ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.55 by root, Sun Nov 4 00:39:24 2007 UTC vs.
Revision 1.143 by root, Tue Nov 27 07:27:10 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
42
43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
57# endif
58
59# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
65# endif
66
67# ifndef EV_USE_POLL
68# if HAVE_POLL && HAVE_POLL_H
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
73# endif
74
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
81# endif
82
83# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
97# endif
98
33#endif 99#endif
34 100
35#include <math.h> 101#include <math.h>
36#include <stdlib.h> 102#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 103#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 104#include <stddef.h>
41 105
42#include <stdio.h> 106#include <stdio.h>
43 107
44#include <assert.h> 108#include <assert.h>
45#include <errno.h> 109#include <errno.h>
46#include <sys/types.h> 110#include <sys/types.h>
111#include <time.h>
112
113#include <signal.h>
114
47#ifndef WIN32 115#ifndef _WIN32
116# include <sys/time.h>
48# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
49#endif 124# endif
50#include <sys/time.h> 125#endif
51#include <time.h>
52 126
53/**/ 127/**/
54 128
55#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
57#endif 135#endif
58 136
59#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
61#endif 139#endif
62 140
63#ifndef EV_USEV_POLL 141#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
65#endif 147#endif
66 148
67#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
69#endif 151#endif
70 152
71#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
73#endif 155#endif
74 156
75#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
76# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
77#endif 159#endif
78 160
79/**/ 161/**/
80 162
81#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
86#ifndef CLOCK_REALTIME 168#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 169# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 170# define EV_USE_REALTIME 0
89#endif 171#endif
90 172
173#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h>
175#endif
176
91/**/ 177/**/
92 178
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
97 183
184#ifdef EV_H
185# include EV_H
186#else
98#include "ev.h" 187# include "ev.h"
188#endif
99 189
100#if __GNUC__ >= 3 190#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
102# define inline inline 194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
103#else 200#else
104# define expect(expr,value) (expr) 201# define expect(expr,value) (expr)
105# define inline static 202# define inline_speed static
203# define inline_minimal static
204# define noinline
106#endif 205#endif
107 206
108#define expect_false(expr) expect ((expr) != 0, 0) 207#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1) 208#define expect_true(expr) expect ((expr) != 0, 1)
110 209
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 211#define ABSPRI(w) ((w)->priority - EV_MINPRI)
113 212
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */
215
114typedef struct ev_watcher *W; 216typedef ev_watcher *W;
115typedef struct ev_watcher_list *WL; 217typedef ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 218typedef ev_watcher_time *WT;
117 219
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119 221
222#ifdef _WIN32
223# include "ev_win32.c"
224#endif
225
120/*****************************************************************************/ 226/*****************************************************************************/
121 227
228static void (*syserr_cb)(const char *msg);
229
230void
231ev_set_syserr_cb (void (*cb)(const char *msg))
232{
233 syserr_cb = cb;
234}
235
236static void noinline
237syserr (const char *msg)
238{
239 if (!msg)
240 msg = "(libev) system error";
241
242 if (syserr_cb)
243 syserr_cb (msg);
244 else
245 {
246 perror (msg);
247 abort ();
248 }
249}
250
251static void *(*alloc)(void *ptr, long size);
252
253void
254ev_set_allocator (void *(*cb)(void *ptr, long size))
255{
256 alloc = cb;
257}
258
259static void *
260ev_realloc (void *ptr, long size)
261{
262 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
263
264 if (!ptr && size)
265 {
266 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
267 abort ();
268 }
269
270 return ptr;
271}
272
273#define ev_malloc(size) ev_realloc (0, (size))
274#define ev_free(ptr) ev_realloc ((ptr), 0)
275
276/*****************************************************************************/
277
122typedef struct 278typedef struct
123{ 279{
124 struct ev_watcher_list *head; 280 WL head;
125 unsigned char events; 281 unsigned char events;
126 unsigned char reify; 282 unsigned char reify;
283#if EV_SELECT_IS_WINSOCKET
284 SOCKET handle;
285#endif
127} ANFD; 286} ANFD;
128 287
129typedef struct 288typedef struct
130{ 289{
131 W w; 290 W w;
132 int events; 291 int events;
133} ANPENDING; 292} ANPENDING;
134 293
135#if EV_MULTIPLICITY 294#if EV_MULTIPLICITY
136 295
137struct ev_loop 296 struct ev_loop
138{ 297 {
298 ev_tstamp ev_rt_now;
299 #define ev_rt_now ((loop)->ev_rt_now)
139# define VAR(name,decl) decl; 300 #define VAR(name,decl) decl;
140# include "ev_vars.h" 301 #include "ev_vars.h"
141};
142# undef VAR 302 #undef VAR
303 };
143# include "ev_wrap.h" 304 #include "ev_wrap.h"
305
306 static struct ev_loop default_loop_struct;
307 struct ev_loop *ev_default_loop_ptr;
144 308
145#else 309#else
146 310
311 ev_tstamp ev_rt_now;
147# define VAR(name,decl) static decl; 312 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 313 #include "ev_vars.h"
149# undef VAR 314 #undef VAR
315
316 static int ev_default_loop_ptr;
150 317
151#endif 318#endif
152 319
153/*****************************************************************************/ 320/*****************************************************************************/
154 321
155inline ev_tstamp 322ev_tstamp
156ev_time (void) 323ev_time (void)
157{ 324{
158#if EV_USE_REALTIME 325#if EV_USE_REALTIME
159 struct timespec ts; 326 struct timespec ts;
160 clock_gettime (CLOCK_REALTIME, &ts); 327 clock_gettime (CLOCK_REALTIME, &ts);
164 gettimeofday (&tv, 0); 331 gettimeofday (&tv, 0);
165 return tv.tv_sec + tv.tv_usec * 1e-6; 332 return tv.tv_sec + tv.tv_usec * 1e-6;
166#endif 333#endif
167} 334}
168 335
169inline ev_tstamp 336ev_tstamp inline_size
170get_clock (void) 337get_clock (void)
171{ 338{
172#if EV_USE_MONOTONIC 339#if EV_USE_MONOTONIC
173 if (expect_true (have_monotonic)) 340 if (expect_true (have_monotonic))
174 { 341 {
179#endif 346#endif
180 347
181 return ev_time (); 348 return ev_time ();
182} 349}
183 350
351#if EV_MULTIPLICITY
184ev_tstamp 352ev_tstamp
185ev_now (EV_P) 353ev_now (EV_P)
186{ 354{
187 return rt_now; 355 return ev_rt_now;
188} 356}
357#endif
189 358
190#define array_roundsize(base,n) ((n) | 4 & ~3) 359#define array_roundsize(type,n) (((n) | 4) & ~3)
191 360
192#define array_needsize(base,cur,cnt,init) \ 361#define array_needsize(type,base,cur,cnt,init) \
193 if (expect_false ((cnt) > cur)) \ 362 if (expect_false ((cnt) > cur)) \
194 { \ 363 { \
195 int newcnt = cur; \ 364 int newcnt = cur; \
196 do \ 365 do \
197 { \ 366 { \
198 newcnt = array_roundsize (base, newcnt << 1); \ 367 newcnt = array_roundsize (type, newcnt << 1); \
199 } \ 368 } \
200 while ((cnt) > newcnt); \ 369 while ((cnt) > newcnt); \
201 \ 370 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \ 371 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
203 init (base + cur, newcnt - cur); \ 372 init (base + cur, newcnt - cur); \
204 cur = newcnt; \ 373 cur = newcnt; \
205 } 374 }
375
376#define array_slim(type,stem) \
377 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
378 { \
379 stem ## max = array_roundsize (stem ## cnt >> 1); \
380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
382 }
383
384#define array_free(stem, idx) \
385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
206 386
207/*****************************************************************************/ 387/*****************************************************************************/
208 388
209static void 389void noinline
390ev_feed_event (EV_P_ void *w, int revents)
391{
392 W w_ = (W)w;
393
394 if (expect_false (w_->pending))
395 {
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
397 return;
398 }
399
400 w_->pending = ++pendingcnt [ABSPRI (w_)];
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404}
405
406void inline_size
407queue_events (EV_P_ W *events, int eventcnt, int type)
408{
409 int i;
410
411 for (i = 0; i < eventcnt; ++i)
412 ev_feed_event (EV_A_ events [i], type);
413}
414
415/*****************************************************************************/
416
417void inline_size
210anfds_init (ANFD *base, int count) 418anfds_init (ANFD *base, int count)
211{ 419{
212 while (count--) 420 while (count--)
213 { 421 {
214 base->head = 0; 422 base->head = 0;
217 425
218 ++base; 426 ++base;
219 } 427 }
220} 428}
221 429
222static void 430void inline_speed
223event (EV_P_ W w, int events)
224{
225 if (w->pending)
226 {
227 pendings [ABSPRI (w)][w->pending - 1].events |= events;
228 return;
229 }
230
231 w->pending = ++pendingcnt [ABSPRI (w)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233 pendings [ABSPRI (w)][w->pending - 1].w = w;
234 pendings [ABSPRI (w)][w->pending - 1].events = events;
235}
236
237static void
238queue_events (EV_P_ W *events, int eventcnt, int type)
239{
240 int i;
241
242 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type);
244}
245
246static void
247fd_event (EV_P_ int fd, int events) 431fd_event (EV_P_ int fd, int revents)
248{ 432{
249 ANFD *anfd = anfds + fd; 433 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 434 ev_io *w;
251 435
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 436 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
253 { 437 {
254 int ev = w->events & events; 438 int ev = w->events & revents;
255 439
256 if (ev) 440 if (ev)
257 event (EV_A_ (W)w, ev); 441 ev_feed_event (EV_A_ (W)w, ev);
258 } 442 }
259} 443}
260 444
261/*****************************************************************************/ 445void
446ev_feed_fd_event (EV_P_ int fd, int revents)
447{
448 fd_event (EV_A_ fd, revents);
449}
262 450
263static void 451void inline_size
264fd_reify (EV_P) 452fd_reify (EV_P)
265{ 453{
266 int i; 454 int i;
267 455
268 for (i = 0; i < fdchangecnt; ++i) 456 for (i = 0; i < fdchangecnt; ++i)
269 { 457 {
270 int fd = fdchanges [i]; 458 int fd = fdchanges [i];
271 ANFD *anfd = anfds + fd; 459 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 460 ev_io *w;
273 461
274 int events = 0; 462 int events = 0;
275 463
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
277 events |= w->events; 465 events |= w->events;
278 466
467#if EV_SELECT_IS_WINSOCKET
468 if (events)
469 {
470 unsigned long argp;
471 anfd->handle = _get_osfhandle (fd);
472 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
473 }
474#endif
475
279 anfd->reify = 0; 476 anfd->reify = 0;
280 477
281 if (anfd->events != events)
282 {
283 method_modify (EV_A_ fd, anfd->events, events); 478 backend_modify (EV_A_ fd, anfd->events, events);
284 anfd->events = events; 479 anfd->events = events;
285 }
286 } 480 }
287 481
288 fdchangecnt = 0; 482 fdchangecnt = 0;
289} 483}
290 484
291static void 485void inline_size
292fd_change (EV_P_ int fd) 486fd_change (EV_P_ int fd)
293{ 487{
294 if (anfds [fd].reify || fdchangecnt < 0) 488 if (expect_false (anfds [fd].reify))
295 return; 489 return;
296 490
297 anfds [fd].reify = 1; 491 anfds [fd].reify = 1;
298 492
299 ++fdchangecnt; 493 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
301 fdchanges [fdchangecnt - 1] = fd; 495 fdchanges [fdchangecnt - 1] = fd;
302} 496}
303 497
304static void 498void inline_speed
305fd_kill (EV_P_ int fd) 499fd_kill (EV_P_ int fd)
306{ 500{
307 struct ev_io *w; 501 ev_io *w;
308 502
309 while ((w = (struct ev_io *)anfds [fd].head)) 503 while ((w = (ev_io *)anfds [fd].head))
310 { 504 {
311 ev_io_stop (EV_A_ w); 505 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 506 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 507 }
508}
509
510int inline_size
511fd_valid (int fd)
512{
513#ifdef _WIN32
514 return _get_osfhandle (fd) != -1;
515#else
516 return fcntl (fd, F_GETFD) != -1;
517#endif
314} 518}
315 519
316/* called on EBADF to verify fds */ 520/* called on EBADF to verify fds */
317static void 521static void noinline
318fd_ebadf (EV_P) 522fd_ebadf (EV_P)
319{ 523{
320 int fd; 524 int fd;
321 525
322 for (fd = 0; fd < anfdmax; ++fd) 526 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 527 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 528 if (!fd_valid (fd) == -1 && errno == EBADF)
325 fd_kill (EV_A_ fd); 529 fd_kill (EV_A_ fd);
326} 530}
327 531
328/* called on ENOMEM in select/poll to kill some fds and retry */ 532/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 533static void noinline
330fd_enomem (EV_P) 534fd_enomem (EV_P)
331{ 535{
332 int fd = anfdmax; 536 int fd;
333 537
334 while (fd--) 538 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 539 if (anfds [fd].events)
336 { 540 {
337 close (fd);
338 fd_kill (EV_A_ fd); 541 fd_kill (EV_A_ fd);
339 return; 542 return;
340 } 543 }
341} 544}
342 545
546/* usually called after fork if backend needs to re-arm all fds from scratch */
547static void noinline
548fd_rearm_all (EV_P)
549{
550 int fd;
551
552 /* this should be highly optimised to not do anything but set a flag */
553 for (fd = 0; fd < anfdmax; ++fd)
554 if (anfds [fd].events)
555 {
556 anfds [fd].events = 0;
557 fd_change (EV_A_ fd);
558 }
559}
560
343/*****************************************************************************/ 561/*****************************************************************************/
344 562
345static void 563void inline_speed
346upheap (WT *heap, int k) 564upheap (WT *heap, int k)
347{ 565{
348 WT w = heap [k]; 566 WT w = heap [k];
349 567
350 while (k && heap [k >> 1]->at > w->at) 568 while (k && heap [k >> 1]->at > w->at)
351 { 569 {
352 heap [k] = heap [k >> 1]; 570 heap [k] = heap [k >> 1];
353 heap [k]->active = k + 1; 571 ((W)heap [k])->active = k + 1;
354 k >>= 1; 572 k >>= 1;
355 } 573 }
356 574
357 heap [k] = w; 575 heap [k] = w;
358 heap [k]->active = k + 1; 576 ((W)heap [k])->active = k + 1;
359 577
360} 578}
361 579
362static void 580void inline_speed
363downheap (WT *heap, int N, int k) 581downheap (WT *heap, int N, int k)
364{ 582{
365 WT w = heap [k]; 583 WT w = heap [k];
366 584
367 while (k < (N >> 1)) 585 while (k < (N >> 1))
373 591
374 if (w->at <= heap [j]->at) 592 if (w->at <= heap [j]->at)
375 break; 593 break;
376 594
377 heap [k] = heap [j]; 595 heap [k] = heap [j];
378 heap [k]->active = k + 1; 596 ((W)heap [k])->active = k + 1;
379 k = j; 597 k = j;
380 } 598 }
381 599
382 heap [k] = w; 600 heap [k] = w;
383 heap [k]->active = k + 1; 601 ((W)heap [k])->active = k + 1;
602}
603
604void inline_size
605adjustheap (WT *heap, int N, int k)
606{
607 upheap (heap, k);
608 downheap (heap, N, k);
384} 609}
385 610
386/*****************************************************************************/ 611/*****************************************************************************/
387 612
388typedef struct 613typedef struct
389{ 614{
390 struct ev_watcher_list *head; 615 WL head;
391 sig_atomic_t volatile gotsig; 616 sig_atomic_t volatile gotsig;
392} ANSIG; 617} ANSIG;
393 618
394static ANSIG *signals; 619static ANSIG *signals;
395static int signalmax; 620static int signalmax;
396 621
397static int sigpipe [2]; 622static int sigpipe [2];
398static sig_atomic_t volatile gotsig; 623static sig_atomic_t volatile gotsig;
624static ev_io sigev;
399 625
400static void 626void inline_size
401signals_init (ANSIG *base, int count) 627signals_init (ANSIG *base, int count)
402{ 628{
403 while (count--) 629 while (count--)
404 { 630 {
405 base->head = 0; 631 base->head = 0;
410} 636}
411 637
412static void 638static void
413sighandler (int signum) 639sighandler (int signum)
414{ 640{
641#if _WIN32
642 signal (signum, sighandler);
643#endif
644
415 signals [signum - 1].gotsig = 1; 645 signals [signum - 1].gotsig = 1;
416 646
417 if (!gotsig) 647 if (!gotsig)
418 { 648 {
419 int old_errno = errno; 649 int old_errno = errno;
421 write (sigpipe [1], &signum, 1); 651 write (sigpipe [1], &signum, 1);
422 errno = old_errno; 652 errno = old_errno;
423 } 653 }
424} 654}
425 655
656void noinline
657ev_feed_signal_event (EV_P_ int signum)
658{
659 WL w;
660
661#if EV_MULTIPLICITY
662 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
663#endif
664
665 --signum;
666
667 if (signum < 0 || signum >= signalmax)
668 return;
669
670 signals [signum].gotsig = 0;
671
672 for (w = signals [signum].head; w; w = w->next)
673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
674}
675
426static void 676static void
427sigcb (EV_P_ struct ev_io *iow, int revents) 677sigcb (EV_P_ ev_io *iow, int revents)
428{ 678{
429 struct ev_watcher_list *w;
430 int signum; 679 int signum;
431 680
432 read (sigpipe [0], &revents, 1); 681 read (sigpipe [0], &revents, 1);
433 gotsig = 0; 682 gotsig = 0;
434 683
435 for (signum = signalmax; signum--; ) 684 for (signum = signalmax; signum--; )
436 if (signals [signum].gotsig) 685 if (signals [signum].gotsig)
437 { 686 ev_feed_signal_event (EV_A_ signum + 1);
438 signals [signum].gotsig = 0;
439
440 for (w = signals [signum].head; w; w = w->next)
441 event (EV_A_ (W)w, EV_SIGNAL);
442 }
443} 687}
444 688
445static void 689void inline_size
690fd_intern (int fd)
691{
692#ifdef _WIN32
693 int arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
695#else
696 fcntl (fd, F_SETFD, FD_CLOEXEC);
697 fcntl (fd, F_SETFL, O_NONBLOCK);
698#endif
699}
700
701static void noinline
446siginit (EV_P) 702siginit (EV_P)
447{ 703{
448#ifndef WIN32 704 fd_intern (sigpipe [0]);
449 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 705 fd_intern (sigpipe [1]);
450 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
451
452 /* rather than sort out wether we really need nb, set it */
453 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
454 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
455#endif
456 706
457 ev_io_set (&sigev, sigpipe [0], EV_READ); 707 ev_io_set (&sigev, sigpipe [0], EV_READ);
458 ev_io_start (EV_A_ &sigev); 708 ev_io_start (EV_A_ &sigev);
459 ev_unref (EV_A); /* child watcher should not keep loop alive */ 709 ev_unref (EV_A); /* child watcher should not keep loop alive */
460} 710}
461 711
462/*****************************************************************************/ 712/*****************************************************************************/
463 713
714static ev_child *childs [PID_HASHSIZE];
715
464#ifndef WIN32 716#ifndef _WIN32
717
718static ev_signal childev;
719
720void inline_speed
721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
722{
723 ev_child *w;
724
725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
726 if (w->pid == pid || !w->pid)
727 {
728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
729 w->rpid = pid;
730 w->rstatus = status;
731 ev_feed_event (EV_A_ (W)w, EV_CHILD);
732 }
733}
465 734
466#ifndef WCONTINUED 735#ifndef WCONTINUED
467# define WCONTINUED 0 736# define WCONTINUED 0
468#endif 737#endif
469 738
470static void 739static void
471child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
472{
473 struct ev_child *w;
474
475 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
476 if (w->pid == pid || !w->pid)
477 {
478 w->priority = sw->priority; /* need to do it *now* */
479 w->rpid = pid;
480 w->rstatus = status;
481 event (EV_A_ (W)w, EV_CHILD);
482 }
483}
484
485static void
486childcb (EV_P_ struct ev_signal *sw, int revents) 740childcb (EV_P_ ev_signal *sw, int revents)
487{ 741{
488 int pid, status; 742 int pid, status;
489 743
744 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
490 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 745 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
491 { 746 if (!WCONTINUED
747 || errno != EINVAL
748 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
749 return;
750
492 /* make sure we are called again until all childs have been reaped */ 751 /* make sure we are called again until all childs have been reaped */
752 /* we need to do it this way so that the callback gets called before we continue */
493 event (EV_A_ (W)sw, EV_SIGNAL); 753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
494 754
495 child_reap (EV_A_ sw, pid, pid, status); 755 child_reap (EV_A_ sw, pid, pid, status);
496 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
497 }
498} 757}
499 758
500#endif 759#endif
501 760
502/*****************************************************************************/ 761/*****************************************************************************/
503 762
763#if EV_USE_PORT
764# include "ev_port.c"
765#endif
504#if EV_USE_KQUEUE 766#if EV_USE_KQUEUE
505# include "ev_kqueue.c" 767# include "ev_kqueue.c"
506#endif 768#endif
507#if EV_USE_EPOLL 769#if EV_USE_EPOLL
508# include "ev_epoll.c" 770# include "ev_epoll.c"
509#endif 771#endif
510#if EV_USEV_POLL 772#if EV_USE_POLL
511# include "ev_poll.c" 773# include "ev_poll.c"
512#endif 774#endif
513#if EV_USE_SELECT 775#if EV_USE_SELECT
514# include "ev_select.c" 776# include "ev_select.c"
515#endif 777#endif
525{ 787{
526 return EV_VERSION_MINOR; 788 return EV_VERSION_MINOR;
527} 789}
528 790
529/* return true if we are running with elevated privileges and should ignore env variables */ 791/* return true if we are running with elevated privileges and should ignore env variables */
530static int 792int inline_size
531enable_secure (void) 793enable_secure (void)
532{ 794{
533#ifdef WIN32 795#ifdef _WIN32
534 return 0; 796 return 0;
535#else 797#else
536 return getuid () != geteuid () 798 return getuid () != geteuid ()
537 || getgid () != getegid (); 799 || getgid () != getegid ();
538#endif 800#endif
539} 801}
540 802
541int 803unsigned int
542ev_method (EV_P) 804ev_supported_backends (void)
543{ 805{
544 return method; 806 unsigned int flags = 0;
545}
546 807
547inline int 808 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
548loop_init (EV_P_ int methods) 809 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
810 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
811 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
812 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
813
814 return flags;
815}
816
817unsigned int
818ev_recommended_backends (void)
549{ 819{
550 if (!method) 820 unsigned int flags = ev_supported_backends ();
821
822#ifndef __NetBSD__
823 /* kqueue is borked on everything but netbsd apparently */
824 /* it usually doesn't work correctly on anything but sockets and pipes */
825 flags &= ~EVBACKEND_KQUEUE;
826#endif
827#ifdef __APPLE__
828 // flags &= ~EVBACKEND_KQUEUE; for documentation
829 flags &= ~EVBACKEND_POLL;
830#endif
831
832 return flags;
833}
834
835unsigned int
836ev_embeddable_backends (void)
837{
838 return EVBACKEND_EPOLL
839 | EVBACKEND_KQUEUE
840 | EVBACKEND_PORT;
841}
842
843unsigned int
844ev_backend (EV_P)
845{
846 return backend;
847}
848
849static void
850loop_init (EV_P_ unsigned int flags)
851{
852 if (!backend)
551 { 853 {
552#if EV_USE_MONOTONIC 854#if EV_USE_MONOTONIC
553 { 855 {
554 struct timespec ts; 856 struct timespec ts;
555 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 857 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
556 have_monotonic = 1; 858 have_monotonic = 1;
557 } 859 }
558#endif 860#endif
559 861
560 rt_now = ev_time (); 862 ev_rt_now = ev_time ();
561 mn_now = get_clock (); 863 mn_now = get_clock ();
562 now_floor = mn_now; 864 now_floor = mn_now;
563 rtmn_diff = rt_now - mn_now; 865 rtmn_diff = ev_rt_now - mn_now;
564 866
565 if (pipe (sigpipe)) 867 if (!(flags & EVFLAG_NOENV)
566 return 0; 868 && !enable_secure ()
869 && getenv ("LIBEV_FLAGS"))
870 flags = atoi (getenv ("LIBEV_FLAGS"));
567 871
568 if (methods == EVMETHOD_AUTO) 872 if (!(flags & 0x0000ffffUL))
569 if (!enable_secure () && getenv ("LIBmethodS")) 873 flags |= ev_recommended_backends ();
570 methods = atoi (getenv ("LIBmethodS"));
571 else
572 methods = EVMETHOD_ANY;
573 874
574 method = 0; 875 backend = 0;
876#if EV_USE_PORT
877 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
878#endif
575#if EV_USE_KQUEUE 879#if EV_USE_KQUEUE
576 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 880 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
577#endif 881#endif
578#if EV_USE_EPOLL 882#if EV_USE_EPOLL
579 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 883 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
580#endif 884#endif
581#if EV_USEV_POLL 885#if EV_USE_POLL
582 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 886 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
583#endif 887#endif
584#if EV_USE_SELECT 888#if EV_USE_SELECT
585 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 889 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
586#endif 890#endif
587 891
588 if (method) 892 ev_init (&sigev, sigcb);
893 ev_set_priority (&sigev, EV_MAXPRI);
894 }
895}
896
897static void
898loop_destroy (EV_P)
899{
900 int i;
901
902#if EV_USE_PORT
903 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
904#endif
905#if EV_USE_KQUEUE
906 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
907#endif
908#if EV_USE_EPOLL
909 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
910#endif
911#if EV_USE_POLL
912 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
913#endif
914#if EV_USE_SELECT
915 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
916#endif
917
918 for (i = NUMPRI; i--; )
919 array_free (pending, [i]);
920
921 /* have to use the microsoft-never-gets-it-right macro */
922 array_free (fdchange, EMPTY0);
923 array_free (timer, EMPTY0);
924#if EV_PERIODIC_ENABLE
925 array_free (periodic, EMPTY0);
926#endif
927 array_free (idle, EMPTY0);
928 array_free (prepare, EMPTY0);
929 array_free (check, EMPTY0);
930
931 backend = 0;
932}
933
934static void
935loop_fork (EV_P)
936{
937#if EV_USE_PORT
938 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
939#endif
940#if EV_USE_KQUEUE
941 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
942#endif
943#if EV_USE_EPOLL
944 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
945#endif
946
947 if (ev_is_active (&sigev))
948 {
949 /* default loop */
950
951 ev_ref (EV_A);
952 ev_io_stop (EV_A_ &sigev);
953 close (sigpipe [0]);
954 close (sigpipe [1]);
955
956 while (pipe (sigpipe))
957 syserr ("(libev) error creating pipe");
958
959 siginit (EV_A);
960 }
961
962 postfork = 0;
963}
964
965#if EV_MULTIPLICITY
966struct ev_loop *
967ev_loop_new (unsigned int flags)
968{
969 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
970
971 memset (loop, 0, sizeof (struct ev_loop));
972
973 loop_init (EV_A_ flags);
974
975 if (ev_backend (EV_A))
976 return loop;
977
978 return 0;
979}
980
981void
982ev_loop_destroy (EV_P)
983{
984 loop_destroy (EV_A);
985 ev_free (loop);
986}
987
988void
989ev_loop_fork (EV_P)
990{
991 postfork = 1;
992}
993
994#endif
995
996#if EV_MULTIPLICITY
997struct ev_loop *
998ev_default_loop_init (unsigned int flags)
999#else
1000int
1001ev_default_loop (unsigned int flags)
1002#endif
1003{
1004 if (sigpipe [0] == sigpipe [1])
1005 if (pipe (sigpipe))
1006 return 0;
1007
1008 if (!ev_default_loop_ptr)
1009 {
1010#if EV_MULTIPLICITY
1011 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1012#else
1013 ev_default_loop_ptr = 1;
1014#endif
1015
1016 loop_init (EV_A_ flags);
1017
1018 if (ev_backend (EV_A))
589 { 1019 {
590 ev_watcher_init (&sigev, sigcb);
591 ev_set_priority (&sigev, EV_MAXPRI);
592 siginit (EV_A); 1020 siginit (EV_A);
593 1021
594#ifndef WIN32 1022#ifndef _WIN32
595 ev_signal_init (&childev, childcb, SIGCHLD); 1023 ev_signal_init (&childev, childcb, SIGCHLD);
596 ev_set_priority (&childev, EV_MAXPRI); 1024 ev_set_priority (&childev, EV_MAXPRI);
597 ev_signal_start (EV_A_ &childev); 1025 ev_signal_start (EV_A_ &childev);
598 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1026 ev_unref (EV_A); /* child watcher should not keep loop alive */
599#endif 1027#endif
600 } 1028 }
1029 else
1030 ev_default_loop_ptr = 0;
601 } 1031 }
602 1032
603 return method; 1033 return ev_default_loop_ptr;
604} 1034}
605 1035
1036void
1037ev_default_destroy (void)
1038{
606#if EV_MULTIPLICITY 1039#if EV_MULTIPLICITY
1040 struct ev_loop *loop = ev_default_loop_ptr;
1041#endif
607 1042
608struct ev_loop * 1043#ifndef _WIN32
609ev_loop_new (int methods) 1044 ev_ref (EV_A); /* child watcher */
610{ 1045 ev_signal_stop (EV_A_ &childev);
611 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1046#endif
612 1047
613 if (loop_init (EV_A_ methods)) 1048 ev_ref (EV_A); /* signal watcher */
1049 ev_io_stop (EV_A_ &sigev);
1050
1051 close (sigpipe [0]); sigpipe [0] = 0;
1052 close (sigpipe [1]); sigpipe [1] = 0;
1053
1054 loop_destroy (EV_A);
1055}
1056
1057void
1058ev_default_fork (void)
1059{
1060#if EV_MULTIPLICITY
1061 struct ev_loop *loop = ev_default_loop_ptr;
1062#endif
1063
1064 if (backend)
1065 postfork = 1;
1066}
1067
1068/*****************************************************************************/
1069
1070int inline_size
1071any_pending (EV_P)
1072{
1073 int pri;
1074
1075 for (pri = NUMPRI; pri--; )
1076 if (pendingcnt [pri])
614 return loop; 1077 return 1;
615
616 ev_loop_delete (loop);
617 1078
618 return 0; 1079 return 0;
619} 1080}
620 1081
621void 1082void inline_speed
622ev_loop_delete (EV_P)
623{
624 /*TODO*/
625 free (loop);
626}
627
628#else
629
630int
631ev_init (int methods)
632{
633 return loop_init (methods);
634}
635
636#endif
637
638/*****************************************************************************/
639
640void
641ev_fork_prepare (void)
642{
643 /* nop */
644}
645
646void
647ev_fork_parent (void)
648{
649 /* nop */
650}
651
652void
653ev_fork_child (void)
654{
655 /*TODO*/
656#if !EV_MULTIPLICITY
657#if EV_USE_EPOLL
658 if (method == EVMETHOD_EPOLL)
659 epoll_postfork_child (EV_A);
660#endif
661
662 ev_io_stop (EV_A_ &sigev);
663 close (sigpipe [0]);
664 close (sigpipe [1]);
665 pipe (sigpipe);
666 siginit (EV_A);
667#endif
668}
669
670/*****************************************************************************/
671
672static void
673call_pending (EV_P) 1083call_pending (EV_P)
674{ 1084{
675 int pri; 1085 int pri;
676 1086
677 for (pri = NUMPRI; pri--; ) 1087 for (pri = NUMPRI; pri--; )
678 while (pendingcnt [pri]) 1088 while (pendingcnt [pri])
679 { 1089 {
680 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
681 1091
682 if (p->w) 1092 if (expect_true (p->w))
683 { 1093 {
1094 assert (("non-pending watcher on pending list", p->w->pending));
1095
684 p->w->pending = 0; 1096 p->w->pending = 0;
685 p->w->cb (EV_A_ p->w, p->events); 1097 EV_CB_INVOKE (p->w, p->events);
686 } 1098 }
687 } 1099 }
688} 1100}
689 1101
690static void 1102void inline_size
691timers_reify (EV_P) 1103timers_reify (EV_P)
692{ 1104{
693 while (timercnt && timers [0]->at <= mn_now) 1105 while (timercnt && ((WT)timers [0])->at <= mn_now)
694 { 1106 {
695 struct ev_timer *w = timers [0]; 1107 ev_timer *w = timers [0];
1108
1109 assert (("inactive timer on timer heap detected", ev_is_active (w)));
696 1110
697 /* first reschedule or stop timer */ 1111 /* first reschedule or stop timer */
698 if (w->repeat) 1112 if (w->repeat)
699 { 1113 {
700 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1114 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1115
701 w->at = mn_now + w->repeat; 1116 ((WT)w)->at += w->repeat;
1117 if (((WT)w)->at < mn_now)
1118 ((WT)w)->at = mn_now;
1119
702 downheap ((WT *)timers, timercnt, 0); 1120 downheap ((WT *)timers, timercnt, 0);
703 } 1121 }
704 else 1122 else
705 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1123 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
706 1124
707 event (EV_A_ (W)w, EV_TIMEOUT); 1125 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
708 } 1126 }
709} 1127}
710 1128
711static void 1129#if EV_PERIODIC_ENABLE
1130void inline_size
712periodics_reify (EV_P) 1131periodics_reify (EV_P)
713{ 1132{
714 while (periodiccnt && periodics [0]->at <= rt_now) 1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
715 { 1134 {
716 struct ev_periodic *w = periodics [0]; 1135 ev_periodic *w = periodics [0];
1136
1137 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
717 1138
718 /* first reschedule or stop timer */ 1139 /* first reschedule or stop timer */
719 if (w->interval) 1140 if (w->reschedule_cb)
720 { 1141 {
1142 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1143 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1144 downheap ((WT *)periodics, periodiccnt, 0);
1145 }
1146 else if (w->interval)
1147 {
721 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1148 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
722 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1149 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
723 downheap ((WT *)periodics, periodiccnt, 0); 1150 downheap ((WT *)periodics, periodiccnt, 0);
724 } 1151 }
725 else 1152 else
726 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1153 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
727 1154
728 event (EV_A_ (W)w, EV_PERIODIC); 1155 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
729 } 1156 }
730} 1157}
731 1158
732static void 1159static void noinline
733periodics_reschedule (EV_P) 1160periodics_reschedule (EV_P)
734{ 1161{
735 int i; 1162 int i;
736 1163
737 /* adjust periodics after time jump */ 1164 /* adjust periodics after time jump */
738 for (i = 0; i < periodiccnt; ++i) 1165 for (i = 0; i < periodiccnt; ++i)
739 { 1166 {
740 struct ev_periodic *w = periodics [i]; 1167 ev_periodic *w = periodics [i];
741 1168
1169 if (w->reschedule_cb)
1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
742 if (w->interval) 1171 else if (w->interval)
743 {
744 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
745
746 if (fabs (diff) >= 1e-4)
747 {
748 ev_periodic_stop (EV_A_ w);
749 ev_periodic_start (EV_A_ w);
750
751 i = 0; /* restart loop, inefficient, but time jumps should be rare */
752 }
753 }
754 } 1173 }
755}
756 1174
757inline int 1175 /* now rebuild the heap */
1176 for (i = periodiccnt >> 1; i--; )
1177 downheap ((WT *)periodics, periodiccnt, i);
1178}
1179#endif
1180
1181int inline_size
758time_update_monotonic (EV_P) 1182time_update_monotonic (EV_P)
759{ 1183{
760 mn_now = get_clock (); 1184 mn_now = get_clock ();
761 1185
762 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
763 { 1187 {
764 rt_now = rtmn_diff + mn_now; 1188 ev_rt_now = rtmn_diff + mn_now;
765 return 0; 1189 return 0;
766 } 1190 }
767 else 1191 else
768 { 1192 {
769 now_floor = mn_now; 1193 now_floor = mn_now;
770 rt_now = ev_time (); 1194 ev_rt_now = ev_time ();
771 return 1; 1195 return 1;
772 } 1196 }
773} 1197}
774 1198
775static void 1199void inline_size
776time_update (EV_P) 1200time_update (EV_P)
777{ 1201{
778 int i; 1202 int i;
779 1203
780#if EV_USE_MONOTONIC 1204#if EV_USE_MONOTONIC
782 { 1206 {
783 if (time_update_monotonic (EV_A)) 1207 if (time_update_monotonic (EV_A))
784 { 1208 {
785 ev_tstamp odiff = rtmn_diff; 1209 ev_tstamp odiff = rtmn_diff;
786 1210
787 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
788 { 1220 {
789 rtmn_diff = rt_now - mn_now; 1221 rtmn_diff = ev_rt_now - mn_now;
790 1222
791 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
792 return; /* all is well */ 1224 return; /* all is well */
793 1225
794 rt_now = ev_time (); 1226 ev_rt_now = ev_time ();
795 mn_now = get_clock (); 1227 mn_now = get_clock ();
796 now_floor = mn_now; 1228 now_floor = mn_now;
797 } 1229 }
798 1230
1231# if EV_PERIODIC_ENABLE
799 periodics_reschedule (EV_A); 1232 periodics_reschedule (EV_A);
1233# endif
800 /* no timer adjustment, as the monotonic clock doesn't jump */ 1234 /* no timer adjustment, as the monotonic clock doesn't jump */
801 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
802 } 1236 }
803 } 1237 }
804 else 1238 else
805#endif 1239#endif
806 { 1240 {
807 rt_now = ev_time (); 1241 ev_rt_now = ev_time ();
808 1242
809 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
810 { 1244 {
1245#if EV_PERIODIC_ENABLE
811 periodics_reschedule (EV_A); 1246 periodics_reschedule (EV_A);
1247#endif
812 1248
813 /* adjust timers. this is easy, as the offset is the same for all */ 1249 /* adjust timers. this is easy, as the offset is the same for all */
814 for (i = 0; i < timercnt; ++i) 1250 for (i = 0; i < timercnt; ++i)
815 timers [i]->at += rt_now - mn_now; 1251 ((WT)timers [i])->at += ev_rt_now - mn_now;
816 } 1252 }
817 1253
818 mn_now = rt_now; 1254 mn_now = ev_rt_now;
819 } 1255 }
820} 1256}
821 1257
822void 1258void
823ev_ref (EV_P) 1259ev_ref (EV_P)
834static int loop_done; 1270static int loop_done;
835 1271
836void 1272void
837ev_loop (EV_P_ int flags) 1273ev_loop (EV_P_ int flags)
838{ 1274{
839 double block;
840 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1275 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1276 ? EVUNLOOP_ONE
1277 : EVUNLOOP_CANCEL;
841 1278
842 do 1279 while (activecnt)
843 { 1280 {
844 /* queue check watchers (and execute them) */ 1281 /* queue check watchers (and execute them) */
845 if (expect_false (preparecnt)) 1282 if (expect_false (preparecnt))
846 { 1283 {
847 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1284 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
848 call_pending (EV_A); 1285 call_pending (EV_A);
849 } 1286 }
850 1287
1288 /* we might have forked, so reify kernel state if necessary */
1289 if (expect_false (postfork))
1290 loop_fork (EV_A);
1291
851 /* update fd-related kernel structures */ 1292 /* update fd-related kernel structures */
852 fd_reify (EV_A); 1293 fd_reify (EV_A);
853 1294
854 /* calculate blocking time */ 1295 /* calculate blocking time */
1296 {
1297 double block;
855 1298
856 /* we only need this for !monotonic clockor timers, but as we basically 1299 if (flags & EVLOOP_NONBLOCK || idlecnt)
857 always have timers, we just calculate it always */ 1300 block = 0.; /* do not block at all */
1301 else
1302 {
1303 /* update time to cancel out callback processing overhead */
858#if EV_USE_MONOTONIC 1304#if EV_USE_MONOTONIC
859 if (expect_true (have_monotonic)) 1305 if (expect_true (have_monotonic))
860 time_update_monotonic (EV_A); 1306 time_update_monotonic (EV_A);
861 else 1307 else
862#endif 1308#endif
863 { 1309 {
864 rt_now = ev_time (); 1310 ev_rt_now = ev_time ();
865 mn_now = rt_now; 1311 mn_now = ev_rt_now;
866 } 1312 }
867 1313
868 if (flags & EVLOOP_NONBLOCK || idlecnt)
869 block = 0.;
870 else
871 {
872 block = MAX_BLOCKTIME; 1314 block = MAX_BLOCKTIME;
873 1315
874 if (timercnt) 1316 if (timercnt)
875 { 1317 {
876 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1318 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
877 if (block > to) block = to; 1319 if (block > to) block = to;
878 } 1320 }
879 1321
1322#if EV_PERIODIC_ENABLE
880 if (periodiccnt) 1323 if (periodiccnt)
881 { 1324 {
882 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1325 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
883 if (block > to) block = to; 1326 if (block > to) block = to;
884 } 1327 }
1328#endif
885 1329
886 if (block < 0.) block = 0.; 1330 if (expect_false (block < 0.)) block = 0.;
887 } 1331 }
888 1332
889 method_poll (EV_A_ block); 1333 backend_poll (EV_A_ block);
1334 }
890 1335
891 /* update rt_now, do magic */ 1336 /* update ev_rt_now, do magic */
892 time_update (EV_A); 1337 time_update (EV_A);
893 1338
894 /* queue pending timers and reschedule them */ 1339 /* queue pending timers and reschedule them */
895 timers_reify (EV_A); /* relative timers called last */ 1340 timers_reify (EV_A); /* relative timers called last */
1341#if EV_PERIODIC_ENABLE
896 periodics_reify (EV_A); /* absolute timers called first */ 1342 periodics_reify (EV_A); /* absolute timers called first */
1343#endif
897 1344
898 /* queue idle watchers unless io or timers are pending */ 1345 /* queue idle watchers unless other events are pending */
899 if (!pendingcnt) 1346 if (idlecnt && !any_pending (EV_A))
900 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1347 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
901 1348
902 /* queue check watchers, to be executed first */ 1349 /* queue check watchers, to be executed first */
903 if (checkcnt) 1350 if (expect_false (checkcnt))
904 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1351 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
905 1352
906 call_pending (EV_A); 1353 call_pending (EV_A);
907 }
908 while (activecnt && !loop_done);
909 1354
910 if (loop_done != 2) 1355 if (expect_false (loop_done))
911 loop_done = 0; 1356 break;
1357 }
1358
1359 if (loop_done == EVUNLOOP_ONE)
1360 loop_done = EVUNLOOP_CANCEL;
912} 1361}
913 1362
914void 1363void
915ev_unloop (EV_P_ int how) 1364ev_unloop (EV_P_ int how)
916{ 1365{
917 loop_done = how; 1366 loop_done = how;
918} 1367}
919 1368
920/*****************************************************************************/ 1369/*****************************************************************************/
921 1370
922inline void 1371void inline_size
923wlist_add (WL *head, WL elem) 1372wlist_add (WL *head, WL elem)
924{ 1373{
925 elem->next = *head; 1374 elem->next = *head;
926 *head = elem; 1375 *head = elem;
927} 1376}
928 1377
929inline void 1378void inline_size
930wlist_del (WL *head, WL elem) 1379wlist_del (WL *head, WL elem)
931{ 1380{
932 while (*head) 1381 while (*head)
933 { 1382 {
934 if (*head == elem) 1383 if (*head == elem)
939 1388
940 head = &(*head)->next; 1389 head = &(*head)->next;
941 } 1390 }
942} 1391}
943 1392
944inline void 1393void inline_speed
945ev_clear_pending (EV_P_ W w) 1394ev_clear_pending (EV_P_ W w)
946{ 1395{
947 if (w->pending) 1396 if (w->pending)
948 { 1397 {
949 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1398 pendings [ABSPRI (w)][w->pending - 1].w = 0;
950 w->pending = 0; 1399 w->pending = 0;
951 } 1400 }
952} 1401}
953 1402
954inline void 1403void inline_speed
955ev_start (EV_P_ W w, int active) 1404ev_start (EV_P_ W w, int active)
956{ 1405{
957 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1406 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
958 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1407 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
959 1408
960 w->active = active; 1409 w->active = active;
961 ev_ref (EV_A); 1410 ev_ref (EV_A);
962} 1411}
963 1412
964inline void 1413void inline_size
965ev_stop (EV_P_ W w) 1414ev_stop (EV_P_ W w)
966{ 1415{
967 ev_unref (EV_A); 1416 ev_unref (EV_A);
968 w->active = 0; 1417 w->active = 0;
969} 1418}
970 1419
971/*****************************************************************************/ 1420/*****************************************************************************/
972 1421
973void 1422void
974ev_io_start (EV_P_ struct ev_io *w) 1423ev_io_start (EV_P_ ev_io *w)
975{ 1424{
976 int fd = w->fd; 1425 int fd = w->fd;
977 1426
978 if (ev_is_active (w)) 1427 if (expect_false (ev_is_active (w)))
979 return; 1428 return;
980 1429
981 assert (("ev_io_start called with negative fd", fd >= 0)); 1430 assert (("ev_io_start called with negative fd", fd >= 0));
982 1431
983 ev_start (EV_A_ (W)w, 1); 1432 ev_start (EV_A_ (W)w, 1);
984 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1433 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
985 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1434 wlist_add ((WL *)&anfds[fd].head, (WL)w);
986 1435
987 fd_change (EV_A_ fd); 1436 fd_change (EV_A_ fd);
988} 1437}
989 1438
990void 1439void
991ev_io_stop (EV_P_ struct ev_io *w) 1440ev_io_stop (EV_P_ ev_io *w)
992{ 1441{
993 ev_clear_pending (EV_A_ (W)w); 1442 ev_clear_pending (EV_A_ (W)w);
994 if (!ev_is_active (w)) 1443 if (expect_false (!ev_is_active (w)))
995 return; 1444 return;
1445
1446 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
996 1447
997 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1448 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
998 ev_stop (EV_A_ (W)w); 1449 ev_stop (EV_A_ (W)w);
999 1450
1000 fd_change (EV_A_ w->fd); 1451 fd_change (EV_A_ w->fd);
1001} 1452}
1002 1453
1003void 1454void
1004ev_timer_start (EV_P_ struct ev_timer *w) 1455ev_timer_start (EV_P_ ev_timer *w)
1005{ 1456{
1006 if (ev_is_active (w)) 1457 if (expect_false (ev_is_active (w)))
1007 return; 1458 return;
1008 1459
1009 w->at += mn_now; 1460 ((WT)w)->at += mn_now;
1010 1461
1011 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1462 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1012 1463
1013 ev_start (EV_A_ (W)w, ++timercnt); 1464 ev_start (EV_A_ (W)w, ++timercnt);
1014 array_needsize (timers, timermax, timercnt, ); 1465 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1015 timers [timercnt - 1] = w; 1466 timers [timercnt - 1] = w;
1016 upheap ((WT *)timers, timercnt - 1); 1467 upheap ((WT *)timers, timercnt - 1);
1017}
1018 1468
1469 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1470}
1471
1019void 1472void
1020ev_timer_stop (EV_P_ struct ev_timer *w) 1473ev_timer_stop (EV_P_ ev_timer *w)
1021{ 1474{
1022 ev_clear_pending (EV_A_ (W)w); 1475 ev_clear_pending (EV_A_ (W)w);
1023 if (!ev_is_active (w)) 1476 if (expect_false (!ev_is_active (w)))
1024 return; 1477 return;
1025 1478
1479 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1480
1026 if (w->active < timercnt--) 1481 if (expect_true (((W)w)->active < timercnt--))
1027 { 1482 {
1028 timers [w->active - 1] = timers [timercnt]; 1483 timers [((W)w)->active - 1] = timers [timercnt];
1029 downheap ((WT *)timers, timercnt, w->active - 1); 1484 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1030 } 1485 }
1031 1486
1032 w->at = w->repeat; 1487 ((WT)w)->at -= mn_now;
1033 1488
1034 ev_stop (EV_A_ (W)w); 1489 ev_stop (EV_A_ (W)w);
1035} 1490}
1036 1491
1037void 1492void
1038ev_timer_again (EV_P_ struct ev_timer *w) 1493ev_timer_again (EV_P_ ev_timer *w)
1039{ 1494{
1040 if (ev_is_active (w)) 1495 if (ev_is_active (w))
1041 { 1496 {
1042 if (w->repeat) 1497 if (w->repeat)
1043 { 1498 {
1044 w->at = mn_now + w->repeat; 1499 ((WT)w)->at = mn_now + w->repeat;
1045 downheap ((WT *)timers, timercnt, w->active - 1); 1500 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1046 } 1501 }
1047 else 1502 else
1048 ev_timer_stop (EV_A_ w); 1503 ev_timer_stop (EV_A_ w);
1049 } 1504 }
1050 else if (w->repeat) 1505 else if (w->repeat)
1506 {
1507 w->at = w->repeat;
1051 ev_timer_start (EV_A_ w); 1508 ev_timer_start (EV_A_ w);
1509 }
1052} 1510}
1053 1511
1512#if EV_PERIODIC_ENABLE
1054void 1513void
1055ev_periodic_start (EV_P_ struct ev_periodic *w) 1514ev_periodic_start (EV_P_ ev_periodic *w)
1056{ 1515{
1057 if (ev_is_active (w)) 1516 if (expect_false (ev_is_active (w)))
1058 return; 1517 return;
1059 1518
1519 if (w->reschedule_cb)
1520 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1521 else if (w->interval)
1522 {
1060 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1523 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1061
1062 /* this formula differs from the one in periodic_reify because we do not always round up */ 1524 /* this formula differs from the one in periodic_reify because we do not always round up */
1063 if (w->interval)
1064 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1525 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1526 }
1065 1527
1066 ev_start (EV_A_ (W)w, ++periodiccnt); 1528 ev_start (EV_A_ (W)w, ++periodiccnt);
1067 array_needsize (periodics, periodicmax, periodiccnt, ); 1529 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1068 periodics [periodiccnt - 1] = w; 1530 periodics [periodiccnt - 1] = w;
1069 upheap ((WT *)periodics, periodiccnt - 1); 1531 upheap ((WT *)periodics, periodiccnt - 1);
1070}
1071 1532
1533 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1534}
1535
1072void 1536void
1073ev_periodic_stop (EV_P_ struct ev_periodic *w) 1537ev_periodic_stop (EV_P_ ev_periodic *w)
1074{ 1538{
1075 ev_clear_pending (EV_A_ (W)w); 1539 ev_clear_pending (EV_A_ (W)w);
1076 if (!ev_is_active (w)) 1540 if (expect_false (!ev_is_active (w)))
1077 return; 1541 return;
1078 1542
1543 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1544
1079 if (w->active < periodiccnt--) 1545 if (expect_true (((W)w)->active < periodiccnt--))
1080 { 1546 {
1081 periodics [w->active - 1] = periodics [periodiccnt]; 1547 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1082 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1548 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1549 }
1550
1551 ev_stop (EV_A_ (W)w);
1552}
1553
1554void
1555ev_periodic_again (EV_P_ ev_periodic *w)
1556{
1557 /* TODO: use adjustheap and recalculation */
1558 ev_periodic_stop (EV_A_ w);
1559 ev_periodic_start (EV_A_ w);
1560}
1561#endif
1562
1563void
1564ev_idle_start (EV_P_ ev_idle *w)
1565{
1566 if (expect_false (ev_is_active (w)))
1567 return;
1568
1569 ev_start (EV_A_ (W)w, ++idlecnt);
1570 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1571 idles [idlecnt - 1] = w;
1572}
1573
1574void
1575ev_idle_stop (EV_P_ ev_idle *w)
1576{
1577 ev_clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w)))
1579 return;
1580
1581 {
1582 int active = ((W)w)->active;
1583 idles [active - 1] = idles [--idlecnt];
1584 ((W)idles [active - 1])->active = active;
1083 } 1585 }
1586
1587 ev_stop (EV_A_ (W)w);
1588}
1589
1590void
1591ev_prepare_start (EV_P_ ev_prepare *w)
1592{
1593 if (expect_false (ev_is_active (w)))
1594 return;
1595
1596 ev_start (EV_A_ (W)w, ++preparecnt);
1597 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1598 prepares [preparecnt - 1] = w;
1599}
1600
1601void
1602ev_prepare_stop (EV_P_ ev_prepare *w)
1603{
1604 ev_clear_pending (EV_A_ (W)w);
1605 if (expect_false (!ev_is_active (w)))
1606 return;
1607
1608 {
1609 int active = ((W)w)->active;
1610 prepares [active - 1] = prepares [--preparecnt];
1611 ((W)prepares [active - 1])->active = active;
1612 }
1613
1614 ev_stop (EV_A_ (W)w);
1615}
1616
1617void
1618ev_check_start (EV_P_ ev_check *w)
1619{
1620 if (expect_false (ev_is_active (w)))
1621 return;
1622
1623 ev_start (EV_A_ (W)w, ++checkcnt);
1624 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1625 checks [checkcnt - 1] = w;
1626}
1627
1628void
1629ev_check_stop (EV_P_ ev_check *w)
1630{
1631 ev_clear_pending (EV_A_ (W)w);
1632 if (expect_false (!ev_is_active (w)))
1633 return;
1634
1635 {
1636 int active = ((W)w)->active;
1637 checks [active - 1] = checks [--checkcnt];
1638 ((W)checks [active - 1])->active = active;
1639 }
1084 1640
1085 ev_stop (EV_A_ (W)w); 1641 ev_stop (EV_A_ (W)w);
1086} 1642}
1087 1643
1088#ifndef SA_RESTART 1644#ifndef SA_RESTART
1089# define SA_RESTART 0 1645# define SA_RESTART 0
1090#endif 1646#endif
1091 1647
1092void 1648void
1093ev_signal_start (EV_P_ struct ev_signal *w) 1649ev_signal_start (EV_P_ ev_signal *w)
1094{ 1650{
1651#if EV_MULTIPLICITY
1652 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1653#endif
1095 if (ev_is_active (w)) 1654 if (expect_false (ev_is_active (w)))
1096 return; 1655 return;
1097 1656
1098 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1657 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1099 1658
1100 ev_start (EV_A_ (W)w, 1); 1659 ev_start (EV_A_ (W)w, 1);
1101 array_needsize (signals, signalmax, w->signum, signals_init); 1660 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1102 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1661 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1103 1662
1104 if (!w->next) 1663 if (!((WL)w)->next)
1105 { 1664 {
1665#if _WIN32
1666 signal (w->signum, sighandler);
1667#else
1106 struct sigaction sa; 1668 struct sigaction sa;
1107 sa.sa_handler = sighandler; 1669 sa.sa_handler = sighandler;
1108 sigfillset (&sa.sa_mask); 1670 sigfillset (&sa.sa_mask);
1109 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1671 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1110 sigaction (w->signum, &sa, 0); 1672 sigaction (w->signum, &sa, 0);
1673#endif
1111 } 1674 }
1112} 1675}
1113 1676
1114void 1677void
1115ev_signal_stop (EV_P_ struct ev_signal *w) 1678ev_signal_stop (EV_P_ ev_signal *w)
1116{ 1679{
1117 ev_clear_pending (EV_A_ (W)w); 1680 ev_clear_pending (EV_A_ (W)w);
1118 if (!ev_is_active (w)) 1681 if (expect_false (!ev_is_active (w)))
1119 return; 1682 return;
1120 1683
1121 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1684 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1122 ev_stop (EV_A_ (W)w); 1685 ev_stop (EV_A_ (W)w);
1123 1686
1124 if (!signals [w->signum - 1].head) 1687 if (!signals [w->signum - 1].head)
1125 signal (w->signum, SIG_DFL); 1688 signal (w->signum, SIG_DFL);
1126} 1689}
1127 1690
1128void 1691void
1129ev_idle_start (EV_P_ struct ev_idle *w)
1130{
1131 if (ev_is_active (w))
1132 return;
1133
1134 ev_start (EV_A_ (W)w, ++idlecnt);
1135 array_needsize (idles, idlemax, idlecnt, );
1136 idles [idlecnt - 1] = w;
1137}
1138
1139void
1140ev_idle_stop (EV_P_ struct ev_idle *w)
1141{
1142 ev_clear_pending (EV_A_ (W)w);
1143 if (ev_is_active (w))
1144 return;
1145
1146 idles [w->active - 1] = idles [--idlecnt];
1147 ev_stop (EV_A_ (W)w);
1148}
1149
1150void
1151ev_prepare_start (EV_P_ struct ev_prepare *w)
1152{
1153 if (ev_is_active (w))
1154 return;
1155
1156 ev_start (EV_A_ (W)w, ++preparecnt);
1157 array_needsize (prepares, preparemax, preparecnt, );
1158 prepares [preparecnt - 1] = w;
1159}
1160
1161void
1162ev_prepare_stop (EV_P_ struct ev_prepare *w)
1163{
1164 ev_clear_pending (EV_A_ (W)w);
1165 if (ev_is_active (w))
1166 return;
1167
1168 prepares [w->active - 1] = prepares [--preparecnt];
1169 ev_stop (EV_A_ (W)w);
1170}
1171
1172void
1173ev_check_start (EV_P_ struct ev_check *w)
1174{
1175 if (ev_is_active (w))
1176 return;
1177
1178 ev_start (EV_A_ (W)w, ++checkcnt);
1179 array_needsize (checks, checkmax, checkcnt, );
1180 checks [checkcnt - 1] = w;
1181}
1182
1183void
1184ev_check_stop (EV_P_ struct ev_check *w)
1185{
1186 ev_clear_pending (EV_A_ (W)w);
1187 if (ev_is_active (w))
1188 return;
1189
1190 checks [w->active - 1] = checks [--checkcnt];
1191 ev_stop (EV_A_ (W)w);
1192}
1193
1194void
1195ev_child_start (EV_P_ struct ev_child *w) 1692ev_child_start (EV_P_ ev_child *w)
1196{ 1693{
1694#if EV_MULTIPLICITY
1695 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1696#endif
1197 if (ev_is_active (w)) 1697 if (expect_false (ev_is_active (w)))
1198 return; 1698 return;
1199 1699
1200 ev_start (EV_A_ (W)w, 1); 1700 ev_start (EV_A_ (W)w, 1);
1201 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1701 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1202} 1702}
1203 1703
1204void 1704void
1205ev_child_stop (EV_P_ struct ev_child *w) 1705ev_child_stop (EV_P_ ev_child *w)
1206{ 1706{
1207 ev_clear_pending (EV_A_ (W)w); 1707 ev_clear_pending (EV_A_ (W)w);
1208 if (ev_is_active (w)) 1708 if (expect_false (!ev_is_active (w)))
1209 return; 1709 return;
1210 1710
1211 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1711 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1212 ev_stop (EV_A_ (W)w); 1712 ev_stop (EV_A_ (W)w);
1213} 1713}
1214 1714
1715#if EV_EMBED_ENABLE
1716void noinline
1717ev_embed_sweep (EV_P_ ev_embed *w)
1718{
1719 ev_loop (w->loop, EVLOOP_NONBLOCK);
1720}
1721
1722static void
1723embed_cb (EV_P_ ev_io *io, int revents)
1724{
1725 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1726
1727 if (ev_cb (w))
1728 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1729 else
1730 ev_embed_sweep (loop, w);
1731}
1732
1733void
1734ev_embed_start (EV_P_ ev_embed *w)
1735{
1736 if (expect_false (ev_is_active (w)))
1737 return;
1738
1739 {
1740 struct ev_loop *loop = w->loop;
1741 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1742 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1743 }
1744
1745 ev_set_priority (&w->io, ev_priority (w));
1746 ev_io_start (EV_A_ &w->io);
1747
1748 ev_start (EV_A_ (W)w, 1);
1749}
1750
1751void
1752ev_embed_stop (EV_P_ ev_embed *w)
1753{
1754 ev_clear_pending (EV_A_ (W)w);
1755 if (expect_false (!ev_is_active (w)))
1756 return;
1757
1758 ev_io_stop (EV_A_ &w->io);
1759
1760 ev_stop (EV_A_ (W)w);
1761}
1762#endif
1763
1764#if EV_STAT_ENABLE
1765
1766# ifdef _WIN32
1767# define lstat(a,b) stat(a,b)
1768# endif
1769
1770#define DEF_STAT_INTERVAL 5.0074891
1771#define MIN_STAT_INTERVAL 0.1074891
1772
1773void
1774ev_stat_stat (EV_P_ ev_stat *w)
1775{
1776 if (lstat (w->path, &w->attr) < 0)
1777 w->attr.st_nlink = 0;
1778 else if (!w->attr.st_nlink)
1779 w->attr.st_nlink = 1;
1780}
1781
1782static void
1783stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1784{
1785 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1786
1787 /* we copy this here each the time so that */
1788 /* prev has the old value when the callback gets invoked */
1789 w->prev = w->attr;
1790 ev_stat_stat (EV_A_ w);
1791
1792 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1793 ev_feed_event (EV_A_ w, EV_STAT);
1794}
1795
1796void
1797ev_stat_start (EV_P_ ev_stat *w)
1798{
1799 if (expect_false (ev_is_active (w)))
1800 return;
1801
1802 /* since we use memcmp, we need to clear any padding data etc. */
1803 memset (&w->prev, 0, sizeof (ev_statdata));
1804 memset (&w->attr, 0, sizeof (ev_statdata));
1805
1806 ev_stat_stat (EV_A_ w);
1807
1808 if (w->interval < MIN_STAT_INTERVAL)
1809 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1810
1811 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1812 ev_set_priority (&w->timer, ev_priority (w));
1813 ev_timer_start (EV_A_ &w->timer);
1814
1815 ev_start (EV_A_ (W)w, 1);
1816}
1817
1818void
1819ev_stat_stop (EV_P_ ev_stat *w)
1820{
1821 ev_clear_pending (EV_A_ (W)w);
1822 if (expect_false (!ev_is_active (w)))
1823 return;
1824
1825 ev_timer_stop (EV_A_ &w->timer);
1826
1827 ev_stop (EV_A_ (W)w);
1828}
1829#endif
1830
1215/*****************************************************************************/ 1831/*****************************************************************************/
1216 1832
1217struct ev_once 1833struct ev_once
1218{ 1834{
1219 struct ev_io io; 1835 ev_io io;
1220 struct ev_timer to; 1836 ev_timer to;
1221 void (*cb)(int revents, void *arg); 1837 void (*cb)(int revents, void *arg);
1222 void *arg; 1838 void *arg;
1223}; 1839};
1224 1840
1225static void 1841static void
1228 void (*cb)(int revents, void *arg) = once->cb; 1844 void (*cb)(int revents, void *arg) = once->cb;
1229 void *arg = once->arg; 1845 void *arg = once->arg;
1230 1846
1231 ev_io_stop (EV_A_ &once->io); 1847 ev_io_stop (EV_A_ &once->io);
1232 ev_timer_stop (EV_A_ &once->to); 1848 ev_timer_stop (EV_A_ &once->to);
1233 free (once); 1849 ev_free (once);
1234 1850
1235 cb (revents, arg); 1851 cb (revents, arg);
1236} 1852}
1237 1853
1238static void 1854static void
1239once_cb_io (EV_P_ struct ev_io *w, int revents) 1855once_cb_io (EV_P_ ev_io *w, int revents)
1240{ 1856{
1241 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1857 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1242} 1858}
1243 1859
1244static void 1860static void
1245once_cb_to (EV_P_ struct ev_timer *w, int revents) 1861once_cb_to (EV_P_ ev_timer *w, int revents)
1246{ 1862{
1247 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1863 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1248} 1864}
1249 1865
1250void 1866void
1251ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1867ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1252{ 1868{
1253 struct ev_once *once = malloc (sizeof (struct ev_once)); 1869 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1254 1870
1255 if (!once) 1871 if (expect_false (!once))
1872 {
1256 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1873 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1257 else 1874 return;
1258 { 1875 }
1876
1259 once->cb = cb; 1877 once->cb = cb;
1260 once->arg = arg; 1878 once->arg = arg;
1261 1879
1262 ev_watcher_init (&once->io, once_cb_io); 1880 ev_init (&once->io, once_cb_io);
1263 if (fd >= 0) 1881 if (fd >= 0)
1264 { 1882 {
1265 ev_io_set (&once->io, fd, events); 1883 ev_io_set (&once->io, fd, events);
1266 ev_io_start (EV_A_ &once->io); 1884 ev_io_start (EV_A_ &once->io);
1267 } 1885 }
1268 1886
1269 ev_watcher_init (&once->to, once_cb_to); 1887 ev_init (&once->to, once_cb_to);
1270 if (timeout >= 0.) 1888 if (timeout >= 0.)
1271 { 1889 {
1272 ev_timer_set (&once->to, timeout, 0.); 1890 ev_timer_set (&once->to, timeout, 0.);
1273 ev_timer_start (EV_A_ &once->to); 1891 ev_timer_start (EV_A_ &once->to);
1274 }
1275 }
1276}
1277
1278/*****************************************************************************/
1279
1280#if 0
1281
1282struct ev_io wio;
1283
1284static void
1285sin_cb (struct ev_io *w, int revents)
1286{
1287 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1288}
1289
1290static void
1291ocb (struct ev_timer *w, int revents)
1292{
1293 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1294 ev_timer_stop (w);
1295 ev_timer_start (w);
1296}
1297
1298static void
1299scb (struct ev_signal *w, int revents)
1300{
1301 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1302 ev_io_stop (&wio);
1303 ev_io_start (&wio);
1304}
1305
1306static void
1307gcb (struct ev_signal *w, int revents)
1308{
1309 fprintf (stderr, "generic %x\n", revents);
1310
1311}
1312
1313int main (void)
1314{
1315 ev_init (0);
1316
1317 ev_io_init (&wio, sin_cb, 0, EV_READ);
1318 ev_io_start (&wio);
1319
1320 struct ev_timer t[10000];
1321
1322#if 0
1323 int i;
1324 for (i = 0; i < 10000; ++i)
1325 { 1892 }
1326 struct ev_timer *w = t + i;
1327 ev_watcher_init (w, ocb, i);
1328 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1329 ev_timer_start (w);
1330 if (drand48 () < 0.5)
1331 ev_timer_stop (w);
1332 }
1333#endif
1334
1335 struct ev_timer t1;
1336 ev_timer_init (&t1, ocb, 5, 10);
1337 ev_timer_start (&t1);
1338
1339 struct ev_signal sig;
1340 ev_signal_init (&sig, scb, SIGQUIT);
1341 ev_signal_start (&sig);
1342
1343 struct ev_check cw;
1344 ev_check_init (&cw, gcb);
1345 ev_check_start (&cw);
1346
1347 struct ev_idle iw;
1348 ev_idle_init (&iw, gcb);
1349 ev_idle_start (&iw);
1350
1351 ev_loop (0);
1352
1353 return 0;
1354} 1893}
1355 1894
1895#ifdef __cplusplus
1896}
1356#endif 1897#endif
1357 1898
1358
1359
1360

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines