685 ev_stop (EV_A_ (W)w); 2422 ev_stop (EV_A_ (W)w);
1686 2423
1687 if (!signals [w->signum - 1].head) 2424 if (!signals [w->signum - 1].head)
1688 signal (w->signum, SIG_DFL); 2425 signal (w->signum, SIG_DFL);
2426
2427 EV_FREQUENT_CHECK;
1689} 2428}
1690 2429
1691void 2430void
1692ev_child_start (EV_P_ ev_child *w) 2431ev_child_start (EV_P_ ev_child *w)
1693{ 2432{
1694#if EV_MULTIPLICITY 2433#if EV_MULTIPLICITY
1695 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2434 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1696#endif 2435#endif
1697 if (expect_false (ev_is_active (w))) 2436 if (expect_false (ev_is_active (w)))
1698 return; 2437 return;
1699 2438
2439 EV_FREQUENT_CHECK;
2440
1700 ev_start (EV_A_ (W)w, 1); 2441 ev_start (EV_A_ (W)w, 1);
1701 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2442 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2443
2444 EV_FREQUENT_CHECK;
1702} 2445}
1703 2446
1704void 2447void
1705ev_child_stop (EV_P_ ev_child *w) 2448ev_child_stop (EV_P_ ev_child *w)
1706{ 2449{
1707 ev_clear_pending (EV_A_ (W)w); 2450 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2451 if (expect_false (!ev_is_active (w)))
1709 return; 2452 return;
1710 2453
2454 EV_FREQUENT_CHECK;
2455
1711 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2456 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1712 ev_stop (EV_A_ (W)w); 2457 ev_stop (EV_A_ (W)w);
1713}
1714 2458
2459 EV_FREQUENT_CHECK;
2460}
2461
1715#if EV_EMBED_ENABLE 2462#if EV_STAT_ENABLE
2463
2464# ifdef _WIN32
2465# undef lstat
2466# define lstat(a,b) _stati64 (a,b)
2467# endif
2468
2469#define DEF_STAT_INTERVAL 5.0074891
2470#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2471#define MIN_STAT_INTERVAL 0.1074891
2472
2473static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2474
2475#if EV_USE_INOTIFY
2476# define EV_INOTIFY_BUFSIZE 8192
2477
1716void noinline 2478static void noinline
1717ev_embed_sweep (EV_P_ ev_embed *w) 2479infy_add (EV_P_ ev_stat *w)
1718{ 2480{
1719 ev_loop (w->loop, EVLOOP_NONBLOCK); 2481 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2482
2483 if (w->wd < 0)
2484 {
2485 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2486 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2487
2488 /* monitor some parent directory for speedup hints */
2489 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2490 /* but an efficiency issue only */
2491 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2492 {
2493 char path [4096];
2494 strcpy (path, w->path);
2495
2496 do
2497 {
2498 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2499 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2500
2501 char *pend = strrchr (path, '/');
2502
2503 if (!pend || pend == path)
2504 break;
2505
2506 *pend = 0;
2507 w->wd = inotify_add_watch (fs_fd, path, mask);
2508 }
2509 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2510 }
2511 }
2512
2513 if (w->wd >= 0)
2514 {
2515 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2516
2517 /* now local changes will be tracked by inotify, but remote changes won't */
2518 /* unless the filesystem it known to be local, we therefore still poll */
2519 /* also do poll on <2.6.25, but with normal frequency */
2520 struct statfs sfs;
2521
2522 if (fs_2625 && !statfs (w->path, &sfs))
2523 if (sfs.f_type == 0x1373 /* devfs */
2524 || sfs.f_type == 0xEF53 /* ext2/3 */
2525 || sfs.f_type == 0x3153464a /* jfs */
2526 || sfs.f_type == 0x52654973 /* reiser3 */
2527 || sfs.f_type == 0x01021994 /* tempfs */
2528 || sfs.f_type == 0x58465342 /* xfs */)
2529 return;
2530
2531 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2532 ev_timer_again (EV_A_ &w->timer);
2533 }
2534}
2535
2536static void noinline
2537infy_del (EV_P_ ev_stat *w)
2538{
2539 int slot;
2540 int wd = w->wd;
2541
2542 if (wd < 0)
2543 return;
2544
2545 w->wd = -2;
2546 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2547 wlist_del (&fs_hash [slot].head, (WL)w);
2548
2549 /* remove this watcher, if others are watching it, they will rearm */
2550 inotify_rm_watch (fs_fd, wd);
2551}
2552
2553static void noinline
2554infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2555{
2556 if (slot < 0)
2557 /* overflow, need to check for all hash slots */
2558 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2559 infy_wd (EV_A_ slot, wd, ev);
2560 else
2561 {
2562 WL w_;
2563
2564 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2565 {
2566 ev_stat *w = (ev_stat *)w_;
2567 w_ = w_->next; /* lets us remove this watcher and all before it */
2568
2569 if (w->wd == wd || wd == -1)
2570 {
2571 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2572 {
2573 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2574 w->wd = -1;
2575 infy_add (EV_A_ w); /* re-add, no matter what */
2576 }
2577
2578 stat_timer_cb (EV_A_ &w->timer, 0);
2579 }
2580 }
2581 }
1720} 2582}
1721 2583
1722static void 2584static void
1723embed_cb (EV_P_ ev_io *io, int revents) 2585infy_cb (EV_P_ ev_io *w, int revents)
1724{ 2586{
1725 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2587 char buf [EV_INOTIFY_BUFSIZE];
2588 struct inotify_event *ev = (struct inotify_event *)buf;
2589 int ofs;
2590 int len = read (fs_fd, buf, sizeof (buf));
1726 2591
1727 if (ev_cb (w)) 2592 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1728 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2593 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1729 else
1730 ev_embed_sweep (loop, w);
1731} 2594}
1732 2595
1733void 2596void inline_size
1734ev_embed_start (EV_P_ ev_embed *w) 2597check_2625 (EV_P)
1735{ 2598{
1736 if (expect_false (ev_is_active (w))) 2599 /* kernels < 2.6.25 are borked
2600 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2601 */
2602 struct utsname buf;
2603 int major, minor, micro;
2604
2605 if (uname (&buf))
1737 return; 2606 return;
1738 2607
1739 { 2608 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
1740 struct ev_loop *loop = w->loop;
1741 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1742 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1743 }
1744
1745 ev_set_priority (&w->io, ev_priority (w));
1746 ev_io_start (EV_A_ &w->io);
1747
1748 ev_start (EV_A_ (W)w, 1);
1749}
1750
1751void
1752ev_embed_stop (EV_P_ ev_embed *w)
1753{
1754 ev_clear_pending (EV_A_ (W)w);
1755 if (expect_false (!ev_is_active (w)))
1756 return; 2609 return;
1757 2610
1758 ev_io_stop (EV_A_ &w->io); 2611 if (major < 2
2612 || (major == 2 && minor < 6)
2613 || (major == 2 && minor == 6 && micro < 25))
2614 return;
1759 2615
1760 ev_stop (EV_A_ (W)w); 2616 fs_2625 = 1;
1761} 2617}
1762#endif
1763 2618
1764#if EV_STAT_ENABLE 2619void inline_size
2620infy_init (EV_P)
2621{
2622 if (fs_fd != -2)
2623 return;
1765 2624
2625 fs_fd = -1;
2626
2627 check_2625 (EV_A);
2628
2629 fs_fd = inotify_init ();
2630
2631 if (fs_fd >= 0)
2632 {
2633 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2634 ev_set_priority (&fs_w, EV_MAXPRI);
2635 ev_io_start (EV_A_ &fs_w);
2636 }
2637}
2638
2639void inline_size
2640infy_fork (EV_P)
2641{
2642 int slot;
2643
2644 if (fs_fd < 0)
2645 return;
2646
2647 close (fs_fd);
2648 fs_fd = inotify_init ();
2649
2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2651 {
2652 WL w_ = fs_hash [slot].head;
2653 fs_hash [slot].head = 0;
2654
2655 while (w_)
2656 {
2657 ev_stat *w = (ev_stat *)w_;
2658 w_ = w_->next; /* lets us add this watcher */
2659
2660 w->wd = -1;
2661
2662 if (fs_fd >= 0)
2663 infy_add (EV_A_ w); /* re-add, no matter what */
2664 else
2665 ev_timer_again (EV_A_ &w->timer);
2666 }
2667 }
2668}
2669
2670#endif
2671
1766# ifdef _WIN32 2672#ifdef _WIN32
1767# define lstat(a,b) stat(a,b) 2673# define EV_LSTAT(p,b) _stati64 (p, b)
2674#else
2675# define EV_LSTAT(p,b) lstat (p, b)
1768# endif 2676#endif
1769 2677
1770void 2678void
1771ev_stat_stat (EV_P_ ev_stat *w) 2679ev_stat_stat (EV_P_ ev_stat *w)
1772{ 2680{
1773 if (lstat (w->path, &w->attr) < 0) 2681 if (lstat (w->path, &w->attr) < 0)
1774 w->attr.st_nlink = 0; 2682 w->attr.st_nlink = 0;
1775 else if (!w->attr.st_nlink) 2683 else if (!w->attr.st_nlink)
1776 w->attr.st_nlink = 1; 2684 w->attr.st_nlink = 1;
1777} 2685}
1778 2686
1779static void 2687static void noinline
1780stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2688stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1781{ 2689{
1782 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2690 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1783 2691
1784 /* we copy this here each the time so that */ 2692 /* we copy this here each the time so that */
1785 /* prev has the old value when the callback gets invoked */ 2693 /* prev has the old value when the callback gets invoked */
1786 w->prev = w->attr; 2694 w->prev = w->attr;
1787 ev_stat_stat (EV_A_ w); 2695 ev_stat_stat (EV_A_ w);
1788 2696
1789 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2697 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2698 if (
2699 w->prev.st_dev != w->attr.st_dev
2700 || w->prev.st_ino != w->attr.st_ino
2701 || w->prev.st_mode != w->attr.st_mode
2702 || w->prev.st_nlink != w->attr.st_nlink
2703 || w->prev.st_uid != w->attr.st_uid
2704 || w->prev.st_gid != w->attr.st_gid
2705 || w->prev.st_rdev != w->attr.st_rdev
2706 || w->prev.st_size != w->attr.st_size
2707 || w->prev.st_atime != w->attr.st_atime
2708 || w->prev.st_mtime != w->attr.st_mtime
2709 || w->prev.st_ctime != w->attr.st_ctime
2710 ) {
2711 #if EV_USE_INOTIFY
2712 if (fs_fd >= 0)
2713 {
2714 infy_del (EV_A_ w);
2715 infy_add (EV_A_ w);
2716 ev_stat_stat (EV_A_ w); /* avoid race... */
2717 }
2718 #endif
2719
1790 ev_feed_event (EV_A_ w, EV_STAT); 2720 ev_feed_event (EV_A_ w, EV_STAT);
2721 }
1791} 2722}
1792 2723
1793void 2724void
1794ev_stat_start (EV_P_ ev_stat *w) 2725ev_stat_start (EV_P_ ev_stat *w)
1795{ 2726{
1796 if (expect_false (ev_is_active (w))) 2727 if (expect_false (ev_is_active (w)))
1797 return; 2728 return;
1798 2729
1799 /* since we use memcmp, we need to clear any padding data etc. */
1800 memset (&w->prev, 0, sizeof (ev_statdata));
1801 memset (&w->attr, 0, sizeof (ev_statdata));
1802
1803 ev_stat_stat (EV_A_ w); 2730 ev_stat_stat (EV_A_ w);
1804 2731
2732 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2733 w->interval = MIN_STAT_INTERVAL;
2734
1805 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2735 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1806 ev_set_priority (&w->timer, ev_priority (w)); 2736 ev_set_priority (&w->timer, ev_priority (w));
2737
2738#if EV_USE_INOTIFY
2739 infy_init (EV_A);
2740
2741 if (fs_fd >= 0)
2742 infy_add (EV_A_ w);
2743 else
2744#endif
1807 ev_timer_start (EV_A_ &w->timer); 2745 ev_timer_again (EV_A_ &w->timer);
1808 2746
1809 ev_start (EV_A_ (W)w, 1); 2747 ev_start (EV_A_ (W)w, 1);
2748
2749 EV_FREQUENT_CHECK;
1810} 2750}
1811 2751
1812void 2752void
1813ev_stat_stop (EV_P_ ev_stat *w) 2753ev_stat_stop (EV_P_ ev_stat *w)
1814{ 2754{
1815 ev_clear_pending (EV_A_ (W)w); 2755 clear_pending (EV_A_ (W)w);
1816 if (expect_false (!ev_is_active (w))) 2756 if (expect_false (!ev_is_active (w)))
1817 return; 2757 return;
1818 2758
2759 EV_FREQUENT_CHECK;
2760
2761#if EV_USE_INOTIFY
2762 infy_del (EV_A_ w);
2763#endif
1819 ev_timer_stop (EV_A_ &w->timer); 2764 ev_timer_stop (EV_A_ &w->timer);
1820 2765
1821 ev_stop (EV_A_ (W)w); 2766 ev_stop (EV_A_ (W)w);
2767
2768 EV_FREQUENT_CHECK;
2769}
2770#endif
2771
2772#if EV_IDLE_ENABLE
2773void
2774ev_idle_start (EV_P_ ev_idle *w)
2775{
2776 if (expect_false (ev_is_active (w)))
2777 return;
2778
2779 pri_adjust (EV_A_ (W)w);
2780
2781 EV_FREQUENT_CHECK;
2782
2783 {
2784 int active = ++idlecnt [ABSPRI (w)];
2785
2786 ++idleall;
2787 ev_start (EV_A_ (W)w, active);
2788
2789 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2790 idles [ABSPRI (w)][active - 1] = w;
2791 }
2792
2793 EV_FREQUENT_CHECK;
2794}
2795
2796void
2797ev_idle_stop (EV_P_ ev_idle *w)
2798{
2799 clear_pending (EV_A_ (W)w);
2800 if (expect_false (!ev_is_active (w)))
2801 return;
2802
2803 EV_FREQUENT_CHECK;
2804
2805 {
2806 int active = ev_active (w);
2807
2808 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2809 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2810
2811 ev_stop (EV_A_ (W)w);
2812 --idleall;
2813 }
2814
2815 EV_FREQUENT_CHECK;
2816}
2817#endif
2818
2819void
2820ev_prepare_start (EV_P_ ev_prepare *w)
2821{
2822 if (expect_false (ev_is_active (w)))
2823 return;
2824
2825 EV_FREQUENT_CHECK;
2826
2827 ev_start (EV_A_ (W)w, ++preparecnt);
2828 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2829 prepares [preparecnt - 1] = w;
2830
2831 EV_FREQUENT_CHECK;
2832}
2833
2834void
2835ev_prepare_stop (EV_P_ ev_prepare *w)
2836{
2837 clear_pending (EV_A_ (W)w);
2838 if (expect_false (!ev_is_active (w)))
2839 return;
2840
2841 EV_FREQUENT_CHECK;
2842
2843 {
2844 int active = ev_active (w);
2845
2846 prepares [active - 1] = prepares [--preparecnt];
2847 ev_active (prepares [active - 1]) = active;
2848 }
2849
2850 ev_stop (EV_A_ (W)w);
2851
2852 EV_FREQUENT_CHECK;
2853}
2854
2855void
2856ev_check_start (EV_P_ ev_check *w)
2857{
2858 if (expect_false (ev_is_active (w)))
2859 return;
2860
2861 EV_FREQUENT_CHECK;
2862
2863 ev_start (EV_A_ (W)w, ++checkcnt);
2864 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2865 checks [checkcnt - 1] = w;
2866
2867 EV_FREQUENT_CHECK;
2868}
2869
2870void
2871ev_check_stop (EV_P_ ev_check *w)
2872{
2873 clear_pending (EV_A_ (W)w);
2874 if (expect_false (!ev_is_active (w)))
2875 return;
2876
2877 EV_FREQUENT_CHECK;
2878
2879 {
2880 int active = ev_active (w);
2881
2882 checks [active - 1] = checks [--checkcnt];
2883 ev_active (checks [active - 1]) = active;
2884 }
2885
2886 ev_stop (EV_A_ (W)w);
2887
2888 EV_FREQUENT_CHECK;
2889}
2890
2891#if EV_EMBED_ENABLE
2892void noinline
2893ev_embed_sweep (EV_P_ ev_embed *w)
2894{
2895 ev_loop (w->other, EVLOOP_NONBLOCK);
2896}
2897
2898static void
2899embed_io_cb (EV_P_ ev_io *io, int revents)
2900{
2901 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2902
2903 if (ev_cb (w))
2904 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2905 else
2906 ev_loop (w->other, EVLOOP_NONBLOCK);
2907}
2908
2909static void
2910embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2911{
2912 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2913
2914 {
2915 struct ev_loop *loop = w->other;
2916
2917 while (fdchangecnt)
2918 {
2919 fd_reify (EV_A);
2920 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2921 }
2922 }
2923}
2924
2925static void
2926embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2927{
2928 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2929
2930 ev_embed_stop (EV_A_ w);
2931
2932 {
2933 struct ev_loop *loop = w->other;
2934
2935 ev_loop_fork (EV_A);
2936 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2937 }
2938
2939 ev_embed_start (EV_A_ w);
2940}
2941
2942#if 0
2943static void
2944embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2945{
2946 ev_idle_stop (EV_A_ idle);
2947}
2948#endif
2949
2950void
2951ev_embed_start (EV_P_ ev_embed *w)
2952{
2953 if (expect_false (ev_is_active (w)))
2954 return;
2955
2956 {
2957 struct ev_loop *loop = w->other;
2958 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2959 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2960 }
2961
2962 EV_FREQUENT_CHECK;
2963
2964 ev_set_priority (&w->io, ev_priority (w));
2965 ev_io_start (EV_A_ &w->io);
2966
2967 ev_prepare_init (&w->prepare, embed_prepare_cb);
2968 ev_set_priority (&w->prepare, EV_MINPRI);
2969 ev_prepare_start (EV_A_ &w->prepare);
2970
2971 ev_fork_init (&w->fork, embed_fork_cb);
2972 ev_fork_start (EV_A_ &w->fork);
2973
2974 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2975
2976 ev_start (EV_A_ (W)w, 1);
2977
2978 EV_FREQUENT_CHECK;
2979}
2980
2981void
2982ev_embed_stop (EV_P_ ev_embed *w)
2983{
2984 clear_pending (EV_A_ (W)w);
2985 if (expect_false (!ev_is_active (w)))
2986 return;
2987
2988 EV_FREQUENT_CHECK;
2989
2990 ev_io_stop (EV_A_ &w->io);
2991 ev_prepare_stop (EV_A_ &w->prepare);
2992 ev_fork_stop (EV_A_ &w->fork);
2993
2994 EV_FREQUENT_CHECK;
2995}
2996#endif
2997
2998#if EV_FORK_ENABLE
2999void
3000ev_fork_start (EV_P_ ev_fork *w)
3001{
3002 if (expect_false (ev_is_active (w)))
3003 return;
3004
3005 EV_FREQUENT_CHECK;
3006
3007 ev_start (EV_A_ (W)w, ++forkcnt);
3008 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3009 forks [forkcnt - 1] = w;
3010
3011 EV_FREQUENT_CHECK;
3012}
3013
3014void
3015ev_fork_stop (EV_P_ ev_fork *w)
3016{
3017 clear_pending (EV_A_ (W)w);
3018 if (expect_false (!ev_is_active (w)))
3019 return;
3020
3021 EV_FREQUENT_CHECK;
3022
3023 {
3024 int active = ev_active (w);
3025
3026 forks [active - 1] = forks [--forkcnt];
3027 ev_active (forks [active - 1]) = active;
3028 }
3029
3030 ev_stop (EV_A_ (W)w);
3031
3032 EV_FREQUENT_CHECK;
3033}
3034#endif
3035
3036#if EV_ASYNC_ENABLE
3037void
3038ev_async_start (EV_P_ ev_async *w)
3039{
3040 if (expect_false (ev_is_active (w)))
3041 return;
3042
3043 evpipe_init (EV_A);
3044
3045 EV_FREQUENT_CHECK;
3046
3047 ev_start (EV_A_ (W)w, ++asynccnt);
3048 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3049 asyncs [asynccnt - 1] = w;
3050
3051 EV_FREQUENT_CHECK;
3052}
3053
3054void
3055ev_async_stop (EV_P_ ev_async *w)
3056{
3057 clear_pending (EV_A_ (W)w);
3058 if (expect_false (!ev_is_active (w)))
3059 return;
3060
3061 EV_FREQUENT_CHECK;
3062
3063 {
3064 int active = ev_active (w);
3065
3066 asyncs [active - 1] = asyncs [--asynccnt];
3067 ev_active (asyncs [active - 1]) = active;
3068 }
3069
3070 ev_stop (EV_A_ (W)w);
3071
3072 EV_FREQUENT_CHECK;
3073}
3074
3075void
3076ev_async_send (EV_P_ ev_async *w)
3077{
3078 w->sent = 1;
3079 evpipe_write (EV_A_ &gotasync);
1822} 3080}
1823#endif 3081#endif
1824 3082
1825/*****************************************************************************/ 3083/*****************************************************************************/
1826 3084
1836once_cb (EV_P_ struct ev_once *once, int revents) 3094once_cb (EV_P_ struct ev_once *once, int revents)
1837{ 3095{
1838 void (*cb)(int revents, void *arg) = once->cb; 3096 void (*cb)(int revents, void *arg) = once->cb;
1839 void *arg = once->arg; 3097 void *arg = once->arg;
1840 3098
1841 ev_io_stop (EV_A_ &once->io); 3099 ev_io_stop (EV_A_ &once->io);
1842 ev_timer_stop (EV_A_ &once->to); 3100 ev_timer_stop (EV_A_ &once->to);
1843 ev_free (once); 3101 ev_free (once);
1844 3102
1845 cb (revents, arg); 3103 cb (revents, arg);
1846} 3104}
1847 3105
1848static void 3106static void
1849once_cb_io (EV_P_ ev_io *w, int revents) 3107once_cb_io (EV_P_ ev_io *w, int revents)
1850{ 3108{
1851 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3109 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3110
3111 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1852} 3112}
1853 3113
1854static void 3114static void
1855once_cb_to (EV_P_ ev_timer *w, int revents) 3115once_cb_to (EV_P_ ev_timer *w, int revents)
1856{ 3116{
1857 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3117 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3118
3119 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1858} 3120}
1859 3121
1860void 3122void
1861ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3123ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1862{ 3124{
1884 ev_timer_set (&once->to, timeout, 0.); 3146 ev_timer_set (&once->to, timeout, 0.);
1885 ev_timer_start (EV_A_ &once->to); 3147 ev_timer_start (EV_A_ &once->to);
1886 } 3148 }
1887} 3149}
1888 3150
3151#if EV_MULTIPLICITY
3152 #include "ev_wrap.h"
3153#endif
3154
1889#ifdef __cplusplus 3155#ifdef __cplusplus
1890} 3156}
1891#endif 3157#endif
1892 3158

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines