ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.144 by root, Tue Nov 27 08:11:52 2007 UTC vs.
Revision 1.185 by root, Fri Dec 14 18:22:30 2007 UTC

94# else 94# else
95# define EV_USE_PORT 0 95# define EV_USE_PORT 0
96# endif 96# endif
97# endif 97# endif
98 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
99#endif 107#endif
100 108
101#include <math.h> 109#include <math.h>
102#include <stdlib.h> 110#include <stdlib.h>
103#include <fcntl.h> 111#include <fcntl.h>
109#include <errno.h> 117#include <errno.h>
110#include <sys/types.h> 118#include <sys/types.h>
111#include <time.h> 119#include <time.h>
112 120
113#include <signal.h> 121#include <signal.h>
122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
114 128
115#ifndef _WIN32 129#ifndef _WIN32
116# include <sys/time.h> 130# include <sys/time.h>
117# include <sys/wait.h> 131# include <sys/wait.h>
118# include <unistd.h> 132# include <unistd.h>
156 170
157#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 172# define EV_USE_PORT 0
159#endif 173#endif
160 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
161/**/ 195/**/
162 196
163#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
168#ifndef CLOCK_REALTIME 202#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 203# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 204# define EV_USE_REALTIME 0
171#endif 205#endif
172 206
207#if !EV_STAT_ENABLE
208# undef EV_USE_INOTIFY
209# define EV_USE_INOTIFY 0
210#endif
211
212#if EV_USE_INOTIFY
213# include <sys/inotify.h>
214#endif
215
173#if EV_SELECT_IS_WINSOCKET 216#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 217# include <winsock.h>
175#endif 218#endif
176 219
177/**/ 220/**/
178 221
222/*
223 * This is used to avoid floating point rounding problems.
224 * It is added to ev_rt_now when scheduling periodics
225 * to ensure progress, time-wise, even when rounding
226 * errors are against us.
227 * This value is good at least till the year 4000.
228 * Better solutions welcome.
229 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 235
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 236#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 237# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline)) 238# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
200#else 239#else
201# define expect(expr,value) (expr) 240# define expect(expr,value) (expr)
202# define inline_speed static
203# define inline_minimal static
204# define noinline 241# define noinline
242# if __STDC_VERSION__ < 199901L
243# define inline
244# endif
205#endif 245#endif
206 246
207#define expect_false(expr) expect ((expr) != 0, 0) 247#define expect_false(expr) expect ((expr) != 0, 0)
208#define expect_true(expr) expect ((expr) != 0, 1) 248#define expect_true(expr) expect ((expr) != 0, 1)
249#define inline_size static inline
250
251#if EV_MINIMAL
252# define inline_speed static noinline
253#else
254# define inline_speed static inline
255#endif
209 256
210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
211#define ABSPRI(w) ((w)->priority - EV_MINPRI) 258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
212 259
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 260#define EMPTY /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */ 261#define EMPTY2(a,b) /* used to suppress some warnings */
215 262
216typedef ev_watcher *W; 263typedef ev_watcher *W;
217typedef ev_watcher_list *WL; 264typedef ev_watcher_list *WL;
218typedef ev_watcher_time *WT; 265typedef ev_watcher_time *WT;
254ev_set_allocator (void *(*cb)(void *ptr, long size)) 301ev_set_allocator (void *(*cb)(void *ptr, long size))
255{ 302{
256 alloc = cb; 303 alloc = cb;
257} 304}
258 305
259static void * 306inline_speed void *
260ev_realloc (void *ptr, long size) 307ev_realloc (void *ptr, long size)
261{ 308{
262 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
263 310
264 if (!ptr && size) 311 if (!ptr && size)
288typedef struct 335typedef struct
289{ 336{
290 W w; 337 W w;
291 int events; 338 int events;
292} ANPENDING; 339} ANPENDING;
340
341#if EV_USE_INOTIFY
342typedef struct
343{
344 WL head;
345} ANFS;
346#endif
293 347
294#if EV_MULTIPLICITY 348#if EV_MULTIPLICITY
295 349
296 struct ev_loop 350 struct ev_loop
297 { 351 {
354{ 408{
355 return ev_rt_now; 409 return ev_rt_now;
356} 410}
357#endif 411#endif
358 412
359#define array_roundsize(type,n) (((n) | 4) & ~3) 413int inline_size
414array_nextsize (int elem, int cur, int cnt)
415{
416 int ncur = cur + 1;
417
418 do
419 ncur <<= 1;
420 while (cnt > ncur);
421
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096)
424 {
425 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
427 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem;
429 }
430
431 return ncur;
432}
433
434static noinline void *
435array_realloc (int elem, void *base, int *cur, int cnt)
436{
437 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur);
439}
360 440
361#define array_needsize(type,base,cur,cnt,init) \ 441#define array_needsize(type,base,cur,cnt,init) \
362 if (expect_false ((cnt) > cur)) \ 442 if (expect_false ((cnt) > (cur))) \
363 { \ 443 { \
364 int newcnt = cur; \ 444 int ocur_ = (cur); \
365 do \ 445 (base) = (type *)array_realloc \
366 { \ 446 (sizeof (type), (base), &(cur), (cnt)); \
367 newcnt = array_roundsize (type, newcnt << 1); \ 447 init ((base) + (ocur_), (cur) - ocur_); \
368 } \
369 while ((cnt) > newcnt); \
370 \
371 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
372 init (base + cur, newcnt - cur); \
373 cur = newcnt; \
374 } 448 }
375 449
450#if 0
376#define array_slim(type,stem) \ 451#define array_slim(type,stem) \
377 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 452 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
378 { \ 453 { \
379 stem ## max = array_roundsize (stem ## cnt >> 1); \ 454 stem ## max = array_roundsize (stem ## cnt >> 1); \
380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 455 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
382 } 457 }
458#endif
383 459
384#define array_free(stem, idx) \ 460#define array_free(stem, idx) \
385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
386 462
387/*****************************************************************************/ 463/*****************************************************************************/
388 464
389void noinline 465void noinline
390ev_feed_event (EV_P_ void *w, int revents) 466ev_feed_event (EV_P_ void *w, int revents)
391{ 467{
392 W w_ = (W)w; 468 W w_ = (W)w;
469 int pri = ABSPRI (w_);
393 470
394 if (expect_false (w_->pending)) 471 if (expect_false (w_->pending))
472 pendings [pri][w_->pending - 1].events |= revents;
473 else
395 { 474 {
475 w_->pending = ++pendingcnt [pri];
476 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
477 pendings [pri][w_->pending - 1].w = w_;
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 478 pendings [pri][w_->pending - 1].events = revents;
397 return;
398 } 479 }
399
400 w_->pending = ++pendingcnt [ABSPRI (w_)];
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404} 480}
405 481
406void inline_size 482void inline_speed
407queue_events (EV_P_ W *events, int eventcnt, int type) 483queue_events (EV_P_ W *events, int eventcnt, int type)
408{ 484{
409 int i; 485 int i;
410 486
411 for (i = 0; i < eventcnt; ++i) 487 for (i = 0; i < eventcnt; ++i)
443} 519}
444 520
445void 521void
446ev_feed_fd_event (EV_P_ int fd, int revents) 522ev_feed_fd_event (EV_P_ int fd, int revents)
447{ 523{
524 if (fd >= 0 && fd < anfdmax)
448 fd_event (EV_A_ fd, revents); 525 fd_event (EV_A_ fd, revents);
449} 526}
450 527
451void inline_size 528void inline_size
452fd_reify (EV_P) 529fd_reify (EV_P)
453{ 530{
457 { 534 {
458 int fd = fdchanges [i]; 535 int fd = fdchanges [i];
459 ANFD *anfd = anfds + fd; 536 ANFD *anfd = anfds + fd;
460 ev_io *w; 537 ev_io *w;
461 538
462 int events = 0; 539 unsigned char events = 0;
463 540
464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
465 events |= w->events; 542 events |= (unsigned char)w->events;
466 543
467#if EV_SELECT_IS_WINSOCKET 544#if EV_SELECT_IS_WINSOCKET
468 if (events) 545 if (events)
469 { 546 {
470 unsigned long argp; 547 unsigned long argp;
471 anfd->handle = _get_osfhandle (fd); 548 anfd->handle = _get_osfhandle (fd);
472 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
473 } 550 }
474#endif 551#endif
475 552
553 {
554 unsigned char o_events = anfd->events;
555 unsigned char o_reify = anfd->reify;
556
476 anfd->reify = 0; 557 anfd->reify = 0;
477
478 backend_modify (EV_A_ fd, anfd->events, events);
479 anfd->events = events; 558 anfd->events = events;
559
560 if (o_events != events || o_reify & EV_IOFDSET)
561 backend_modify (EV_A_ fd, o_events, events);
562 }
480 } 563 }
481 564
482 fdchangecnt = 0; 565 fdchangecnt = 0;
483} 566}
484 567
485void inline_size 568void inline_size
486fd_change (EV_P_ int fd) 569fd_change (EV_P_ int fd, int flags)
487{ 570{
488 if (expect_false (anfds [fd].reify)) 571 unsigned char reify = anfds [fd].reify;
489 return;
490
491 anfds [fd].reify = 1; 572 anfds [fd].reify |= flags;
492 573
574 if (expect_true (!reify))
575 {
493 ++fdchangecnt; 576 ++fdchangecnt;
494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 577 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
495 fdchanges [fdchangecnt - 1] = fd; 578 fdchanges [fdchangecnt - 1] = fd;
579 }
496} 580}
497 581
498void inline_speed 582void inline_speed
499fd_kill (EV_P_ int fd) 583fd_kill (EV_P_ int fd)
500{ 584{
547static void noinline 631static void noinline
548fd_rearm_all (EV_P) 632fd_rearm_all (EV_P)
549{ 633{
550 int fd; 634 int fd;
551 635
552 /* this should be highly optimised to not do anything but set a flag */
553 for (fd = 0; fd < anfdmax; ++fd) 636 for (fd = 0; fd < anfdmax; ++fd)
554 if (anfds [fd].events) 637 if (anfds [fd].events)
555 { 638 {
556 anfds [fd].events = 0; 639 anfds [fd].events = 0;
557 fd_change (EV_A_ fd); 640 fd_change (EV_A_ fd, EV_IOFDSET | 1);
558 } 641 }
559} 642}
560 643
561/*****************************************************************************/ 644/*****************************************************************************/
562 645
563void inline_speed 646void inline_speed
564upheap (WT *heap, int k) 647upheap (WT *heap, int k)
565{ 648{
566 WT w = heap [k]; 649 WT w = heap [k];
567 650
568 while (k && heap [k >> 1]->at > w->at) 651 while (k)
569 { 652 {
653 int p = (k - 1) >> 1;
654
655 if (heap [p]->at <= w->at)
656 break;
657
570 heap [k] = heap [k >> 1]; 658 heap [k] = heap [p];
571 ((W)heap [k])->active = k + 1; 659 ((W)heap [k])->active = k + 1;
572 k >>= 1; 660 k = p;
573 } 661 }
574 662
575 heap [k] = w; 663 heap [k] = w;
576 ((W)heap [k])->active = k + 1; 664 ((W)heap [k])->active = k + 1;
577
578} 665}
579 666
580void inline_speed 667void inline_speed
581downheap (WT *heap, int N, int k) 668downheap (WT *heap, int N, int k)
582{ 669{
583 WT w = heap [k]; 670 WT w = heap [k];
584 671
585 while (k < (N >> 1)) 672 for (;;)
586 { 673 {
587 int j = k << 1; 674 int c = (k << 1) + 1;
588 675
589 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 676 if (c >= N)
590 ++j;
591
592 if (w->at <= heap [j]->at)
593 break; 677 break;
594 678
679 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
680 ? 1 : 0;
681
682 if (w->at <= heap [c]->at)
683 break;
684
595 heap [k] = heap [j]; 685 heap [k] = heap [c];
596 ((W)heap [k])->active = k + 1; 686 ((W)heap [k])->active = k + 1;
687
597 k = j; 688 k = c;
598 } 689 }
599 690
600 heap [k] = w; 691 heap [k] = w;
601 ((W)heap [k])->active = k + 1; 692 ((W)heap [k])->active = k + 1;
602} 693}
684 for (signum = signalmax; signum--; ) 775 for (signum = signalmax; signum--; )
685 if (signals [signum].gotsig) 776 if (signals [signum].gotsig)
686 ev_feed_signal_event (EV_A_ signum + 1); 777 ev_feed_signal_event (EV_A_ signum + 1);
687} 778}
688 779
689void inline_size 780void inline_speed
690fd_intern (int fd) 781fd_intern (int fd)
691{ 782{
692#ifdef _WIN32 783#ifdef _WIN32
693 int arg = 1; 784 int arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 785 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
709 ev_unref (EV_A); /* child watcher should not keep loop alive */ 800 ev_unref (EV_A); /* child watcher should not keep loop alive */
710} 801}
711 802
712/*****************************************************************************/ 803/*****************************************************************************/
713 804
714static ev_child *childs [PID_HASHSIZE]; 805static WL childs [EV_PID_HASHSIZE];
715 806
716#ifndef _WIN32 807#ifndef _WIN32
717 808
718static ev_signal childev; 809static ev_signal childev;
719 810
720void inline_speed 811void inline_speed
721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 812child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
722{ 813{
723 ev_child *w; 814 ev_child *w;
724 815
725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 816 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
726 if (w->pid == pid || !w->pid) 817 if (w->pid == pid || !w->pid)
727 { 818 {
728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 819 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
729 w->rpid = pid; 820 w->rpid = pid;
730 w->rstatus = status; 821 w->rstatus = status;
731 ev_feed_event (EV_A_ (W)w, EV_CHILD); 822 ev_feed_event (EV_A_ (W)w, EV_CHILD);
732 } 823 }
733} 824}
734 825
735#ifndef WCONTINUED 826#ifndef WCONTINUED
751 /* make sure we are called again until all childs have been reaped */ 842 /* make sure we are called again until all childs have been reaped */
752 /* we need to do it this way so that the callback gets called before we continue */ 843 /* we need to do it this way so that the callback gets called before we continue */
753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 844 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
754 845
755 child_reap (EV_A_ sw, pid, pid, status); 846 child_reap (EV_A_ sw, pid, pid, status);
847 if (EV_PID_HASHSIZE > 1)
756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 848 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
757} 849}
758 850
759#endif 851#endif
760 852
761/*****************************************************************************/ 853/*****************************************************************************/
844ev_backend (EV_P) 936ev_backend (EV_P)
845{ 937{
846 return backend; 938 return backend;
847} 939}
848 940
849static void 941unsigned int
942ev_loop_count (EV_P)
943{
944 return loop_count;
945}
946
947static void noinline
850loop_init (EV_P_ unsigned int flags) 948loop_init (EV_P_ unsigned int flags)
851{ 949{
852 if (!backend) 950 if (!backend)
853 { 951 {
854#if EV_USE_MONOTONIC 952#if EV_USE_MONOTONIC
862 ev_rt_now = ev_time (); 960 ev_rt_now = ev_time ();
863 mn_now = get_clock (); 961 mn_now = get_clock ();
864 now_floor = mn_now; 962 now_floor = mn_now;
865 rtmn_diff = ev_rt_now - mn_now; 963 rtmn_diff = ev_rt_now - mn_now;
866 964
965 /* pid check not overridable via env */
966#ifndef _WIN32
967 if (flags & EVFLAG_FORKCHECK)
968 curpid = getpid ();
969#endif
970
867 if (!(flags & EVFLAG_NOENV) 971 if (!(flags & EVFLAG_NOENV)
868 && !enable_secure () 972 && !enable_secure ()
869 && getenv ("LIBEV_FLAGS")) 973 && getenv ("LIBEV_FLAGS"))
870 flags = atoi (getenv ("LIBEV_FLAGS")); 974 flags = atoi (getenv ("LIBEV_FLAGS"));
871 975
872 if (!(flags & 0x0000ffffUL)) 976 if (!(flags & 0x0000ffffUL))
873 flags |= ev_recommended_backends (); 977 flags |= ev_recommended_backends ();
874 978
875 backend = 0; 979 backend = 0;
980 backend_fd = -1;
981#if EV_USE_INOTIFY
982 fs_fd = -2;
983#endif
984
876#if EV_USE_PORT 985#if EV_USE_PORT
877 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 986 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
878#endif 987#endif
879#if EV_USE_KQUEUE 988#if EV_USE_KQUEUE
880 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 989 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
892 ev_init (&sigev, sigcb); 1001 ev_init (&sigev, sigcb);
893 ev_set_priority (&sigev, EV_MAXPRI); 1002 ev_set_priority (&sigev, EV_MAXPRI);
894 } 1003 }
895} 1004}
896 1005
897static void 1006static void noinline
898loop_destroy (EV_P) 1007loop_destroy (EV_P)
899{ 1008{
900 int i; 1009 int i;
1010
1011#if EV_USE_INOTIFY
1012 if (fs_fd >= 0)
1013 close (fs_fd);
1014#endif
1015
1016 if (backend_fd >= 0)
1017 close (backend_fd);
901 1018
902#if EV_USE_PORT 1019#if EV_USE_PORT
903 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1020 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
904#endif 1021#endif
905#if EV_USE_KQUEUE 1022#if EV_USE_KQUEUE
914#if EV_USE_SELECT 1031#if EV_USE_SELECT
915 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1032 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
916#endif 1033#endif
917 1034
918 for (i = NUMPRI; i--; ) 1035 for (i = NUMPRI; i--; )
1036 {
919 array_free (pending, [i]); 1037 array_free (pending, [i]);
1038#if EV_IDLE_ENABLE
1039 array_free (idle, [i]);
1040#endif
1041 }
920 1042
921 /* have to use the microsoft-never-gets-it-right macro */ 1043 /* have to use the microsoft-never-gets-it-right macro */
922 array_free (fdchange, EMPTY0); 1044 array_free (fdchange, EMPTY);
923 array_free (timer, EMPTY0); 1045 array_free (timer, EMPTY);
924#if EV_PERIODIC_ENABLE 1046#if EV_PERIODIC_ENABLE
925 array_free (periodic, EMPTY0); 1047 array_free (periodic, EMPTY);
926#endif 1048#endif
927 array_free (idle, EMPTY0);
928 array_free (prepare, EMPTY0); 1049 array_free (prepare, EMPTY);
929 array_free (check, EMPTY0); 1050 array_free (check, EMPTY);
930 1051
931 backend = 0; 1052 backend = 0;
932} 1053}
933 1054
934static void 1055void inline_size infy_fork (EV_P);
1056
1057void inline_size
935loop_fork (EV_P) 1058loop_fork (EV_P)
936{ 1059{
937#if EV_USE_PORT 1060#if EV_USE_PORT
938 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1061 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
939#endif 1062#endif
940#if EV_USE_KQUEUE 1063#if EV_USE_KQUEUE
941 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1064 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
942#endif 1065#endif
943#if EV_USE_EPOLL 1066#if EV_USE_EPOLL
944 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1067 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1068#endif
1069#if EV_USE_INOTIFY
1070 infy_fork (EV_A);
945#endif 1071#endif
946 1072
947 if (ev_is_active (&sigev)) 1073 if (ev_is_active (&sigev))
948 { 1074 {
949 /* default loop */ 1075 /* default loop */
1065 postfork = 1; 1191 postfork = 1;
1066} 1192}
1067 1193
1068/*****************************************************************************/ 1194/*****************************************************************************/
1069 1195
1070int inline_size 1196void
1071any_pending (EV_P) 1197ev_invoke (EV_P_ void *w, int revents)
1072{ 1198{
1073 int pri; 1199 EV_CB_INVOKE ((W)w, revents);
1074
1075 for (pri = NUMPRI; pri--; )
1076 if (pendingcnt [pri])
1077 return 1;
1078
1079 return 0;
1080} 1200}
1081 1201
1082void inline_speed 1202void inline_speed
1083call_pending (EV_P) 1203call_pending (EV_P)
1084{ 1204{
1089 { 1209 {
1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1210 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1091 1211
1092 if (expect_true (p->w)) 1212 if (expect_true (p->w))
1093 { 1213 {
1094 assert (("non-pending watcher on pending list", p->w->pending)); 1214 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1095 1215
1096 p->w->pending = 0; 1216 p->w->pending = 0;
1097 EV_CB_INVOKE (p->w, p->events); 1217 EV_CB_INVOKE (p->w, p->events);
1098 } 1218 }
1099 } 1219 }
1102void inline_size 1222void inline_size
1103timers_reify (EV_P) 1223timers_reify (EV_P)
1104{ 1224{
1105 while (timercnt && ((WT)timers [0])->at <= mn_now) 1225 while (timercnt && ((WT)timers [0])->at <= mn_now)
1106 { 1226 {
1107 ev_timer *w = timers [0]; 1227 ev_timer *w = (ev_timer *)timers [0];
1108 1228
1109 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1229 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1110 1230
1111 /* first reschedule or stop timer */ 1231 /* first reschedule or stop timer */
1112 if (w->repeat) 1232 if (w->repeat)
1113 { 1233 {
1114 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1234 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1115 1235
1116 ((WT)w)->at += w->repeat; 1236 ((WT)w)->at += w->repeat;
1117 if (((WT)w)->at < mn_now) 1237 if (((WT)w)->at < mn_now)
1118 ((WT)w)->at = mn_now; 1238 ((WT)w)->at = mn_now;
1119 1239
1120 downheap ((WT *)timers, timercnt, 0); 1240 downheap (timers, timercnt, 0);
1121 } 1241 }
1122 else 1242 else
1123 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1243 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 1244
1125 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1245 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1130void inline_size 1250void inline_size
1131periodics_reify (EV_P) 1251periodics_reify (EV_P)
1132{ 1252{
1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1253 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1134 { 1254 {
1135 ev_periodic *w = periodics [0]; 1255 ev_periodic *w = (ev_periodic *)periodics [0];
1136 1256
1137 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1257 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1138 1258
1139 /* first reschedule or stop timer */ 1259 /* first reschedule or stop timer */
1140 if (w->reschedule_cb) 1260 if (w->reschedule_cb)
1141 { 1261 {
1142 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1262 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1143 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1263 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1144 downheap ((WT *)periodics, periodiccnt, 0); 1264 downheap (periodics, periodiccnt, 0);
1145 } 1265 }
1146 else if (w->interval) 1266 else if (w->interval)
1147 { 1267 {
1148 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1268 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1269 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1149 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1270 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1150 downheap ((WT *)periodics, periodiccnt, 0); 1271 downheap (periodics, periodiccnt, 0);
1151 } 1272 }
1152 else 1273 else
1153 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1274 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1154 1275
1155 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1276 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1162 int i; 1283 int i;
1163 1284
1164 /* adjust periodics after time jump */ 1285 /* adjust periodics after time jump */
1165 for (i = 0; i < periodiccnt; ++i) 1286 for (i = 0; i < periodiccnt; ++i)
1166 { 1287 {
1167 ev_periodic *w = periodics [i]; 1288 ev_periodic *w = (ev_periodic *)periodics [i];
1168 1289
1169 if (w->reschedule_cb) 1290 if (w->reschedule_cb)
1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1291 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1171 else if (w->interval) 1292 else if (w->interval)
1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1293 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1173 } 1294 }
1174 1295
1175 /* now rebuild the heap */ 1296 /* now rebuild the heap */
1176 for (i = periodiccnt >> 1; i--; ) 1297 for (i = periodiccnt >> 1; i--; )
1177 downheap ((WT *)periodics, periodiccnt, i); 1298 downheap (periodics, periodiccnt, i);
1178} 1299}
1179#endif 1300#endif
1180 1301
1302#if EV_IDLE_ENABLE
1181int inline_size 1303void inline_size
1182time_update_monotonic (EV_P) 1304idle_reify (EV_P)
1183{ 1305{
1306 if (expect_false (idleall))
1307 {
1308 int pri;
1309
1310 for (pri = NUMPRI; pri--; )
1311 {
1312 if (pendingcnt [pri])
1313 break;
1314
1315 if (idlecnt [pri])
1316 {
1317 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1318 break;
1319 }
1320 }
1321 }
1322}
1323#endif
1324
1325void inline_speed
1326time_update (EV_P_ ev_tstamp max_block)
1327{
1328 int i;
1329
1330#if EV_USE_MONOTONIC
1331 if (expect_true (have_monotonic))
1332 {
1333 ev_tstamp odiff = rtmn_diff;
1334
1184 mn_now = get_clock (); 1335 mn_now = get_clock ();
1185 1336
1337 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1338 /* interpolate in the meantime */
1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1339 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1187 { 1340 {
1188 ev_rt_now = rtmn_diff + mn_now; 1341 ev_rt_now = rtmn_diff + mn_now;
1189 return 0; 1342 return;
1190 } 1343 }
1191 else 1344
1192 {
1193 now_floor = mn_now; 1345 now_floor = mn_now;
1194 ev_rt_now = ev_time (); 1346 ev_rt_now = ev_time ();
1195 return 1;
1196 }
1197}
1198 1347
1199void inline_size 1348 /* loop a few times, before making important decisions.
1200time_update (EV_P) 1349 * on the choice of "4": one iteration isn't enough,
1201{ 1350 * in case we get preempted during the calls to
1202 int i; 1351 * ev_time and get_clock. a second call is almost guaranteed
1203 1352 * to succeed in that case, though. and looping a few more times
1204#if EV_USE_MONOTONIC 1353 * doesn't hurt either as we only do this on time-jumps or
1205 if (expect_true (have_monotonic)) 1354 * in the unlikely event of having been preempted here.
1206 { 1355 */
1207 if (time_update_monotonic (EV_A)) 1356 for (i = 4; --i; )
1208 { 1357 {
1209 ev_tstamp odiff = rtmn_diff;
1210
1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
1220 {
1221 rtmn_diff = ev_rt_now - mn_now; 1358 rtmn_diff = ev_rt_now - mn_now;
1222 1359
1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1360 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1224 return; /* all is well */ 1361 return; /* all is well */
1225 1362
1226 ev_rt_now = ev_time (); 1363 ev_rt_now = ev_time ();
1227 mn_now = get_clock (); 1364 mn_now = get_clock ();
1228 now_floor = mn_now; 1365 now_floor = mn_now;
1229 } 1366 }
1230 1367
1231# if EV_PERIODIC_ENABLE 1368# if EV_PERIODIC_ENABLE
1232 periodics_reschedule (EV_A); 1369 periodics_reschedule (EV_A);
1233# endif 1370# endif
1234 /* no timer adjustment, as the monotonic clock doesn't jump */ 1371 /* no timer adjustment, as the monotonic clock doesn't jump */
1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1372 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1236 }
1237 } 1373 }
1238 else 1374 else
1239#endif 1375#endif
1240 { 1376 {
1241 ev_rt_now = ev_time (); 1377 ev_rt_now = ev_time ();
1242 1378
1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1379 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1244 { 1380 {
1245#if EV_PERIODIC_ENABLE 1381#if EV_PERIODIC_ENABLE
1246 periodics_reschedule (EV_A); 1382 periodics_reschedule (EV_A);
1247#endif 1383#endif
1248
1249 /* adjust timers. this is easy, as the offset is the same for all */ 1384 /* adjust timers. this is easy, as the offset is the same for all of them */
1250 for (i = 0; i < timercnt; ++i) 1385 for (i = 0; i < timercnt; ++i)
1251 ((WT)timers [i])->at += ev_rt_now - mn_now; 1386 ((WT)timers [i])->at += ev_rt_now - mn_now;
1252 } 1387 }
1253 1388
1254 mn_now = ev_rt_now; 1389 mn_now = ev_rt_now;
1274{ 1409{
1275 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1410 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1276 ? EVUNLOOP_ONE 1411 ? EVUNLOOP_ONE
1277 : EVUNLOOP_CANCEL; 1412 : EVUNLOOP_CANCEL;
1278 1413
1279 while (activecnt) 1414 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1415
1416 do
1280 { 1417 {
1418#ifndef _WIN32
1419 if (expect_false (curpid)) /* penalise the forking check even more */
1420 if (expect_false (getpid () != curpid))
1421 {
1422 curpid = getpid ();
1423 postfork = 1;
1424 }
1425#endif
1426
1427#if EV_FORK_ENABLE
1428 /* we might have forked, so queue fork handlers */
1429 if (expect_false (postfork))
1430 if (forkcnt)
1431 {
1432 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1433 call_pending (EV_A);
1434 }
1435#endif
1436
1281 /* queue check watchers (and execute them) */ 1437 /* queue prepare watchers (and execute them) */
1282 if (expect_false (preparecnt)) 1438 if (expect_false (preparecnt))
1283 { 1439 {
1284 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1440 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1285 call_pending (EV_A); 1441 call_pending (EV_A);
1286 } 1442 }
1287 1443
1444 if (expect_false (!activecnt))
1445 break;
1446
1288 /* we might have forked, so reify kernel state if necessary */ 1447 /* we might have forked, so reify kernel state if necessary */
1289 if (expect_false (postfork)) 1448 if (expect_false (postfork))
1290 loop_fork (EV_A); 1449 loop_fork (EV_A);
1291 1450
1292 /* update fd-related kernel structures */ 1451 /* update fd-related kernel structures */
1293 fd_reify (EV_A); 1452 fd_reify (EV_A);
1294 1453
1295 /* calculate blocking time */ 1454 /* calculate blocking time */
1296 { 1455 {
1297 double block; 1456 ev_tstamp block;
1298 1457
1299 if (flags & EVLOOP_NONBLOCK || idlecnt) 1458 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1300 block = 0.; /* do not block at all */ 1459 block = 0.; /* do not block at all */
1301 else 1460 else
1302 { 1461 {
1303 /* update time to cancel out callback processing overhead */ 1462 /* update time to cancel out callback processing overhead */
1304#if EV_USE_MONOTONIC
1305 if (expect_true (have_monotonic))
1306 time_update_monotonic (EV_A); 1463 time_update (EV_A_ 1e100);
1307 else
1308#endif
1309 {
1310 ev_rt_now = ev_time ();
1311 mn_now = ev_rt_now;
1312 }
1313 1464
1314 block = MAX_BLOCKTIME; 1465 block = MAX_BLOCKTIME;
1315 1466
1316 if (timercnt) 1467 if (timercnt)
1317 { 1468 {
1328#endif 1479#endif
1329 1480
1330 if (expect_false (block < 0.)) block = 0.; 1481 if (expect_false (block < 0.)) block = 0.;
1331 } 1482 }
1332 1483
1484 ++loop_count;
1333 backend_poll (EV_A_ block); 1485 backend_poll (EV_A_ block);
1486
1487 /* update ev_rt_now, do magic */
1488 time_update (EV_A_ block);
1334 } 1489 }
1335
1336 /* update ev_rt_now, do magic */
1337 time_update (EV_A);
1338 1490
1339 /* queue pending timers and reschedule them */ 1491 /* queue pending timers and reschedule them */
1340 timers_reify (EV_A); /* relative timers called last */ 1492 timers_reify (EV_A); /* relative timers called last */
1341#if EV_PERIODIC_ENABLE 1493#if EV_PERIODIC_ENABLE
1342 periodics_reify (EV_A); /* absolute timers called first */ 1494 periodics_reify (EV_A); /* absolute timers called first */
1343#endif 1495#endif
1344 1496
1497#if EV_IDLE_ENABLE
1345 /* queue idle watchers unless other events are pending */ 1498 /* queue idle watchers unless other events are pending */
1346 if (idlecnt && !any_pending (EV_A)) 1499 idle_reify (EV_A);
1347 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1500#endif
1348 1501
1349 /* queue check watchers, to be executed first */ 1502 /* queue check watchers, to be executed first */
1350 if (expect_false (checkcnt)) 1503 if (expect_false (checkcnt))
1351 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1504 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1352 1505
1353 call_pending (EV_A); 1506 call_pending (EV_A);
1354 1507
1355 if (expect_false (loop_done))
1356 break;
1357 } 1508 }
1509 while (expect_true (activecnt && !loop_done));
1358 1510
1359 if (loop_done == EVUNLOOP_ONE) 1511 if (loop_done == EVUNLOOP_ONE)
1360 loop_done = EVUNLOOP_CANCEL; 1512 loop_done = EVUNLOOP_CANCEL;
1361} 1513}
1362 1514
1389 head = &(*head)->next; 1541 head = &(*head)->next;
1390 } 1542 }
1391} 1543}
1392 1544
1393void inline_speed 1545void inline_speed
1394ev_clear_pending (EV_P_ W w) 1546clear_pending (EV_P_ W w)
1395{ 1547{
1396 if (w->pending) 1548 if (w->pending)
1397 { 1549 {
1398 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1550 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1399 w->pending = 0; 1551 w->pending = 0;
1400 } 1552 }
1401} 1553}
1402 1554
1555int
1556ev_clear_pending (EV_P_ void *w)
1557{
1558 W w_ = (W)w;
1559 int pending = w_->pending;
1560
1561 if (expect_true (pending))
1562 {
1563 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1564 w_->pending = 0;
1565 p->w = 0;
1566 return p->events;
1567 }
1568 else
1569 return 0;
1570}
1571
1572void inline_size
1573pri_adjust (EV_P_ W w)
1574{
1575 int pri = w->priority;
1576 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1577 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1578 w->priority = pri;
1579}
1580
1403void inline_speed 1581void inline_speed
1404ev_start (EV_P_ W w, int active) 1582ev_start (EV_P_ W w, int active)
1405{ 1583{
1406 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1584 pri_adjust (EV_A_ w);
1407 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1408
1409 w->active = active; 1585 w->active = active;
1410 ev_ref (EV_A); 1586 ev_ref (EV_A);
1411} 1587}
1412 1588
1413void inline_size 1589void inline_size
1417 w->active = 0; 1593 w->active = 0;
1418} 1594}
1419 1595
1420/*****************************************************************************/ 1596/*****************************************************************************/
1421 1597
1422void 1598void noinline
1423ev_io_start (EV_P_ ev_io *w) 1599ev_io_start (EV_P_ ev_io *w)
1424{ 1600{
1425 int fd = w->fd; 1601 int fd = w->fd;
1426 1602
1427 if (expect_false (ev_is_active (w))) 1603 if (expect_false (ev_is_active (w)))
1429 1605
1430 assert (("ev_io_start called with negative fd", fd >= 0)); 1606 assert (("ev_io_start called with negative fd", fd >= 0));
1431 1607
1432 ev_start (EV_A_ (W)w, 1); 1608 ev_start (EV_A_ (W)w, 1);
1433 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1609 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1434 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1610 wlist_add (&anfds[fd].head, (WL)w);
1435 1611
1436 fd_change (EV_A_ fd); 1612 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1613 w->events &= ~EV_IOFDSET;
1437} 1614}
1438 1615
1439void 1616void noinline
1440ev_io_stop (EV_P_ ev_io *w) 1617ev_io_stop (EV_P_ ev_io *w)
1441{ 1618{
1442 ev_clear_pending (EV_A_ (W)w); 1619 clear_pending (EV_A_ (W)w);
1443 if (expect_false (!ev_is_active (w))) 1620 if (expect_false (!ev_is_active (w)))
1444 return; 1621 return;
1445 1622
1446 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1447 1624
1448 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1625 wlist_del (&anfds[w->fd].head, (WL)w);
1449 ev_stop (EV_A_ (W)w); 1626 ev_stop (EV_A_ (W)w);
1450 1627
1451 fd_change (EV_A_ w->fd); 1628 fd_change (EV_A_ w->fd, 1);
1452} 1629}
1453 1630
1454void 1631void noinline
1455ev_timer_start (EV_P_ ev_timer *w) 1632ev_timer_start (EV_P_ ev_timer *w)
1456{ 1633{
1457 if (expect_false (ev_is_active (w))) 1634 if (expect_false (ev_is_active (w)))
1458 return; 1635 return;
1459 1636
1460 ((WT)w)->at += mn_now; 1637 ((WT)w)->at += mn_now;
1461 1638
1462 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1463 1640
1464 ev_start (EV_A_ (W)w, ++timercnt); 1641 ev_start (EV_A_ (W)w, ++timercnt);
1465 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1642 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1466 timers [timercnt - 1] = w; 1643 timers [timercnt - 1] = (WT)w;
1467 upheap ((WT *)timers, timercnt - 1); 1644 upheap (timers, timercnt - 1);
1468 1645
1469 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1470} 1647}
1471 1648
1472void 1649void noinline
1473ev_timer_stop (EV_P_ ev_timer *w) 1650ev_timer_stop (EV_P_ ev_timer *w)
1474{ 1651{
1475 ev_clear_pending (EV_A_ (W)w); 1652 clear_pending (EV_A_ (W)w);
1476 if (expect_false (!ev_is_active (w))) 1653 if (expect_false (!ev_is_active (w)))
1477 return; 1654 return;
1478 1655
1479 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1480 1657
1658 {
1659 int active = ((W)w)->active;
1660
1481 if (expect_true (((W)w)->active < timercnt--)) 1661 if (expect_true (--active < --timercnt))
1482 { 1662 {
1483 timers [((W)w)->active - 1] = timers [timercnt]; 1663 timers [active] = timers [timercnt];
1484 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1664 adjustheap (timers, timercnt, active);
1485 } 1665 }
1666 }
1486 1667
1487 ((WT)w)->at -= mn_now; 1668 ((WT)w)->at -= mn_now;
1488 1669
1489 ev_stop (EV_A_ (W)w); 1670 ev_stop (EV_A_ (W)w);
1490} 1671}
1491 1672
1492void 1673void noinline
1493ev_timer_again (EV_P_ ev_timer *w) 1674ev_timer_again (EV_P_ ev_timer *w)
1494{ 1675{
1495 if (ev_is_active (w)) 1676 if (ev_is_active (w))
1496 { 1677 {
1497 if (w->repeat) 1678 if (w->repeat)
1498 { 1679 {
1499 ((WT)w)->at = mn_now + w->repeat; 1680 ((WT)w)->at = mn_now + w->repeat;
1500 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1681 adjustheap (timers, timercnt, ((W)w)->active - 1);
1501 } 1682 }
1502 else 1683 else
1503 ev_timer_stop (EV_A_ w); 1684 ev_timer_stop (EV_A_ w);
1504 } 1685 }
1505 else if (w->repeat) 1686 else if (w->repeat)
1508 ev_timer_start (EV_A_ w); 1689 ev_timer_start (EV_A_ w);
1509 } 1690 }
1510} 1691}
1511 1692
1512#if EV_PERIODIC_ENABLE 1693#if EV_PERIODIC_ENABLE
1513void 1694void noinline
1514ev_periodic_start (EV_P_ ev_periodic *w) 1695ev_periodic_start (EV_P_ ev_periodic *w)
1515{ 1696{
1516 if (expect_false (ev_is_active (w))) 1697 if (expect_false (ev_is_active (w)))
1517 return; 1698 return;
1518 1699
1520 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1521 else if (w->interval) 1702 else if (w->interval)
1522 { 1703 {
1523 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1524 /* this formula differs from the one in periodic_reify because we do not always round up */ 1705 /* this formula differs from the one in periodic_reify because we do not always round up */
1525 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1526 } 1707 }
1708 else
1709 ((WT)w)->at = w->offset;
1527 1710
1528 ev_start (EV_A_ (W)w, ++periodiccnt); 1711 ev_start (EV_A_ (W)w, ++periodiccnt);
1529 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1712 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1530 periodics [periodiccnt - 1] = w; 1713 periodics [periodiccnt - 1] = (WT)w;
1531 upheap ((WT *)periodics, periodiccnt - 1); 1714 upheap (periodics, periodiccnt - 1);
1532 1715
1533 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1534} 1717}
1535 1718
1536void 1719void noinline
1537ev_periodic_stop (EV_P_ ev_periodic *w) 1720ev_periodic_stop (EV_P_ ev_periodic *w)
1538{ 1721{
1539 ev_clear_pending (EV_A_ (W)w); 1722 clear_pending (EV_A_ (W)w);
1540 if (expect_false (!ev_is_active (w))) 1723 if (expect_false (!ev_is_active (w)))
1541 return; 1724 return;
1542 1725
1543 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1544 1727
1728 {
1729 int active = ((W)w)->active;
1730
1545 if (expect_true (((W)w)->active < periodiccnt--)) 1731 if (expect_true (--active < --periodiccnt))
1546 { 1732 {
1547 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1733 periodics [active] = periodics [periodiccnt];
1548 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1734 adjustheap (periodics, periodiccnt, active);
1549 } 1735 }
1736 }
1550 1737
1551 ev_stop (EV_A_ (W)w); 1738 ev_stop (EV_A_ (W)w);
1552} 1739}
1553 1740
1554void 1741void noinline
1555ev_periodic_again (EV_P_ ev_periodic *w) 1742ev_periodic_again (EV_P_ ev_periodic *w)
1556{ 1743{
1557 /* TODO: use adjustheap and recalculation */ 1744 /* TODO: use adjustheap and recalculation */
1558 ev_periodic_stop (EV_A_ w); 1745 ev_periodic_stop (EV_A_ w);
1559 ev_periodic_start (EV_A_ w); 1746 ev_periodic_start (EV_A_ w);
1562 1749
1563#ifndef SA_RESTART 1750#ifndef SA_RESTART
1564# define SA_RESTART 0 1751# define SA_RESTART 0
1565#endif 1752#endif
1566 1753
1567void 1754void noinline
1568ev_signal_start (EV_P_ ev_signal *w) 1755ev_signal_start (EV_P_ ev_signal *w)
1569{ 1756{
1570#if EV_MULTIPLICITY 1757#if EV_MULTIPLICITY
1571 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1758 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1572#endif 1759#endif
1573 if (expect_false (ev_is_active (w))) 1760 if (expect_false (ev_is_active (w)))
1574 return; 1761 return;
1575 1762
1576 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1577 1764
1765 {
1766#ifndef _WIN32
1767 sigset_t full, prev;
1768 sigfillset (&full);
1769 sigprocmask (SIG_SETMASK, &full, &prev);
1770#endif
1771
1772 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1773
1774#ifndef _WIN32
1775 sigprocmask (SIG_SETMASK, &prev, 0);
1776#endif
1777 }
1778
1578 ev_start (EV_A_ (W)w, 1); 1779 ev_start (EV_A_ (W)w, 1);
1579 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1580 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1780 wlist_add (&signals [w->signum - 1].head, (WL)w);
1581 1781
1582 if (!((WL)w)->next) 1782 if (!((WL)w)->next)
1583 { 1783 {
1584#if _WIN32 1784#if _WIN32
1585 signal (w->signum, sighandler); 1785 signal (w->signum, sighandler);
1591 sigaction (w->signum, &sa, 0); 1791 sigaction (w->signum, &sa, 0);
1592#endif 1792#endif
1593 } 1793 }
1594} 1794}
1595 1795
1596void 1796void noinline
1597ev_signal_stop (EV_P_ ev_signal *w) 1797ev_signal_stop (EV_P_ ev_signal *w)
1598{ 1798{
1599 ev_clear_pending (EV_A_ (W)w); 1799 clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w))) 1800 if (expect_false (!ev_is_active (w)))
1601 return; 1801 return;
1602 1802
1603 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1803 wlist_del (&signals [w->signum - 1].head, (WL)w);
1604 ev_stop (EV_A_ (W)w); 1804 ev_stop (EV_A_ (W)w);
1605 1805
1606 if (!signals [w->signum - 1].head) 1806 if (!signals [w->signum - 1].head)
1607 signal (w->signum, SIG_DFL); 1807 signal (w->signum, SIG_DFL);
1608} 1808}
1615#endif 1815#endif
1616 if (expect_false (ev_is_active (w))) 1816 if (expect_false (ev_is_active (w)))
1617 return; 1817 return;
1618 1818
1619 ev_start (EV_A_ (W)w, 1); 1819 ev_start (EV_A_ (W)w, 1);
1620 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1820 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1621} 1821}
1622 1822
1623void 1823void
1624ev_child_stop (EV_P_ ev_child *w) 1824ev_child_stop (EV_P_ ev_child *w)
1625{ 1825{
1626 ev_clear_pending (EV_A_ (W)w); 1826 clear_pending (EV_A_ (W)w);
1627 if (expect_false (!ev_is_active (w))) 1827 if (expect_false (!ev_is_active (w)))
1628 return; 1828 return;
1629 1829
1630 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1830 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1631 ev_stop (EV_A_ (W)w); 1831 ev_stop (EV_A_ (W)w);
1632} 1832}
1633 1833
1634#if EV_STAT_ENABLE 1834#if EV_STAT_ENABLE
1635 1835
1636# ifdef _WIN32 1836# ifdef _WIN32
1837# undef lstat
1637# define lstat(a,b) stat(a,b) 1838# define lstat(a,b) _stati64 (a,b)
1638# endif 1839# endif
1639 1840
1640#define DEF_STAT_INTERVAL 5.0074891 1841#define DEF_STAT_INTERVAL 5.0074891
1641#define MIN_STAT_INTERVAL 0.1074891 1842#define MIN_STAT_INTERVAL 0.1074891
1843
1844static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1845
1846#if EV_USE_INOTIFY
1847# define EV_INOTIFY_BUFSIZE 8192
1848
1849static void noinline
1850infy_add (EV_P_ ev_stat *w)
1851{
1852 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1853
1854 if (w->wd < 0)
1855 {
1856 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1857
1858 /* monitor some parent directory for speedup hints */
1859 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1860 {
1861 char path [4096];
1862 strcpy (path, w->path);
1863
1864 do
1865 {
1866 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1867 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1868
1869 char *pend = strrchr (path, '/');
1870
1871 if (!pend)
1872 break; /* whoops, no '/', complain to your admin */
1873
1874 *pend = 0;
1875 w->wd = inotify_add_watch (fs_fd, path, mask);
1876 }
1877 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1878 }
1879 }
1880 else
1881 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1882
1883 if (w->wd >= 0)
1884 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1885}
1886
1887static void noinline
1888infy_del (EV_P_ ev_stat *w)
1889{
1890 int slot;
1891 int wd = w->wd;
1892
1893 if (wd < 0)
1894 return;
1895
1896 w->wd = -2;
1897 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1898 wlist_del (&fs_hash [slot].head, (WL)w);
1899
1900 /* remove this watcher, if others are watching it, they will rearm */
1901 inotify_rm_watch (fs_fd, wd);
1902}
1903
1904static void noinline
1905infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1906{
1907 if (slot < 0)
1908 /* overflow, need to check for all hahs slots */
1909 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1910 infy_wd (EV_A_ slot, wd, ev);
1911 else
1912 {
1913 WL w_;
1914
1915 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1916 {
1917 ev_stat *w = (ev_stat *)w_;
1918 w_ = w_->next; /* lets us remove this watcher and all before it */
1919
1920 if (w->wd == wd || wd == -1)
1921 {
1922 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1923 {
1924 w->wd = -1;
1925 infy_add (EV_A_ w); /* re-add, no matter what */
1926 }
1927
1928 stat_timer_cb (EV_A_ &w->timer, 0);
1929 }
1930 }
1931 }
1932}
1933
1934static void
1935infy_cb (EV_P_ ev_io *w, int revents)
1936{
1937 char buf [EV_INOTIFY_BUFSIZE];
1938 struct inotify_event *ev = (struct inotify_event *)buf;
1939 int ofs;
1940 int len = read (fs_fd, buf, sizeof (buf));
1941
1942 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1943 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1944}
1945
1946void inline_size
1947infy_init (EV_P)
1948{
1949 if (fs_fd != -2)
1950 return;
1951
1952 fs_fd = inotify_init ();
1953
1954 if (fs_fd >= 0)
1955 {
1956 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1957 ev_set_priority (&fs_w, EV_MAXPRI);
1958 ev_io_start (EV_A_ &fs_w);
1959 }
1960}
1961
1962void inline_size
1963infy_fork (EV_P)
1964{
1965 int slot;
1966
1967 if (fs_fd < 0)
1968 return;
1969
1970 close (fs_fd);
1971 fs_fd = inotify_init ();
1972
1973 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1974 {
1975 WL w_ = fs_hash [slot].head;
1976 fs_hash [slot].head = 0;
1977
1978 while (w_)
1979 {
1980 ev_stat *w = (ev_stat *)w_;
1981 w_ = w_->next; /* lets us add this watcher */
1982
1983 w->wd = -1;
1984
1985 if (fs_fd >= 0)
1986 infy_add (EV_A_ w); /* re-add, no matter what */
1987 else
1988 ev_timer_start (EV_A_ &w->timer);
1989 }
1990
1991 }
1992}
1993
1994#endif
1642 1995
1643void 1996void
1644ev_stat_stat (EV_P_ ev_stat *w) 1997ev_stat_stat (EV_P_ ev_stat *w)
1645{ 1998{
1646 if (lstat (w->path, &w->attr) < 0) 1999 if (lstat (w->path, &w->attr) < 0)
1647 w->attr.st_nlink = 0; 2000 w->attr.st_nlink = 0;
1648 else if (!w->attr.st_nlink) 2001 else if (!w->attr.st_nlink)
1649 w->attr.st_nlink = 1; 2002 w->attr.st_nlink = 1;
1650} 2003}
1651 2004
1652static void 2005static void noinline
1653stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2006stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1654{ 2007{
1655 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2008 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1656 2009
1657 /* we copy this here each the time so that */ 2010 /* we copy this here each the time so that */
1658 /* prev has the old value when the callback gets invoked */ 2011 /* prev has the old value when the callback gets invoked */
1659 w->prev = w->attr; 2012 w->prev = w->attr;
1660 ev_stat_stat (EV_A_ w); 2013 ev_stat_stat (EV_A_ w);
1661 2014
1662 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2015 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2016 if (
2017 w->prev.st_dev != w->attr.st_dev
2018 || w->prev.st_ino != w->attr.st_ino
2019 || w->prev.st_mode != w->attr.st_mode
2020 || w->prev.st_nlink != w->attr.st_nlink
2021 || w->prev.st_uid != w->attr.st_uid
2022 || w->prev.st_gid != w->attr.st_gid
2023 || w->prev.st_rdev != w->attr.st_rdev
2024 || w->prev.st_size != w->attr.st_size
2025 || w->prev.st_atime != w->attr.st_atime
2026 || w->prev.st_mtime != w->attr.st_mtime
2027 || w->prev.st_ctime != w->attr.st_ctime
2028 ) {
2029 #if EV_USE_INOTIFY
2030 infy_del (EV_A_ w);
2031 infy_add (EV_A_ w);
2032 ev_stat_stat (EV_A_ w); /* avoid race... */
2033 #endif
2034
1663 ev_feed_event (EV_A_ w, EV_STAT); 2035 ev_feed_event (EV_A_ w, EV_STAT);
2036 }
1664} 2037}
1665 2038
1666void 2039void
1667ev_stat_start (EV_P_ ev_stat *w) 2040ev_stat_start (EV_P_ ev_stat *w)
1668{ 2041{
1678 if (w->interval < MIN_STAT_INTERVAL) 2051 if (w->interval < MIN_STAT_INTERVAL)
1679 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL; 2052 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1680 2053
1681 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2054 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1682 ev_set_priority (&w->timer, ev_priority (w)); 2055 ev_set_priority (&w->timer, ev_priority (w));
2056
2057#if EV_USE_INOTIFY
2058 infy_init (EV_A);
2059
2060 if (fs_fd >= 0)
2061 infy_add (EV_A_ w);
2062 else
2063#endif
1683 ev_timer_start (EV_A_ &w->timer); 2064 ev_timer_start (EV_A_ &w->timer);
1684 2065
1685 ev_start (EV_A_ (W)w, 1); 2066 ev_start (EV_A_ (W)w, 1);
1686} 2067}
1687 2068
1688void 2069void
1689ev_stat_stop (EV_P_ ev_stat *w) 2070ev_stat_stop (EV_P_ ev_stat *w)
1690{ 2071{
1691 ev_clear_pending (EV_A_ (W)w); 2072 clear_pending (EV_A_ (W)w);
1692 if (expect_false (!ev_is_active (w))) 2073 if (expect_false (!ev_is_active (w)))
1693 return; 2074 return;
1694 2075
2076#if EV_USE_INOTIFY
2077 infy_del (EV_A_ w);
2078#endif
1695 ev_timer_stop (EV_A_ &w->timer); 2079 ev_timer_stop (EV_A_ &w->timer);
1696 2080
1697 ev_stop (EV_A_ (W)w); 2081 ev_stop (EV_A_ (W)w);
1698} 2082}
1699#endif 2083#endif
1700 2084
2085#if EV_IDLE_ENABLE
1701void 2086void
1702ev_idle_start (EV_P_ ev_idle *w) 2087ev_idle_start (EV_P_ ev_idle *w)
1703{ 2088{
1704 if (expect_false (ev_is_active (w))) 2089 if (expect_false (ev_is_active (w)))
1705 return; 2090 return;
1706 2091
2092 pri_adjust (EV_A_ (W)w);
2093
2094 {
2095 int active = ++idlecnt [ABSPRI (w)];
2096
2097 ++idleall;
1707 ev_start (EV_A_ (W)w, ++idlecnt); 2098 ev_start (EV_A_ (W)w, active);
2099
1708 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2100 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1709 idles [idlecnt - 1] = w; 2101 idles [ABSPRI (w)][active - 1] = w;
2102 }
1710} 2103}
1711 2104
1712void 2105void
1713ev_idle_stop (EV_P_ ev_idle *w) 2106ev_idle_stop (EV_P_ ev_idle *w)
1714{ 2107{
1715 ev_clear_pending (EV_A_ (W)w); 2108 clear_pending (EV_A_ (W)w);
1716 if (expect_false (!ev_is_active (w))) 2109 if (expect_false (!ev_is_active (w)))
1717 return; 2110 return;
1718 2111
1719 { 2112 {
1720 int active = ((W)w)->active; 2113 int active = ((W)w)->active;
1721 idles [active - 1] = idles [--idlecnt]; 2114
2115 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1722 ((W)idles [active - 1])->active = active; 2116 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2117
2118 ev_stop (EV_A_ (W)w);
2119 --idleall;
1723 } 2120 }
1724
1725 ev_stop (EV_A_ (W)w);
1726} 2121}
2122#endif
1727 2123
1728void 2124void
1729ev_prepare_start (EV_P_ ev_prepare *w) 2125ev_prepare_start (EV_P_ ev_prepare *w)
1730{ 2126{
1731 if (expect_false (ev_is_active (w))) 2127 if (expect_false (ev_is_active (w)))
1737} 2133}
1738 2134
1739void 2135void
1740ev_prepare_stop (EV_P_ ev_prepare *w) 2136ev_prepare_stop (EV_P_ ev_prepare *w)
1741{ 2137{
1742 ev_clear_pending (EV_A_ (W)w); 2138 clear_pending (EV_A_ (W)w);
1743 if (expect_false (!ev_is_active (w))) 2139 if (expect_false (!ev_is_active (w)))
1744 return; 2140 return;
1745 2141
1746 { 2142 {
1747 int active = ((W)w)->active; 2143 int active = ((W)w)->active;
1764} 2160}
1765 2161
1766void 2162void
1767ev_check_stop (EV_P_ ev_check *w) 2163ev_check_stop (EV_P_ ev_check *w)
1768{ 2164{
1769 ev_clear_pending (EV_A_ (W)w); 2165 clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w))) 2166 if (expect_false (!ev_is_active (w)))
1771 return; 2167 return;
1772 2168
1773 { 2169 {
1774 int active = ((W)w)->active; 2170 int active = ((W)w)->active;
1816} 2212}
1817 2213
1818void 2214void
1819ev_embed_stop (EV_P_ ev_embed *w) 2215ev_embed_stop (EV_P_ ev_embed *w)
1820{ 2216{
1821 ev_clear_pending (EV_A_ (W)w); 2217 clear_pending (EV_A_ (W)w);
1822 if (expect_false (!ev_is_active (w))) 2218 if (expect_false (!ev_is_active (w)))
1823 return; 2219 return;
1824 2220
1825 ev_io_stop (EV_A_ &w->io); 2221 ev_io_stop (EV_A_ &w->io);
2222
2223 ev_stop (EV_A_ (W)w);
2224}
2225#endif
2226
2227#if EV_FORK_ENABLE
2228void
2229ev_fork_start (EV_P_ ev_fork *w)
2230{
2231 if (expect_false (ev_is_active (w)))
2232 return;
2233
2234 ev_start (EV_A_ (W)w, ++forkcnt);
2235 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2236 forks [forkcnt - 1] = w;
2237}
2238
2239void
2240ev_fork_stop (EV_P_ ev_fork *w)
2241{
2242 clear_pending (EV_A_ (W)w);
2243 if (expect_false (!ev_is_active (w)))
2244 return;
2245
2246 {
2247 int active = ((W)w)->active;
2248 forks [active - 1] = forks [--forkcnt];
2249 ((W)forks [active - 1])->active = active;
2250 }
1826 2251
1827 ev_stop (EV_A_ (W)w); 2252 ev_stop (EV_A_ (W)w);
1828} 2253}
1829#endif 2254#endif
1830 2255

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines