ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.142 by root, Tue Nov 27 06:19:08 2007 UTC vs.
Revision 1.340 by root, Tue Mar 16 20:39:29 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT EV_FEATURE_BACKENDS
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
64# endif 95# endif
65# endif 96# endif
66 97
67# ifndef EV_USE_POLL 98# ifndef EV_USE_POLL
68# if HAVE_POLL && HAVE_POLL_H 99# if HAVE_POLL && HAVE_POLL_H
69# define EV_USE_POLL 1 100# define EV_USE_POLL EV_FEATURE_BACKENDS
70# else 101# else
71# define EV_USE_POLL 0 102# define EV_USE_POLL 0
72# endif 103# endif
73# endif 104# endif
74 105
75# ifndef EV_USE_EPOLL 106# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 108# define EV_USE_EPOLL EV_FEATURE_BACKENDS
78# else 109# else
79# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
80# endif 111# endif
81# endif 112# endif
82 113
83# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
85# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
86# else 117# else
87# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
88# endif 119# endif
89# endif 120# endif
90 121
91# ifndef EV_USE_PORT 122# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# define EV_USE_PORT EV_FEATURE_BACKENDS
94# else 125# else
95# define EV_USE_PORT 0 126# define EV_USE_PORT 0
96# endif 127# endif
97# endif 128# endif
98 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY EV_FEATURE_OS
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD EV_FEATURE_OS
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD EV_FEATURE_OS
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
99#endif 154#endif
100 155
101#include <math.h> 156#include <math.h>
102#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
103#include <fcntl.h> 159#include <fcntl.h>
104#include <stddef.h> 160#include <stddef.h>
105 161
106#include <stdio.h> 162#include <stdio.h>
107 163
108#include <assert.h> 164#include <assert.h>
109#include <errno.h> 165#include <errno.h>
110#include <sys/types.h> 166#include <sys/types.h>
111#include <time.h> 167#include <time.h>
168#include <limits.h>
112 169
113#include <signal.h> 170#include <signal.h>
171
172#ifdef EV_H
173# include EV_H
174#else
175# include "ev.h"
176#endif
114 177
115#ifndef _WIN32 178#ifndef _WIN32
116# include <sys/time.h> 179# include <sys/time.h>
117# include <sys/wait.h> 180# include <sys/wait.h>
118# include <unistd.h> 181# include <unistd.h>
119#else 182#else
183# include <io.h>
120# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 185# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
124# endif 188# endif
189# undef EV_AVOID_STDIO
190#endif
191
192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line, */
218/* but consider reporting it, too! :) */
219# define EV_NSIG 65
220#endif
221
222#ifndef EV_USE_CLOCK_SYSCALL
223# if __linux && __GLIBC__ >= 2
224# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
225# else
226# define EV_USE_CLOCK_SYSCALL 0
125#endif 227# endif
126 228#endif
127/**/
128 229
129#ifndef EV_USE_MONOTONIC 230#ifndef EV_USE_MONOTONIC
231# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232# define EV_USE_MONOTONIC EV_FEATURE_OS
233# else
130# define EV_USE_MONOTONIC 0 234# define EV_USE_MONOTONIC 0
235# endif
131#endif 236#endif
132 237
133#ifndef EV_USE_REALTIME 238#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 239# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
240#endif
241
242#ifndef EV_USE_NANOSLEEP
243# if _POSIX_C_SOURCE >= 199309L
244# define EV_USE_NANOSLEEP EV_FEATURE_OS
245# else
246# define EV_USE_NANOSLEEP 0
247# endif
135#endif 248#endif
136 249
137#ifndef EV_USE_SELECT 250#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 251# define EV_USE_SELECT EV_FEATURE_BACKENDS
139#endif 252#endif
140 253
141#ifndef EV_USE_POLL 254#ifndef EV_USE_POLL
142# ifdef _WIN32 255# ifdef _WIN32
143# define EV_USE_POLL 0 256# define EV_USE_POLL 0
144# else 257# else
145# define EV_USE_POLL 1 258# define EV_USE_POLL EV_FEATURE_BACKENDS
146# endif 259# endif
147#endif 260#endif
148 261
149#ifndef EV_USE_EPOLL 262#ifndef EV_USE_EPOLL
263# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
264# define EV_USE_EPOLL EV_FEATURE_BACKENDS
265# else
150# define EV_USE_EPOLL 0 266# define EV_USE_EPOLL 0
267# endif
151#endif 268#endif
152 269
153#ifndef EV_USE_KQUEUE 270#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 271# define EV_USE_KQUEUE 0
155#endif 272#endif
156 273
157#ifndef EV_USE_PORT 274#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 275# define EV_USE_PORT 0
159#endif 276#endif
160 277
161/**/ 278#ifndef EV_USE_INOTIFY
279# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
280# define EV_USE_INOTIFY EV_FEATURE_OS
281# else
282# define EV_USE_INOTIFY 0
283# endif
284#endif
285
286#ifndef EV_PID_HASHSIZE
287# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
292#endif
293
294#ifndef EV_USE_EVENTFD
295# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
296# define EV_USE_EVENTFD EV_FEATURE_OS
297# else
298# define EV_USE_EVENTFD 0
299# endif
300#endif
301
302#ifndef EV_USE_SIGNALFD
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
304# define EV_USE_SIGNALFD EV_FEATURE_OS
305# else
306# define EV_USE_SIGNALFD 0
307# endif
308#endif
309
310#if 0 /* debugging */
311# define EV_VERIFY 3
312# define EV_USE_4HEAP 1
313# define EV_HEAP_CACHE_AT 1
314#endif
315
316#ifndef EV_VERIFY
317# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
318#endif
319
320#ifndef EV_USE_4HEAP
321# define EV_USE_4HEAP EV_FEATURE_DATA
322#endif
323
324#ifndef EV_HEAP_CACHE_AT
325# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
326#endif
327
328/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
329/* which makes programs even slower. might work on other unices, too. */
330#if EV_USE_CLOCK_SYSCALL
331# include <syscall.h>
332# ifdef SYS_clock_gettime
333# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
334# undef EV_USE_MONOTONIC
335# define EV_USE_MONOTONIC 1
336# else
337# undef EV_USE_CLOCK_SYSCALL
338# define EV_USE_CLOCK_SYSCALL 0
339# endif
340#endif
341
342/* this block fixes any misconfiguration where we know we run into trouble otherwise */
343
344#ifdef _AIX
345/* AIX has a completely broken poll.h header */
346# undef EV_USE_POLL
347# define EV_USE_POLL 0
348#endif
162 349
163#ifndef CLOCK_MONOTONIC 350#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 351# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 352# define EV_USE_MONOTONIC 0
166#endif 353#endif
168#ifndef CLOCK_REALTIME 355#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 356# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 357# define EV_USE_REALTIME 0
171#endif 358#endif
172 359
360#if !EV_STAT_ENABLE
361# undef EV_USE_INOTIFY
362# define EV_USE_INOTIFY 0
363#endif
364
365#if !EV_USE_NANOSLEEP
366# ifndef _WIN32
367# include <sys/select.h>
368# endif
369#endif
370
371#if EV_USE_INOTIFY
372# include <sys/utsname.h>
373# include <sys/statfs.h>
374# include <sys/inotify.h>
375/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
376# ifndef IN_DONT_FOLLOW
377# undef EV_USE_INOTIFY
378# define EV_USE_INOTIFY 0
379# endif
380#endif
381
173#if EV_SELECT_IS_WINSOCKET 382#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 383# include <winsock.h>
175#endif 384#endif
176 385
386#if EV_USE_EVENTFD
387/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
388# include <stdint.h>
389# ifndef EFD_NONBLOCK
390# define EFD_NONBLOCK O_NONBLOCK
391# endif
392# ifndef EFD_CLOEXEC
393# ifdef O_CLOEXEC
394# define EFD_CLOEXEC O_CLOEXEC
395# else
396# define EFD_CLOEXEC 02000000
397# endif
398# endif
399# ifdef __cplusplus
400extern "C" {
401# endif
402int (eventfd) (unsigned int initval, int flags);
403# ifdef __cplusplus
404}
405# endif
406#endif
407
408#if EV_USE_SIGNALFD
409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef SFD_NONBLOCK
412# define SFD_NONBLOCK O_NONBLOCK
413# endif
414# ifndef SFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define SFD_CLOEXEC O_CLOEXEC
417# else
418# define SFD_CLOEXEC 02000000
419# endif
420# endif
421# ifdef __cplusplus
422extern "C" {
423# endif
424int signalfd (int fd, const sigset_t *mask, int flags);
425
426struct signalfd_siginfo
427{
428 uint32_t ssi_signo;
429 char pad[128 - sizeof (uint32_t)];
430};
431# ifdef __cplusplus
432}
433# endif
434#endif
435
436
177/**/ 437/**/
438
439#if EV_VERIFY >= 3
440# define EV_FREQUENT_CHECK ev_verify (EV_A)
441#else
442# define EV_FREQUENT_CHECK do { } while (0)
443#endif
444
445/*
446 * This is used to avoid floating point rounding problems.
447 * It is added to ev_rt_now when scheduling periodics
448 * to ensure progress, time-wise, even when rounding
449 * errors are against us.
450 * This value is good at least till the year 4000.
451 * Better solutions welcome.
452 */
453#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 454
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 455#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 456#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
183 457
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 458#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 459# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline)) 460# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
200#else 461#else
201# define expect(expr,value) (expr) 462# define expect(expr,value) (expr)
202# define inline_speed static
203# define inline_minimal static
204# define noinline 463# define noinline
464# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
465# define inline
466# endif
205#endif 467#endif
206 468
207#define expect_false(expr) expect ((expr) != 0, 0) 469#define expect_false(expr) expect ((expr) != 0, 0)
208#define expect_true(expr) expect ((expr) != 0, 1) 470#define expect_true(expr) expect ((expr) != 0, 1)
471#define inline_size static inline
209 472
473#if EV_FEATURE_CODE
474# define inline_speed static inline
475#else
476# define inline_speed static noinline
477#endif
478
210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 479#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
480
481#if EV_MINPRI == EV_MAXPRI
482# define ABSPRI(w) (((W)w), 0)
483#else
211#define ABSPRI(w) ((w)->priority - EV_MINPRI) 484# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
485#endif
212 486
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 487#define EMPTY /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */ 488#define EMPTY2(a,b) /* used to suppress some warnings */
215 489
216typedef ev_watcher *W; 490typedef ev_watcher *W;
217typedef ev_watcher_list *WL; 491typedef ev_watcher_list *WL;
218typedef ev_watcher_time *WT; 492typedef ev_watcher_time *WT;
219 493
494#define ev_active(w) ((W)(w))->active
495#define ev_at(w) ((WT)(w))->at
496
497#if EV_USE_REALTIME
498/* sig_atomic_t is used to avoid per-thread variables or locking but still */
499/* giving it a reasonably high chance of working on typical architetcures */
500static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
501#endif
502
503#if EV_USE_MONOTONIC
220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 504static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
505#endif
506
507#ifndef EV_FD_TO_WIN32_HANDLE
508# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
509#endif
510#ifndef EV_WIN32_HANDLE_TO_FD
511# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
512#endif
513#ifndef EV_WIN32_CLOSE_FD
514# define EV_WIN32_CLOSE_FD(fd) close (fd)
515#endif
221 516
222#ifdef _WIN32 517#ifdef _WIN32
223# include "ev_win32.c" 518# include "ev_win32.c"
224#endif 519#endif
225 520
226/*****************************************************************************/ 521/*****************************************************************************/
227 522
523#if EV_AVOID_STDIO
524static void noinline
525ev_printerr (const char *msg)
526{
527 write (STDERR_FILENO, msg, strlen (msg));
528}
529#endif
530
228static void (*syserr_cb)(const char *msg); 531static void (*syserr_cb)(const char *msg);
229 532
230void 533void
231ev_set_syserr_cb (void (*cb)(const char *msg)) 534ev_set_syserr_cb (void (*cb)(const char *msg))
232{ 535{
233 syserr_cb = cb; 536 syserr_cb = cb;
234} 537}
235 538
236static void noinline 539static void noinline
237syserr (const char *msg) 540ev_syserr (const char *msg)
238{ 541{
239 if (!msg) 542 if (!msg)
240 msg = "(libev) system error"; 543 msg = "(libev) system error";
241 544
242 if (syserr_cb) 545 if (syserr_cb)
243 syserr_cb (msg); 546 syserr_cb (msg);
244 else 547 else
245 { 548 {
549#if EV_AVOID_STDIO
550 const char *err = strerror (errno);
551
552 ev_printerr (msg);
553 ev_printerr (": ");
554 ev_printerr (err);
555 ev_printerr ("\n");
556#else
246 perror (msg); 557 perror (msg);
558#endif
247 abort (); 559 abort ();
248 } 560 }
249} 561}
250 562
563static void *
564ev_realloc_emul (void *ptr, long size)
565{
566#if __GLIBC__
567 return realloc (ptr, size);
568#else
569 /* some systems, notably openbsd and darwin, fail to properly
570 * implement realloc (x, 0) (as required by both ansi c-89 and
571 * the single unix specification, so work around them here.
572 */
573
574 if (size)
575 return realloc (ptr, size);
576
577 free (ptr);
578 return 0;
579#endif
580}
581
251static void *(*alloc)(void *ptr, long size); 582static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
252 583
253void 584void
254ev_set_allocator (void *(*cb)(void *ptr, long size)) 585ev_set_allocator (void *(*cb)(void *ptr, long size))
255{ 586{
256 alloc = cb; 587 alloc = cb;
257} 588}
258 589
259static void * 590inline_speed void *
260ev_realloc (void *ptr, long size) 591ev_realloc (void *ptr, long size)
261{ 592{
262 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 593 ptr = alloc (ptr, size);
263 594
264 if (!ptr && size) 595 if (!ptr && size)
265 { 596 {
597#if EV_AVOID_STDIO
598 ev_printerr ("libev: memory allocation failed, aborting.\n");
599#else
266 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 600 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
601#endif
267 abort (); 602 abort ();
268 } 603 }
269 604
270 return ptr; 605 return ptr;
271} 606}
273#define ev_malloc(size) ev_realloc (0, (size)) 608#define ev_malloc(size) ev_realloc (0, (size))
274#define ev_free(ptr) ev_realloc ((ptr), 0) 609#define ev_free(ptr) ev_realloc ((ptr), 0)
275 610
276/*****************************************************************************/ 611/*****************************************************************************/
277 612
613/* set in reify when reification needed */
614#define EV_ANFD_REIFY 1
615
616/* file descriptor info structure */
278typedef struct 617typedef struct
279{ 618{
280 WL head; 619 WL head;
281 unsigned char events; 620 unsigned char events; /* the events watched for */
621 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
622 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
282 unsigned char reify; 623 unsigned char unused;
624#if EV_USE_EPOLL
625 unsigned int egen; /* generation counter to counter epoll bugs */
626#endif
283#if EV_SELECT_IS_WINSOCKET 627#if EV_SELECT_IS_WINSOCKET
284 SOCKET handle; 628 SOCKET handle;
285#endif 629#endif
286} ANFD; 630} ANFD;
287 631
632/* stores the pending event set for a given watcher */
288typedef struct 633typedef struct
289{ 634{
290 W w; 635 W w;
291 int events; 636 int events; /* the pending event set for the given watcher */
292} ANPENDING; 637} ANPENDING;
638
639#if EV_USE_INOTIFY
640/* hash table entry per inotify-id */
641typedef struct
642{
643 WL head;
644} ANFS;
645#endif
646
647/* Heap Entry */
648#if EV_HEAP_CACHE_AT
649 /* a heap element */
650 typedef struct {
651 ev_tstamp at;
652 WT w;
653 } ANHE;
654
655 #define ANHE_w(he) (he).w /* access watcher, read-write */
656 #define ANHE_at(he) (he).at /* access cached at, read-only */
657 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
658#else
659 /* a heap element */
660 typedef WT ANHE;
661
662 #define ANHE_w(he) (he)
663 #define ANHE_at(he) (he)->at
664 #define ANHE_at_cache(he)
665#endif
293 666
294#if EV_MULTIPLICITY 667#if EV_MULTIPLICITY
295 668
296 struct ev_loop 669 struct ev_loop
297 { 670 {
315 688
316 static int ev_default_loop_ptr; 689 static int ev_default_loop_ptr;
317 690
318#endif 691#endif
319 692
693#if EV_FEATURE_API
694# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
695# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
696# define EV_INVOKE_PENDING invoke_cb (EV_A)
697#else
698# define EV_RELEASE_CB (void)0
699# define EV_ACQUIRE_CB (void)0
700# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
701#endif
702
703#define EVUNLOOP_RECURSE 0x80
704
320/*****************************************************************************/ 705/*****************************************************************************/
321 706
707#ifndef EV_HAVE_EV_TIME
322ev_tstamp 708ev_tstamp
323ev_time (void) 709ev_time (void)
324{ 710{
325#if EV_USE_REALTIME 711#if EV_USE_REALTIME
712 if (expect_true (have_realtime))
713 {
326 struct timespec ts; 714 struct timespec ts;
327 clock_gettime (CLOCK_REALTIME, &ts); 715 clock_gettime (CLOCK_REALTIME, &ts);
328 return ts.tv_sec + ts.tv_nsec * 1e-9; 716 return ts.tv_sec + ts.tv_nsec * 1e-9;
329#else 717 }
718#endif
719
330 struct timeval tv; 720 struct timeval tv;
331 gettimeofday (&tv, 0); 721 gettimeofday (&tv, 0);
332 return tv.tv_sec + tv.tv_usec * 1e-6; 722 return tv.tv_sec + tv.tv_usec * 1e-6;
333#endif
334} 723}
724#endif
335 725
336ev_tstamp inline_size 726inline_size ev_tstamp
337get_clock (void) 727get_clock (void)
338{ 728{
339#if EV_USE_MONOTONIC 729#if EV_USE_MONOTONIC
340 if (expect_true (have_monotonic)) 730 if (expect_true (have_monotonic))
341 { 731 {
354{ 744{
355 return ev_rt_now; 745 return ev_rt_now;
356} 746}
357#endif 747#endif
358 748
359#define array_roundsize(type,n) (((n) | 4) & ~3) 749void
750ev_sleep (ev_tstamp delay)
751{
752 if (delay > 0.)
753 {
754#if EV_USE_NANOSLEEP
755 struct timespec ts;
756
757 ts.tv_sec = (time_t)delay;
758 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
759
760 nanosleep (&ts, 0);
761#elif defined(_WIN32)
762 Sleep ((unsigned long)(delay * 1e3));
763#else
764 struct timeval tv;
765
766 tv.tv_sec = (time_t)delay;
767 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
768
769 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
770 /* something not guaranteed by newer posix versions, but guaranteed */
771 /* by older ones */
772 select (0, 0, 0, 0, &tv);
773#endif
774 }
775}
776
777/*****************************************************************************/
778
779#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
780
781/* find a suitable new size for the given array, */
782/* hopefully by rounding to a ncie-to-malloc size */
783inline_size int
784array_nextsize (int elem, int cur, int cnt)
785{
786 int ncur = cur + 1;
787
788 do
789 ncur <<= 1;
790 while (cnt > ncur);
791
792 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
793 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
794 {
795 ncur *= elem;
796 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
797 ncur = ncur - sizeof (void *) * 4;
798 ncur /= elem;
799 }
800
801 return ncur;
802}
803
804static noinline void *
805array_realloc (int elem, void *base, int *cur, int cnt)
806{
807 *cur = array_nextsize (elem, *cur, cnt);
808 return ev_realloc (base, elem * *cur);
809}
810
811#define array_init_zero(base,count) \
812 memset ((void *)(base), 0, sizeof (*(base)) * (count))
360 813
361#define array_needsize(type,base,cur,cnt,init) \ 814#define array_needsize(type,base,cur,cnt,init) \
362 if (expect_false ((cnt) > cur)) \ 815 if (expect_false ((cnt) > (cur))) \
363 { \ 816 { \
364 int newcnt = cur; \ 817 int ocur_ = (cur); \
365 do \ 818 (base) = (type *)array_realloc \
366 { \ 819 (sizeof (type), (base), &(cur), (cnt)); \
367 newcnt = array_roundsize (type, newcnt << 1); \ 820 init ((base) + (ocur_), (cur) - ocur_); \
368 } \
369 while ((cnt) > newcnt); \
370 \
371 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
372 init (base + cur, newcnt - cur); \
373 cur = newcnt; \
374 } 821 }
375 822
823#if 0
376#define array_slim(type,stem) \ 824#define array_slim(type,stem) \
377 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 825 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
378 { \ 826 { \
379 stem ## max = array_roundsize (stem ## cnt >> 1); \ 827 stem ## max = array_roundsize (stem ## cnt >> 1); \
380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 828 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 829 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
382 } 830 }
831#endif
383 832
384#define array_free(stem, idx) \ 833#define array_free(stem, idx) \
385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 834 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
386 835
387/*****************************************************************************/ 836/*****************************************************************************/
837
838/* dummy callback for pending events */
839static void noinline
840pendingcb (EV_P_ ev_prepare *w, int revents)
841{
842}
388 843
389void noinline 844void noinline
390ev_feed_event (EV_P_ void *w, int revents) 845ev_feed_event (EV_P_ void *w, int revents)
391{ 846{
392 W w_ = (W)w; 847 W w_ = (W)w;
848 int pri = ABSPRI (w_);
393 849
394 if (expect_false (w_->pending)) 850 if (expect_false (w_->pending))
851 pendings [pri][w_->pending - 1].events |= revents;
852 else
395 { 853 {
854 w_->pending = ++pendingcnt [pri];
855 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
856 pendings [pri][w_->pending - 1].w = w_;
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 857 pendings [pri][w_->pending - 1].events = revents;
397 return;
398 } 858 }
399
400 w_->pending = ++pendingcnt [ABSPRI (w_)];
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404} 859}
405 860
406void inline_size 861inline_speed void
862feed_reverse (EV_P_ W w)
863{
864 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
865 rfeeds [rfeedcnt++] = w;
866}
867
868inline_size void
869feed_reverse_done (EV_P_ int revents)
870{
871 do
872 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
873 while (rfeedcnt);
874}
875
876inline_speed void
407queue_events (EV_P_ W *events, int eventcnt, int type) 877queue_events (EV_P_ W *events, int eventcnt, int type)
408{ 878{
409 int i; 879 int i;
410 880
411 for (i = 0; i < eventcnt; ++i) 881 for (i = 0; i < eventcnt; ++i)
412 ev_feed_event (EV_A_ events [i], type); 882 ev_feed_event (EV_A_ events [i], type);
413} 883}
414 884
415/*****************************************************************************/ 885/*****************************************************************************/
416 886
417void inline_size 887inline_speed void
418anfds_init (ANFD *base, int count)
419{
420 while (count--)
421 {
422 base->head = 0;
423 base->events = EV_NONE;
424 base->reify = 0;
425
426 ++base;
427 }
428}
429
430void inline_speed
431fd_event (EV_P_ int fd, int revents) 888fd_event_nocheck (EV_P_ int fd, int revents)
432{ 889{
433 ANFD *anfd = anfds + fd; 890 ANFD *anfd = anfds + fd;
434 ev_io *w; 891 ev_io *w;
435 892
436 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 893 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
440 if (ev) 897 if (ev)
441 ev_feed_event (EV_A_ (W)w, ev); 898 ev_feed_event (EV_A_ (W)w, ev);
442 } 899 }
443} 900}
444 901
902/* do not submit kernel events for fds that have reify set */
903/* because that means they changed while we were polling for new events */
904inline_speed void
905fd_event (EV_P_ int fd, int revents)
906{
907 ANFD *anfd = anfds + fd;
908
909 if (expect_true (!anfd->reify))
910 fd_event_nocheck (EV_A_ fd, revents);
911}
912
445void 913void
446ev_feed_fd_event (EV_P_ int fd, int revents) 914ev_feed_fd_event (EV_P_ int fd, int revents)
447{ 915{
916 if (fd >= 0 && fd < anfdmax)
448 fd_event (EV_A_ fd, revents); 917 fd_event_nocheck (EV_A_ fd, revents);
449} 918}
450 919
451void inline_size 920/* make sure the external fd watch events are in-sync */
921/* with the kernel/libev internal state */
922inline_size void
452fd_reify (EV_P) 923fd_reify (EV_P)
453{ 924{
454 int i; 925 int i;
455 926
456 for (i = 0; i < fdchangecnt; ++i) 927 for (i = 0; i < fdchangecnt; ++i)
457 { 928 {
458 int fd = fdchanges [i]; 929 int fd = fdchanges [i];
459 ANFD *anfd = anfds + fd; 930 ANFD *anfd = anfds + fd;
460 ev_io *w; 931 ev_io *w;
461 932
462 int events = 0; 933 unsigned char events = 0;
463 934
464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 935 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
465 events |= w->events; 936 events |= (unsigned char)w->events;
466 937
467#if EV_SELECT_IS_WINSOCKET 938#if EV_SELECT_IS_WINSOCKET
468 if (events) 939 if (events)
469 { 940 {
470 unsigned long argp; 941 unsigned long arg;
471 anfd->handle = _get_osfhandle (fd); 942 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
472 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 943 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
473 } 944 }
474#endif 945#endif
475 946
947 {
948 unsigned char o_events = anfd->events;
949 unsigned char o_reify = anfd->reify;
950
476 anfd->reify = 0; 951 anfd->reify = 0;
477
478 backend_modify (EV_A_ fd, anfd->events, events);
479 anfd->events = events; 952 anfd->events = events;
953
954 if (o_events != events || o_reify & EV__IOFDSET)
955 backend_modify (EV_A_ fd, o_events, events);
956 }
480 } 957 }
481 958
482 fdchangecnt = 0; 959 fdchangecnt = 0;
483} 960}
484 961
485void inline_size 962/* something about the given fd changed */
963inline_size void
486fd_change (EV_P_ int fd) 964fd_change (EV_P_ int fd, int flags)
487{ 965{
488 if (expect_false (anfds [fd].reify)) 966 unsigned char reify = anfds [fd].reify;
489 return;
490
491 anfds [fd].reify = 1; 967 anfds [fd].reify |= flags;
492 968
969 if (expect_true (!reify))
970 {
493 ++fdchangecnt; 971 ++fdchangecnt;
494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 972 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
495 fdchanges [fdchangecnt - 1] = fd; 973 fdchanges [fdchangecnt - 1] = fd;
974 }
496} 975}
497 976
498void inline_speed 977/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
978inline_speed void
499fd_kill (EV_P_ int fd) 979fd_kill (EV_P_ int fd)
500{ 980{
501 ev_io *w; 981 ev_io *w;
502 982
503 while ((w = (ev_io *)anfds [fd].head)) 983 while ((w = (ev_io *)anfds [fd].head))
505 ev_io_stop (EV_A_ w); 985 ev_io_stop (EV_A_ w);
506 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 986 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
507 } 987 }
508} 988}
509 989
510int inline_size 990/* check whether the given fd is actually valid, for error recovery */
991inline_size int
511fd_valid (int fd) 992fd_valid (int fd)
512{ 993{
513#ifdef _WIN32 994#ifdef _WIN32
514 return _get_osfhandle (fd) != -1; 995 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
515#else 996#else
516 return fcntl (fd, F_GETFD) != -1; 997 return fcntl (fd, F_GETFD) != -1;
517#endif 998#endif
518} 999}
519 1000
523{ 1004{
524 int fd; 1005 int fd;
525 1006
526 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
527 if (anfds [fd].events) 1008 if (anfds [fd].events)
528 if (!fd_valid (fd) == -1 && errno == EBADF) 1009 if (!fd_valid (fd) && errno == EBADF)
529 fd_kill (EV_A_ fd); 1010 fd_kill (EV_A_ fd);
530} 1011}
531 1012
532/* called on ENOMEM in select/poll to kill some fds and retry */ 1013/* called on ENOMEM in select/poll to kill some fds and retry */
533static void noinline 1014static void noinline
537 1018
538 for (fd = anfdmax; fd--; ) 1019 for (fd = anfdmax; fd--; )
539 if (anfds [fd].events) 1020 if (anfds [fd].events)
540 { 1021 {
541 fd_kill (EV_A_ fd); 1022 fd_kill (EV_A_ fd);
542 return; 1023 break;
543 } 1024 }
544} 1025}
545 1026
546/* usually called after fork if backend needs to re-arm all fds from scratch */ 1027/* usually called after fork if backend needs to re-arm all fds from scratch */
547static void noinline 1028static void noinline
548fd_rearm_all (EV_P) 1029fd_rearm_all (EV_P)
549{ 1030{
550 int fd; 1031 int fd;
551 1032
552 /* this should be highly optimised to not do anything but set a flag */
553 for (fd = 0; fd < anfdmax; ++fd) 1033 for (fd = 0; fd < anfdmax; ++fd)
554 if (anfds [fd].events) 1034 if (anfds [fd].events)
555 { 1035 {
556 anfds [fd].events = 0; 1036 anfds [fd].events = 0;
557 fd_change (EV_A_ fd); 1037 anfds [fd].emask = 0;
1038 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
558 } 1039 }
559} 1040}
560 1041
561/*****************************************************************************/ 1042/* used to prepare libev internal fd's */
562 1043/* this is not fork-safe */
563void inline_speed 1044inline_speed void
564upheap (WT *heap, int k)
565{
566 WT w = heap [k];
567
568 while (k && heap [k >> 1]->at > w->at)
569 {
570 heap [k] = heap [k >> 1];
571 ((W)heap [k])->active = k + 1;
572 k >>= 1;
573 }
574
575 heap [k] = w;
576 ((W)heap [k])->active = k + 1;
577
578}
579
580void inline_speed
581downheap (WT *heap, int N, int k)
582{
583 WT w = heap [k];
584
585 while (k < (N >> 1))
586 {
587 int j = k << 1;
588
589 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
590 ++j;
591
592 if (w->at <= heap [j]->at)
593 break;
594
595 heap [k] = heap [j];
596 ((W)heap [k])->active = k + 1;
597 k = j;
598 }
599
600 heap [k] = w;
601 ((W)heap [k])->active = k + 1;
602}
603
604void inline_size
605adjustheap (WT *heap, int N, int k)
606{
607 upheap (heap, k);
608 downheap (heap, N, k);
609}
610
611/*****************************************************************************/
612
613typedef struct
614{
615 WL head;
616 sig_atomic_t volatile gotsig;
617} ANSIG;
618
619static ANSIG *signals;
620static int signalmax;
621
622static int sigpipe [2];
623static sig_atomic_t volatile gotsig;
624static ev_io sigev;
625
626void inline_size
627signals_init (ANSIG *base, int count)
628{
629 while (count--)
630 {
631 base->head = 0;
632 base->gotsig = 0;
633
634 ++base;
635 }
636}
637
638static void
639sighandler (int signum)
640{
641#if _WIN32
642 signal (signum, sighandler);
643#endif
644
645 signals [signum - 1].gotsig = 1;
646
647 if (!gotsig)
648 {
649 int old_errno = errno;
650 gotsig = 1;
651 write (sigpipe [1], &signum, 1);
652 errno = old_errno;
653 }
654}
655
656void noinline
657ev_feed_signal_event (EV_P_ int signum)
658{
659 WL w;
660
661#if EV_MULTIPLICITY
662 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
663#endif
664
665 --signum;
666
667 if (signum < 0 || signum >= signalmax)
668 return;
669
670 signals [signum].gotsig = 0;
671
672 for (w = signals [signum].head; w; w = w->next)
673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
674}
675
676static void
677sigcb (EV_P_ ev_io *iow, int revents)
678{
679 int signum;
680
681 read (sigpipe [0], &revents, 1);
682 gotsig = 0;
683
684 for (signum = signalmax; signum--; )
685 if (signals [signum].gotsig)
686 ev_feed_signal_event (EV_A_ signum + 1);
687}
688
689void inline_size
690fd_intern (int fd) 1045fd_intern (int fd)
691{ 1046{
692#ifdef _WIN32 1047#ifdef _WIN32
693 int arg = 1; 1048 unsigned long arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1049 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
695#else 1050#else
696 fcntl (fd, F_SETFD, FD_CLOEXEC); 1051 fcntl (fd, F_SETFD, FD_CLOEXEC);
697 fcntl (fd, F_SETFL, O_NONBLOCK); 1052 fcntl (fd, F_SETFL, O_NONBLOCK);
698#endif 1053#endif
699} 1054}
700 1055
1056/*****************************************************************************/
1057
1058/*
1059 * the heap functions want a real array index. array index 0 uis guaranteed to not
1060 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1061 * the branching factor of the d-tree.
1062 */
1063
1064/*
1065 * at the moment we allow libev the luxury of two heaps,
1066 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1067 * which is more cache-efficient.
1068 * the difference is about 5% with 50000+ watchers.
1069 */
1070#if EV_USE_4HEAP
1071
1072#define DHEAP 4
1073#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1074#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1075#define UPHEAP_DONE(p,k) ((p) == (k))
1076
1077/* away from the root */
1078inline_speed void
1079downheap (ANHE *heap, int N, int k)
1080{
1081 ANHE he = heap [k];
1082 ANHE *E = heap + N + HEAP0;
1083
1084 for (;;)
1085 {
1086 ev_tstamp minat;
1087 ANHE *minpos;
1088 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1089
1090 /* find minimum child */
1091 if (expect_true (pos + DHEAP - 1 < E))
1092 {
1093 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1094 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1095 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1096 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1097 }
1098 else if (pos < E)
1099 {
1100 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1101 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1102 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1103 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1104 }
1105 else
1106 break;
1107
1108 if (ANHE_at (he) <= minat)
1109 break;
1110
1111 heap [k] = *minpos;
1112 ev_active (ANHE_w (*minpos)) = k;
1113
1114 k = minpos - heap;
1115 }
1116
1117 heap [k] = he;
1118 ev_active (ANHE_w (he)) = k;
1119}
1120
1121#else /* 4HEAP */
1122
1123#define HEAP0 1
1124#define HPARENT(k) ((k) >> 1)
1125#define UPHEAP_DONE(p,k) (!(p))
1126
1127/* away from the root */
1128inline_speed void
1129downheap (ANHE *heap, int N, int k)
1130{
1131 ANHE he = heap [k];
1132
1133 for (;;)
1134 {
1135 int c = k << 1;
1136
1137 if (c >= N + HEAP0)
1138 break;
1139
1140 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1141 ? 1 : 0;
1142
1143 if (ANHE_at (he) <= ANHE_at (heap [c]))
1144 break;
1145
1146 heap [k] = heap [c];
1147 ev_active (ANHE_w (heap [k])) = k;
1148
1149 k = c;
1150 }
1151
1152 heap [k] = he;
1153 ev_active (ANHE_w (he)) = k;
1154}
1155#endif
1156
1157/* towards the root */
1158inline_speed void
1159upheap (ANHE *heap, int k)
1160{
1161 ANHE he = heap [k];
1162
1163 for (;;)
1164 {
1165 int p = HPARENT (k);
1166
1167 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1168 break;
1169
1170 heap [k] = heap [p];
1171 ev_active (ANHE_w (heap [k])) = k;
1172 k = p;
1173 }
1174
1175 heap [k] = he;
1176 ev_active (ANHE_w (he)) = k;
1177}
1178
1179/* move an element suitably so it is in a correct place */
1180inline_size void
1181adjustheap (ANHE *heap, int N, int k)
1182{
1183 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1184 upheap (heap, k);
1185 else
1186 downheap (heap, N, k);
1187}
1188
1189/* rebuild the heap: this function is used only once and executed rarely */
1190inline_size void
1191reheap (ANHE *heap, int N)
1192{
1193 int i;
1194
1195 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1196 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1197 for (i = 0; i < N; ++i)
1198 upheap (heap, i + HEAP0);
1199}
1200
1201/*****************************************************************************/
1202
1203/* associate signal watchers to a signal signal */
1204typedef struct
1205{
1206 EV_ATOMIC_T pending;
1207#if EV_MULTIPLICITY
1208 EV_P;
1209#endif
1210 WL head;
1211} ANSIG;
1212
1213static ANSIG signals [EV_NSIG - 1];
1214
1215/*****************************************************************************/
1216
1217#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1218
701static void noinline 1219static void noinline
702siginit (EV_P) 1220evpipe_init (EV_P)
703{ 1221{
1222 if (!ev_is_active (&pipe_w))
1223 {
1224# if EV_USE_EVENTFD
1225 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1226 if (evfd < 0 && errno == EINVAL)
1227 evfd = eventfd (0, 0);
1228
1229 if (evfd >= 0)
1230 {
1231 evpipe [0] = -1;
1232 fd_intern (evfd); /* doing it twice doesn't hurt */
1233 ev_io_set (&pipe_w, evfd, EV_READ);
1234 }
1235 else
1236# endif
1237 {
1238 while (pipe (evpipe))
1239 ev_syserr ("(libev) error creating signal/async pipe");
1240
704 fd_intern (sigpipe [0]); 1241 fd_intern (evpipe [0]);
705 fd_intern (sigpipe [1]); 1242 fd_intern (evpipe [1]);
1243 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1244 }
706 1245
707 ev_io_set (&sigev, sigpipe [0], EV_READ);
708 ev_io_start (EV_A_ &sigev); 1246 ev_io_start (EV_A_ &pipe_w);
709 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1247 ev_unref (EV_A); /* watcher should not keep loop alive */
1248 }
1249}
1250
1251inline_size void
1252evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1253{
1254 if (!*flag)
1255 {
1256 int old_errno = errno; /* save errno because write might clobber it */
1257 char dummy;
1258
1259 *flag = 1;
1260
1261#if EV_USE_EVENTFD
1262 if (evfd >= 0)
1263 {
1264 uint64_t counter = 1;
1265 write (evfd, &counter, sizeof (uint64_t));
1266 }
1267 else
1268#endif
1269 write (evpipe [1], &dummy, 1);
1270
1271 errno = old_errno;
1272 }
1273}
1274
1275/* called whenever the libev signal pipe */
1276/* got some events (signal, async) */
1277static void
1278pipecb (EV_P_ ev_io *iow, int revents)
1279{
1280 int i;
1281
1282#if EV_USE_EVENTFD
1283 if (evfd >= 0)
1284 {
1285 uint64_t counter;
1286 read (evfd, &counter, sizeof (uint64_t));
1287 }
1288 else
1289#endif
1290 {
1291 char dummy;
1292 read (evpipe [0], &dummy, 1);
1293 }
1294
1295 if (sig_pending)
1296 {
1297 sig_pending = 0;
1298
1299 for (i = EV_NSIG - 1; i--; )
1300 if (expect_false (signals [i].pending))
1301 ev_feed_signal_event (EV_A_ i + 1);
1302 }
1303
1304#if EV_ASYNC_ENABLE
1305 if (async_pending)
1306 {
1307 async_pending = 0;
1308
1309 for (i = asynccnt; i--; )
1310 if (asyncs [i]->sent)
1311 {
1312 asyncs [i]->sent = 0;
1313 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1314 }
1315 }
1316#endif
710} 1317}
711 1318
712/*****************************************************************************/ 1319/*****************************************************************************/
713 1320
714static ev_child *childs [PID_HASHSIZE]; 1321static void
1322ev_sighandler (int signum)
1323{
1324#if EV_MULTIPLICITY
1325 EV_P = signals [signum - 1].loop;
1326#endif
715 1327
716#ifndef _WIN32 1328#ifdef _WIN32
1329 signal (signum, ev_sighandler);
1330#endif
1331
1332 signals [signum - 1].pending = 1;
1333 evpipe_write (EV_A_ &sig_pending);
1334}
1335
1336void noinline
1337ev_feed_signal_event (EV_P_ int signum)
1338{
1339 WL w;
1340
1341 if (expect_false (signum <= 0 || signum > EV_NSIG))
1342 return;
1343
1344 --signum;
1345
1346#if EV_MULTIPLICITY
1347 /* it is permissible to try to feed a signal to the wrong loop */
1348 /* or, likely more useful, feeding a signal nobody is waiting for */
1349
1350 if (expect_false (signals [signum].loop != EV_A))
1351 return;
1352#endif
1353
1354 signals [signum].pending = 0;
1355
1356 for (w = signals [signum].head; w; w = w->next)
1357 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1358}
1359
1360#if EV_USE_SIGNALFD
1361static void
1362sigfdcb (EV_P_ ev_io *iow, int revents)
1363{
1364 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1365
1366 for (;;)
1367 {
1368 ssize_t res = read (sigfd, si, sizeof (si));
1369
1370 /* not ISO-C, as res might be -1, but works with SuS */
1371 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1372 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1373
1374 if (res < (ssize_t)sizeof (si))
1375 break;
1376 }
1377}
1378#endif
1379
1380#endif
1381
1382/*****************************************************************************/
1383
1384#if EV_CHILD_ENABLE
1385static WL childs [EV_PID_HASHSIZE];
717 1386
718static ev_signal childev; 1387static ev_signal childev;
719 1388
720void inline_speed 1389#ifndef WIFCONTINUED
1390# define WIFCONTINUED(status) 0
1391#endif
1392
1393/* handle a single child status event */
1394inline_speed void
721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1395child_reap (EV_P_ int chain, int pid, int status)
722{ 1396{
723 ev_child *w; 1397 ev_child *w;
1398 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
724 1399
725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1400 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1401 {
726 if (w->pid == pid || !w->pid) 1402 if ((w->pid == pid || !w->pid)
1403 && (!traced || (w->flags & 1)))
727 { 1404 {
728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1405 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
729 w->rpid = pid; 1406 w->rpid = pid;
730 w->rstatus = status; 1407 w->rstatus = status;
731 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1408 ev_feed_event (EV_A_ (W)w, EV_CHILD);
732 } 1409 }
1410 }
733} 1411}
734 1412
735#ifndef WCONTINUED 1413#ifndef WCONTINUED
736# define WCONTINUED 0 1414# define WCONTINUED 0
737#endif 1415#endif
738 1416
1417/* called on sigchld etc., calls waitpid */
739static void 1418static void
740childcb (EV_P_ ev_signal *sw, int revents) 1419childcb (EV_P_ ev_signal *sw, int revents)
741{ 1420{
742 int pid, status; 1421 int pid, status;
743 1422
746 if (!WCONTINUED 1425 if (!WCONTINUED
747 || errno != EINVAL 1426 || errno != EINVAL
748 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1427 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
749 return; 1428 return;
750 1429
751 /* make sure we are called again until all childs have been reaped */ 1430 /* make sure we are called again until all children have been reaped */
752 /* we need to do it this way so that the callback gets called before we continue */ 1431 /* we need to do it this way so that the callback gets called before we continue */
753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1432 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
754 1433
755 child_reap (EV_A_ sw, pid, pid, status); 1434 child_reap (EV_A_ pid, pid, status);
1435 if ((EV_PID_HASHSIZE) > 1)
756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1436 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
757} 1437}
758 1438
759#endif 1439#endif
760 1440
761/*****************************************************************************/ 1441/*****************************************************************************/
823 /* kqueue is borked on everything but netbsd apparently */ 1503 /* kqueue is borked on everything but netbsd apparently */
824 /* it usually doesn't work correctly on anything but sockets and pipes */ 1504 /* it usually doesn't work correctly on anything but sockets and pipes */
825 flags &= ~EVBACKEND_KQUEUE; 1505 flags &= ~EVBACKEND_KQUEUE;
826#endif 1506#endif
827#ifdef __APPLE__ 1507#ifdef __APPLE__
828 // flags &= ~EVBACKEND_KQUEUE; for documentation 1508 /* only select works correctly on that "unix-certified" platform */
829 flags &= ~EVBACKEND_POLL; 1509 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1510 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
830#endif 1511#endif
831 1512
832 return flags; 1513 return flags;
833} 1514}
834 1515
835unsigned int 1516unsigned int
836ev_embeddable_backends (void) 1517ev_embeddable_backends (void)
837{ 1518{
838 return EVBACKEND_EPOLL 1519 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
839 | EVBACKEND_KQUEUE 1520
840 | EVBACKEND_PORT; 1521 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1522 /* please fix it and tell me how to detect the fix */
1523 flags &= ~EVBACKEND_EPOLL;
1524
1525 return flags;
841} 1526}
842 1527
843unsigned int 1528unsigned int
844ev_backend (EV_P) 1529ev_backend (EV_P)
845{ 1530{
846 return backend; 1531 return backend;
847} 1532}
848 1533
849static void 1534#if EV_FEATURE_API
1535unsigned int
1536ev_iteration (EV_P)
1537{
1538 return loop_count;
1539}
1540
1541unsigned int
1542ev_depth (EV_P)
1543{
1544 return loop_depth;
1545}
1546
1547void
1548ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1549{
1550 io_blocktime = interval;
1551}
1552
1553void
1554ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1555{
1556 timeout_blocktime = interval;
1557}
1558
1559void
1560ev_set_userdata (EV_P_ void *data)
1561{
1562 userdata = data;
1563}
1564
1565void *
1566ev_userdata (EV_P)
1567{
1568 return userdata;
1569}
1570
1571void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1572{
1573 invoke_cb = invoke_pending_cb;
1574}
1575
1576void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1577{
1578 release_cb = release;
1579 acquire_cb = acquire;
1580}
1581#endif
1582
1583/* initialise a loop structure, must be zero-initialised */
1584static void noinline
850loop_init (EV_P_ unsigned int flags) 1585loop_init (EV_P_ unsigned int flags)
851{ 1586{
852 if (!backend) 1587 if (!backend)
853 { 1588 {
1589#if EV_USE_REALTIME
1590 if (!have_realtime)
1591 {
1592 struct timespec ts;
1593
1594 if (!clock_gettime (CLOCK_REALTIME, &ts))
1595 have_realtime = 1;
1596 }
1597#endif
1598
854#if EV_USE_MONOTONIC 1599#if EV_USE_MONOTONIC
1600 if (!have_monotonic)
855 { 1601 {
856 struct timespec ts; 1602 struct timespec ts;
1603
857 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
858 have_monotonic = 1; 1605 have_monotonic = 1;
859 } 1606 }
860#endif 1607#endif
861 1608
862 ev_rt_now = ev_time (); 1609 /* pid check not overridable via env */
863 mn_now = get_clock (); 1610#ifndef _WIN32
864 now_floor = mn_now; 1611 if (flags & EVFLAG_FORKCHECK)
865 rtmn_diff = ev_rt_now - mn_now; 1612 curpid = getpid ();
1613#endif
866 1614
867 if (!(flags & EVFLAG_NOENV) 1615 if (!(flags & EVFLAG_NOENV)
868 && !enable_secure () 1616 && !enable_secure ()
869 && getenv ("LIBEV_FLAGS")) 1617 && getenv ("LIBEV_FLAGS"))
870 flags = atoi (getenv ("LIBEV_FLAGS")); 1618 flags = atoi (getenv ("LIBEV_FLAGS"));
871 1619
1620 ev_rt_now = ev_time ();
1621 mn_now = get_clock ();
1622 now_floor = mn_now;
1623 rtmn_diff = ev_rt_now - mn_now;
1624#if EV_FEATURE_API
1625 invoke_cb = ev_invoke_pending;
1626#endif
1627
1628 io_blocktime = 0.;
1629 timeout_blocktime = 0.;
1630 backend = 0;
1631 backend_fd = -1;
1632 sig_pending = 0;
1633#if EV_ASYNC_ENABLE
1634 async_pending = 0;
1635#endif
1636#if EV_USE_INOTIFY
1637 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1638#endif
1639#if EV_USE_SIGNALFD
1640 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1641#endif
1642
872 if (!(flags & 0x0000ffffUL)) 1643 if (!(flags & 0x0000ffffU))
873 flags |= ev_recommended_backends (); 1644 flags |= ev_recommended_backends ();
874 1645
875 backend = 0;
876#if EV_USE_PORT 1646#if EV_USE_PORT
877 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1647 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
878#endif 1648#endif
879#if EV_USE_KQUEUE 1649#if EV_USE_KQUEUE
880 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1650 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
887#endif 1657#endif
888#if EV_USE_SELECT 1658#if EV_USE_SELECT
889 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1659 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
890#endif 1660#endif
891 1661
1662 ev_prepare_init (&pending_w, pendingcb);
1663
1664#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
892 ev_init (&sigev, sigcb); 1665 ev_init (&pipe_w, pipecb);
893 ev_set_priority (&sigev, EV_MAXPRI); 1666 ev_set_priority (&pipe_w, EV_MAXPRI);
1667#endif
894 } 1668 }
895} 1669}
896 1670
897static void 1671/* free up a loop structure */
1672static void noinline
898loop_destroy (EV_P) 1673loop_destroy (EV_P)
899{ 1674{
900 int i; 1675 int i;
1676
1677 if (ev_is_active (&pipe_w))
1678 {
1679 /*ev_ref (EV_A);*/
1680 /*ev_io_stop (EV_A_ &pipe_w);*/
1681
1682#if EV_USE_EVENTFD
1683 if (evfd >= 0)
1684 close (evfd);
1685#endif
1686
1687 if (evpipe [0] >= 0)
1688 {
1689 EV_WIN32_CLOSE_FD (evpipe [0]);
1690 EV_WIN32_CLOSE_FD (evpipe [1]);
1691 }
1692 }
1693
1694#if EV_USE_SIGNALFD
1695 if (ev_is_active (&sigfd_w))
1696 close (sigfd);
1697#endif
1698
1699#if EV_USE_INOTIFY
1700 if (fs_fd >= 0)
1701 close (fs_fd);
1702#endif
1703
1704 if (backend_fd >= 0)
1705 close (backend_fd);
901 1706
902#if EV_USE_PORT 1707#if EV_USE_PORT
903 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1708 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
904#endif 1709#endif
905#if EV_USE_KQUEUE 1710#if EV_USE_KQUEUE
914#if EV_USE_SELECT 1719#if EV_USE_SELECT
915 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1720 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
916#endif 1721#endif
917 1722
918 for (i = NUMPRI; i--; ) 1723 for (i = NUMPRI; i--; )
1724 {
919 array_free (pending, [i]); 1725 array_free (pending, [i]);
1726#if EV_IDLE_ENABLE
1727 array_free (idle, [i]);
1728#endif
1729 }
1730
1731 ev_free (anfds); anfds = 0; anfdmax = 0;
920 1732
921 /* have to use the microsoft-never-gets-it-right macro */ 1733 /* have to use the microsoft-never-gets-it-right macro */
1734 array_free (rfeed, EMPTY);
922 array_free (fdchange, EMPTY0); 1735 array_free (fdchange, EMPTY);
923 array_free (timer, EMPTY0); 1736 array_free (timer, EMPTY);
924#if EV_PERIODIC_ENABLE 1737#if EV_PERIODIC_ENABLE
925 array_free (periodic, EMPTY0); 1738 array_free (periodic, EMPTY);
926#endif 1739#endif
1740#if EV_FORK_ENABLE
927 array_free (idle, EMPTY0); 1741 array_free (fork, EMPTY);
1742#endif
928 array_free (prepare, EMPTY0); 1743 array_free (prepare, EMPTY);
929 array_free (check, EMPTY0); 1744 array_free (check, EMPTY);
1745#if EV_ASYNC_ENABLE
1746 array_free (async, EMPTY);
1747#endif
930 1748
931 backend = 0; 1749 backend = 0;
932} 1750}
933 1751
934static void 1752#if EV_USE_INOTIFY
1753inline_size void infy_fork (EV_P);
1754#endif
1755
1756inline_size void
935loop_fork (EV_P) 1757loop_fork (EV_P)
936{ 1758{
937#if EV_USE_PORT 1759#if EV_USE_PORT
938 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1760 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
939#endif 1761#endif
941 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1763 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
942#endif 1764#endif
943#if EV_USE_EPOLL 1765#if EV_USE_EPOLL
944 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1766 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
945#endif 1767#endif
1768#if EV_USE_INOTIFY
1769 infy_fork (EV_A);
1770#endif
946 1771
947 if (ev_is_active (&sigev)) 1772 if (ev_is_active (&pipe_w))
948 { 1773 {
949 /* default loop */ 1774 /* this "locks" the handlers against writing to the pipe */
1775 /* while we modify the fd vars */
1776 sig_pending = 1;
1777#if EV_ASYNC_ENABLE
1778 async_pending = 1;
1779#endif
950 1780
951 ev_ref (EV_A); 1781 ev_ref (EV_A);
952 ev_io_stop (EV_A_ &sigev); 1782 ev_io_stop (EV_A_ &pipe_w);
953 close (sigpipe [0]);
954 close (sigpipe [1]);
955 1783
956 while (pipe (sigpipe)) 1784#if EV_USE_EVENTFD
957 syserr ("(libev) error creating pipe"); 1785 if (evfd >= 0)
1786 close (evfd);
1787#endif
958 1788
1789 if (evpipe [0] >= 0)
1790 {
1791 EV_WIN32_CLOSE_FD (evpipe [0]);
1792 EV_WIN32_CLOSE_FD (evpipe [1]);
1793 }
1794
1795#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
959 siginit (EV_A); 1796 evpipe_init (EV_A);
1797 /* now iterate over everything, in case we missed something */
1798 pipecb (EV_A_ &pipe_w, EV_READ);
1799#endif
960 } 1800 }
961 1801
962 postfork = 0; 1802 postfork = 0;
963} 1803}
964 1804
965#if EV_MULTIPLICITY 1805#if EV_MULTIPLICITY
1806
966struct ev_loop * 1807struct ev_loop *
967ev_loop_new (unsigned int flags) 1808ev_loop_new (unsigned int flags)
968{ 1809{
969 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1810 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
970 1811
971 memset (loop, 0, sizeof (struct ev_loop)); 1812 memset (EV_A, 0, sizeof (struct ev_loop));
972
973 loop_init (EV_A_ flags); 1813 loop_init (EV_A_ flags);
974 1814
975 if (ev_backend (EV_A)) 1815 if (ev_backend (EV_A))
976 return loop; 1816 return EV_A;
977 1817
978 return 0; 1818 return 0;
979} 1819}
980 1820
981void 1821void
986} 1826}
987 1827
988void 1828void
989ev_loop_fork (EV_P) 1829ev_loop_fork (EV_P)
990{ 1830{
991 postfork = 1; 1831 postfork = 1; /* must be in line with ev_default_fork */
992} 1832}
1833#endif /* multiplicity */
993 1834
1835#if EV_VERIFY
1836static void noinline
1837verify_watcher (EV_P_ W w)
1838{
1839 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1840
1841 if (w->pending)
1842 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1843}
1844
1845static void noinline
1846verify_heap (EV_P_ ANHE *heap, int N)
1847{
1848 int i;
1849
1850 for (i = HEAP0; i < N + HEAP0; ++i)
1851 {
1852 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1853 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1854 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1855
1856 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1857 }
1858}
1859
1860static void noinline
1861array_verify (EV_P_ W *ws, int cnt)
1862{
1863 while (cnt--)
1864 {
1865 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1866 verify_watcher (EV_A_ ws [cnt]);
1867 }
1868}
1869#endif
1870
1871#if EV_FEATURE_API
1872void
1873ev_verify (EV_P)
1874{
1875#if EV_VERIFY
1876 int i;
1877 WL w;
1878
1879 assert (activecnt >= -1);
1880
1881 assert (fdchangemax >= fdchangecnt);
1882 for (i = 0; i < fdchangecnt; ++i)
1883 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1884
1885 assert (anfdmax >= 0);
1886 for (i = 0; i < anfdmax; ++i)
1887 for (w = anfds [i].head; w; w = w->next)
1888 {
1889 verify_watcher (EV_A_ (W)w);
1890 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1891 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1892 }
1893
1894 assert (timermax >= timercnt);
1895 verify_heap (EV_A_ timers, timercnt);
1896
1897#if EV_PERIODIC_ENABLE
1898 assert (periodicmax >= periodiccnt);
1899 verify_heap (EV_A_ periodics, periodiccnt);
1900#endif
1901
1902 for (i = NUMPRI; i--; )
1903 {
1904 assert (pendingmax [i] >= pendingcnt [i]);
1905#if EV_IDLE_ENABLE
1906 assert (idleall >= 0);
1907 assert (idlemax [i] >= idlecnt [i]);
1908 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1909#endif
1910 }
1911
1912#if EV_FORK_ENABLE
1913 assert (forkmax >= forkcnt);
1914 array_verify (EV_A_ (W *)forks, forkcnt);
1915#endif
1916
1917#if EV_ASYNC_ENABLE
1918 assert (asyncmax >= asynccnt);
1919 array_verify (EV_A_ (W *)asyncs, asynccnt);
1920#endif
1921
1922#if EV_PREPARE_ENABLE
1923 assert (preparemax >= preparecnt);
1924 array_verify (EV_A_ (W *)prepares, preparecnt);
1925#endif
1926
1927#if EV_CHECK_ENABLE
1928 assert (checkmax >= checkcnt);
1929 array_verify (EV_A_ (W *)checks, checkcnt);
1930#endif
1931
1932# if 0
1933#if EV_CHILD_ENABLE
1934 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1935 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1936#endif
1937# endif
1938#endif
1939}
994#endif 1940#endif
995 1941
996#if EV_MULTIPLICITY 1942#if EV_MULTIPLICITY
997struct ev_loop * 1943struct ev_loop *
998ev_default_loop_init (unsigned int flags) 1944ev_default_loop_init (unsigned int flags)
999#else 1945#else
1000int 1946int
1001ev_default_loop (unsigned int flags) 1947ev_default_loop (unsigned int flags)
1002#endif 1948#endif
1003{ 1949{
1004 if (sigpipe [0] == sigpipe [1])
1005 if (pipe (sigpipe))
1006 return 0;
1007
1008 if (!ev_default_loop_ptr) 1950 if (!ev_default_loop_ptr)
1009 { 1951 {
1010#if EV_MULTIPLICITY 1952#if EV_MULTIPLICITY
1011 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1953 EV_P = ev_default_loop_ptr = &default_loop_struct;
1012#else 1954#else
1013 ev_default_loop_ptr = 1; 1955 ev_default_loop_ptr = 1;
1014#endif 1956#endif
1015 1957
1016 loop_init (EV_A_ flags); 1958 loop_init (EV_A_ flags);
1017 1959
1018 if (ev_backend (EV_A)) 1960 if (ev_backend (EV_A))
1019 { 1961 {
1020 siginit (EV_A); 1962#if EV_CHILD_ENABLE
1021
1022#ifndef _WIN32
1023 ev_signal_init (&childev, childcb, SIGCHLD); 1963 ev_signal_init (&childev, childcb, SIGCHLD);
1024 ev_set_priority (&childev, EV_MAXPRI); 1964 ev_set_priority (&childev, EV_MAXPRI);
1025 ev_signal_start (EV_A_ &childev); 1965 ev_signal_start (EV_A_ &childev);
1026 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1966 ev_unref (EV_A); /* child watcher should not keep loop alive */
1027#endif 1967#endif
1035 1975
1036void 1976void
1037ev_default_destroy (void) 1977ev_default_destroy (void)
1038{ 1978{
1039#if EV_MULTIPLICITY 1979#if EV_MULTIPLICITY
1040 struct ev_loop *loop = ev_default_loop_ptr; 1980 EV_P = ev_default_loop_ptr;
1041#endif 1981#endif
1042 1982
1043#ifndef _WIN32 1983 ev_default_loop_ptr = 0;
1984
1985#if EV_CHILD_ENABLE
1044 ev_ref (EV_A); /* child watcher */ 1986 ev_ref (EV_A); /* child watcher */
1045 ev_signal_stop (EV_A_ &childev); 1987 ev_signal_stop (EV_A_ &childev);
1046#endif 1988#endif
1047 1989
1048 ev_ref (EV_A); /* signal watcher */
1049 ev_io_stop (EV_A_ &sigev);
1050
1051 close (sigpipe [0]); sigpipe [0] = 0;
1052 close (sigpipe [1]); sigpipe [1] = 0;
1053
1054 loop_destroy (EV_A); 1990 loop_destroy (EV_A);
1055} 1991}
1056 1992
1057void 1993void
1058ev_default_fork (void) 1994ev_default_fork (void)
1059{ 1995{
1060#if EV_MULTIPLICITY 1996#if EV_MULTIPLICITY
1061 struct ev_loop *loop = ev_default_loop_ptr; 1997 EV_P = ev_default_loop_ptr;
1062#endif 1998#endif
1063 1999
1064 if (backend) 2000 postfork = 1; /* must be in line with ev_loop_fork */
1065 postfork = 1;
1066} 2001}
1067 2002
1068/*****************************************************************************/ 2003/*****************************************************************************/
1069 2004
1070int inline_size 2005void
1071any_pending (EV_P) 2006ev_invoke (EV_P_ void *w, int revents)
2007{
2008 EV_CB_INVOKE ((W)w, revents);
2009}
2010
2011unsigned int
2012ev_pending_count (EV_P)
1072{ 2013{
1073 int pri; 2014 int pri;
2015 unsigned int count = 0;
1074 2016
1075 for (pri = NUMPRI; pri--; ) 2017 for (pri = NUMPRI; pri--; )
1076 if (pendingcnt [pri]) 2018 count += pendingcnt [pri];
1077 return 1;
1078 2019
1079 return 0; 2020 return count;
1080} 2021}
1081 2022
1082void inline_speed 2023void noinline
1083call_pending (EV_P) 2024ev_invoke_pending (EV_P)
1084{ 2025{
1085 int pri; 2026 int pri;
1086 2027
1087 for (pri = NUMPRI; pri--; ) 2028 for (pri = NUMPRI; pri--; )
1088 while (pendingcnt [pri]) 2029 while (pendingcnt [pri])
1089 { 2030 {
1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2031 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1091 2032
1092 if (expect_true (p->w))
1093 {
1094 assert (("non-pending watcher on pending list", p->w->pending)); 2033 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2034 /* ^ this is no longer true, as pending_w could be here */
1095 2035
1096 p->w->pending = 0; 2036 p->w->pending = 0;
1097 EV_CB_INVOKE (p->w, p->events); 2037 EV_CB_INVOKE (p->w, p->events);
1098 } 2038 EV_FREQUENT_CHECK;
1099 } 2039 }
1100} 2040}
1101 2041
1102void inline_size 2042#if EV_IDLE_ENABLE
2043/* make idle watchers pending. this handles the "call-idle */
2044/* only when higher priorities are idle" logic */
2045inline_size void
2046idle_reify (EV_P)
2047{
2048 if (expect_false (idleall))
2049 {
2050 int pri;
2051
2052 for (pri = NUMPRI; pri--; )
2053 {
2054 if (pendingcnt [pri])
2055 break;
2056
2057 if (idlecnt [pri])
2058 {
2059 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2060 break;
2061 }
2062 }
2063 }
2064}
2065#endif
2066
2067/* make timers pending */
2068inline_size void
1103timers_reify (EV_P) 2069timers_reify (EV_P)
1104{ 2070{
2071 EV_FREQUENT_CHECK;
2072
1105 while (timercnt && ((WT)timers [0])->at <= mn_now) 2073 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1106 { 2074 {
1107 ev_timer *w = timers [0]; 2075 do
1108
1109 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1110
1111 /* first reschedule or stop timer */
1112 if (w->repeat)
1113 { 2076 {
2077 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2078
2079 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2080
2081 /* first reschedule or stop timer */
2082 if (w->repeat)
2083 {
2084 ev_at (w) += w->repeat;
2085 if (ev_at (w) < mn_now)
2086 ev_at (w) = mn_now;
2087
1114 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2088 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1115 2089
1116 ((WT)w)->at += w->repeat; 2090 ANHE_at_cache (timers [HEAP0]);
1117 if (((WT)w)->at < mn_now)
1118 ((WT)w)->at = mn_now;
1119
1120 downheap ((WT *)timers, timercnt, 0); 2091 downheap (timers, timercnt, HEAP0);
2092 }
2093 else
2094 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2095
2096 EV_FREQUENT_CHECK;
2097 feed_reverse (EV_A_ (W)w);
1121 } 2098 }
1122 else 2099 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1123 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 2100
1125 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2101 feed_reverse_done (EV_A_ EV_TIMEOUT);
1126 } 2102 }
1127} 2103}
1128 2104
1129#if EV_PERIODIC_ENABLE 2105#if EV_PERIODIC_ENABLE
1130void inline_size 2106/* make periodics pending */
2107inline_size void
1131periodics_reify (EV_P) 2108periodics_reify (EV_P)
1132{ 2109{
2110 EV_FREQUENT_CHECK;
2111
1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2112 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1134 { 2113 {
1135 ev_periodic *w = periodics [0]; 2114 int feed_count = 0;
1136 2115
1137 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2116 do
1138
1139 /* first reschedule or stop timer */
1140 if (w->reschedule_cb)
1141 { 2117 {
2118 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2119
2120 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2121
2122 /* first reschedule or stop timer */
2123 if (w->reschedule_cb)
2124 {
1142 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2125 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2126
1143 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2127 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2128
2129 ANHE_at_cache (periodics [HEAP0]);
1144 downheap ((WT *)periodics, periodiccnt, 0); 2130 downheap (periodics, periodiccnt, HEAP0);
2131 }
2132 else if (w->interval)
2133 {
2134 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2135 /* if next trigger time is not sufficiently in the future, put it there */
2136 /* this might happen because of floating point inexactness */
2137 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2138 {
2139 ev_at (w) += w->interval;
2140
2141 /* if interval is unreasonably low we might still have a time in the past */
2142 /* so correct this. this will make the periodic very inexact, but the user */
2143 /* has effectively asked to get triggered more often than possible */
2144 if (ev_at (w) < ev_rt_now)
2145 ev_at (w) = ev_rt_now;
2146 }
2147
2148 ANHE_at_cache (periodics [HEAP0]);
2149 downheap (periodics, periodiccnt, HEAP0);
2150 }
2151 else
2152 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2153
2154 EV_FREQUENT_CHECK;
2155 feed_reverse (EV_A_ (W)w);
1145 } 2156 }
1146 else if (w->interval) 2157 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1147 {
1148 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1149 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1150 downheap ((WT *)periodics, periodiccnt, 0);
1151 }
1152 else
1153 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1154 2158
1155 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2159 feed_reverse_done (EV_A_ EV_PERIODIC);
1156 } 2160 }
1157} 2161}
1158 2162
2163/* simply recalculate all periodics */
2164/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1159static void noinline 2165static void noinline
1160periodics_reschedule (EV_P) 2166periodics_reschedule (EV_P)
1161{ 2167{
1162 int i; 2168 int i;
1163 2169
1164 /* adjust periodics after time jump */ 2170 /* adjust periodics after time jump */
1165 for (i = 0; i < periodiccnt; ++i) 2171 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1166 { 2172 {
1167 ev_periodic *w = periodics [i]; 2173 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1168 2174
1169 if (w->reschedule_cb) 2175 if (w->reschedule_cb)
1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1171 else if (w->interval) 2177 else if (w->interval)
1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2178 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2179
2180 ANHE_at_cache (periodics [i]);
2181 }
2182
2183 reheap (periodics, periodiccnt);
2184}
2185#endif
2186
2187/* adjust all timers by a given offset */
2188static void noinline
2189timers_reschedule (EV_P_ ev_tstamp adjust)
2190{
2191 int i;
2192
2193 for (i = 0; i < timercnt; ++i)
1173 } 2194 {
1174 2195 ANHE *he = timers + i + HEAP0;
1175 /* now rebuild the heap */ 2196 ANHE_w (*he)->at += adjust;
1176 for (i = periodiccnt >> 1; i--; ) 2197 ANHE_at_cache (*he);
1177 downheap ((WT *)periodics, periodiccnt, i); 2198 }
1178} 2199}
1179#endif
1180 2200
1181int inline_size 2201/* fetch new monotonic and realtime times from the kernel */
1182time_update_monotonic (EV_P) 2202/* also detect if there was a timejump, and act accordingly */
2203inline_speed void
2204time_update (EV_P_ ev_tstamp max_block)
1183{ 2205{
2206#if EV_USE_MONOTONIC
2207 if (expect_true (have_monotonic))
2208 {
2209 int i;
2210 ev_tstamp odiff = rtmn_diff;
2211
1184 mn_now = get_clock (); 2212 mn_now = get_clock ();
1185 2213
2214 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2215 /* interpolate in the meantime */
1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2216 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1187 { 2217 {
1188 ev_rt_now = rtmn_diff + mn_now; 2218 ev_rt_now = rtmn_diff + mn_now;
1189 return 0; 2219 return;
1190 } 2220 }
1191 else 2221
1192 {
1193 now_floor = mn_now; 2222 now_floor = mn_now;
1194 ev_rt_now = ev_time (); 2223 ev_rt_now = ev_time ();
1195 return 1;
1196 }
1197}
1198 2224
1199void inline_size 2225 /* loop a few times, before making important decisions.
1200time_update (EV_P) 2226 * on the choice of "4": one iteration isn't enough,
1201{ 2227 * in case we get preempted during the calls to
1202 int i; 2228 * ev_time and get_clock. a second call is almost guaranteed
1203 2229 * to succeed in that case, though. and looping a few more times
1204#if EV_USE_MONOTONIC 2230 * doesn't hurt either as we only do this on time-jumps or
1205 if (expect_true (have_monotonic)) 2231 * in the unlikely event of having been preempted here.
1206 { 2232 */
1207 if (time_update_monotonic (EV_A)) 2233 for (i = 4; --i; )
1208 { 2234 {
1209 ev_tstamp odiff = rtmn_diff;
1210
1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
1220 {
1221 rtmn_diff = ev_rt_now - mn_now; 2235 rtmn_diff = ev_rt_now - mn_now;
1222 2236
1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2237 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1224 return; /* all is well */ 2238 return; /* all is well */
1225 2239
1226 ev_rt_now = ev_time (); 2240 ev_rt_now = ev_time ();
1227 mn_now = get_clock (); 2241 mn_now = get_clock ();
1228 now_floor = mn_now; 2242 now_floor = mn_now;
1229 } 2243 }
1230 2244
2245 /* no timer adjustment, as the monotonic clock doesn't jump */
2246 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1231# if EV_PERIODIC_ENABLE 2247# if EV_PERIODIC_ENABLE
1232 periodics_reschedule (EV_A); 2248 periodics_reschedule (EV_A);
1233# endif 2249# endif
1234 /* no timer adjustment, as the monotonic clock doesn't jump */
1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1236 }
1237 } 2250 }
1238 else 2251 else
1239#endif 2252#endif
1240 { 2253 {
1241 ev_rt_now = ev_time (); 2254 ev_rt_now = ev_time ();
1242 2255
1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2256 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1244 { 2257 {
2258 /* adjust timers. this is easy, as the offset is the same for all of them */
2259 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1245#if EV_PERIODIC_ENABLE 2260#if EV_PERIODIC_ENABLE
1246 periodics_reschedule (EV_A); 2261 periodics_reschedule (EV_A);
1247#endif 2262#endif
1248
1249 /* adjust timers. this is easy, as the offset is the same for all */
1250 for (i = 0; i < timercnt; ++i)
1251 ((WT)timers [i])->at += ev_rt_now - mn_now;
1252 } 2263 }
1253 2264
1254 mn_now = ev_rt_now; 2265 mn_now = ev_rt_now;
1255 } 2266 }
1256} 2267}
1257 2268
1258void 2269void
1259ev_ref (EV_P)
1260{
1261 ++activecnt;
1262}
1263
1264void
1265ev_unref (EV_P)
1266{
1267 --activecnt;
1268}
1269
1270static int loop_done;
1271
1272void
1273ev_loop (EV_P_ int flags) 2270ev_loop (EV_P_ int flags)
1274{ 2271{
1275 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2272#if EV_FEATURE_API
1276 ? EVUNLOOP_ONE 2273 ++loop_depth;
1277 : EVUNLOOP_CANCEL; 2274#endif
1278 2275
1279 while (activecnt) 2276 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2277
2278 loop_done = EVUNLOOP_CANCEL;
2279
2280 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2281
2282 do
1280 { 2283 {
2284#if EV_VERIFY >= 2
2285 ev_verify (EV_A);
2286#endif
2287
2288#ifndef _WIN32
2289 if (expect_false (curpid)) /* penalise the forking check even more */
2290 if (expect_false (getpid () != curpid))
2291 {
2292 curpid = getpid ();
2293 postfork = 1;
2294 }
2295#endif
2296
2297#if EV_FORK_ENABLE
2298 /* we might have forked, so queue fork handlers */
2299 if (expect_false (postfork))
2300 if (forkcnt)
2301 {
2302 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2303 EV_INVOKE_PENDING;
2304 }
2305#endif
2306
2307#if EV_PREPARE_ENABLE
1281 /* queue check watchers (and execute them) */ 2308 /* queue prepare watchers (and execute them) */
1282 if (expect_false (preparecnt)) 2309 if (expect_false (preparecnt))
1283 { 2310 {
1284 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2311 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1285 call_pending (EV_A); 2312 EV_INVOKE_PENDING;
1286 } 2313 }
2314#endif
2315
2316 if (expect_false (loop_done))
2317 break;
1287 2318
1288 /* we might have forked, so reify kernel state if necessary */ 2319 /* we might have forked, so reify kernel state if necessary */
1289 if (expect_false (postfork)) 2320 if (expect_false (postfork))
1290 loop_fork (EV_A); 2321 loop_fork (EV_A);
1291 2322
1292 /* update fd-related kernel structures */ 2323 /* update fd-related kernel structures */
1293 fd_reify (EV_A); 2324 fd_reify (EV_A);
1294 2325
1295 /* calculate blocking time */ 2326 /* calculate blocking time */
1296 { 2327 {
1297 double block; 2328 ev_tstamp waittime = 0.;
2329 ev_tstamp sleeptime = 0.;
1298 2330
1299 if (flags & EVLOOP_NONBLOCK || idlecnt) 2331 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1300 block = 0.; /* do not block at all */
1301 else
1302 { 2332 {
2333 /* remember old timestamp for io_blocktime calculation */
2334 ev_tstamp prev_mn_now = mn_now;
2335
1303 /* update time to cancel out callback processing overhead */ 2336 /* update time to cancel out callback processing overhead */
1304#if EV_USE_MONOTONIC
1305 if (expect_true (have_monotonic))
1306 time_update_monotonic (EV_A); 2337 time_update (EV_A_ 1e100);
1307 else
1308#endif
1309 {
1310 ev_rt_now = ev_time ();
1311 mn_now = ev_rt_now;
1312 }
1313 2338
1314 block = MAX_BLOCKTIME; 2339 waittime = MAX_BLOCKTIME;
1315 2340
1316 if (timercnt) 2341 if (timercnt)
1317 { 2342 {
1318 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2343 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1319 if (block > to) block = to; 2344 if (waittime > to) waittime = to;
1320 } 2345 }
1321 2346
1322#if EV_PERIODIC_ENABLE 2347#if EV_PERIODIC_ENABLE
1323 if (periodiccnt) 2348 if (periodiccnt)
1324 { 2349 {
1325 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2350 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1326 if (block > to) block = to; 2351 if (waittime > to) waittime = to;
1327 } 2352 }
1328#endif 2353#endif
1329 2354
2355 /* don't let timeouts decrease the waittime below timeout_blocktime */
2356 if (expect_false (waittime < timeout_blocktime))
2357 waittime = timeout_blocktime;
2358
2359 /* extra check because io_blocktime is commonly 0 */
1330 if (expect_false (block < 0.)) block = 0.; 2360 if (expect_false (io_blocktime))
2361 {
2362 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2363
2364 if (sleeptime > waittime - backend_fudge)
2365 sleeptime = waittime - backend_fudge;
2366
2367 if (expect_true (sleeptime > 0.))
2368 {
2369 ev_sleep (sleeptime);
2370 waittime -= sleeptime;
2371 }
2372 }
1331 } 2373 }
1332 2374
2375#if EV_FEATURE_API
2376 ++loop_count;
2377#endif
2378 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1333 backend_poll (EV_A_ block); 2379 backend_poll (EV_A_ waittime);
2380 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2381
2382 /* update ev_rt_now, do magic */
2383 time_update (EV_A_ waittime + sleeptime);
1334 } 2384 }
1335
1336 /* update ev_rt_now, do magic */
1337 time_update (EV_A);
1338 2385
1339 /* queue pending timers and reschedule them */ 2386 /* queue pending timers and reschedule them */
1340 timers_reify (EV_A); /* relative timers called last */ 2387 timers_reify (EV_A); /* relative timers called last */
1341#if EV_PERIODIC_ENABLE 2388#if EV_PERIODIC_ENABLE
1342 periodics_reify (EV_A); /* absolute timers called first */ 2389 periodics_reify (EV_A); /* absolute timers called first */
1343#endif 2390#endif
1344 2391
2392#if EV_IDLE_ENABLE
1345 /* queue idle watchers unless other events are pending */ 2393 /* queue idle watchers unless other events are pending */
1346 if (idlecnt && !any_pending (EV_A)) 2394 idle_reify (EV_A);
1347 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2395#endif
1348 2396
2397#if EV_CHECK_ENABLE
1349 /* queue check watchers, to be executed first */ 2398 /* queue check watchers, to be executed first */
1350 if (expect_false (checkcnt)) 2399 if (expect_false (checkcnt))
1351 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2400 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2401#endif
1352 2402
1353 call_pending (EV_A); 2403 EV_INVOKE_PENDING;
1354
1355 if (expect_false (loop_done))
1356 break;
1357 } 2404 }
2405 while (expect_true (
2406 activecnt
2407 && !loop_done
2408 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2409 ));
1358 2410
1359 if (loop_done == EVUNLOOP_ONE) 2411 if (loop_done == EVUNLOOP_ONE)
1360 loop_done = EVUNLOOP_CANCEL; 2412 loop_done = EVUNLOOP_CANCEL;
2413
2414#if EV_FEATURE_API
2415 --loop_depth;
2416#endif
1361} 2417}
1362 2418
1363void 2419void
1364ev_unloop (EV_P_ int how) 2420ev_unloop (EV_P_ int how)
1365{ 2421{
1366 loop_done = how; 2422 loop_done = how;
1367} 2423}
1368 2424
2425void
2426ev_ref (EV_P)
2427{
2428 ++activecnt;
2429}
2430
2431void
2432ev_unref (EV_P)
2433{
2434 --activecnt;
2435}
2436
2437void
2438ev_now_update (EV_P)
2439{
2440 time_update (EV_A_ 1e100);
2441}
2442
2443void
2444ev_suspend (EV_P)
2445{
2446 ev_now_update (EV_A);
2447}
2448
2449void
2450ev_resume (EV_P)
2451{
2452 ev_tstamp mn_prev = mn_now;
2453
2454 ev_now_update (EV_A);
2455 timers_reschedule (EV_A_ mn_now - mn_prev);
2456#if EV_PERIODIC_ENABLE
2457 /* TODO: really do this? */
2458 periodics_reschedule (EV_A);
2459#endif
2460}
2461
1369/*****************************************************************************/ 2462/*****************************************************************************/
2463/* singly-linked list management, used when the expected list length is short */
1370 2464
1371void inline_size 2465inline_size void
1372wlist_add (WL *head, WL elem) 2466wlist_add (WL *head, WL elem)
1373{ 2467{
1374 elem->next = *head; 2468 elem->next = *head;
1375 *head = elem; 2469 *head = elem;
1376} 2470}
1377 2471
1378void inline_size 2472inline_size void
1379wlist_del (WL *head, WL elem) 2473wlist_del (WL *head, WL elem)
1380{ 2474{
1381 while (*head) 2475 while (*head)
1382 { 2476 {
1383 if (*head == elem) 2477 if (expect_true (*head == elem))
1384 { 2478 {
1385 *head = elem->next; 2479 *head = elem->next;
1386 return; 2480 break;
1387 } 2481 }
1388 2482
1389 head = &(*head)->next; 2483 head = &(*head)->next;
1390 } 2484 }
1391} 2485}
1392 2486
1393void inline_speed 2487/* internal, faster, version of ev_clear_pending */
2488inline_speed void
1394ev_clear_pending (EV_P_ W w) 2489clear_pending (EV_P_ W w)
1395{ 2490{
1396 if (w->pending) 2491 if (w->pending)
1397 { 2492 {
1398 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2493 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1399 w->pending = 0; 2494 w->pending = 0;
1400 } 2495 }
1401} 2496}
1402 2497
1403void inline_speed 2498int
2499ev_clear_pending (EV_P_ void *w)
2500{
2501 W w_ = (W)w;
2502 int pending = w_->pending;
2503
2504 if (expect_true (pending))
2505 {
2506 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2507 p->w = (W)&pending_w;
2508 w_->pending = 0;
2509 return p->events;
2510 }
2511 else
2512 return 0;
2513}
2514
2515inline_size void
2516pri_adjust (EV_P_ W w)
2517{
2518 int pri = ev_priority (w);
2519 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2520 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2521 ev_set_priority (w, pri);
2522}
2523
2524inline_speed void
1404ev_start (EV_P_ W w, int active) 2525ev_start (EV_P_ W w, int active)
1405{ 2526{
1406 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2527 pri_adjust (EV_A_ w);
1407 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1408
1409 w->active = active; 2528 w->active = active;
1410 ev_ref (EV_A); 2529 ev_ref (EV_A);
1411} 2530}
1412 2531
1413void inline_size 2532inline_size void
1414ev_stop (EV_P_ W w) 2533ev_stop (EV_P_ W w)
1415{ 2534{
1416 ev_unref (EV_A); 2535 ev_unref (EV_A);
1417 w->active = 0; 2536 w->active = 0;
1418} 2537}
1419 2538
1420/*****************************************************************************/ 2539/*****************************************************************************/
1421 2540
1422void 2541void noinline
1423ev_io_start (EV_P_ ev_io *w) 2542ev_io_start (EV_P_ ev_io *w)
1424{ 2543{
1425 int fd = w->fd; 2544 int fd = w->fd;
1426 2545
1427 if (expect_false (ev_is_active (w))) 2546 if (expect_false (ev_is_active (w)))
1428 return; 2547 return;
1429 2548
1430 assert (("ev_io_start called with negative fd", fd >= 0)); 2549 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2550 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2551
2552 EV_FREQUENT_CHECK;
1431 2553
1432 ev_start (EV_A_ (W)w, 1); 2554 ev_start (EV_A_ (W)w, 1);
1433 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2555 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1434 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2556 wlist_add (&anfds[fd].head, (WL)w);
1435 2557
1436 fd_change (EV_A_ fd); 2558 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1437} 2559 w->events &= ~EV__IOFDSET;
1438 2560
1439void 2561 EV_FREQUENT_CHECK;
2562}
2563
2564void noinline
1440ev_io_stop (EV_P_ ev_io *w) 2565ev_io_stop (EV_P_ ev_io *w)
1441{ 2566{
1442 ev_clear_pending (EV_A_ (W)w); 2567 clear_pending (EV_A_ (W)w);
1443 if (expect_false (!ev_is_active (w))) 2568 if (expect_false (!ev_is_active (w)))
1444 return; 2569 return;
1445 2570
1446 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2571 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1447 2572
2573 EV_FREQUENT_CHECK;
2574
1448 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2575 wlist_del (&anfds[w->fd].head, (WL)w);
1449 ev_stop (EV_A_ (W)w); 2576 ev_stop (EV_A_ (W)w);
1450 2577
1451 fd_change (EV_A_ w->fd); 2578 fd_change (EV_A_ w->fd, 1);
1452}
1453 2579
1454void 2580 EV_FREQUENT_CHECK;
2581}
2582
2583void noinline
1455ev_timer_start (EV_P_ ev_timer *w) 2584ev_timer_start (EV_P_ ev_timer *w)
1456{ 2585{
1457 if (expect_false (ev_is_active (w))) 2586 if (expect_false (ev_is_active (w)))
1458 return; 2587 return;
1459 2588
1460 ((WT)w)->at += mn_now; 2589 ev_at (w) += mn_now;
1461 2590
1462 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2591 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1463 2592
2593 EV_FREQUENT_CHECK;
2594
2595 ++timercnt;
1464 ev_start (EV_A_ (W)w, ++timercnt); 2596 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1465 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2597 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1466 timers [timercnt - 1] = w; 2598 ANHE_w (timers [ev_active (w)]) = (WT)w;
1467 upheap ((WT *)timers, timercnt - 1); 2599 ANHE_at_cache (timers [ev_active (w)]);
2600 upheap (timers, ev_active (w));
1468 2601
2602 EV_FREQUENT_CHECK;
2603
1469 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2604 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1470} 2605}
1471 2606
1472void 2607void noinline
1473ev_timer_stop (EV_P_ ev_timer *w) 2608ev_timer_stop (EV_P_ ev_timer *w)
1474{ 2609{
1475 ev_clear_pending (EV_A_ (W)w); 2610 clear_pending (EV_A_ (W)w);
1476 if (expect_false (!ev_is_active (w))) 2611 if (expect_false (!ev_is_active (w)))
1477 return; 2612 return;
1478 2613
2614 EV_FREQUENT_CHECK;
2615
2616 {
2617 int active = ev_active (w);
2618
1479 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2619 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1480 2620
2621 --timercnt;
2622
1481 if (expect_true (((W)w)->active < timercnt--)) 2623 if (expect_true (active < timercnt + HEAP0))
1482 { 2624 {
1483 timers [((W)w)->active - 1] = timers [timercnt]; 2625 timers [active] = timers [timercnt + HEAP0];
1484 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2626 adjustheap (timers, timercnt, active);
1485 } 2627 }
2628 }
1486 2629
1487 ((WT)w)->at -= mn_now; 2630 ev_at (w) -= mn_now;
1488 2631
1489 ev_stop (EV_A_ (W)w); 2632 ev_stop (EV_A_ (W)w);
1490}
1491 2633
1492void 2634 EV_FREQUENT_CHECK;
2635}
2636
2637void noinline
1493ev_timer_again (EV_P_ ev_timer *w) 2638ev_timer_again (EV_P_ ev_timer *w)
1494{ 2639{
2640 EV_FREQUENT_CHECK;
2641
1495 if (ev_is_active (w)) 2642 if (ev_is_active (w))
1496 { 2643 {
1497 if (w->repeat) 2644 if (w->repeat)
1498 { 2645 {
1499 ((WT)w)->at = mn_now + w->repeat; 2646 ev_at (w) = mn_now + w->repeat;
2647 ANHE_at_cache (timers [ev_active (w)]);
1500 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2648 adjustheap (timers, timercnt, ev_active (w));
1501 } 2649 }
1502 else 2650 else
1503 ev_timer_stop (EV_A_ w); 2651 ev_timer_stop (EV_A_ w);
1504 } 2652 }
1505 else if (w->repeat) 2653 else if (w->repeat)
1506 { 2654 {
1507 w->at = w->repeat; 2655 ev_at (w) = w->repeat;
1508 ev_timer_start (EV_A_ w); 2656 ev_timer_start (EV_A_ w);
1509 } 2657 }
2658
2659 EV_FREQUENT_CHECK;
2660}
2661
2662ev_tstamp
2663ev_timer_remaining (EV_P_ ev_timer *w)
2664{
2665 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1510} 2666}
1511 2667
1512#if EV_PERIODIC_ENABLE 2668#if EV_PERIODIC_ENABLE
1513void 2669void noinline
1514ev_periodic_start (EV_P_ ev_periodic *w) 2670ev_periodic_start (EV_P_ ev_periodic *w)
1515{ 2671{
1516 if (expect_false (ev_is_active (w))) 2672 if (expect_false (ev_is_active (w)))
1517 return; 2673 return;
1518 2674
1519 if (w->reschedule_cb) 2675 if (w->reschedule_cb)
1520 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2676 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1521 else if (w->interval) 2677 else if (w->interval)
1522 { 2678 {
1523 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2679 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1524 /* this formula differs from the one in periodic_reify because we do not always round up */ 2680 /* this formula differs from the one in periodic_reify because we do not always round up */
1525 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1526 } 2682 }
2683 else
2684 ev_at (w) = w->offset;
1527 2685
2686 EV_FREQUENT_CHECK;
2687
2688 ++periodiccnt;
1528 ev_start (EV_A_ (W)w, ++periodiccnt); 2689 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1529 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2690 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1530 periodics [periodiccnt - 1] = w; 2691 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1531 upheap ((WT *)periodics, periodiccnt - 1); 2692 ANHE_at_cache (periodics [ev_active (w)]);
2693 upheap (periodics, ev_active (w));
1532 2694
2695 EV_FREQUENT_CHECK;
2696
1533 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2697 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1534} 2698}
1535 2699
1536void 2700void noinline
1537ev_periodic_stop (EV_P_ ev_periodic *w) 2701ev_periodic_stop (EV_P_ ev_periodic *w)
1538{ 2702{
1539 ev_clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
1540 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
1541 return; 2705 return;
1542 2706
2707 EV_FREQUENT_CHECK;
2708
2709 {
2710 int active = ev_active (w);
2711
1543 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2712 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1544 2713
2714 --periodiccnt;
2715
1545 if (expect_true (((W)w)->active < periodiccnt--)) 2716 if (expect_true (active < periodiccnt + HEAP0))
1546 { 2717 {
1547 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2718 periodics [active] = periodics [periodiccnt + HEAP0];
1548 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2719 adjustheap (periodics, periodiccnt, active);
1549 } 2720 }
2721 }
1550 2722
1551 ev_stop (EV_A_ (W)w); 2723 ev_stop (EV_A_ (W)w);
1552}
1553 2724
1554void 2725 EV_FREQUENT_CHECK;
2726}
2727
2728void noinline
1555ev_periodic_again (EV_P_ ev_periodic *w) 2729ev_periodic_again (EV_P_ ev_periodic *w)
1556{ 2730{
1557 /* TODO: use adjustheap and recalculation */ 2731 /* TODO: use adjustheap and recalculation */
1558 ev_periodic_stop (EV_A_ w); 2732 ev_periodic_stop (EV_A_ w);
1559 ev_periodic_start (EV_A_ w); 2733 ev_periodic_start (EV_A_ w);
1560} 2734}
1561#endif 2735#endif
1562 2736
1563void 2737#ifndef SA_RESTART
2738# define SA_RESTART 0
2739#endif
2740
2741#if EV_SIGNAL_ENABLE
2742
2743void noinline
1564ev_idle_start (EV_P_ ev_idle *w) 2744ev_signal_start (EV_P_ ev_signal *w)
1565{ 2745{
1566 if (expect_false (ev_is_active (w))) 2746 if (expect_false (ev_is_active (w)))
1567 return; 2747 return;
1568 2748
2749 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2750
2751#if EV_MULTIPLICITY
2752 assert (("libev: a signal must not be attached to two different loops",
2753 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2754
2755 signals [w->signum - 1].loop = EV_A;
2756#endif
2757
2758 EV_FREQUENT_CHECK;
2759
2760#if EV_USE_SIGNALFD
2761 if (sigfd == -2)
2762 {
2763 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2764 if (sigfd < 0 && errno == EINVAL)
2765 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2766
2767 if (sigfd >= 0)
2768 {
2769 fd_intern (sigfd); /* doing it twice will not hurt */
2770
2771 sigemptyset (&sigfd_set);
2772
2773 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2774 ev_set_priority (&sigfd_w, EV_MAXPRI);
2775 ev_io_start (EV_A_ &sigfd_w);
2776 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2777 }
2778 }
2779
2780 if (sigfd >= 0)
2781 {
2782 /* TODO: check .head */
2783 sigaddset (&sigfd_set, w->signum);
2784 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2785
2786 signalfd (sigfd, &sigfd_set, 0);
2787 }
2788#endif
2789
1569 ev_start (EV_A_ (W)w, ++idlecnt); 2790 ev_start (EV_A_ (W)w, 1);
1570 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2791 wlist_add (&signals [w->signum - 1].head, (WL)w);
1571 idles [idlecnt - 1] = w;
1572}
1573 2792
1574void 2793 if (!((WL)w)->next)
2794# if EV_USE_SIGNALFD
2795 if (sigfd < 0) /*TODO*/
2796# endif
2797 {
2798# ifdef _WIN32
2799 evpipe_init (EV_A);
2800
2801 signal (w->signum, ev_sighandler);
2802# else
2803 struct sigaction sa;
2804
2805 evpipe_init (EV_A);
2806
2807 sa.sa_handler = ev_sighandler;
2808 sigfillset (&sa.sa_mask);
2809 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2810 sigaction (w->signum, &sa, 0);
2811
2812 sigemptyset (&sa.sa_mask);
2813 sigaddset (&sa.sa_mask, w->signum);
2814 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2815#endif
2816 }
2817
2818 EV_FREQUENT_CHECK;
2819}
2820
2821void noinline
1575ev_idle_stop (EV_P_ ev_idle *w) 2822ev_signal_stop (EV_P_ ev_signal *w)
1576{ 2823{
1577 ev_clear_pending (EV_A_ (W)w); 2824 clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w))) 2825 if (expect_false (!ev_is_active (w)))
1579 return; 2826 return;
1580 2827
1581 { 2828 EV_FREQUENT_CHECK;
1582 int active = ((W)w)->active;
1583 idles [active - 1] = idles [--idlecnt];
1584 ((W)idles [active - 1])->active = active;
1585 }
1586 2829
2830 wlist_del (&signals [w->signum - 1].head, (WL)w);
1587 ev_stop (EV_A_ (W)w); 2831 ev_stop (EV_A_ (W)w);
1588}
1589 2832
2833 if (!signals [w->signum - 1].head)
2834 {
2835#if EV_MULTIPLICITY
2836 signals [w->signum - 1].loop = 0; /* unattach from signal */
2837#endif
2838#if EV_USE_SIGNALFD
2839 if (sigfd >= 0)
2840 {
2841 sigset_t ss;
2842
2843 sigemptyset (&ss);
2844 sigaddset (&ss, w->signum);
2845 sigdelset (&sigfd_set, w->signum);
2846
2847 signalfd (sigfd, &sigfd_set, 0);
2848 sigprocmask (SIG_UNBLOCK, &ss, 0);
2849 }
2850 else
2851#endif
2852 signal (w->signum, SIG_DFL);
2853 }
2854
2855 EV_FREQUENT_CHECK;
2856}
2857
2858#endif
2859
2860#if EV_CHILD_ENABLE
2861
1590void 2862void
1591ev_prepare_start (EV_P_ ev_prepare *w) 2863ev_child_start (EV_P_ ev_child *w)
1592{ 2864{
2865#if EV_MULTIPLICITY
2866 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2867#endif
1593 if (expect_false (ev_is_active (w))) 2868 if (expect_false (ev_is_active (w)))
1594 return; 2869 return;
1595 2870
2871 EV_FREQUENT_CHECK;
2872
1596 ev_start (EV_A_ (W)w, ++preparecnt); 2873 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2874 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1598 prepares [preparecnt - 1] = w;
1599}
1600 2875
2876 EV_FREQUENT_CHECK;
2877}
2878
1601void 2879void
1602ev_prepare_stop (EV_P_ ev_prepare *w) 2880ev_child_stop (EV_P_ ev_child *w)
1603{ 2881{
1604 ev_clear_pending (EV_A_ (W)w); 2882 clear_pending (EV_A_ (W)w);
1605 if (expect_false (!ev_is_active (w))) 2883 if (expect_false (!ev_is_active (w)))
1606 return; 2884 return;
1607 2885
1608 { 2886 EV_FREQUENT_CHECK;
1609 int active = ((W)w)->active;
1610 prepares [active - 1] = prepares [--preparecnt];
1611 ((W)prepares [active - 1])->active = active;
1612 }
1613 2887
2888 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1614 ev_stop (EV_A_ (W)w); 2889 ev_stop (EV_A_ (W)w);
1615}
1616 2890
1617void 2891 EV_FREQUENT_CHECK;
1618ev_check_start (EV_P_ ev_check *w) 2892}
2893
2894#endif
2895
2896#if EV_STAT_ENABLE
2897
2898# ifdef _WIN32
2899# undef lstat
2900# define lstat(a,b) _stati64 (a,b)
2901# endif
2902
2903#define DEF_STAT_INTERVAL 5.0074891
2904#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2905#define MIN_STAT_INTERVAL 0.1074891
2906
2907static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2908
2909#if EV_USE_INOTIFY
2910
2911/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2912# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2913
2914static void noinline
2915infy_add (EV_P_ ev_stat *w)
1619{ 2916{
1620 if (expect_false (ev_is_active (w))) 2917 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2918
2919 if (w->wd >= 0)
2920 {
2921 struct statfs sfs;
2922
2923 /* now local changes will be tracked by inotify, but remote changes won't */
2924 /* unless the filesystem is known to be local, we therefore still poll */
2925 /* also do poll on <2.6.25, but with normal frequency */
2926
2927 if (!fs_2625)
2928 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2929 else if (!statfs (w->path, &sfs)
2930 && (sfs.f_type == 0x1373 /* devfs */
2931 || sfs.f_type == 0xEF53 /* ext2/3 */
2932 || sfs.f_type == 0x3153464a /* jfs */
2933 || sfs.f_type == 0x52654973 /* reiser3 */
2934 || sfs.f_type == 0x01021994 /* tempfs */
2935 || sfs.f_type == 0x58465342 /* xfs */))
2936 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2937 else
2938 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2939 }
2940 else
2941 {
2942 /* can't use inotify, continue to stat */
2943 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2944
2945 /* if path is not there, monitor some parent directory for speedup hints */
2946 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2947 /* but an efficiency issue only */
2948 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2949 {
2950 char path [4096];
2951 strcpy (path, w->path);
2952
2953 do
2954 {
2955 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2956 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2957
2958 char *pend = strrchr (path, '/');
2959
2960 if (!pend || pend == path)
2961 break;
2962
2963 *pend = 0;
2964 w->wd = inotify_add_watch (fs_fd, path, mask);
2965 }
2966 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2967 }
2968 }
2969
2970 if (w->wd >= 0)
2971 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2972
2973 /* now re-arm timer, if required */
2974 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2975 ev_timer_again (EV_A_ &w->timer);
2976 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2977}
2978
2979static void noinline
2980infy_del (EV_P_ ev_stat *w)
2981{
2982 int slot;
2983 int wd = w->wd;
2984
2985 if (wd < 0)
1621 return; 2986 return;
1622 2987
1623 ev_start (EV_A_ (W)w, ++checkcnt); 2988 w->wd = -2;
1624 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2989 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1625 checks [checkcnt - 1] = w; 2990 wlist_del (&fs_hash [slot].head, (WL)w);
1626}
1627 2991
1628void 2992 /* remove this watcher, if others are watching it, they will rearm */
1629ev_check_stop (EV_P_ ev_check *w) 2993 inotify_rm_watch (fs_fd, wd);
2994}
2995
2996static void noinline
2997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1630{ 2998{
1631 ev_clear_pending (EV_A_ (W)w); 2999 if (slot < 0)
1632 if (expect_false (!ev_is_active (w))) 3000 /* overflow, need to check for all hash slots */
3001 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3002 infy_wd (EV_A_ slot, wd, ev);
3003 else
3004 {
3005 WL w_;
3006
3007 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3008 {
3009 ev_stat *w = (ev_stat *)w_;
3010 w_ = w_->next; /* lets us remove this watcher and all before it */
3011
3012 if (w->wd == wd || wd == -1)
3013 {
3014 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3015 {
3016 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3017 w->wd = -1;
3018 infy_add (EV_A_ w); /* re-add, no matter what */
3019 }
3020
3021 stat_timer_cb (EV_A_ &w->timer, 0);
3022 }
3023 }
3024 }
3025}
3026
3027static void
3028infy_cb (EV_P_ ev_io *w, int revents)
3029{
3030 char buf [EV_INOTIFY_BUFSIZE];
3031 int ofs;
3032 int len = read (fs_fd, buf, sizeof (buf));
3033
3034 for (ofs = 0; ofs < len; )
3035 {
3036 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3037 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3038 ofs += sizeof (struct inotify_event) + ev->len;
3039 }
3040}
3041
3042inline_size unsigned int
3043ev_linux_version (void)
3044{
3045 struct utsname buf;
3046 unsigned int v;
3047 int i;
3048 char *p = buf.release;
3049
3050 if (uname (&buf))
3051 return 0;
3052
3053 for (i = 3+1; --i; )
3054 {
3055 unsigned int c = 0;
3056
3057 for (;;)
3058 {
3059 if (*p >= '0' && *p <= '9')
3060 c = c * 10 + *p++ - '0';
3061 else
3062 {
3063 p += *p == '.';
3064 break;
3065 }
3066 }
3067
3068 v = (v << 8) | c;
3069 }
3070
3071 return v;
3072}
3073
3074inline_size void
3075ev_check_2625 (EV_P)
3076{
3077 /* kernels < 2.6.25 are borked
3078 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3079 */
3080 if (ev_linux_version () < 0x020619)
1633 return; 3081 return;
1634 3082
1635 { 3083 fs_2625 = 1;
1636 int active = ((W)w)->active;
1637 checks [active - 1] = checks [--checkcnt];
1638 ((W)checks [active - 1])->active = active;
1639 }
1640
1641 ev_stop (EV_A_ (W)w);
1642} 3084}
1643 3085
1644#ifndef SA_RESTART 3086inline_size int
1645# define SA_RESTART 0 3087infy_newfd (void)
1646#endif
1647
1648void
1649ev_signal_start (EV_P_ ev_signal *w)
1650{ 3088{
1651#if EV_MULTIPLICITY 3089#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
1652 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3090 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3091 if (fd >= 0)
3092 return fd;
1653#endif 3093#endif
1654 if (expect_false (ev_is_active (w))) 3094 return inotify_init ();
3095}
3096
3097inline_size void
3098infy_init (EV_P)
3099{
3100 if (fs_fd != -2)
1655 return; 3101 return;
1656 3102
1657 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3103 fs_fd = -1;
1658 3104
1659 ev_start (EV_A_ (W)w, 1); 3105 ev_check_2625 (EV_A);
1660 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1661 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1662 3106
1663 if (!((WL)w)->next) 3107 fs_fd = infy_newfd ();
3108
3109 if (fs_fd >= 0)
3110 {
3111 fd_intern (fs_fd);
3112 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3113 ev_set_priority (&fs_w, EV_MAXPRI);
3114 ev_io_start (EV_A_ &fs_w);
3115 ev_unref (EV_A);
1664 { 3116 }
3117}
3118
3119inline_size void
3120infy_fork (EV_P)
3121{
3122 int slot;
3123
3124 if (fs_fd < 0)
3125 return;
3126
3127 ev_ref (EV_A);
3128 ev_io_stop (EV_A_ &fs_w);
3129 close (fs_fd);
3130 fs_fd = infy_newfd ();
3131
3132 if (fs_fd >= 0)
3133 {
3134 fd_intern (fs_fd);
3135 ev_io_set (&fs_w, fs_fd, EV_READ);
3136 ev_io_start (EV_A_ &fs_w);
3137 ev_unref (EV_A);
3138 }
3139
3140 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3141 {
3142 WL w_ = fs_hash [slot].head;
3143 fs_hash [slot].head = 0;
3144
3145 while (w_)
3146 {
3147 ev_stat *w = (ev_stat *)w_;
3148 w_ = w_->next; /* lets us add this watcher */
3149
3150 w->wd = -1;
3151
3152 if (fs_fd >= 0)
3153 infy_add (EV_A_ w); /* re-add, no matter what */
3154 else
3155 {
3156 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3157 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3158 ev_timer_again (EV_A_ &w->timer);
3159 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3160 }
3161 }
3162 }
3163}
3164
3165#endif
3166
1665#if _WIN32 3167#ifdef _WIN32
1666 signal (w->signum, sighandler); 3168# define EV_LSTAT(p,b) _stati64 (p, b)
1667#else 3169#else
1668 struct sigaction sa; 3170# define EV_LSTAT(p,b) lstat (p, b)
1669 sa.sa_handler = sighandler;
1670 sigfillset (&sa.sa_mask);
1671 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1672 sigaction (w->signum, &sa, 0);
1673#endif
1674 }
1675}
1676
1677void
1678ev_signal_stop (EV_P_ ev_signal *w)
1679{
1680 ev_clear_pending (EV_A_ (W)w);
1681 if (expect_false (!ev_is_active (w)))
1682 return;
1683
1684 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1685 ev_stop (EV_A_ (W)w);
1686
1687 if (!signals [w->signum - 1].head)
1688 signal (w->signum, SIG_DFL);
1689}
1690
1691void
1692ev_child_start (EV_P_ ev_child *w)
1693{
1694#if EV_MULTIPLICITY
1695 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1696#endif
1697 if (expect_false (ev_is_active (w)))
1698 return;
1699
1700 ev_start (EV_A_ (W)w, 1);
1701 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1702}
1703
1704void
1705ev_child_stop (EV_P_ ev_child *w)
1706{
1707 ev_clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w)))
1709 return;
1710
1711 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1712 ev_stop (EV_A_ (W)w);
1713}
1714
1715#if EV_EMBED_ENABLE
1716void noinline
1717ev_embed_sweep (EV_P_ ev_embed *w)
1718{
1719 ev_loop (w->loop, EVLOOP_NONBLOCK);
1720}
1721
1722static void
1723embed_cb (EV_P_ ev_io *io, int revents)
1724{
1725 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1726
1727 if (ev_cb (w))
1728 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1729 else
1730 ev_embed_sweep (loop, w);
1731}
1732
1733void
1734ev_embed_start (EV_P_ ev_embed *w)
1735{
1736 if (expect_false (ev_is_active (w)))
1737 return;
1738
1739 {
1740 struct ev_loop *loop = w->loop;
1741 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1742 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1743 }
1744
1745 ev_set_priority (&w->io, ev_priority (w));
1746 ev_io_start (EV_A_ &w->io);
1747
1748 ev_start (EV_A_ (W)w, 1);
1749}
1750
1751void
1752ev_embed_stop (EV_P_ ev_embed *w)
1753{
1754 ev_clear_pending (EV_A_ (W)w);
1755 if (expect_false (!ev_is_active (w)))
1756 return;
1757
1758 ev_io_stop (EV_A_ &w->io);
1759
1760 ev_stop (EV_A_ (W)w);
1761}
1762#endif
1763
1764#if EV_STAT_ENABLE
1765
1766# ifdef _WIN32
1767# define lstat(a,b) stat(a,b)
1768# endif 3171#endif
1769 3172
1770void 3173void
1771ev_stat_stat (EV_P_ ev_stat *w) 3174ev_stat_stat (EV_P_ ev_stat *w)
1772{ 3175{
1773 if (lstat (w->path, &w->attr) < 0) 3176 if (lstat (w->path, &w->attr) < 0)
1774 w->attr.st_nlink = 0; 3177 w->attr.st_nlink = 0;
1775 else if (!w->attr.st_nlink) 3178 else if (!w->attr.st_nlink)
1776 w->attr.st_nlink = 1; 3179 w->attr.st_nlink = 1;
1777} 3180}
1778 3181
1779static void 3182static void noinline
1780stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3183stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1781{ 3184{
1782 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3185 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1783 3186
1784 /* we copy this here each the time so that */ 3187 ev_statdata prev = w->attr;
1785 /* prev has the old value when the callback gets invoked */
1786 w->prev = w->attr;
1787 ev_stat_stat (EV_A_ w); 3188 ev_stat_stat (EV_A_ w);
1788 3189
1789 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 3190 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3191 if (
3192 prev.st_dev != w->attr.st_dev
3193 || prev.st_ino != w->attr.st_ino
3194 || prev.st_mode != w->attr.st_mode
3195 || prev.st_nlink != w->attr.st_nlink
3196 || prev.st_uid != w->attr.st_uid
3197 || prev.st_gid != w->attr.st_gid
3198 || prev.st_rdev != w->attr.st_rdev
3199 || prev.st_size != w->attr.st_size
3200 || prev.st_atime != w->attr.st_atime
3201 || prev.st_mtime != w->attr.st_mtime
3202 || prev.st_ctime != w->attr.st_ctime
3203 ) {
3204 /* we only update w->prev on actual differences */
3205 /* in case we test more often than invoke the callback, */
3206 /* to ensure that prev is always different to attr */
3207 w->prev = prev;
3208
3209 #if EV_USE_INOTIFY
3210 if (fs_fd >= 0)
3211 {
3212 infy_del (EV_A_ w);
3213 infy_add (EV_A_ w);
3214 ev_stat_stat (EV_A_ w); /* avoid race... */
3215 }
3216 #endif
3217
1790 ev_feed_event (EV_A_ w, EV_STAT); 3218 ev_feed_event (EV_A_ w, EV_STAT);
3219 }
1791} 3220}
1792 3221
1793void 3222void
1794ev_stat_start (EV_P_ ev_stat *w) 3223ev_stat_start (EV_P_ ev_stat *w)
1795{ 3224{
1796 if (expect_false (ev_is_active (w))) 3225 if (expect_false (ev_is_active (w)))
1797 return; 3226 return;
1798 3227
1799 /* since we use memcmp, we need to clear any padding data etc. */
1800 memset (&w->prev, 0, sizeof (ev_statdata));
1801 memset (&w->attr, 0, sizeof (ev_statdata));
1802
1803 ev_stat_stat (EV_A_ w); 3228 ev_stat_stat (EV_A_ w);
1804 3229
3230 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3231 w->interval = MIN_STAT_INTERVAL;
3232
1805 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3233 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1806 ev_set_priority (&w->timer, ev_priority (w)); 3234 ev_set_priority (&w->timer, ev_priority (w));
3235
3236#if EV_USE_INOTIFY
3237 infy_init (EV_A);
3238
3239 if (fs_fd >= 0)
3240 infy_add (EV_A_ w);
3241 else
3242#endif
3243 {
1807 ev_timer_start (EV_A_ &w->timer); 3244 ev_timer_again (EV_A_ &w->timer);
3245 ev_unref (EV_A);
3246 }
1808 3247
1809 ev_start (EV_A_ (W)w, 1); 3248 ev_start (EV_A_ (W)w, 1);
3249
3250 EV_FREQUENT_CHECK;
1810} 3251}
1811 3252
1812void 3253void
1813ev_stat_stop (EV_P_ ev_stat *w) 3254ev_stat_stop (EV_P_ ev_stat *w)
1814{ 3255{
1815 ev_clear_pending (EV_A_ (W)w); 3256 clear_pending (EV_A_ (W)w);
1816 if (expect_false (!ev_is_active (w))) 3257 if (expect_false (!ev_is_active (w)))
1817 return; 3258 return;
1818 3259
3260 EV_FREQUENT_CHECK;
3261
3262#if EV_USE_INOTIFY
3263 infy_del (EV_A_ w);
3264#endif
3265
3266 if (ev_is_active (&w->timer))
3267 {
3268 ev_ref (EV_A);
1819 ev_timer_stop (EV_A_ &w->timer); 3269 ev_timer_stop (EV_A_ &w->timer);
3270 }
1820 3271
1821 ev_stop (EV_A_ (W)w); 3272 ev_stop (EV_A_ (W)w);
3273
3274 EV_FREQUENT_CHECK;
3275}
3276#endif
3277
3278#if EV_IDLE_ENABLE
3279void
3280ev_idle_start (EV_P_ ev_idle *w)
3281{
3282 if (expect_false (ev_is_active (w)))
3283 return;
3284
3285 pri_adjust (EV_A_ (W)w);
3286
3287 EV_FREQUENT_CHECK;
3288
3289 {
3290 int active = ++idlecnt [ABSPRI (w)];
3291
3292 ++idleall;
3293 ev_start (EV_A_ (W)w, active);
3294
3295 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3296 idles [ABSPRI (w)][active - 1] = w;
3297 }
3298
3299 EV_FREQUENT_CHECK;
3300}
3301
3302void
3303ev_idle_stop (EV_P_ ev_idle *w)
3304{
3305 clear_pending (EV_A_ (W)w);
3306 if (expect_false (!ev_is_active (w)))
3307 return;
3308
3309 EV_FREQUENT_CHECK;
3310
3311 {
3312 int active = ev_active (w);
3313
3314 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3315 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3316
3317 ev_stop (EV_A_ (W)w);
3318 --idleall;
3319 }
3320
3321 EV_FREQUENT_CHECK;
3322}
3323#endif
3324
3325#if EV_PREPARE_ENABLE
3326void
3327ev_prepare_start (EV_P_ ev_prepare *w)
3328{
3329 if (expect_false (ev_is_active (w)))
3330 return;
3331
3332 EV_FREQUENT_CHECK;
3333
3334 ev_start (EV_A_ (W)w, ++preparecnt);
3335 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3336 prepares [preparecnt - 1] = w;
3337
3338 EV_FREQUENT_CHECK;
3339}
3340
3341void
3342ev_prepare_stop (EV_P_ ev_prepare *w)
3343{
3344 clear_pending (EV_A_ (W)w);
3345 if (expect_false (!ev_is_active (w)))
3346 return;
3347
3348 EV_FREQUENT_CHECK;
3349
3350 {
3351 int active = ev_active (w);
3352
3353 prepares [active - 1] = prepares [--preparecnt];
3354 ev_active (prepares [active - 1]) = active;
3355 }
3356
3357 ev_stop (EV_A_ (W)w);
3358
3359 EV_FREQUENT_CHECK;
3360}
3361#endif
3362
3363#if EV_CHECK_ENABLE
3364void
3365ev_check_start (EV_P_ ev_check *w)
3366{
3367 if (expect_false (ev_is_active (w)))
3368 return;
3369
3370 EV_FREQUENT_CHECK;
3371
3372 ev_start (EV_A_ (W)w, ++checkcnt);
3373 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3374 checks [checkcnt - 1] = w;
3375
3376 EV_FREQUENT_CHECK;
3377}
3378
3379void
3380ev_check_stop (EV_P_ ev_check *w)
3381{
3382 clear_pending (EV_A_ (W)w);
3383 if (expect_false (!ev_is_active (w)))
3384 return;
3385
3386 EV_FREQUENT_CHECK;
3387
3388 {
3389 int active = ev_active (w);
3390
3391 checks [active - 1] = checks [--checkcnt];
3392 ev_active (checks [active - 1]) = active;
3393 }
3394
3395 ev_stop (EV_A_ (W)w);
3396
3397 EV_FREQUENT_CHECK;
3398}
3399#endif
3400
3401#if EV_EMBED_ENABLE
3402void noinline
3403ev_embed_sweep (EV_P_ ev_embed *w)
3404{
3405 ev_loop (w->other, EVLOOP_NONBLOCK);
3406}
3407
3408static void
3409embed_io_cb (EV_P_ ev_io *io, int revents)
3410{
3411 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3412
3413 if (ev_cb (w))
3414 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3415 else
3416 ev_loop (w->other, EVLOOP_NONBLOCK);
3417}
3418
3419static void
3420embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3421{
3422 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3423
3424 {
3425 EV_P = w->other;
3426
3427 while (fdchangecnt)
3428 {
3429 fd_reify (EV_A);
3430 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3431 }
3432 }
3433}
3434
3435static void
3436embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3437{
3438 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3439
3440 ev_embed_stop (EV_A_ w);
3441
3442 {
3443 EV_P = w->other;
3444
3445 ev_loop_fork (EV_A);
3446 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3447 }
3448
3449 ev_embed_start (EV_A_ w);
3450}
3451
3452#if 0
3453static void
3454embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3455{
3456 ev_idle_stop (EV_A_ idle);
3457}
3458#endif
3459
3460void
3461ev_embed_start (EV_P_ ev_embed *w)
3462{
3463 if (expect_false (ev_is_active (w)))
3464 return;
3465
3466 {
3467 EV_P = w->other;
3468 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3469 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3470 }
3471
3472 EV_FREQUENT_CHECK;
3473
3474 ev_set_priority (&w->io, ev_priority (w));
3475 ev_io_start (EV_A_ &w->io);
3476
3477 ev_prepare_init (&w->prepare, embed_prepare_cb);
3478 ev_set_priority (&w->prepare, EV_MINPRI);
3479 ev_prepare_start (EV_A_ &w->prepare);
3480
3481 ev_fork_init (&w->fork, embed_fork_cb);
3482 ev_fork_start (EV_A_ &w->fork);
3483
3484 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3485
3486 ev_start (EV_A_ (W)w, 1);
3487
3488 EV_FREQUENT_CHECK;
3489}
3490
3491void
3492ev_embed_stop (EV_P_ ev_embed *w)
3493{
3494 clear_pending (EV_A_ (W)w);
3495 if (expect_false (!ev_is_active (w)))
3496 return;
3497
3498 EV_FREQUENT_CHECK;
3499
3500 ev_io_stop (EV_A_ &w->io);
3501 ev_prepare_stop (EV_A_ &w->prepare);
3502 ev_fork_stop (EV_A_ &w->fork);
3503
3504 ev_stop (EV_A_ (W)w);
3505
3506 EV_FREQUENT_CHECK;
3507}
3508#endif
3509
3510#if EV_FORK_ENABLE
3511void
3512ev_fork_start (EV_P_ ev_fork *w)
3513{
3514 if (expect_false (ev_is_active (w)))
3515 return;
3516
3517 EV_FREQUENT_CHECK;
3518
3519 ev_start (EV_A_ (W)w, ++forkcnt);
3520 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3521 forks [forkcnt - 1] = w;
3522
3523 EV_FREQUENT_CHECK;
3524}
3525
3526void
3527ev_fork_stop (EV_P_ ev_fork *w)
3528{
3529 clear_pending (EV_A_ (W)w);
3530 if (expect_false (!ev_is_active (w)))
3531 return;
3532
3533 EV_FREQUENT_CHECK;
3534
3535 {
3536 int active = ev_active (w);
3537
3538 forks [active - 1] = forks [--forkcnt];
3539 ev_active (forks [active - 1]) = active;
3540 }
3541
3542 ev_stop (EV_A_ (W)w);
3543
3544 EV_FREQUENT_CHECK;
3545}
3546#endif
3547
3548#if EV_ASYNC_ENABLE
3549void
3550ev_async_start (EV_P_ ev_async *w)
3551{
3552 if (expect_false (ev_is_active (w)))
3553 return;
3554
3555 evpipe_init (EV_A);
3556
3557 EV_FREQUENT_CHECK;
3558
3559 ev_start (EV_A_ (W)w, ++asynccnt);
3560 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3561 asyncs [asynccnt - 1] = w;
3562
3563 EV_FREQUENT_CHECK;
3564}
3565
3566void
3567ev_async_stop (EV_P_ ev_async *w)
3568{
3569 clear_pending (EV_A_ (W)w);
3570 if (expect_false (!ev_is_active (w)))
3571 return;
3572
3573 EV_FREQUENT_CHECK;
3574
3575 {
3576 int active = ev_active (w);
3577
3578 asyncs [active - 1] = asyncs [--asynccnt];
3579 ev_active (asyncs [active - 1]) = active;
3580 }
3581
3582 ev_stop (EV_A_ (W)w);
3583
3584 EV_FREQUENT_CHECK;
3585}
3586
3587void
3588ev_async_send (EV_P_ ev_async *w)
3589{
3590 w->sent = 1;
3591 evpipe_write (EV_A_ &async_pending);
1822} 3592}
1823#endif 3593#endif
1824 3594
1825/*****************************************************************************/ 3595/*****************************************************************************/
1826 3596
1836once_cb (EV_P_ struct ev_once *once, int revents) 3606once_cb (EV_P_ struct ev_once *once, int revents)
1837{ 3607{
1838 void (*cb)(int revents, void *arg) = once->cb; 3608 void (*cb)(int revents, void *arg) = once->cb;
1839 void *arg = once->arg; 3609 void *arg = once->arg;
1840 3610
1841 ev_io_stop (EV_A_ &once->io); 3611 ev_io_stop (EV_A_ &once->io);
1842 ev_timer_stop (EV_A_ &once->to); 3612 ev_timer_stop (EV_A_ &once->to);
1843 ev_free (once); 3613 ev_free (once);
1844 3614
1845 cb (revents, arg); 3615 cb (revents, arg);
1846} 3616}
1847 3617
1848static void 3618static void
1849once_cb_io (EV_P_ ev_io *w, int revents) 3619once_cb_io (EV_P_ ev_io *w, int revents)
1850{ 3620{
1851 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3621 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3622
3623 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1852} 3624}
1853 3625
1854static void 3626static void
1855once_cb_to (EV_P_ ev_timer *w, int revents) 3627once_cb_to (EV_P_ ev_timer *w, int revents)
1856{ 3628{
1857 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3629 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3630
3631 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1858} 3632}
1859 3633
1860void 3634void
1861ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3635ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1862{ 3636{
1884 ev_timer_set (&once->to, timeout, 0.); 3658 ev_timer_set (&once->to, timeout, 0.);
1885 ev_timer_start (EV_A_ &once->to); 3659 ev_timer_start (EV_A_ &once->to);
1886 } 3660 }
1887} 3661}
1888 3662
3663/*****************************************************************************/
3664
3665#if EV_WALK_ENABLE
3666void
3667ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3668{
3669 int i, j;
3670 ev_watcher_list *wl, *wn;
3671
3672 if (types & (EV_IO | EV_EMBED))
3673 for (i = 0; i < anfdmax; ++i)
3674 for (wl = anfds [i].head; wl; )
3675 {
3676 wn = wl->next;
3677
3678#if EV_EMBED_ENABLE
3679 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3680 {
3681 if (types & EV_EMBED)
3682 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3683 }
3684 else
3685#endif
3686#if EV_USE_INOTIFY
3687 if (ev_cb ((ev_io *)wl) == infy_cb)
3688 ;
3689 else
3690#endif
3691 if ((ev_io *)wl != &pipe_w)
3692 if (types & EV_IO)
3693 cb (EV_A_ EV_IO, wl);
3694
3695 wl = wn;
3696 }
3697
3698 if (types & (EV_TIMER | EV_STAT))
3699 for (i = timercnt + HEAP0; i-- > HEAP0; )
3700#if EV_STAT_ENABLE
3701 /*TODO: timer is not always active*/
3702 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3703 {
3704 if (types & EV_STAT)
3705 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3706 }
3707 else
3708#endif
3709 if (types & EV_TIMER)
3710 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3711
3712#if EV_PERIODIC_ENABLE
3713 if (types & EV_PERIODIC)
3714 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3715 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3716#endif
3717
3718#if EV_IDLE_ENABLE
3719 if (types & EV_IDLE)
3720 for (j = NUMPRI; i--; )
3721 for (i = idlecnt [j]; i--; )
3722 cb (EV_A_ EV_IDLE, idles [j][i]);
3723#endif
3724
3725#if EV_FORK_ENABLE
3726 if (types & EV_FORK)
3727 for (i = forkcnt; i--; )
3728 if (ev_cb (forks [i]) != embed_fork_cb)
3729 cb (EV_A_ EV_FORK, forks [i]);
3730#endif
3731
3732#if EV_ASYNC_ENABLE
3733 if (types & EV_ASYNC)
3734 for (i = asynccnt; i--; )
3735 cb (EV_A_ EV_ASYNC, asyncs [i]);
3736#endif
3737
3738#if EV_PREPARE_ENABLE
3739 if (types & EV_PREPARE)
3740 for (i = preparecnt; i--; )
3741# if EV_EMBED_ENABLE
3742 if (ev_cb (prepares [i]) != embed_prepare_cb)
3743# endif
3744 cb (EV_A_ EV_PREPARE, prepares [i]);
3745#endif
3746
3747#if EV_CHECK_ENABLE
3748 if (types & EV_CHECK)
3749 for (i = checkcnt; i--; )
3750 cb (EV_A_ EV_CHECK, checks [i]);
3751#endif
3752
3753#if EV_SIGNAL_ENABLE
3754 if (types & EV_SIGNAL)
3755 for (i = 0; i < EV_NSIG - 1; ++i)
3756 for (wl = signals [i].head; wl; )
3757 {
3758 wn = wl->next;
3759 cb (EV_A_ EV_SIGNAL, wl);
3760 wl = wn;
3761 }
3762#endif
3763
3764#if EV_CHILD_ENABLE
3765 if (types & EV_CHILD)
3766 for (i = (EV_PID_HASHSIZE); i--; )
3767 for (wl = childs [i]; wl; )
3768 {
3769 wn = wl->next;
3770 cb (EV_A_ EV_CHILD, wl);
3771 wl = wn;
3772 }
3773#endif
3774/* EV_STAT 0x00001000 /* stat data changed */
3775/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3776}
3777#endif
3778
3779#if EV_MULTIPLICITY
3780 #include "ev_wrap.h"
3781#endif
3782
1889#ifdef __cplusplus 3783#ifdef __cplusplus
1890} 3784}
1891#endif 3785#endif
1892 3786

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines