ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.144 by root, Tue Nov 27 08:11:52 2007 UTC vs.
Revision 1.184 by root, Wed Dec 12 05:30:52 2007 UTC

94# else 94# else
95# define EV_USE_PORT 0 95# define EV_USE_PORT 0
96# endif 96# endif
97# endif 97# endif
98 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
99#endif 107#endif
100 108
101#include <math.h> 109#include <math.h>
102#include <stdlib.h> 110#include <stdlib.h>
103#include <fcntl.h> 111#include <fcntl.h>
109#include <errno.h> 117#include <errno.h>
110#include <sys/types.h> 118#include <sys/types.h>
111#include <time.h> 119#include <time.h>
112 120
113#include <signal.h> 121#include <signal.h>
122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
114 128
115#ifndef _WIN32 129#ifndef _WIN32
116# include <sys/time.h> 130# include <sys/time.h>
117# include <sys/wait.h> 131# include <sys/wait.h>
118# include <unistd.h> 132# include <unistd.h>
156 170
157#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 172# define EV_USE_PORT 0
159#endif 173#endif
160 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
161/**/ 195/**/
162 196
163#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
172 206
173#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 208# include <winsock.h>
175#endif 209#endif
176 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
177/**/ 219/**/
220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 230
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189 234
190#if __GNUC__ >= 3 235#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline)) 237# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
200#else 238#else
201# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
202# define inline_speed static
203# define inline_minimal static
204# define noinline 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
205#endif 244#endif
206 245
207#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
208#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
209 255
210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
211#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
212 258
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
215 261
216typedef ev_watcher *W; 262typedef ev_watcher *W;
217typedef ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
218typedef ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
254ev_set_allocator (void *(*cb)(void *ptr, long size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
255{ 301{
256 alloc = cb; 302 alloc = cb;
257} 303}
258 304
259static void * 305inline_speed void *
260ev_realloc (void *ptr, long size) 306ev_realloc (void *ptr, long size)
261{ 307{
262 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
263 309
264 if (!ptr && size) 310 if (!ptr && size)
288typedef struct 334typedef struct
289{ 335{
290 W w; 336 W w;
291 int events; 337 int events;
292} ANPENDING; 338} ANPENDING;
339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
293 346
294#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
295 348
296 struct ev_loop 349 struct ev_loop
297 { 350 {
354{ 407{
355 return ev_rt_now; 408 return ev_rt_now;
356} 409}
357#endif 410#endif
358 411
359#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
360 439
361#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
362 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
363 { \ 442 { \
364 int newcnt = cur; \ 443 int ocur_ = (cur); \
365 do \ 444 (base) = (type *)array_realloc \
366 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
367 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
368 } \
369 while ((cnt) > newcnt); \
370 \
371 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
372 init (base + cur, newcnt - cur); \
373 cur = newcnt; \
374 } 447 }
375 448
449#if 0
376#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
377 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
378 { \ 452 { \
379 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
382 } 456 }
457#endif
383 458
384#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
386 461
387/*****************************************************************************/ 462/*****************************************************************************/
388 463
389void noinline 464void noinline
390ev_feed_event (EV_P_ void *w, int revents) 465ev_feed_event (EV_P_ void *w, int revents)
391{ 466{
392 W w_ = (W)w; 467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
393 469
394 if (expect_false (w_->pending)) 470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
395 { 473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 477 pendings [pri][w_->pending - 1].events = revents;
397 return;
398 } 478 }
399
400 w_->pending = ++pendingcnt [ABSPRI (w_)];
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404} 479}
405 480
406void inline_size 481void inline_speed
407queue_events (EV_P_ W *events, int eventcnt, int type) 482queue_events (EV_P_ W *events, int eventcnt, int type)
408{ 483{
409 int i; 484 int i;
410 485
411 for (i = 0; i < eventcnt; ++i) 486 for (i = 0; i < eventcnt; ++i)
443} 518}
444 519
445void 520void
446ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
447{ 522{
523 if (fd >= 0 && fd < anfdmax)
448 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
449} 525}
450 526
451void inline_size 527void inline_size
452fd_reify (EV_P) 528fd_reify (EV_P)
453{ 529{
457 { 533 {
458 int fd = fdchanges [i]; 534 int fd = fdchanges [i];
459 ANFD *anfd = anfds + fd; 535 ANFD *anfd = anfds + fd;
460 ev_io *w; 536 ev_io *w;
461 537
462 int events = 0; 538 unsigned char events = 0;
463 539
464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
465 events |= w->events; 541 events |= (unsigned char)w->events;
466 542
467#if EV_SELECT_IS_WINSOCKET 543#if EV_SELECT_IS_WINSOCKET
468 if (events) 544 if (events)
469 { 545 {
470 unsigned long argp; 546 unsigned long argp;
471 anfd->handle = _get_osfhandle (fd); 547 anfd->handle = _get_osfhandle (fd);
472 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
473 } 549 }
474#endif 550#endif
475 551
552 {
553 unsigned char o_events = anfd->events;
554 unsigned char o_reify = anfd->reify;
555
476 anfd->reify = 0; 556 anfd->reify = 0;
477
478 backend_modify (EV_A_ fd, anfd->events, events);
479 anfd->events = events; 557 anfd->events = events;
558
559 if (o_events != events || o_reify & EV_IOFDSET)
560 backend_modify (EV_A_ fd, o_events, events);
561 }
480 } 562 }
481 563
482 fdchangecnt = 0; 564 fdchangecnt = 0;
483} 565}
484 566
485void inline_size 567void inline_size
486fd_change (EV_P_ int fd) 568fd_change (EV_P_ int fd, int flags)
487{ 569{
488 if (expect_false (anfds [fd].reify)) 570 unsigned char reify = anfds [fd].reify;
489 return;
490
491 anfds [fd].reify = 1; 571 anfds [fd].reify |= flags;
492 572
573 if (expect_true (!reify))
574 {
493 ++fdchangecnt; 575 ++fdchangecnt;
494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 576 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
495 fdchanges [fdchangecnt - 1] = fd; 577 fdchanges [fdchangecnt - 1] = fd;
578 }
496} 579}
497 580
498void inline_speed 581void inline_speed
499fd_kill (EV_P_ int fd) 582fd_kill (EV_P_ int fd)
500{ 583{
547static void noinline 630static void noinline
548fd_rearm_all (EV_P) 631fd_rearm_all (EV_P)
549{ 632{
550 int fd; 633 int fd;
551 634
552 /* this should be highly optimised to not do anything but set a flag */
553 for (fd = 0; fd < anfdmax; ++fd) 635 for (fd = 0; fd < anfdmax; ++fd)
554 if (anfds [fd].events) 636 if (anfds [fd].events)
555 { 637 {
556 anfds [fd].events = 0; 638 anfds [fd].events = 0;
557 fd_change (EV_A_ fd); 639 fd_change (EV_A_ fd, EV_IOFDSET | 1);
558 } 640 }
559} 641}
560 642
561/*****************************************************************************/ 643/*****************************************************************************/
562 644
563void inline_speed 645void inline_speed
564upheap (WT *heap, int k) 646upheap (WT *heap, int k)
565{ 647{
566 WT w = heap [k]; 648 WT w = heap [k];
567 649
568 while (k && heap [k >> 1]->at > w->at) 650 while (k)
569 { 651 {
652 int p = (k - 1) >> 1;
653
654 if (heap [p]->at <= w->at)
655 break;
656
570 heap [k] = heap [k >> 1]; 657 heap [k] = heap [p];
571 ((W)heap [k])->active = k + 1; 658 ((W)heap [k])->active = k + 1;
572 k >>= 1; 659 k = p;
573 } 660 }
574 661
575 heap [k] = w; 662 heap [k] = w;
576 ((W)heap [k])->active = k + 1; 663 ((W)heap [k])->active = k + 1;
577
578} 664}
579 665
580void inline_speed 666void inline_speed
581downheap (WT *heap, int N, int k) 667downheap (WT *heap, int N, int k)
582{ 668{
583 WT w = heap [k]; 669 WT w = heap [k];
584 670
585 while (k < (N >> 1)) 671 for (;;)
586 { 672 {
587 int j = k << 1; 673 int c = (k << 1) + 1;
588 674
589 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 675 if (c >= N)
590 ++j;
591
592 if (w->at <= heap [j]->at)
593 break; 676 break;
594 677
678 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
679 ? 1 : 0;
680
681 if (w->at <= heap [c]->at)
682 break;
683
595 heap [k] = heap [j]; 684 heap [k] = heap [c];
596 ((W)heap [k])->active = k + 1; 685 ((W)heap [k])->active = k + 1;
686
597 k = j; 687 k = c;
598 } 688 }
599 689
600 heap [k] = w; 690 heap [k] = w;
601 ((W)heap [k])->active = k + 1; 691 ((W)heap [k])->active = k + 1;
602} 692}
684 for (signum = signalmax; signum--; ) 774 for (signum = signalmax; signum--; )
685 if (signals [signum].gotsig) 775 if (signals [signum].gotsig)
686 ev_feed_signal_event (EV_A_ signum + 1); 776 ev_feed_signal_event (EV_A_ signum + 1);
687} 777}
688 778
689void inline_size 779void inline_speed
690fd_intern (int fd) 780fd_intern (int fd)
691{ 781{
692#ifdef _WIN32 782#ifdef _WIN32
693 int arg = 1; 783 int arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 784 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
709 ev_unref (EV_A); /* child watcher should not keep loop alive */ 799 ev_unref (EV_A); /* child watcher should not keep loop alive */
710} 800}
711 801
712/*****************************************************************************/ 802/*****************************************************************************/
713 803
714static ev_child *childs [PID_HASHSIZE]; 804static WL childs [EV_PID_HASHSIZE];
715 805
716#ifndef _WIN32 806#ifndef _WIN32
717 807
718static ev_signal childev; 808static ev_signal childev;
719 809
720void inline_speed 810void inline_speed
721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 811child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
722{ 812{
723 ev_child *w; 813 ev_child *w;
724 814
725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 815 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
726 if (w->pid == pid || !w->pid) 816 if (w->pid == pid || !w->pid)
727 { 817 {
728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 818 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
729 w->rpid = pid; 819 w->rpid = pid;
730 w->rstatus = status; 820 w->rstatus = status;
731 ev_feed_event (EV_A_ (W)w, EV_CHILD); 821 ev_feed_event (EV_A_ (W)w, EV_CHILD);
732 } 822 }
733} 823}
734 824
735#ifndef WCONTINUED 825#ifndef WCONTINUED
751 /* make sure we are called again until all childs have been reaped */ 841 /* make sure we are called again until all childs have been reaped */
752 /* we need to do it this way so that the callback gets called before we continue */ 842 /* we need to do it this way so that the callback gets called before we continue */
753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 843 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
754 844
755 child_reap (EV_A_ sw, pid, pid, status); 845 child_reap (EV_A_ sw, pid, pid, status);
846 if (EV_PID_HASHSIZE > 1)
756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 847 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
757} 848}
758 849
759#endif 850#endif
760 851
761/*****************************************************************************/ 852/*****************************************************************************/
844ev_backend (EV_P) 935ev_backend (EV_P)
845{ 936{
846 return backend; 937 return backend;
847} 938}
848 939
849static void 940unsigned int
941ev_loop_count (EV_P)
942{
943 return loop_count;
944}
945
946static void noinline
850loop_init (EV_P_ unsigned int flags) 947loop_init (EV_P_ unsigned int flags)
851{ 948{
852 if (!backend) 949 if (!backend)
853 { 950 {
854#if EV_USE_MONOTONIC 951#if EV_USE_MONOTONIC
862 ev_rt_now = ev_time (); 959 ev_rt_now = ev_time ();
863 mn_now = get_clock (); 960 mn_now = get_clock ();
864 now_floor = mn_now; 961 now_floor = mn_now;
865 rtmn_diff = ev_rt_now - mn_now; 962 rtmn_diff = ev_rt_now - mn_now;
866 963
964 /* pid check not overridable via env */
965#ifndef _WIN32
966 if (flags & EVFLAG_FORKCHECK)
967 curpid = getpid ();
968#endif
969
867 if (!(flags & EVFLAG_NOENV) 970 if (!(flags & EVFLAG_NOENV)
868 && !enable_secure () 971 && !enable_secure ()
869 && getenv ("LIBEV_FLAGS")) 972 && getenv ("LIBEV_FLAGS"))
870 flags = atoi (getenv ("LIBEV_FLAGS")); 973 flags = atoi (getenv ("LIBEV_FLAGS"));
871 974
872 if (!(flags & 0x0000ffffUL)) 975 if (!(flags & 0x0000ffffUL))
873 flags |= ev_recommended_backends (); 976 flags |= ev_recommended_backends ();
874 977
875 backend = 0; 978 backend = 0;
979 backend_fd = -1;
980#if EV_USE_INOTIFY
981 fs_fd = -2;
982#endif
983
876#if EV_USE_PORT 984#if EV_USE_PORT
877 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 985 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
878#endif 986#endif
879#if EV_USE_KQUEUE 987#if EV_USE_KQUEUE
880 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 988 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
892 ev_init (&sigev, sigcb); 1000 ev_init (&sigev, sigcb);
893 ev_set_priority (&sigev, EV_MAXPRI); 1001 ev_set_priority (&sigev, EV_MAXPRI);
894 } 1002 }
895} 1003}
896 1004
897static void 1005static void noinline
898loop_destroy (EV_P) 1006loop_destroy (EV_P)
899{ 1007{
900 int i; 1008 int i;
1009
1010#if EV_USE_INOTIFY
1011 if (fs_fd >= 0)
1012 close (fs_fd);
1013#endif
1014
1015 if (backend_fd >= 0)
1016 close (backend_fd);
901 1017
902#if EV_USE_PORT 1018#if EV_USE_PORT
903 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1019 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
904#endif 1020#endif
905#if EV_USE_KQUEUE 1021#if EV_USE_KQUEUE
914#if EV_USE_SELECT 1030#if EV_USE_SELECT
915 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1031 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
916#endif 1032#endif
917 1033
918 for (i = NUMPRI; i--; ) 1034 for (i = NUMPRI; i--; )
1035 {
919 array_free (pending, [i]); 1036 array_free (pending, [i]);
1037#if EV_IDLE_ENABLE
1038 array_free (idle, [i]);
1039#endif
1040 }
920 1041
921 /* have to use the microsoft-never-gets-it-right macro */ 1042 /* have to use the microsoft-never-gets-it-right macro */
922 array_free (fdchange, EMPTY0); 1043 array_free (fdchange, EMPTY);
923 array_free (timer, EMPTY0); 1044 array_free (timer, EMPTY);
924#if EV_PERIODIC_ENABLE 1045#if EV_PERIODIC_ENABLE
925 array_free (periodic, EMPTY0); 1046 array_free (periodic, EMPTY);
926#endif 1047#endif
927 array_free (idle, EMPTY0);
928 array_free (prepare, EMPTY0); 1048 array_free (prepare, EMPTY);
929 array_free (check, EMPTY0); 1049 array_free (check, EMPTY);
930 1050
931 backend = 0; 1051 backend = 0;
932} 1052}
933 1053
934static void 1054void inline_size infy_fork (EV_P);
1055
1056void inline_size
935loop_fork (EV_P) 1057loop_fork (EV_P)
936{ 1058{
937#if EV_USE_PORT 1059#if EV_USE_PORT
938 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1060 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
939#endif 1061#endif
940#if EV_USE_KQUEUE 1062#if EV_USE_KQUEUE
941 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1063 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
942#endif 1064#endif
943#if EV_USE_EPOLL 1065#if EV_USE_EPOLL
944 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1066 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1067#endif
1068#if EV_USE_INOTIFY
1069 infy_fork (EV_A);
945#endif 1070#endif
946 1071
947 if (ev_is_active (&sigev)) 1072 if (ev_is_active (&sigev))
948 { 1073 {
949 /* default loop */ 1074 /* default loop */
1065 postfork = 1; 1190 postfork = 1;
1066} 1191}
1067 1192
1068/*****************************************************************************/ 1193/*****************************************************************************/
1069 1194
1070int inline_size 1195void
1071any_pending (EV_P) 1196ev_invoke (EV_P_ void *w, int revents)
1072{ 1197{
1073 int pri; 1198 EV_CB_INVOKE ((W)w, revents);
1074
1075 for (pri = NUMPRI; pri--; )
1076 if (pendingcnt [pri])
1077 return 1;
1078
1079 return 0;
1080} 1199}
1081 1200
1082void inline_speed 1201void inline_speed
1083call_pending (EV_P) 1202call_pending (EV_P)
1084{ 1203{
1089 { 1208 {
1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1209 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1091 1210
1092 if (expect_true (p->w)) 1211 if (expect_true (p->w))
1093 { 1212 {
1094 assert (("non-pending watcher on pending list", p->w->pending)); 1213 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1095 1214
1096 p->w->pending = 0; 1215 p->w->pending = 0;
1097 EV_CB_INVOKE (p->w, p->events); 1216 EV_CB_INVOKE (p->w, p->events);
1098 } 1217 }
1099 } 1218 }
1102void inline_size 1221void inline_size
1103timers_reify (EV_P) 1222timers_reify (EV_P)
1104{ 1223{
1105 while (timercnt && ((WT)timers [0])->at <= mn_now) 1224 while (timercnt && ((WT)timers [0])->at <= mn_now)
1106 { 1225 {
1107 ev_timer *w = timers [0]; 1226 ev_timer *w = (ev_timer *)timers [0];
1108 1227
1109 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1228 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1110 1229
1111 /* first reschedule or stop timer */ 1230 /* first reschedule or stop timer */
1112 if (w->repeat) 1231 if (w->repeat)
1113 { 1232 {
1114 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1233 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1115 1234
1116 ((WT)w)->at += w->repeat; 1235 ((WT)w)->at += w->repeat;
1117 if (((WT)w)->at < mn_now) 1236 if (((WT)w)->at < mn_now)
1118 ((WT)w)->at = mn_now; 1237 ((WT)w)->at = mn_now;
1119 1238
1120 downheap ((WT *)timers, timercnt, 0); 1239 downheap (timers, timercnt, 0);
1121 } 1240 }
1122 else 1241 else
1123 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1242 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 1243
1125 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1244 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1130void inline_size 1249void inline_size
1131periodics_reify (EV_P) 1250periodics_reify (EV_P)
1132{ 1251{
1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1252 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1134 { 1253 {
1135 ev_periodic *w = periodics [0]; 1254 ev_periodic *w = (ev_periodic *)periodics [0];
1136 1255
1137 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1256 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1138 1257
1139 /* first reschedule or stop timer */ 1258 /* first reschedule or stop timer */
1140 if (w->reschedule_cb) 1259 if (w->reschedule_cb)
1141 { 1260 {
1142 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1261 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1143 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1262 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1144 downheap ((WT *)periodics, periodiccnt, 0); 1263 downheap (periodics, periodiccnt, 0);
1145 } 1264 }
1146 else if (w->interval) 1265 else if (w->interval)
1147 { 1266 {
1148 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1267 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1268 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1149 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1269 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1150 downheap ((WT *)periodics, periodiccnt, 0); 1270 downheap (periodics, periodiccnt, 0);
1151 } 1271 }
1152 else 1272 else
1153 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1273 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1154 1274
1155 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1275 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1162 int i; 1282 int i;
1163 1283
1164 /* adjust periodics after time jump */ 1284 /* adjust periodics after time jump */
1165 for (i = 0; i < periodiccnt; ++i) 1285 for (i = 0; i < periodiccnt; ++i)
1166 { 1286 {
1167 ev_periodic *w = periodics [i]; 1287 ev_periodic *w = (ev_periodic *)periodics [i];
1168 1288
1169 if (w->reschedule_cb) 1289 if (w->reschedule_cb)
1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1290 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1171 else if (w->interval) 1291 else if (w->interval)
1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1292 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1173 } 1293 }
1174 1294
1175 /* now rebuild the heap */ 1295 /* now rebuild the heap */
1176 for (i = periodiccnt >> 1; i--; ) 1296 for (i = periodiccnt >> 1; i--; )
1177 downheap ((WT *)periodics, periodiccnt, i); 1297 downheap (periodics, periodiccnt, i);
1178} 1298}
1179#endif 1299#endif
1180 1300
1301#if EV_IDLE_ENABLE
1181int inline_size 1302void inline_size
1182time_update_monotonic (EV_P) 1303idle_reify (EV_P)
1183{ 1304{
1305 if (expect_false (idleall))
1306 {
1307 int pri;
1308
1309 for (pri = NUMPRI; pri--; )
1310 {
1311 if (pendingcnt [pri])
1312 break;
1313
1314 if (idlecnt [pri])
1315 {
1316 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1317 break;
1318 }
1319 }
1320 }
1321}
1322#endif
1323
1324void inline_speed
1325time_update (EV_P_ ev_tstamp max_block)
1326{
1327 int i;
1328
1329#if EV_USE_MONOTONIC
1330 if (expect_true (have_monotonic))
1331 {
1332 ev_tstamp odiff = rtmn_diff;
1333
1184 mn_now = get_clock (); 1334 mn_now = get_clock ();
1185 1335
1336 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1337 /* interpolate in the meantime */
1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1338 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1187 { 1339 {
1188 ev_rt_now = rtmn_diff + mn_now; 1340 ev_rt_now = rtmn_diff + mn_now;
1189 return 0; 1341 return;
1190 } 1342 }
1191 else 1343
1192 {
1193 now_floor = mn_now; 1344 now_floor = mn_now;
1194 ev_rt_now = ev_time (); 1345 ev_rt_now = ev_time ();
1195 return 1;
1196 }
1197}
1198 1346
1199void inline_size 1347 /* loop a few times, before making important decisions.
1200time_update (EV_P) 1348 * on the choice of "4": one iteration isn't enough,
1201{ 1349 * in case we get preempted during the calls to
1202 int i; 1350 * ev_time and get_clock. a second call is almost guaranteed
1203 1351 * to succeed in that case, though. and looping a few more times
1204#if EV_USE_MONOTONIC 1352 * doesn't hurt either as we only do this on time-jumps or
1205 if (expect_true (have_monotonic)) 1353 * in the unlikely event of having been preempted here.
1206 { 1354 */
1207 if (time_update_monotonic (EV_A)) 1355 for (i = 4; --i; )
1208 { 1356 {
1209 ev_tstamp odiff = rtmn_diff;
1210
1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
1220 {
1221 rtmn_diff = ev_rt_now - mn_now; 1357 rtmn_diff = ev_rt_now - mn_now;
1222 1358
1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1359 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1224 return; /* all is well */ 1360 return; /* all is well */
1225 1361
1226 ev_rt_now = ev_time (); 1362 ev_rt_now = ev_time ();
1227 mn_now = get_clock (); 1363 mn_now = get_clock ();
1228 now_floor = mn_now; 1364 now_floor = mn_now;
1229 } 1365 }
1230 1366
1231# if EV_PERIODIC_ENABLE 1367# if EV_PERIODIC_ENABLE
1232 periodics_reschedule (EV_A); 1368 periodics_reschedule (EV_A);
1233# endif 1369# endif
1234 /* no timer adjustment, as the monotonic clock doesn't jump */ 1370 /* no timer adjustment, as the monotonic clock doesn't jump */
1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1371 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1236 }
1237 } 1372 }
1238 else 1373 else
1239#endif 1374#endif
1240 { 1375 {
1241 ev_rt_now = ev_time (); 1376 ev_rt_now = ev_time ();
1242 1377
1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1378 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1244 { 1379 {
1245#if EV_PERIODIC_ENABLE 1380#if EV_PERIODIC_ENABLE
1246 periodics_reschedule (EV_A); 1381 periodics_reschedule (EV_A);
1247#endif 1382#endif
1248
1249 /* adjust timers. this is easy, as the offset is the same for all */ 1383 /* adjust timers. this is easy, as the offset is the same for all of them */
1250 for (i = 0; i < timercnt; ++i) 1384 for (i = 0; i < timercnt; ++i)
1251 ((WT)timers [i])->at += ev_rt_now - mn_now; 1385 ((WT)timers [i])->at += ev_rt_now - mn_now;
1252 } 1386 }
1253 1387
1254 mn_now = ev_rt_now; 1388 mn_now = ev_rt_now;
1274{ 1408{
1275 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1409 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1276 ? EVUNLOOP_ONE 1410 ? EVUNLOOP_ONE
1277 : EVUNLOOP_CANCEL; 1411 : EVUNLOOP_CANCEL;
1278 1412
1279 while (activecnt) 1413 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1414
1415 do
1280 { 1416 {
1417#ifndef _WIN32
1418 if (expect_false (curpid)) /* penalise the forking check even more */
1419 if (expect_false (getpid () != curpid))
1420 {
1421 curpid = getpid ();
1422 postfork = 1;
1423 }
1424#endif
1425
1426#if EV_FORK_ENABLE
1427 /* we might have forked, so queue fork handlers */
1428 if (expect_false (postfork))
1429 if (forkcnt)
1430 {
1431 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1432 call_pending (EV_A);
1433 }
1434#endif
1435
1281 /* queue check watchers (and execute them) */ 1436 /* queue prepare watchers (and execute them) */
1282 if (expect_false (preparecnt)) 1437 if (expect_false (preparecnt))
1283 { 1438 {
1284 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1439 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1285 call_pending (EV_A); 1440 call_pending (EV_A);
1286 } 1441 }
1287 1442
1443 if (expect_false (!activecnt))
1444 break;
1445
1288 /* we might have forked, so reify kernel state if necessary */ 1446 /* we might have forked, so reify kernel state if necessary */
1289 if (expect_false (postfork)) 1447 if (expect_false (postfork))
1290 loop_fork (EV_A); 1448 loop_fork (EV_A);
1291 1449
1292 /* update fd-related kernel structures */ 1450 /* update fd-related kernel structures */
1293 fd_reify (EV_A); 1451 fd_reify (EV_A);
1294 1452
1295 /* calculate blocking time */ 1453 /* calculate blocking time */
1296 { 1454 {
1297 double block; 1455 ev_tstamp block;
1298 1456
1299 if (flags & EVLOOP_NONBLOCK || idlecnt) 1457 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1300 block = 0.; /* do not block at all */ 1458 block = 0.; /* do not block at all */
1301 else 1459 else
1302 { 1460 {
1303 /* update time to cancel out callback processing overhead */ 1461 /* update time to cancel out callback processing overhead */
1304#if EV_USE_MONOTONIC
1305 if (expect_true (have_monotonic))
1306 time_update_monotonic (EV_A); 1462 time_update (EV_A_ 1e100);
1307 else
1308#endif
1309 {
1310 ev_rt_now = ev_time ();
1311 mn_now = ev_rt_now;
1312 }
1313 1463
1314 block = MAX_BLOCKTIME; 1464 block = MAX_BLOCKTIME;
1315 1465
1316 if (timercnt) 1466 if (timercnt)
1317 { 1467 {
1328#endif 1478#endif
1329 1479
1330 if (expect_false (block < 0.)) block = 0.; 1480 if (expect_false (block < 0.)) block = 0.;
1331 } 1481 }
1332 1482
1483 ++loop_count;
1333 backend_poll (EV_A_ block); 1484 backend_poll (EV_A_ block);
1485
1486 /* update ev_rt_now, do magic */
1487 time_update (EV_A_ block);
1334 } 1488 }
1335
1336 /* update ev_rt_now, do magic */
1337 time_update (EV_A);
1338 1489
1339 /* queue pending timers and reschedule them */ 1490 /* queue pending timers and reschedule them */
1340 timers_reify (EV_A); /* relative timers called last */ 1491 timers_reify (EV_A); /* relative timers called last */
1341#if EV_PERIODIC_ENABLE 1492#if EV_PERIODIC_ENABLE
1342 periodics_reify (EV_A); /* absolute timers called first */ 1493 periodics_reify (EV_A); /* absolute timers called first */
1343#endif 1494#endif
1344 1495
1496#if EV_IDLE_ENABLE
1345 /* queue idle watchers unless other events are pending */ 1497 /* queue idle watchers unless other events are pending */
1346 if (idlecnt && !any_pending (EV_A)) 1498 idle_reify (EV_A);
1347 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1499#endif
1348 1500
1349 /* queue check watchers, to be executed first */ 1501 /* queue check watchers, to be executed first */
1350 if (expect_false (checkcnt)) 1502 if (expect_false (checkcnt))
1351 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1503 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1352 1504
1353 call_pending (EV_A); 1505 call_pending (EV_A);
1354 1506
1355 if (expect_false (loop_done))
1356 break;
1357 } 1507 }
1508 while (expect_true (activecnt && !loop_done));
1358 1509
1359 if (loop_done == EVUNLOOP_ONE) 1510 if (loop_done == EVUNLOOP_ONE)
1360 loop_done = EVUNLOOP_CANCEL; 1511 loop_done = EVUNLOOP_CANCEL;
1361} 1512}
1362 1513
1389 head = &(*head)->next; 1540 head = &(*head)->next;
1390 } 1541 }
1391} 1542}
1392 1543
1393void inline_speed 1544void inline_speed
1394ev_clear_pending (EV_P_ W w) 1545clear_pending (EV_P_ W w)
1395{ 1546{
1396 if (w->pending) 1547 if (w->pending)
1397 { 1548 {
1398 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1549 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1399 w->pending = 0; 1550 w->pending = 0;
1400 } 1551 }
1401} 1552}
1402 1553
1554int
1555ev_clear_pending (EV_P_ void *w)
1556{
1557 W w_ = (W)w;
1558 int pending = w_->pending;
1559
1560 if (expect_true (pending))
1561 {
1562 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1563 w_->pending = 0;
1564 p->w = 0;
1565 return p->events;
1566 }
1567 else
1568 return 0;
1569}
1570
1571void inline_size
1572pri_adjust (EV_P_ W w)
1573{
1574 int pri = w->priority;
1575 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1576 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1577 w->priority = pri;
1578}
1579
1403void inline_speed 1580void inline_speed
1404ev_start (EV_P_ W w, int active) 1581ev_start (EV_P_ W w, int active)
1405{ 1582{
1406 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1583 pri_adjust (EV_A_ w);
1407 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1408
1409 w->active = active; 1584 w->active = active;
1410 ev_ref (EV_A); 1585 ev_ref (EV_A);
1411} 1586}
1412 1587
1413void inline_size 1588void inline_size
1417 w->active = 0; 1592 w->active = 0;
1418} 1593}
1419 1594
1420/*****************************************************************************/ 1595/*****************************************************************************/
1421 1596
1422void 1597void noinline
1423ev_io_start (EV_P_ ev_io *w) 1598ev_io_start (EV_P_ ev_io *w)
1424{ 1599{
1425 int fd = w->fd; 1600 int fd = w->fd;
1426 1601
1427 if (expect_false (ev_is_active (w))) 1602 if (expect_false (ev_is_active (w)))
1429 1604
1430 assert (("ev_io_start called with negative fd", fd >= 0)); 1605 assert (("ev_io_start called with negative fd", fd >= 0));
1431 1606
1432 ev_start (EV_A_ (W)w, 1); 1607 ev_start (EV_A_ (W)w, 1);
1433 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1608 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1434 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1609 wlist_add (&anfds[fd].head, (WL)w);
1435 1610
1436 fd_change (EV_A_ fd); 1611 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1612 w->events &= ~EV_IOFDSET;
1437} 1613}
1438 1614
1439void 1615void noinline
1440ev_io_stop (EV_P_ ev_io *w) 1616ev_io_stop (EV_P_ ev_io *w)
1441{ 1617{
1442 ev_clear_pending (EV_A_ (W)w); 1618 clear_pending (EV_A_ (W)w);
1443 if (expect_false (!ev_is_active (w))) 1619 if (expect_false (!ev_is_active (w)))
1444 return; 1620 return;
1445 1621
1446 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1622 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1447 1623
1448 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1624 wlist_del (&anfds[w->fd].head, (WL)w);
1449 ev_stop (EV_A_ (W)w); 1625 ev_stop (EV_A_ (W)w);
1450 1626
1451 fd_change (EV_A_ w->fd); 1627 fd_change (EV_A_ w->fd, 1);
1452} 1628}
1453 1629
1454void 1630void noinline
1455ev_timer_start (EV_P_ ev_timer *w) 1631ev_timer_start (EV_P_ ev_timer *w)
1456{ 1632{
1457 if (expect_false (ev_is_active (w))) 1633 if (expect_false (ev_is_active (w)))
1458 return; 1634 return;
1459 1635
1460 ((WT)w)->at += mn_now; 1636 ((WT)w)->at += mn_now;
1461 1637
1462 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1638 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1463 1639
1464 ev_start (EV_A_ (W)w, ++timercnt); 1640 ev_start (EV_A_ (W)w, ++timercnt);
1465 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1641 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1466 timers [timercnt - 1] = w; 1642 timers [timercnt - 1] = (WT)w;
1467 upheap ((WT *)timers, timercnt - 1); 1643 upheap (timers, timercnt - 1);
1468 1644
1469 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1645 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1470} 1646}
1471 1647
1472void 1648void noinline
1473ev_timer_stop (EV_P_ ev_timer *w) 1649ev_timer_stop (EV_P_ ev_timer *w)
1474{ 1650{
1475 ev_clear_pending (EV_A_ (W)w); 1651 clear_pending (EV_A_ (W)w);
1476 if (expect_false (!ev_is_active (w))) 1652 if (expect_false (!ev_is_active (w)))
1477 return; 1653 return;
1478 1654
1479 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1655 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1480 1656
1657 {
1658 int active = ((W)w)->active;
1659
1481 if (expect_true (((W)w)->active < timercnt--)) 1660 if (expect_true (--active < --timercnt))
1482 { 1661 {
1483 timers [((W)w)->active - 1] = timers [timercnt]; 1662 timers [active] = timers [timercnt];
1484 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1663 adjustheap (timers, timercnt, active);
1485 } 1664 }
1665 }
1486 1666
1487 ((WT)w)->at -= mn_now; 1667 ((WT)w)->at -= mn_now;
1488 1668
1489 ev_stop (EV_A_ (W)w); 1669 ev_stop (EV_A_ (W)w);
1490} 1670}
1491 1671
1492void 1672void noinline
1493ev_timer_again (EV_P_ ev_timer *w) 1673ev_timer_again (EV_P_ ev_timer *w)
1494{ 1674{
1495 if (ev_is_active (w)) 1675 if (ev_is_active (w))
1496 { 1676 {
1497 if (w->repeat) 1677 if (w->repeat)
1498 { 1678 {
1499 ((WT)w)->at = mn_now + w->repeat; 1679 ((WT)w)->at = mn_now + w->repeat;
1500 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1680 adjustheap (timers, timercnt, ((W)w)->active - 1);
1501 } 1681 }
1502 else 1682 else
1503 ev_timer_stop (EV_A_ w); 1683 ev_timer_stop (EV_A_ w);
1504 } 1684 }
1505 else if (w->repeat) 1685 else if (w->repeat)
1508 ev_timer_start (EV_A_ w); 1688 ev_timer_start (EV_A_ w);
1509 } 1689 }
1510} 1690}
1511 1691
1512#if EV_PERIODIC_ENABLE 1692#if EV_PERIODIC_ENABLE
1513void 1693void noinline
1514ev_periodic_start (EV_P_ ev_periodic *w) 1694ev_periodic_start (EV_P_ ev_periodic *w)
1515{ 1695{
1516 if (expect_false (ev_is_active (w))) 1696 if (expect_false (ev_is_active (w)))
1517 return; 1697 return;
1518 1698
1520 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1700 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1521 else if (w->interval) 1701 else if (w->interval)
1522 { 1702 {
1523 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1703 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1524 /* this formula differs from the one in periodic_reify because we do not always round up */ 1704 /* this formula differs from the one in periodic_reify because we do not always round up */
1525 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1705 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1526 } 1706 }
1707 else
1708 ((WT)w)->at = w->offset;
1527 1709
1528 ev_start (EV_A_ (W)w, ++periodiccnt); 1710 ev_start (EV_A_ (W)w, ++periodiccnt);
1529 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1711 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1530 periodics [periodiccnt - 1] = w; 1712 periodics [periodiccnt - 1] = (WT)w;
1531 upheap ((WT *)periodics, periodiccnt - 1); 1713 upheap (periodics, periodiccnt - 1);
1532 1714
1533 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1715 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1534} 1716}
1535 1717
1536void 1718void noinline
1537ev_periodic_stop (EV_P_ ev_periodic *w) 1719ev_periodic_stop (EV_P_ ev_periodic *w)
1538{ 1720{
1539 ev_clear_pending (EV_A_ (W)w); 1721 clear_pending (EV_A_ (W)w);
1540 if (expect_false (!ev_is_active (w))) 1722 if (expect_false (!ev_is_active (w)))
1541 return; 1723 return;
1542 1724
1543 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1725 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1544 1726
1727 {
1728 int active = ((W)w)->active;
1729
1545 if (expect_true (((W)w)->active < periodiccnt--)) 1730 if (expect_true (--active < --periodiccnt))
1546 { 1731 {
1547 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1732 periodics [active] = periodics [periodiccnt];
1548 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1733 adjustheap (periodics, periodiccnt, active);
1549 } 1734 }
1735 }
1550 1736
1551 ev_stop (EV_A_ (W)w); 1737 ev_stop (EV_A_ (W)w);
1552} 1738}
1553 1739
1554void 1740void noinline
1555ev_periodic_again (EV_P_ ev_periodic *w) 1741ev_periodic_again (EV_P_ ev_periodic *w)
1556{ 1742{
1557 /* TODO: use adjustheap and recalculation */ 1743 /* TODO: use adjustheap and recalculation */
1558 ev_periodic_stop (EV_A_ w); 1744 ev_periodic_stop (EV_A_ w);
1559 ev_periodic_start (EV_A_ w); 1745 ev_periodic_start (EV_A_ w);
1562 1748
1563#ifndef SA_RESTART 1749#ifndef SA_RESTART
1564# define SA_RESTART 0 1750# define SA_RESTART 0
1565#endif 1751#endif
1566 1752
1567void 1753void noinline
1568ev_signal_start (EV_P_ ev_signal *w) 1754ev_signal_start (EV_P_ ev_signal *w)
1569{ 1755{
1570#if EV_MULTIPLICITY 1756#if EV_MULTIPLICITY
1571 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1757 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1572#endif 1758#endif
1573 if (expect_false (ev_is_active (w))) 1759 if (expect_false (ev_is_active (w)))
1574 return; 1760 return;
1575 1761
1576 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1762 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1577 1763
1764 {
1765#ifndef _WIN32
1766 sigset_t full, prev;
1767 sigfillset (&full);
1768 sigprocmask (SIG_SETMASK, &full, &prev);
1769#endif
1770
1771 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1772
1773#ifndef _WIN32
1774 sigprocmask (SIG_SETMASK, &prev, 0);
1775#endif
1776 }
1777
1578 ev_start (EV_A_ (W)w, 1); 1778 ev_start (EV_A_ (W)w, 1);
1579 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1580 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1779 wlist_add (&signals [w->signum - 1].head, (WL)w);
1581 1780
1582 if (!((WL)w)->next) 1781 if (!((WL)w)->next)
1583 { 1782 {
1584#if _WIN32 1783#if _WIN32
1585 signal (w->signum, sighandler); 1784 signal (w->signum, sighandler);
1591 sigaction (w->signum, &sa, 0); 1790 sigaction (w->signum, &sa, 0);
1592#endif 1791#endif
1593 } 1792 }
1594} 1793}
1595 1794
1596void 1795void noinline
1597ev_signal_stop (EV_P_ ev_signal *w) 1796ev_signal_stop (EV_P_ ev_signal *w)
1598{ 1797{
1599 ev_clear_pending (EV_A_ (W)w); 1798 clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w))) 1799 if (expect_false (!ev_is_active (w)))
1601 return; 1800 return;
1602 1801
1603 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1802 wlist_del (&signals [w->signum - 1].head, (WL)w);
1604 ev_stop (EV_A_ (W)w); 1803 ev_stop (EV_A_ (W)w);
1605 1804
1606 if (!signals [w->signum - 1].head) 1805 if (!signals [w->signum - 1].head)
1607 signal (w->signum, SIG_DFL); 1806 signal (w->signum, SIG_DFL);
1608} 1807}
1615#endif 1814#endif
1616 if (expect_false (ev_is_active (w))) 1815 if (expect_false (ev_is_active (w)))
1617 return; 1816 return;
1618 1817
1619 ev_start (EV_A_ (W)w, 1); 1818 ev_start (EV_A_ (W)w, 1);
1620 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1819 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1621} 1820}
1622 1821
1623void 1822void
1624ev_child_stop (EV_P_ ev_child *w) 1823ev_child_stop (EV_P_ ev_child *w)
1625{ 1824{
1626 ev_clear_pending (EV_A_ (W)w); 1825 clear_pending (EV_A_ (W)w);
1627 if (expect_false (!ev_is_active (w))) 1826 if (expect_false (!ev_is_active (w)))
1628 return; 1827 return;
1629 1828
1630 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1829 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1631 ev_stop (EV_A_ (W)w); 1830 ev_stop (EV_A_ (W)w);
1632} 1831}
1633 1832
1634#if EV_STAT_ENABLE 1833#if EV_STAT_ENABLE
1635 1834
1636# ifdef _WIN32 1835# ifdef _WIN32
1836# undef lstat
1637# define lstat(a,b) stat(a,b) 1837# define lstat(a,b) _stati64 (a,b)
1638# endif 1838# endif
1639 1839
1640#define DEF_STAT_INTERVAL 5.0074891 1840#define DEF_STAT_INTERVAL 5.0074891
1641#define MIN_STAT_INTERVAL 0.1074891 1841#define MIN_STAT_INTERVAL 0.1074891
1842
1843static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1844
1845#if EV_USE_INOTIFY
1846# define EV_INOTIFY_BUFSIZE 8192
1847
1848static void noinline
1849infy_add (EV_P_ ev_stat *w)
1850{
1851 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1852
1853 if (w->wd < 0)
1854 {
1855 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1856
1857 /* monitor some parent directory for speedup hints */
1858 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1859 {
1860 char path [4096];
1861 strcpy (path, w->path);
1862
1863 do
1864 {
1865 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1866 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1867
1868 char *pend = strrchr (path, '/');
1869
1870 if (!pend)
1871 break; /* whoops, no '/', complain to your admin */
1872
1873 *pend = 0;
1874 w->wd = inotify_add_watch (fs_fd, path, mask);
1875 }
1876 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1877 }
1878 }
1879 else
1880 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1881
1882 if (w->wd >= 0)
1883 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1884}
1885
1886static void noinline
1887infy_del (EV_P_ ev_stat *w)
1888{
1889 int slot;
1890 int wd = w->wd;
1891
1892 if (wd < 0)
1893 return;
1894
1895 w->wd = -2;
1896 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1897 wlist_del (&fs_hash [slot].head, (WL)w);
1898
1899 /* remove this watcher, if others are watching it, they will rearm */
1900 inotify_rm_watch (fs_fd, wd);
1901}
1902
1903static void noinline
1904infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1905{
1906 if (slot < 0)
1907 /* overflow, need to check for all hahs slots */
1908 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1909 infy_wd (EV_A_ slot, wd, ev);
1910 else
1911 {
1912 WL w_;
1913
1914 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1915 {
1916 ev_stat *w = (ev_stat *)w_;
1917 w_ = w_->next; /* lets us remove this watcher and all before it */
1918
1919 if (w->wd == wd || wd == -1)
1920 {
1921 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1922 {
1923 w->wd = -1;
1924 infy_add (EV_A_ w); /* re-add, no matter what */
1925 }
1926
1927 stat_timer_cb (EV_A_ &w->timer, 0);
1928 }
1929 }
1930 }
1931}
1932
1933static void
1934infy_cb (EV_P_ ev_io *w, int revents)
1935{
1936 char buf [EV_INOTIFY_BUFSIZE];
1937 struct inotify_event *ev = (struct inotify_event *)buf;
1938 int ofs;
1939 int len = read (fs_fd, buf, sizeof (buf));
1940
1941 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1942 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1943}
1944
1945void inline_size
1946infy_init (EV_P)
1947{
1948 if (fs_fd != -2)
1949 return;
1950
1951 fs_fd = inotify_init ();
1952
1953 if (fs_fd >= 0)
1954 {
1955 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1956 ev_set_priority (&fs_w, EV_MAXPRI);
1957 ev_io_start (EV_A_ &fs_w);
1958 }
1959}
1960
1961void inline_size
1962infy_fork (EV_P)
1963{
1964 int slot;
1965
1966 if (fs_fd < 0)
1967 return;
1968
1969 close (fs_fd);
1970 fs_fd = inotify_init ();
1971
1972 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1973 {
1974 WL w_ = fs_hash [slot].head;
1975 fs_hash [slot].head = 0;
1976
1977 while (w_)
1978 {
1979 ev_stat *w = (ev_stat *)w_;
1980 w_ = w_->next; /* lets us add this watcher */
1981
1982 w->wd = -1;
1983
1984 if (fs_fd >= 0)
1985 infy_add (EV_A_ w); /* re-add, no matter what */
1986 else
1987 ev_timer_start (EV_A_ &w->timer);
1988 }
1989
1990 }
1991}
1992
1993#endif
1642 1994
1643void 1995void
1644ev_stat_stat (EV_P_ ev_stat *w) 1996ev_stat_stat (EV_P_ ev_stat *w)
1645{ 1997{
1646 if (lstat (w->path, &w->attr) < 0) 1998 if (lstat (w->path, &w->attr) < 0)
1647 w->attr.st_nlink = 0; 1999 w->attr.st_nlink = 0;
1648 else if (!w->attr.st_nlink) 2000 else if (!w->attr.st_nlink)
1649 w->attr.st_nlink = 1; 2001 w->attr.st_nlink = 1;
1650} 2002}
1651 2003
1652static void 2004static void noinline
1653stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2005stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1654{ 2006{
1655 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2007 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1656 2008
1657 /* we copy this here each the time so that */ 2009 /* we copy this here each the time so that */
1658 /* prev has the old value when the callback gets invoked */ 2010 /* prev has the old value when the callback gets invoked */
1659 w->prev = w->attr; 2011 w->prev = w->attr;
1660 ev_stat_stat (EV_A_ w); 2012 ev_stat_stat (EV_A_ w);
1661 2013
1662 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2014 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2015 if (
2016 w->prev.st_dev != w->attr.st_dev
2017 || w->prev.st_ino != w->attr.st_ino
2018 || w->prev.st_mode != w->attr.st_mode
2019 || w->prev.st_nlink != w->attr.st_nlink
2020 || w->prev.st_uid != w->attr.st_uid
2021 || w->prev.st_gid != w->attr.st_gid
2022 || w->prev.st_rdev != w->attr.st_rdev
2023 || w->prev.st_size != w->attr.st_size
2024 || w->prev.st_atime != w->attr.st_atime
2025 || w->prev.st_mtime != w->attr.st_mtime
2026 || w->prev.st_ctime != w->attr.st_ctime
2027 ) {
2028 #if EV_USE_INOTIFY
2029 infy_del (EV_A_ w);
2030 infy_add (EV_A_ w);
2031 ev_stat_stat (EV_A_ w); /* avoid race... */
2032 #endif
2033
1663 ev_feed_event (EV_A_ w, EV_STAT); 2034 ev_feed_event (EV_A_ w, EV_STAT);
2035 }
1664} 2036}
1665 2037
1666void 2038void
1667ev_stat_start (EV_P_ ev_stat *w) 2039ev_stat_start (EV_P_ ev_stat *w)
1668{ 2040{
1678 if (w->interval < MIN_STAT_INTERVAL) 2050 if (w->interval < MIN_STAT_INTERVAL)
1679 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL; 2051 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1680 2052
1681 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2053 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1682 ev_set_priority (&w->timer, ev_priority (w)); 2054 ev_set_priority (&w->timer, ev_priority (w));
2055
2056#if EV_USE_INOTIFY
2057 infy_init (EV_A);
2058
2059 if (fs_fd >= 0)
2060 infy_add (EV_A_ w);
2061 else
2062#endif
1683 ev_timer_start (EV_A_ &w->timer); 2063 ev_timer_start (EV_A_ &w->timer);
1684 2064
1685 ev_start (EV_A_ (W)w, 1); 2065 ev_start (EV_A_ (W)w, 1);
1686} 2066}
1687 2067
1688void 2068void
1689ev_stat_stop (EV_P_ ev_stat *w) 2069ev_stat_stop (EV_P_ ev_stat *w)
1690{ 2070{
1691 ev_clear_pending (EV_A_ (W)w); 2071 clear_pending (EV_A_ (W)w);
1692 if (expect_false (!ev_is_active (w))) 2072 if (expect_false (!ev_is_active (w)))
1693 return; 2073 return;
1694 2074
2075#if EV_USE_INOTIFY
2076 infy_del (EV_A_ w);
2077#endif
1695 ev_timer_stop (EV_A_ &w->timer); 2078 ev_timer_stop (EV_A_ &w->timer);
1696 2079
1697 ev_stop (EV_A_ (W)w); 2080 ev_stop (EV_A_ (W)w);
1698} 2081}
1699#endif 2082#endif
1700 2083
2084#if EV_IDLE_ENABLE
1701void 2085void
1702ev_idle_start (EV_P_ ev_idle *w) 2086ev_idle_start (EV_P_ ev_idle *w)
1703{ 2087{
1704 if (expect_false (ev_is_active (w))) 2088 if (expect_false (ev_is_active (w)))
1705 return; 2089 return;
1706 2090
2091 pri_adjust (EV_A_ (W)w);
2092
2093 {
2094 int active = ++idlecnt [ABSPRI (w)];
2095
2096 ++idleall;
1707 ev_start (EV_A_ (W)w, ++idlecnt); 2097 ev_start (EV_A_ (W)w, active);
2098
1708 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2099 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1709 idles [idlecnt - 1] = w; 2100 idles [ABSPRI (w)][active - 1] = w;
2101 }
1710} 2102}
1711 2103
1712void 2104void
1713ev_idle_stop (EV_P_ ev_idle *w) 2105ev_idle_stop (EV_P_ ev_idle *w)
1714{ 2106{
1715 ev_clear_pending (EV_A_ (W)w); 2107 clear_pending (EV_A_ (W)w);
1716 if (expect_false (!ev_is_active (w))) 2108 if (expect_false (!ev_is_active (w)))
1717 return; 2109 return;
1718 2110
1719 { 2111 {
1720 int active = ((W)w)->active; 2112 int active = ((W)w)->active;
1721 idles [active - 1] = idles [--idlecnt]; 2113
2114 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1722 ((W)idles [active - 1])->active = active; 2115 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2116
2117 ev_stop (EV_A_ (W)w);
2118 --idleall;
1723 } 2119 }
1724
1725 ev_stop (EV_A_ (W)w);
1726} 2120}
2121#endif
1727 2122
1728void 2123void
1729ev_prepare_start (EV_P_ ev_prepare *w) 2124ev_prepare_start (EV_P_ ev_prepare *w)
1730{ 2125{
1731 if (expect_false (ev_is_active (w))) 2126 if (expect_false (ev_is_active (w)))
1737} 2132}
1738 2133
1739void 2134void
1740ev_prepare_stop (EV_P_ ev_prepare *w) 2135ev_prepare_stop (EV_P_ ev_prepare *w)
1741{ 2136{
1742 ev_clear_pending (EV_A_ (W)w); 2137 clear_pending (EV_A_ (W)w);
1743 if (expect_false (!ev_is_active (w))) 2138 if (expect_false (!ev_is_active (w)))
1744 return; 2139 return;
1745 2140
1746 { 2141 {
1747 int active = ((W)w)->active; 2142 int active = ((W)w)->active;
1764} 2159}
1765 2160
1766void 2161void
1767ev_check_stop (EV_P_ ev_check *w) 2162ev_check_stop (EV_P_ ev_check *w)
1768{ 2163{
1769 ev_clear_pending (EV_A_ (W)w); 2164 clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w))) 2165 if (expect_false (!ev_is_active (w)))
1771 return; 2166 return;
1772 2167
1773 { 2168 {
1774 int active = ((W)w)->active; 2169 int active = ((W)w)->active;
1816} 2211}
1817 2212
1818void 2213void
1819ev_embed_stop (EV_P_ ev_embed *w) 2214ev_embed_stop (EV_P_ ev_embed *w)
1820{ 2215{
1821 ev_clear_pending (EV_A_ (W)w); 2216 clear_pending (EV_A_ (W)w);
1822 if (expect_false (!ev_is_active (w))) 2217 if (expect_false (!ev_is_active (w)))
1823 return; 2218 return;
1824 2219
1825 ev_io_stop (EV_A_ &w->io); 2220 ev_io_stop (EV_A_ &w->io);
2221
2222 ev_stop (EV_A_ (W)w);
2223}
2224#endif
2225
2226#if EV_FORK_ENABLE
2227void
2228ev_fork_start (EV_P_ ev_fork *w)
2229{
2230 if (expect_false (ev_is_active (w)))
2231 return;
2232
2233 ev_start (EV_A_ (W)w, ++forkcnt);
2234 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2235 forks [forkcnt - 1] = w;
2236}
2237
2238void
2239ev_fork_stop (EV_P_ ev_fork *w)
2240{
2241 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w)))
2243 return;
2244
2245 {
2246 int active = ((W)w)->active;
2247 forks [active - 1] = forks [--forkcnt];
2248 ((W)forks [active - 1])->active = active;
2249 }
1826 2250
1827 ev_stop (EV_A_ (W)w); 2251 ev_stop (EV_A_ (W)w);
1828} 2252}
1829#endif 2253#endif
1830 2254

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines