ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.144 by root, Tue Nov 27 08:11:52 2007 UTC vs.
Revision 1.474 by root, Wed Feb 11 19:20:21 2015 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
99#endif 145# endif
100 146
101#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
102#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
103#include <fcntl.h> 169#include <fcntl.h>
104#include <stddef.h> 170#include <stddef.h>
105 171
106#include <stdio.h> 172#include <stdio.h>
107 173
108#include <assert.h> 174#include <assert.h>
109#include <errno.h> 175#include <errno.h>
110#include <sys/types.h> 176#include <sys/types.h>
111#include <time.h> 177#include <time.h>
178#include <limits.h>
112 179
113#include <signal.h> 180#include <signal.h>
181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
114 198
115#ifndef _WIN32 199#ifndef _WIN32
116# include <sys/time.h> 200# include <sys/time.h>
117# include <sys/wait.h> 201# include <sys/wait.h>
118# include <unistd.h> 202# include <unistd.h>
119#else 203#else
204# include <io.h>
120# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
121# include <windows.h> 207# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
124# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
125#endif 258# endif
259#endif
126 260
127/**/ 261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
128 269
129#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272# define EV_USE_MONOTONIC EV_FEATURE_OS
273# else
130# define EV_USE_MONOTONIC 0 274# define EV_USE_MONOTONIC 0
275# endif
131#endif 276#endif
132 277
133#ifndef EV_USE_REALTIME 278#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280#endif
281
282#ifndef EV_USE_NANOSLEEP
283# if _POSIX_C_SOURCE >= 199309L
284# define EV_USE_NANOSLEEP EV_FEATURE_OS
285# else
286# define EV_USE_NANOSLEEP 0
287# endif
135#endif 288#endif
136 289
137#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
139#endif 292#endif
140 293
141#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
142# ifdef _WIN32 295# ifdef _WIN32
143# define EV_USE_POLL 0 296# define EV_USE_POLL 0
144# else 297# else
145# define EV_USE_POLL 1 298# define EV_USE_POLL EV_FEATURE_BACKENDS
146# endif 299# endif
147#endif 300#endif
148 301
149#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
305# else
150# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
307# endif
151#endif 308#endif
152 309
153#ifndef EV_USE_KQUEUE 310#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 311# define EV_USE_KQUEUE 0
155#endif 312#endif
156 313
157#ifndef EV_USE_PORT 314#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 315# define EV_USE_PORT 0
159#endif 316#endif
160 317
161/**/ 318#ifndef EV_USE_INOTIFY
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320# define EV_USE_INOTIFY EV_FEATURE_OS
321# else
322# define EV_USE_INOTIFY 0
323# endif
324#endif
325
326#ifndef EV_PID_HASHSIZE
327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
328#endif
329
330#ifndef EV_INOTIFY_HASHSIZE
331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332#endif
333
334#ifndef EV_USE_EVENTFD
335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336# define EV_USE_EVENTFD EV_FEATURE_OS
337# else
338# define EV_USE_EVENTFD 0
339# endif
340#endif
341
342#ifndef EV_USE_SIGNALFD
343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344# define EV_USE_SIGNALFD EV_FEATURE_OS
345# else
346# define EV_USE_SIGNALFD 0
347# endif
348#endif
349
350#if 0 /* debugging */
351# define EV_VERIFY 3
352# define EV_USE_4HEAP 1
353# define EV_HEAP_CACHE_AT 1
354#endif
355
356#ifndef EV_VERIFY
357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358#endif
359
360#ifndef EV_USE_4HEAP
361# define EV_USE_4HEAP EV_FEATURE_DATA
362#endif
363
364#ifndef EV_HEAP_CACHE_AT
365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef ANDROID
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
396#endif
397
398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 399
163#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 401# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 402# define EV_USE_MONOTONIC 0
166#endif 403#endif
168#ifndef CLOCK_REALTIME 405#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 406# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 407# define EV_USE_REALTIME 0
171#endif 408#endif
172 409
173#if EV_SELECT_IS_WINSOCKET 410#if !EV_STAT_ENABLE
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413#endif
414
415#if !EV_USE_NANOSLEEP
416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
418# include <sys/select.h>
419# endif
420#endif
421
422#if EV_USE_INOTIFY
423# include <sys/statfs.h>
424# include <sys/inotify.h>
425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426# ifndef IN_DONT_FOLLOW
427# undef EV_USE_INOTIFY
428# define EV_USE_INOTIFY 0
429# endif
430#endif
431
432#if EV_USE_EVENTFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
174# include <winsock.h> 434# include <stdint.h>
435# ifndef EFD_NONBLOCK
436# define EFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef EFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
175#endif 468#endif
176 469
177/**/ 470/**/
471
472#if EV_VERIFY >= 3
473# define EV_FREQUENT_CHECK ev_verify (EV_A)
474#else
475# define EV_FREQUENT_CHECK do { } while (0)
476#endif
477
478/*
479 * This is used to work around floating point rounding problems.
480 * This value is good at least till the year 4000.
481 */
482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
178 484
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
183 487
488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
184#ifdef EV_H 533#ifndef ECB_H
185# include EV_H 534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010004
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
546 #if __GNUC__
547 typedef signed long long int64_t;
548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
186#else 562#else
187# include "ev.h" 563 #include <inttypes.h>
564 #if UINTMAX_MAX > 0xffffffffU
565 #define ECB_PTRSIZE 8
566 #else
567 #define ECB_PTRSIZE 4
188#endif 568 #endif
189
190#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif 569#endif
570
571/* work around x32 idiocy by defining proper macros */
572#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
573 #if _ILP32
574 #define ECB_AMD64_X32 1
575 #else
576 #define ECB_AMD64 1
577 #endif
578#endif
579
580/* many compilers define _GNUC_ to some versions but then only implement
581 * what their idiot authors think are the "more important" extensions,
582 * causing enormous grief in return for some better fake benchmark numbers.
583 * or so.
584 * we try to detect these and simply assume they are not gcc - if they have
585 * an issue with that they should have done it right in the first place.
586 */
587#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
588 #define ECB_GCC_VERSION(major,minor) 0
200#else 589#else
590 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
591#endif
592
593#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
594
595#if __clang__ && defined __has_builtin
596 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
597#else
598 #define ECB_CLANG_BUILTIN(x) 0
599#endif
600
601#if __clang__ && defined __has_extension
602 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
603#else
604 #define ECB_CLANG_EXTENSION(x) 0
605#endif
606
607#define ECB_CPP (__cplusplus+0)
608#define ECB_CPP11 (__cplusplus >= 201103L)
609
610#if ECB_CPP
611 #define ECB_C 0
612 #define ECB_STDC_VERSION 0
613#else
614 #define ECB_C 1
615 #define ECB_STDC_VERSION __STDC_VERSION__
616#endif
617
618#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
619#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
620
621#if ECB_CPP
622 #define ECB_EXTERN_C extern "C"
623 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
624 #define ECB_EXTERN_C_END }
625#else
626 #define ECB_EXTERN_C extern
627 #define ECB_EXTERN_C_BEG
628 #define ECB_EXTERN_C_END
629#endif
630
631/*****************************************************************************/
632
633/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
634/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
635
636#if ECB_NO_THREADS
637 #define ECB_NO_SMP 1
638#endif
639
640#if ECB_NO_SMP
641 #define ECB_MEMORY_FENCE do { } while (0)
642#endif
643
644#ifndef ECB_MEMORY_FENCE
645 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
646 #if __i386 || __i386__
647 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
648 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
649 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
650 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
651 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
652 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
653 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
654 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
655 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
656 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
657 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
658 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
659 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
660 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
662 #elif __aarch64__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
664 #elif (__sparc || __sparc__) && !__sparcv8
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
666 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
667 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
668 #elif defined __s390__ || defined __s390x__
669 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
670 #elif defined __mips__
671 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
672 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
673 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
674 #elif defined __alpha__
675 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
676 #elif defined __hppa__
677 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
678 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
679 #elif defined __ia64__
680 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
681 #elif defined __m68k__
682 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
683 #elif defined __m88k__
684 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
685 #elif defined __sh__
686 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
687 #endif
688 #endif
689#endif
690
691#ifndef ECB_MEMORY_FENCE
692 #if ECB_GCC_VERSION(4,7)
693 /* see comment below (stdatomic.h) about the C11 memory model. */
694 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
695 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
696 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
697
698 #elif ECB_CLANG_EXTENSION(c_atomic)
699 /* see comment below (stdatomic.h) about the C11 memory model. */
700 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
701 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
702 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
703
704 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
705 #define ECB_MEMORY_FENCE __sync_synchronize ()
706 #elif _MSC_VER >= 1500 /* VC++ 2008 */
707 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
708 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
709 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
710 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
711 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
712 #elif _MSC_VER >= 1400 /* VC++ 2005 */
713 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
714 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
715 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
716 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
717 #elif defined _WIN32
718 #include <WinNT.h>
719 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
720 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
721 #include <mbarrier.h>
722 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
723 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
724 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
725 #elif __xlC__
726 #define ECB_MEMORY_FENCE __sync ()
727 #endif
728#endif
729
730#ifndef ECB_MEMORY_FENCE
731 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
732 /* we assume that these memory fences work on all variables/all memory accesses, */
733 /* not just C11 atomics and atomic accesses */
734 #include <stdatomic.h>
735 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
736 /* any fence other than seq_cst, which isn't very efficient for us. */
737 /* Why that is, we don't know - either the C11 memory model is quite useless */
738 /* for most usages, or gcc and clang have a bug */
739 /* I *currently* lean towards the latter, and inefficiently implement */
740 /* all three of ecb's fences as a seq_cst fence */
741 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
742 /* for all __atomic_thread_fence's except seq_cst */
743 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
744 #endif
745#endif
746
747#ifndef ECB_MEMORY_FENCE
748 #if !ECB_AVOID_PTHREADS
749 /*
750 * if you get undefined symbol references to pthread_mutex_lock,
751 * or failure to find pthread.h, then you should implement
752 * the ECB_MEMORY_FENCE operations for your cpu/compiler
753 * OR provide pthread.h and link against the posix thread library
754 * of your system.
755 */
756 #include <pthread.h>
757 #define ECB_NEEDS_PTHREADS 1
758 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
759
760 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
761 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
762 #endif
763#endif
764
765#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
766 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
767#endif
768
769#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
770 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
771#endif
772
773/*****************************************************************************/
774
775#if ECB_CPP
776 #define ecb_inline static inline
777#elif ECB_GCC_VERSION(2,5)
778 #define ecb_inline static __inline__
779#elif ECB_C99
780 #define ecb_inline static inline
781#else
782 #define ecb_inline static
783#endif
784
785#if ECB_GCC_VERSION(3,3)
786 #define ecb_restrict __restrict__
787#elif ECB_C99
788 #define ecb_restrict restrict
789#else
790 #define ecb_restrict
791#endif
792
793typedef int ecb_bool;
794
795#define ECB_CONCAT_(a, b) a ## b
796#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
797#define ECB_STRINGIFY_(a) # a
798#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
799
800#define ecb_function_ ecb_inline
801
802#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
803 #define ecb_attribute(attrlist) __attribute__ (attrlist)
804#else
805 #define ecb_attribute(attrlist)
806#endif
807
808#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
809 #define ecb_is_constant(expr) __builtin_constant_p (expr)
810#else
811 /* possible C11 impl for integral types
812 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
813 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
814
815 #define ecb_is_constant(expr) 0
816#endif
817
818#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
819 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
820#else
201# define expect(expr,value) (expr) 821 #define ecb_expect(expr,value) (expr)
202# define inline_speed static
203# define inline_minimal static
204# define noinline
205#endif 822#endif
206 823
824#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
825 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
826#else
827 #define ecb_prefetch(addr,rw,locality)
828#endif
829
830/* no emulation for ecb_decltype */
831#if ECB_CPP11
832 // older implementations might have problems with decltype(x)::type, work around it
833 template<class T> struct ecb_decltype_t { typedef T type; };
834 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
835#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
836 #define ecb_decltype(x) __typeof__ (x)
837#endif
838
839#if _MSC_VER >= 1300
840 #define ecb_deprecated __declspec (deprecated)
841#else
842 #define ecb_deprecated ecb_attribute ((__deprecated__))
843#endif
844
845#define ecb_noinline ecb_attribute ((__noinline__))
846#define ecb_unused ecb_attribute ((__unused__))
847#define ecb_const ecb_attribute ((__const__))
848#define ecb_pure ecb_attribute ((__pure__))
849
850/* TODO http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx __declspec(noreturn) */
851#if ECB_C11 || __IBMC_NORETURN
852 /* http://pic.dhe.ibm.com/infocenter/compbg/v121v141/topic/com.ibm.xlcpp121.bg.doc/language_ref/noreturn.html */
853 #define ecb_noreturn _Noreturn
854#else
855 #define ecb_noreturn ecb_attribute ((__noreturn__))
856#endif
857
858#if ECB_GCC_VERSION(4,3)
859 #define ecb_artificial ecb_attribute ((__artificial__))
860 #define ecb_hot ecb_attribute ((__hot__))
861 #define ecb_cold ecb_attribute ((__cold__))
862#else
863 #define ecb_artificial
864 #define ecb_hot
865 #define ecb_cold
866#endif
867
868/* put around conditional expressions if you are very sure that the */
869/* expression is mostly true or mostly false. note that these return */
870/* booleans, not the expression. */
207#define expect_false(expr) expect ((expr) != 0, 0) 871#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
208#define expect_true(expr) expect ((expr) != 0, 1) 872#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
873/* for compatibility to the rest of the world */
874#define ecb_likely(expr) ecb_expect_true (expr)
875#define ecb_unlikely(expr) ecb_expect_false (expr)
209 876
877/* count trailing zero bits and count # of one bits */
878#if ECB_GCC_VERSION(3,4) \
879 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
880 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
881 && ECB_CLANG_BUILTIN(__builtin_popcount))
882 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
883 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
884 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
885 #define ecb_ctz32(x) __builtin_ctz (x)
886 #define ecb_ctz64(x) __builtin_ctzll (x)
887 #define ecb_popcount32(x) __builtin_popcount (x)
888 /* no popcountll */
889#else
890 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
891 ecb_function_ ecb_const int
892 ecb_ctz32 (uint32_t x)
893 {
894 int r = 0;
895
896 x &= ~x + 1; /* this isolates the lowest bit */
897
898#if ECB_branchless_on_i386
899 r += !!(x & 0xaaaaaaaa) << 0;
900 r += !!(x & 0xcccccccc) << 1;
901 r += !!(x & 0xf0f0f0f0) << 2;
902 r += !!(x & 0xff00ff00) << 3;
903 r += !!(x & 0xffff0000) << 4;
904#else
905 if (x & 0xaaaaaaaa) r += 1;
906 if (x & 0xcccccccc) r += 2;
907 if (x & 0xf0f0f0f0) r += 4;
908 if (x & 0xff00ff00) r += 8;
909 if (x & 0xffff0000) r += 16;
910#endif
911
912 return r;
913 }
914
915 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
916 ecb_function_ ecb_const int
917 ecb_ctz64 (uint64_t x)
918 {
919 int shift = x & 0xffffffffU ? 0 : 32;
920 return ecb_ctz32 (x >> shift) + shift;
921 }
922
923 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
924 ecb_function_ ecb_const int
925 ecb_popcount32 (uint32_t x)
926 {
927 x -= (x >> 1) & 0x55555555;
928 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
929 x = ((x >> 4) + x) & 0x0f0f0f0f;
930 x *= 0x01010101;
931
932 return x >> 24;
933 }
934
935 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
936 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
937 {
938 int r = 0;
939
940 if (x >> 16) { x >>= 16; r += 16; }
941 if (x >> 8) { x >>= 8; r += 8; }
942 if (x >> 4) { x >>= 4; r += 4; }
943 if (x >> 2) { x >>= 2; r += 2; }
944 if (x >> 1) { r += 1; }
945
946 return r;
947 }
948
949 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
950 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
951 {
952 int r = 0;
953
954 if (x >> 32) { x >>= 32; r += 32; }
955
956 return r + ecb_ld32 (x);
957 }
958#endif
959
960ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
961ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
962ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
963ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
964
965ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
966ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
967{
968 return ( (x * 0x0802U & 0x22110U)
969 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
970}
971
972ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
973ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
974{
975 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
976 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
977 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
978 x = ( x >> 8 ) | ( x << 8);
979
980 return x;
981}
982
983ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
984ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
985{
986 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
987 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
988 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
989 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
990 x = ( x >> 16 ) | ( x << 16);
991
992 return x;
993}
994
995/* popcount64 is only available on 64 bit cpus as gcc builtin */
996/* so for this version we are lazy */
997ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
998ecb_function_ ecb_const int
999ecb_popcount64 (uint64_t x)
1000{
1001 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1002}
1003
1004ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1005ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1006ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1007ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1008ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1009ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1010ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1011ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1012
1013ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1014ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1015ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1016ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1017ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1018ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1019ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1020ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1021
1022#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1023 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1024 #define ecb_bswap32(x) __builtin_bswap32 (x)
1025 #define ecb_bswap64(x) __builtin_bswap64 (x)
1026#else
1027 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1028 ecb_function_ ecb_const uint16_t
1029 ecb_bswap16 (uint16_t x)
1030 {
1031 return ecb_rotl16 (x, 8);
1032 }
1033
1034 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1035 ecb_function_ ecb_const uint32_t
1036 ecb_bswap32 (uint32_t x)
1037 {
1038 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1039 }
1040
1041 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1042 ecb_function_ ecb_const uint64_t
1043 ecb_bswap64 (uint64_t x)
1044 {
1045 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1046 }
1047#endif
1048
1049#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1050 #define ecb_unreachable() __builtin_unreachable ()
1051#else
1052 /* this seems to work fine, but gcc always emits a warning for it :/ */
1053 ecb_inline ecb_noreturn void ecb_unreachable (void);
1054 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1055#endif
1056
1057/* try to tell the compiler that some condition is definitely true */
1058#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1059
1060ecb_inline ecb_const unsigned char ecb_byteorder_helper (void);
1061ecb_inline ecb_const unsigned char
1062ecb_byteorder_helper (void)
1063{
1064 /* the union code still generates code under pressure in gcc, */
1065 /* but less than using pointers, and always seems to */
1066 /* successfully return a constant. */
1067 /* the reason why we have this horrible preprocessor mess */
1068 /* is to avoid it in all cases, at least on common architectures */
1069 /* or when using a recent enough gcc version (>= 4.6) */
1070#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1071 return 0x44;
1072#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1073 return 0x44;
1074#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1075 return 0x11;
1076#else
1077 union
1078 {
1079 uint32_t i;
1080 uint8_t c;
1081 } u = { 0x11223344 };
1082 return u.c;
1083#endif
1084}
1085
1086ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1087ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1088ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1089ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1090
1091#if ECB_GCC_VERSION(3,0) || ECB_C99
1092 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1093#else
1094 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1095#endif
1096
1097#if ECB_CPP
1098 template<typename T>
1099 static inline T ecb_div_rd (T val, T div)
1100 {
1101 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1102 }
1103 template<typename T>
1104 static inline T ecb_div_ru (T val, T div)
1105 {
1106 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1107 }
1108#else
1109 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1110 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1111#endif
1112
1113#if ecb_cplusplus_does_not_suck
1114 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1115 template<typename T, int N>
1116 static inline int ecb_array_length (const T (&arr)[N])
1117 {
1118 return N;
1119 }
1120#else
1121 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1122#endif
1123
1124/*******************************************************************************/
1125/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1126
1127/* basically, everything uses "ieee pure-endian" floating point numbers */
1128/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1129#if 0 \
1130 || __i386 || __i386__ \
1131 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1132 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1133 || defined __s390__ || defined __s390x__ \
1134 || defined __mips__ \
1135 || defined __alpha__ \
1136 || defined __hppa__ \
1137 || defined __ia64__ \
1138 || defined __m68k__ \
1139 || defined __m88k__ \
1140 || defined __sh__ \
1141 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1142 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1143 || defined __aarch64__
1144 #define ECB_STDFP 1
1145 #include <string.h> /* for memcpy */
1146#else
1147 #define ECB_STDFP 0
1148#endif
1149
1150#ifndef ECB_NO_LIBM
1151
1152 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1153
1154 /* only the oldest of old doesn't have this one. solaris. */
1155 #ifdef INFINITY
1156 #define ECB_INFINITY INFINITY
1157 #else
1158 #define ECB_INFINITY HUGE_VAL
1159 #endif
1160
1161 #ifdef NAN
1162 #define ECB_NAN NAN
1163 #else
1164 #define ECB_NAN ECB_INFINITY
1165 #endif
1166
1167 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1168 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1169 #else
1170 #define ecb_ldexpf(x,e) (float) ldexp ((x), (e))
1171 #endif
1172
1173 /* converts an ieee half/binary16 to a float */
1174 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1175 ecb_function_ ecb_const float
1176 ecb_binary16_to_float (uint16_t x)
1177 {
1178 int e = (x >> 10) & 0x1f;
1179 int m = x & 0x3ff;
1180 float r;
1181
1182 if (!e ) r = ecb_ldexpf (m , -24);
1183 else if (e != 31) r = ecb_ldexpf (m + 0x400, e - 25);
1184 else if (m ) r = ECB_NAN;
1185 else r = ECB_INFINITY;
1186
1187 return x & 0x8000 ? -r : r;
1188 }
1189
1190 /* convert a float to ieee single/binary32 */
1191 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1192 ecb_function_ ecb_const uint32_t
1193 ecb_float_to_binary32 (float x)
1194 {
1195 uint32_t r;
1196
1197 #if ECB_STDFP
1198 memcpy (&r, &x, 4);
1199 #else
1200 /* slow emulation, works for anything but -0 */
1201 uint32_t m;
1202 int e;
1203
1204 if (x == 0e0f ) return 0x00000000U;
1205 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1206 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1207 if (x != x ) return 0x7fbfffffU;
1208
1209 m = frexpf (x, &e) * 0x1000000U;
1210
1211 r = m & 0x80000000U;
1212
1213 if (r)
1214 m = -m;
1215
1216 if (e <= -126)
1217 {
1218 m &= 0xffffffU;
1219 m >>= (-125 - e);
1220 e = -126;
1221 }
1222
1223 r |= (e + 126) << 23;
1224 r |= m & 0x7fffffU;
1225 #endif
1226
1227 return r;
1228 }
1229
1230 /* converts an ieee single/binary32 to a float */
1231 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1232 ecb_function_ ecb_const float
1233 ecb_binary32_to_float (uint32_t x)
1234 {
1235 float r;
1236
1237 #if ECB_STDFP
1238 memcpy (&r, &x, 4);
1239 #else
1240 /* emulation, only works for normals and subnormals and +0 */
1241 int neg = x >> 31;
1242 int e = (x >> 23) & 0xffU;
1243
1244 x &= 0x7fffffU;
1245
1246 if (e)
1247 x |= 0x800000U;
1248 else
1249 e = 1;
1250
1251 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1252 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1253
1254 r = neg ? -r : r;
1255 #endif
1256
1257 return r;
1258 }
1259
1260 /* convert a double to ieee double/binary64 */
1261 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1262 ecb_function_ ecb_const uint64_t
1263 ecb_double_to_binary64 (double x)
1264 {
1265 uint64_t r;
1266
1267 #if ECB_STDFP
1268 memcpy (&r, &x, 8);
1269 #else
1270 /* slow emulation, works for anything but -0 */
1271 uint64_t m;
1272 int e;
1273
1274 if (x == 0e0 ) return 0x0000000000000000U;
1275 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1276 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1277 if (x != x ) return 0X7ff7ffffffffffffU;
1278
1279 m = frexp (x, &e) * 0x20000000000000U;
1280
1281 r = m & 0x8000000000000000;;
1282
1283 if (r)
1284 m = -m;
1285
1286 if (e <= -1022)
1287 {
1288 m &= 0x1fffffffffffffU;
1289 m >>= (-1021 - e);
1290 e = -1022;
1291 }
1292
1293 r |= ((uint64_t)(e + 1022)) << 52;
1294 r |= m & 0xfffffffffffffU;
1295 #endif
1296
1297 return r;
1298 }
1299
1300 /* converts an ieee double/binary64 to a double */
1301 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1302 ecb_function_ ecb_const double
1303 ecb_binary64_to_double (uint64_t x)
1304 {
1305 double r;
1306
1307 #if ECB_STDFP
1308 memcpy (&r, &x, 8);
1309 #else
1310 /* emulation, only works for normals and subnormals and +0 */
1311 int neg = x >> 63;
1312 int e = (x >> 52) & 0x7ffU;
1313
1314 x &= 0xfffffffffffffU;
1315
1316 if (e)
1317 x |= 0x10000000000000U;
1318 else
1319 e = 1;
1320
1321 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1322 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1323
1324 r = neg ? -r : r;
1325 #endif
1326
1327 return r;
1328 }
1329
1330#endif
1331
1332#endif
1333
1334/* ECB.H END */
1335
1336#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1337/* if your architecture doesn't need memory fences, e.g. because it is
1338 * single-cpu/core, or if you use libev in a project that doesn't use libev
1339 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1340 * libev, in which cases the memory fences become nops.
1341 * alternatively, you can remove this #error and link against libpthread,
1342 * which will then provide the memory fences.
1343 */
1344# error "memory fences not defined for your architecture, please report"
1345#endif
1346
1347#ifndef ECB_MEMORY_FENCE
1348# define ECB_MEMORY_FENCE do { } while (0)
1349# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1350# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1351#endif
1352
1353#define expect_false(cond) ecb_expect_false (cond)
1354#define expect_true(cond) ecb_expect_true (cond)
1355#define noinline ecb_noinline
1356
1357#define inline_size ecb_inline
1358
1359#if EV_FEATURE_CODE
1360# define inline_speed ecb_inline
1361#else
1362# define inline_speed static noinline
1363#endif
1364
210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1365#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1366
1367#if EV_MINPRI == EV_MAXPRI
1368# define ABSPRI(w) (((W)w), 0)
1369#else
211#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1370# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1371#endif
212 1372
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 1373#define EMPTY /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */ 1374#define EMPTY2(a,b) /* used to suppress some warnings */
215 1375
216typedef ev_watcher *W; 1376typedef ev_watcher *W;
217typedef ev_watcher_list *WL; 1377typedef ev_watcher_list *WL;
218typedef ev_watcher_time *WT; 1378typedef ev_watcher_time *WT;
219 1379
1380#define ev_active(w) ((W)(w))->active
1381#define ev_at(w) ((WT)(w))->at
1382
1383#if EV_USE_REALTIME
1384/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1385/* giving it a reasonably high chance of working on typical architectures */
1386static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1387#endif
1388
1389#if EV_USE_MONOTONIC
220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1390static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1391#endif
1392
1393#ifndef EV_FD_TO_WIN32_HANDLE
1394# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1395#endif
1396#ifndef EV_WIN32_HANDLE_TO_FD
1397# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1398#endif
1399#ifndef EV_WIN32_CLOSE_FD
1400# define EV_WIN32_CLOSE_FD(fd) close (fd)
1401#endif
221 1402
222#ifdef _WIN32 1403#ifdef _WIN32
223# include "ev_win32.c" 1404# include "ev_win32.c"
224#endif 1405#endif
225 1406
226/*****************************************************************************/ 1407/*****************************************************************************/
227 1408
1409/* define a suitable floor function (only used by periodics atm) */
1410
1411#if EV_USE_FLOOR
1412# include <math.h>
1413# define ev_floor(v) floor (v)
1414#else
1415
1416#include <float.h>
1417
1418/* a floor() replacement function, should be independent of ev_tstamp type */
1419static ev_tstamp noinline
1420ev_floor (ev_tstamp v)
1421{
1422 /* the choice of shift factor is not terribly important */
1423#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1424 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1425#else
1426 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1427#endif
1428
1429 /* argument too large for an unsigned long? */
1430 if (expect_false (v >= shift))
1431 {
1432 ev_tstamp f;
1433
1434 if (v == v - 1.)
1435 return v; /* very large number */
1436
1437 f = shift * ev_floor (v * (1. / shift));
1438 return f + ev_floor (v - f);
1439 }
1440
1441 /* special treatment for negative args? */
1442 if (expect_false (v < 0.))
1443 {
1444 ev_tstamp f = -ev_floor (-v);
1445
1446 return f - (f == v ? 0 : 1);
1447 }
1448
1449 /* fits into an unsigned long */
1450 return (unsigned long)v;
1451}
1452
1453#endif
1454
1455/*****************************************************************************/
1456
1457#ifdef __linux
1458# include <sys/utsname.h>
1459#endif
1460
1461static unsigned int noinline ecb_cold
1462ev_linux_version (void)
1463{
1464#ifdef __linux
1465 unsigned int v = 0;
1466 struct utsname buf;
1467 int i;
1468 char *p = buf.release;
1469
1470 if (uname (&buf))
1471 return 0;
1472
1473 for (i = 3+1; --i; )
1474 {
1475 unsigned int c = 0;
1476
1477 for (;;)
1478 {
1479 if (*p >= '0' && *p <= '9')
1480 c = c * 10 + *p++ - '0';
1481 else
1482 {
1483 p += *p == '.';
1484 break;
1485 }
1486 }
1487
1488 v = (v << 8) | c;
1489 }
1490
1491 return v;
1492#else
1493 return 0;
1494#endif
1495}
1496
1497/*****************************************************************************/
1498
1499#if EV_AVOID_STDIO
1500static void noinline ecb_cold
1501ev_printerr (const char *msg)
1502{
1503 write (STDERR_FILENO, msg, strlen (msg));
1504}
1505#endif
1506
228static void (*syserr_cb)(const char *msg); 1507static void (*syserr_cb)(const char *msg) EV_THROW;
229 1508
230void 1509void ecb_cold
231ev_set_syserr_cb (void (*cb)(const char *msg)) 1510ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
232{ 1511{
233 syserr_cb = cb; 1512 syserr_cb = cb;
234} 1513}
235 1514
236static void noinline 1515static void noinline ecb_cold
237syserr (const char *msg) 1516ev_syserr (const char *msg)
238{ 1517{
239 if (!msg) 1518 if (!msg)
240 msg = "(libev) system error"; 1519 msg = "(libev) system error";
241 1520
242 if (syserr_cb) 1521 if (syserr_cb)
243 syserr_cb (msg); 1522 syserr_cb (msg);
244 else 1523 else
245 { 1524 {
1525#if EV_AVOID_STDIO
1526 ev_printerr (msg);
1527 ev_printerr (": ");
1528 ev_printerr (strerror (errno));
1529 ev_printerr ("\n");
1530#else
246 perror (msg); 1531 perror (msg);
1532#endif
247 abort (); 1533 abort ();
248 } 1534 }
249} 1535}
250 1536
1537static void *
1538ev_realloc_emul (void *ptr, long size) EV_THROW
1539{
1540 /* some systems, notably openbsd and darwin, fail to properly
1541 * implement realloc (x, 0) (as required by both ansi c-89 and
1542 * the single unix specification, so work around them here.
1543 * recently, also (at least) fedora and debian started breaking it,
1544 * despite documenting it otherwise.
1545 */
1546
1547 if (size)
1548 return realloc (ptr, size);
1549
1550 free (ptr);
1551 return 0;
1552}
1553
251static void *(*alloc)(void *ptr, long size); 1554static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
252 1555
253void 1556void ecb_cold
254ev_set_allocator (void *(*cb)(void *ptr, long size)) 1557ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
255{ 1558{
256 alloc = cb; 1559 alloc = cb;
257} 1560}
258 1561
259static void * 1562inline_speed void *
260ev_realloc (void *ptr, long size) 1563ev_realloc (void *ptr, long size)
261{ 1564{
262 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1565 ptr = alloc (ptr, size);
263 1566
264 if (!ptr && size) 1567 if (!ptr && size)
265 { 1568 {
1569#if EV_AVOID_STDIO
1570 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1571#else
266 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1572 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1573#endif
267 abort (); 1574 abort ();
268 } 1575 }
269 1576
270 return ptr; 1577 return ptr;
271} 1578}
273#define ev_malloc(size) ev_realloc (0, (size)) 1580#define ev_malloc(size) ev_realloc (0, (size))
274#define ev_free(ptr) ev_realloc ((ptr), 0) 1581#define ev_free(ptr) ev_realloc ((ptr), 0)
275 1582
276/*****************************************************************************/ 1583/*****************************************************************************/
277 1584
1585/* set in reify when reification needed */
1586#define EV_ANFD_REIFY 1
1587
1588/* file descriptor info structure */
278typedef struct 1589typedef struct
279{ 1590{
280 WL head; 1591 WL head;
281 unsigned char events; 1592 unsigned char events; /* the events watched for */
1593 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1594 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
282 unsigned char reify; 1595 unsigned char unused;
1596#if EV_USE_EPOLL
1597 unsigned int egen; /* generation counter to counter epoll bugs */
1598#endif
283#if EV_SELECT_IS_WINSOCKET 1599#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
284 SOCKET handle; 1600 SOCKET handle;
285#endif 1601#endif
1602#if EV_USE_IOCP
1603 OVERLAPPED or, ow;
1604#endif
286} ANFD; 1605} ANFD;
287 1606
1607/* stores the pending event set for a given watcher */
288typedef struct 1608typedef struct
289{ 1609{
290 W w; 1610 W w;
291 int events; 1611 int events; /* the pending event set for the given watcher */
292} ANPENDING; 1612} ANPENDING;
1613
1614#if EV_USE_INOTIFY
1615/* hash table entry per inotify-id */
1616typedef struct
1617{
1618 WL head;
1619} ANFS;
1620#endif
1621
1622/* Heap Entry */
1623#if EV_HEAP_CACHE_AT
1624 /* a heap element */
1625 typedef struct {
1626 ev_tstamp at;
1627 WT w;
1628 } ANHE;
1629
1630 #define ANHE_w(he) (he).w /* access watcher, read-write */
1631 #define ANHE_at(he) (he).at /* access cached at, read-only */
1632 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1633#else
1634 /* a heap element */
1635 typedef WT ANHE;
1636
1637 #define ANHE_w(he) (he)
1638 #define ANHE_at(he) (he)->at
1639 #define ANHE_at_cache(he)
1640#endif
293 1641
294#if EV_MULTIPLICITY 1642#if EV_MULTIPLICITY
295 1643
296 struct ev_loop 1644 struct ev_loop
297 { 1645 {
302 #undef VAR 1650 #undef VAR
303 }; 1651 };
304 #include "ev_wrap.h" 1652 #include "ev_wrap.h"
305 1653
306 static struct ev_loop default_loop_struct; 1654 static struct ev_loop default_loop_struct;
307 struct ev_loop *ev_default_loop_ptr; 1655 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
308 1656
309#else 1657#else
310 1658
311 ev_tstamp ev_rt_now; 1659 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
312 #define VAR(name,decl) static decl; 1660 #define VAR(name,decl) static decl;
313 #include "ev_vars.h" 1661 #include "ev_vars.h"
314 #undef VAR 1662 #undef VAR
315 1663
316 static int ev_default_loop_ptr; 1664 static int ev_default_loop_ptr;
317 1665
318#endif 1666#endif
319 1667
1668#if EV_FEATURE_API
1669# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1670# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1671# define EV_INVOKE_PENDING invoke_cb (EV_A)
1672#else
1673# define EV_RELEASE_CB (void)0
1674# define EV_ACQUIRE_CB (void)0
1675# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1676#endif
1677
1678#define EVBREAK_RECURSE 0x80
1679
320/*****************************************************************************/ 1680/*****************************************************************************/
321 1681
1682#ifndef EV_HAVE_EV_TIME
322ev_tstamp 1683ev_tstamp
323ev_time (void) 1684ev_time (void) EV_THROW
324{ 1685{
325#if EV_USE_REALTIME 1686#if EV_USE_REALTIME
1687 if (expect_true (have_realtime))
1688 {
326 struct timespec ts; 1689 struct timespec ts;
327 clock_gettime (CLOCK_REALTIME, &ts); 1690 clock_gettime (CLOCK_REALTIME, &ts);
328 return ts.tv_sec + ts.tv_nsec * 1e-9; 1691 return ts.tv_sec + ts.tv_nsec * 1e-9;
329#else 1692 }
1693#endif
1694
330 struct timeval tv; 1695 struct timeval tv;
331 gettimeofday (&tv, 0); 1696 gettimeofday (&tv, 0);
332 return tv.tv_sec + tv.tv_usec * 1e-6; 1697 return tv.tv_sec + tv.tv_usec * 1e-6;
333#endif
334} 1698}
1699#endif
335 1700
336ev_tstamp inline_size 1701inline_size ev_tstamp
337get_clock (void) 1702get_clock (void)
338{ 1703{
339#if EV_USE_MONOTONIC 1704#if EV_USE_MONOTONIC
340 if (expect_true (have_monotonic)) 1705 if (expect_true (have_monotonic))
341 { 1706 {
348 return ev_time (); 1713 return ev_time ();
349} 1714}
350 1715
351#if EV_MULTIPLICITY 1716#if EV_MULTIPLICITY
352ev_tstamp 1717ev_tstamp
353ev_now (EV_P) 1718ev_now (EV_P) EV_THROW
354{ 1719{
355 return ev_rt_now; 1720 return ev_rt_now;
356} 1721}
357#endif 1722#endif
358 1723
359#define array_roundsize(type,n) (((n) | 4) & ~3) 1724void
1725ev_sleep (ev_tstamp delay) EV_THROW
1726{
1727 if (delay > 0.)
1728 {
1729#if EV_USE_NANOSLEEP
1730 struct timespec ts;
1731
1732 EV_TS_SET (ts, delay);
1733 nanosleep (&ts, 0);
1734#elif defined _WIN32
1735 Sleep ((unsigned long)(delay * 1e3));
1736#else
1737 struct timeval tv;
1738
1739 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1740 /* something not guaranteed by newer posix versions, but guaranteed */
1741 /* by older ones */
1742 EV_TV_SET (tv, delay);
1743 select (0, 0, 0, 0, &tv);
1744#endif
1745 }
1746}
1747
1748/*****************************************************************************/
1749
1750#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1751
1752/* find a suitable new size for the given array, */
1753/* hopefully by rounding to a nice-to-malloc size */
1754inline_size int
1755array_nextsize (int elem, int cur, int cnt)
1756{
1757 int ncur = cur + 1;
1758
1759 do
1760 ncur <<= 1;
1761 while (cnt > ncur);
1762
1763 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1764 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1765 {
1766 ncur *= elem;
1767 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1768 ncur = ncur - sizeof (void *) * 4;
1769 ncur /= elem;
1770 }
1771
1772 return ncur;
1773}
1774
1775static void * noinline ecb_cold
1776array_realloc (int elem, void *base, int *cur, int cnt)
1777{
1778 *cur = array_nextsize (elem, *cur, cnt);
1779 return ev_realloc (base, elem * *cur);
1780}
1781
1782#define array_init_zero(base,count) \
1783 memset ((void *)(base), 0, sizeof (*(base)) * (count))
360 1784
361#define array_needsize(type,base,cur,cnt,init) \ 1785#define array_needsize(type,base,cur,cnt,init) \
362 if (expect_false ((cnt) > cur)) \ 1786 if (expect_false ((cnt) > (cur))) \
363 { \ 1787 { \
364 int newcnt = cur; \ 1788 int ecb_unused ocur_ = (cur); \
365 do \ 1789 (base) = (type *)array_realloc \
366 { \ 1790 (sizeof (type), (base), &(cur), (cnt)); \
367 newcnt = array_roundsize (type, newcnt << 1); \ 1791 init ((base) + (ocur_), (cur) - ocur_); \
368 } \
369 while ((cnt) > newcnt); \
370 \
371 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
372 init (base + cur, newcnt - cur); \
373 cur = newcnt; \
374 } 1792 }
375 1793
1794#if 0
376#define array_slim(type,stem) \ 1795#define array_slim(type,stem) \
377 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1796 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
378 { \ 1797 { \
379 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1798 stem ## max = array_roundsize (stem ## cnt >> 1); \
380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1799 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1800 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
382 } 1801 }
1802#endif
383 1803
384#define array_free(stem, idx) \ 1804#define array_free(stem, idx) \
385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1805 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
386 1806
387/*****************************************************************************/ 1807/*****************************************************************************/
388 1808
1809/* dummy callback for pending events */
1810static void noinline
1811pendingcb (EV_P_ ev_prepare *w, int revents)
1812{
1813}
1814
389void noinline 1815void noinline
390ev_feed_event (EV_P_ void *w, int revents) 1816ev_feed_event (EV_P_ void *w, int revents) EV_THROW
391{ 1817{
392 W w_ = (W)w; 1818 W w_ = (W)w;
1819 int pri = ABSPRI (w_);
393 1820
394 if (expect_false (w_->pending)) 1821 if (expect_false (w_->pending))
1822 pendings [pri][w_->pending - 1].events |= revents;
1823 else
395 { 1824 {
1825 w_->pending = ++pendingcnt [pri];
1826 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1827 pendings [pri][w_->pending - 1].w = w_;
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1828 pendings [pri][w_->pending - 1].events = revents;
397 return;
398 } 1829 }
399 1830
400 w_->pending = ++pendingcnt [ABSPRI (w_)]; 1831 pendingpri = NUMPRI - 1;
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404} 1832}
405 1833
406void inline_size 1834inline_speed void
1835feed_reverse (EV_P_ W w)
1836{
1837 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1838 rfeeds [rfeedcnt++] = w;
1839}
1840
1841inline_size void
1842feed_reverse_done (EV_P_ int revents)
1843{
1844 do
1845 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1846 while (rfeedcnt);
1847}
1848
1849inline_speed void
407queue_events (EV_P_ W *events, int eventcnt, int type) 1850queue_events (EV_P_ W *events, int eventcnt, int type)
408{ 1851{
409 int i; 1852 int i;
410 1853
411 for (i = 0; i < eventcnt; ++i) 1854 for (i = 0; i < eventcnt; ++i)
412 ev_feed_event (EV_A_ events [i], type); 1855 ev_feed_event (EV_A_ events [i], type);
413} 1856}
414 1857
415/*****************************************************************************/ 1858/*****************************************************************************/
416 1859
417void inline_size 1860inline_speed void
418anfds_init (ANFD *base, int count)
419{
420 while (count--)
421 {
422 base->head = 0;
423 base->events = EV_NONE;
424 base->reify = 0;
425
426 ++base;
427 }
428}
429
430void inline_speed
431fd_event (EV_P_ int fd, int revents) 1861fd_event_nocheck (EV_P_ int fd, int revents)
432{ 1862{
433 ANFD *anfd = anfds + fd; 1863 ANFD *anfd = anfds + fd;
434 ev_io *w; 1864 ev_io *w;
435 1865
436 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1866 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
440 if (ev) 1870 if (ev)
441 ev_feed_event (EV_A_ (W)w, ev); 1871 ev_feed_event (EV_A_ (W)w, ev);
442 } 1872 }
443} 1873}
444 1874
1875/* do not submit kernel events for fds that have reify set */
1876/* because that means they changed while we were polling for new events */
1877inline_speed void
1878fd_event (EV_P_ int fd, int revents)
1879{
1880 ANFD *anfd = anfds + fd;
1881
1882 if (expect_true (!anfd->reify))
1883 fd_event_nocheck (EV_A_ fd, revents);
1884}
1885
445void 1886void
446ev_feed_fd_event (EV_P_ int fd, int revents) 1887ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
447{ 1888{
1889 if (fd >= 0 && fd < anfdmax)
448 fd_event (EV_A_ fd, revents); 1890 fd_event_nocheck (EV_A_ fd, revents);
449} 1891}
450 1892
451void inline_size 1893/* make sure the external fd watch events are in-sync */
1894/* with the kernel/libev internal state */
1895inline_size void
452fd_reify (EV_P) 1896fd_reify (EV_P)
453{ 1897{
454 int i; 1898 int i;
1899
1900#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1901 for (i = 0; i < fdchangecnt; ++i)
1902 {
1903 int fd = fdchanges [i];
1904 ANFD *anfd = anfds + fd;
1905
1906 if (anfd->reify & EV__IOFDSET && anfd->head)
1907 {
1908 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1909
1910 if (handle != anfd->handle)
1911 {
1912 unsigned long arg;
1913
1914 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1915
1916 /* handle changed, but fd didn't - we need to do it in two steps */
1917 backend_modify (EV_A_ fd, anfd->events, 0);
1918 anfd->events = 0;
1919 anfd->handle = handle;
1920 }
1921 }
1922 }
1923#endif
455 1924
456 for (i = 0; i < fdchangecnt; ++i) 1925 for (i = 0; i < fdchangecnt; ++i)
457 { 1926 {
458 int fd = fdchanges [i]; 1927 int fd = fdchanges [i];
459 ANFD *anfd = anfds + fd; 1928 ANFD *anfd = anfds + fd;
460 ev_io *w; 1929 ev_io *w;
461 1930
462 int events = 0; 1931 unsigned char o_events = anfd->events;
1932 unsigned char o_reify = anfd->reify;
463 1933
464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1934 anfd->reify = 0;
465 events |= w->events;
466 1935
467#if EV_SELECT_IS_WINSOCKET 1936 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
468 if (events)
469 { 1937 {
470 unsigned long argp; 1938 anfd->events = 0;
471 anfd->handle = _get_osfhandle (fd); 1939
472 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1940 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1941 anfd->events |= (unsigned char)w->events;
1942
1943 if (o_events != anfd->events)
1944 o_reify = EV__IOFDSET; /* actually |= */
473 } 1945 }
474#endif
475 1946
476 anfd->reify = 0; 1947 if (o_reify & EV__IOFDSET)
477
478 backend_modify (EV_A_ fd, anfd->events, events); 1948 backend_modify (EV_A_ fd, o_events, anfd->events);
479 anfd->events = events;
480 } 1949 }
481 1950
482 fdchangecnt = 0; 1951 fdchangecnt = 0;
483} 1952}
484 1953
485void inline_size 1954/* something about the given fd changed */
1955inline_size void
486fd_change (EV_P_ int fd) 1956fd_change (EV_P_ int fd, int flags)
487{ 1957{
488 if (expect_false (anfds [fd].reify)) 1958 unsigned char reify = anfds [fd].reify;
489 return;
490
491 anfds [fd].reify = 1; 1959 anfds [fd].reify |= flags;
492 1960
1961 if (expect_true (!reify))
1962 {
493 ++fdchangecnt; 1963 ++fdchangecnt;
494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1964 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
495 fdchanges [fdchangecnt - 1] = fd; 1965 fdchanges [fdchangecnt - 1] = fd;
1966 }
496} 1967}
497 1968
498void inline_speed 1969/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1970inline_speed void ecb_cold
499fd_kill (EV_P_ int fd) 1971fd_kill (EV_P_ int fd)
500{ 1972{
501 ev_io *w; 1973 ev_io *w;
502 1974
503 while ((w = (ev_io *)anfds [fd].head)) 1975 while ((w = (ev_io *)anfds [fd].head))
505 ev_io_stop (EV_A_ w); 1977 ev_io_stop (EV_A_ w);
506 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1978 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
507 } 1979 }
508} 1980}
509 1981
510int inline_size 1982/* check whether the given fd is actually valid, for error recovery */
1983inline_size int ecb_cold
511fd_valid (int fd) 1984fd_valid (int fd)
512{ 1985{
513#ifdef _WIN32 1986#ifdef _WIN32
514 return _get_osfhandle (fd) != -1; 1987 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
515#else 1988#else
516 return fcntl (fd, F_GETFD) != -1; 1989 return fcntl (fd, F_GETFD) != -1;
517#endif 1990#endif
518} 1991}
519 1992
520/* called on EBADF to verify fds */ 1993/* called on EBADF to verify fds */
521static void noinline 1994static void noinline ecb_cold
522fd_ebadf (EV_P) 1995fd_ebadf (EV_P)
523{ 1996{
524 int fd; 1997 int fd;
525 1998
526 for (fd = 0; fd < anfdmax; ++fd) 1999 for (fd = 0; fd < anfdmax; ++fd)
527 if (anfds [fd].events) 2000 if (anfds [fd].events)
528 if (!fd_valid (fd) == -1 && errno == EBADF) 2001 if (!fd_valid (fd) && errno == EBADF)
529 fd_kill (EV_A_ fd); 2002 fd_kill (EV_A_ fd);
530} 2003}
531 2004
532/* called on ENOMEM in select/poll to kill some fds and retry */ 2005/* called on ENOMEM in select/poll to kill some fds and retry */
533static void noinline 2006static void noinline ecb_cold
534fd_enomem (EV_P) 2007fd_enomem (EV_P)
535{ 2008{
536 int fd; 2009 int fd;
537 2010
538 for (fd = anfdmax; fd--; ) 2011 for (fd = anfdmax; fd--; )
539 if (anfds [fd].events) 2012 if (anfds [fd].events)
540 { 2013 {
541 fd_kill (EV_A_ fd); 2014 fd_kill (EV_A_ fd);
542 return; 2015 break;
543 } 2016 }
544} 2017}
545 2018
546/* usually called after fork if backend needs to re-arm all fds from scratch */ 2019/* usually called after fork if backend needs to re-arm all fds from scratch */
547static void noinline 2020static void noinline
548fd_rearm_all (EV_P) 2021fd_rearm_all (EV_P)
549{ 2022{
550 int fd; 2023 int fd;
551 2024
552 /* this should be highly optimised to not do anything but set a flag */
553 for (fd = 0; fd < anfdmax; ++fd) 2025 for (fd = 0; fd < anfdmax; ++fd)
554 if (anfds [fd].events) 2026 if (anfds [fd].events)
555 { 2027 {
556 anfds [fd].events = 0; 2028 anfds [fd].events = 0;
557 fd_change (EV_A_ fd); 2029 anfds [fd].emask = 0;
2030 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
558 } 2031 }
559} 2032}
560 2033
561/*****************************************************************************/ 2034/* used to prepare libev internal fd's */
562 2035/* this is not fork-safe */
563void inline_speed 2036inline_speed void
564upheap (WT *heap, int k)
565{
566 WT w = heap [k];
567
568 while (k && heap [k >> 1]->at > w->at)
569 {
570 heap [k] = heap [k >> 1];
571 ((W)heap [k])->active = k + 1;
572 k >>= 1;
573 }
574
575 heap [k] = w;
576 ((W)heap [k])->active = k + 1;
577
578}
579
580void inline_speed
581downheap (WT *heap, int N, int k)
582{
583 WT w = heap [k];
584
585 while (k < (N >> 1))
586 {
587 int j = k << 1;
588
589 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
590 ++j;
591
592 if (w->at <= heap [j]->at)
593 break;
594
595 heap [k] = heap [j];
596 ((W)heap [k])->active = k + 1;
597 k = j;
598 }
599
600 heap [k] = w;
601 ((W)heap [k])->active = k + 1;
602}
603
604void inline_size
605adjustheap (WT *heap, int N, int k)
606{
607 upheap (heap, k);
608 downheap (heap, N, k);
609}
610
611/*****************************************************************************/
612
613typedef struct
614{
615 WL head;
616 sig_atomic_t volatile gotsig;
617} ANSIG;
618
619static ANSIG *signals;
620static int signalmax;
621
622static int sigpipe [2];
623static sig_atomic_t volatile gotsig;
624static ev_io sigev;
625
626void inline_size
627signals_init (ANSIG *base, int count)
628{
629 while (count--)
630 {
631 base->head = 0;
632 base->gotsig = 0;
633
634 ++base;
635 }
636}
637
638static void
639sighandler (int signum)
640{
641#if _WIN32
642 signal (signum, sighandler);
643#endif
644
645 signals [signum - 1].gotsig = 1;
646
647 if (!gotsig)
648 {
649 int old_errno = errno;
650 gotsig = 1;
651 write (sigpipe [1], &signum, 1);
652 errno = old_errno;
653 }
654}
655
656void noinline
657ev_feed_signal_event (EV_P_ int signum)
658{
659 WL w;
660
661#if EV_MULTIPLICITY
662 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
663#endif
664
665 --signum;
666
667 if (signum < 0 || signum >= signalmax)
668 return;
669
670 signals [signum].gotsig = 0;
671
672 for (w = signals [signum].head; w; w = w->next)
673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
674}
675
676static void
677sigcb (EV_P_ ev_io *iow, int revents)
678{
679 int signum;
680
681 read (sigpipe [0], &revents, 1);
682 gotsig = 0;
683
684 for (signum = signalmax; signum--; )
685 if (signals [signum].gotsig)
686 ev_feed_signal_event (EV_A_ signum + 1);
687}
688
689void inline_size
690fd_intern (int fd) 2037fd_intern (int fd)
691{ 2038{
692#ifdef _WIN32 2039#ifdef _WIN32
693 int arg = 1; 2040 unsigned long arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2041 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
695#else 2042#else
696 fcntl (fd, F_SETFD, FD_CLOEXEC); 2043 fcntl (fd, F_SETFD, FD_CLOEXEC);
697 fcntl (fd, F_SETFL, O_NONBLOCK); 2044 fcntl (fd, F_SETFL, O_NONBLOCK);
698#endif 2045#endif
699} 2046}
700 2047
701static void noinline
702siginit (EV_P)
703{
704 fd_intern (sigpipe [0]);
705 fd_intern (sigpipe [1]);
706
707 ev_io_set (&sigev, sigpipe [0], EV_READ);
708 ev_io_start (EV_A_ &sigev);
709 ev_unref (EV_A); /* child watcher should not keep loop alive */
710}
711
712/*****************************************************************************/ 2048/*****************************************************************************/
713 2049
714static ev_child *childs [PID_HASHSIZE]; 2050/*
2051 * the heap functions want a real array index. array index 0 is guaranteed to not
2052 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2053 * the branching factor of the d-tree.
2054 */
715 2055
2056/*
2057 * at the moment we allow libev the luxury of two heaps,
2058 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2059 * which is more cache-efficient.
2060 * the difference is about 5% with 50000+ watchers.
2061 */
2062#if EV_USE_4HEAP
2063
2064#define DHEAP 4
2065#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2066#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2067#define UPHEAP_DONE(p,k) ((p) == (k))
2068
2069/* away from the root */
2070inline_speed void
2071downheap (ANHE *heap, int N, int k)
2072{
2073 ANHE he = heap [k];
2074 ANHE *E = heap + N + HEAP0;
2075
2076 for (;;)
2077 {
2078 ev_tstamp minat;
2079 ANHE *minpos;
2080 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2081
2082 /* find minimum child */
2083 if (expect_true (pos + DHEAP - 1 < E))
2084 {
2085 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2086 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2087 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2088 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2089 }
2090 else if (pos < E)
2091 {
2092 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2093 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2094 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2095 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2096 }
2097 else
2098 break;
2099
2100 if (ANHE_at (he) <= minat)
2101 break;
2102
2103 heap [k] = *minpos;
2104 ev_active (ANHE_w (*minpos)) = k;
2105
2106 k = minpos - heap;
2107 }
2108
2109 heap [k] = he;
2110 ev_active (ANHE_w (he)) = k;
2111}
2112
2113#else /* 4HEAP */
2114
2115#define HEAP0 1
2116#define HPARENT(k) ((k) >> 1)
2117#define UPHEAP_DONE(p,k) (!(p))
2118
2119/* away from the root */
2120inline_speed void
2121downheap (ANHE *heap, int N, int k)
2122{
2123 ANHE he = heap [k];
2124
2125 for (;;)
2126 {
2127 int c = k << 1;
2128
2129 if (c >= N + HEAP0)
2130 break;
2131
2132 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2133 ? 1 : 0;
2134
2135 if (ANHE_at (he) <= ANHE_at (heap [c]))
2136 break;
2137
2138 heap [k] = heap [c];
2139 ev_active (ANHE_w (heap [k])) = k;
2140
2141 k = c;
2142 }
2143
2144 heap [k] = he;
2145 ev_active (ANHE_w (he)) = k;
2146}
2147#endif
2148
2149/* towards the root */
2150inline_speed void
2151upheap (ANHE *heap, int k)
2152{
2153 ANHE he = heap [k];
2154
2155 for (;;)
2156 {
2157 int p = HPARENT (k);
2158
2159 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2160 break;
2161
2162 heap [k] = heap [p];
2163 ev_active (ANHE_w (heap [k])) = k;
2164 k = p;
2165 }
2166
2167 heap [k] = he;
2168 ev_active (ANHE_w (he)) = k;
2169}
2170
2171/* move an element suitably so it is in a correct place */
2172inline_size void
2173adjustheap (ANHE *heap, int N, int k)
2174{
2175 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2176 upheap (heap, k);
2177 else
2178 downheap (heap, N, k);
2179}
2180
2181/* rebuild the heap: this function is used only once and executed rarely */
2182inline_size void
2183reheap (ANHE *heap, int N)
2184{
2185 int i;
2186
2187 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2188 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2189 for (i = 0; i < N; ++i)
2190 upheap (heap, i + HEAP0);
2191}
2192
2193/*****************************************************************************/
2194
2195/* associate signal watchers to a signal signal */
2196typedef struct
2197{
2198 EV_ATOMIC_T pending;
2199#if EV_MULTIPLICITY
2200 EV_P;
2201#endif
2202 WL head;
2203} ANSIG;
2204
2205static ANSIG signals [EV_NSIG - 1];
2206
2207/*****************************************************************************/
2208
2209#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2210
2211static void noinline ecb_cold
2212evpipe_init (EV_P)
2213{
2214 if (!ev_is_active (&pipe_w))
2215 {
2216 int fds [2];
2217
2218# if EV_USE_EVENTFD
2219 fds [0] = -1;
2220 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2221 if (fds [1] < 0 && errno == EINVAL)
2222 fds [1] = eventfd (0, 0);
2223
2224 if (fds [1] < 0)
2225# endif
2226 {
2227 while (pipe (fds))
2228 ev_syserr ("(libev) error creating signal/async pipe");
2229
2230 fd_intern (fds [0]);
2231 }
2232
2233 evpipe [0] = fds [0];
2234
2235 if (evpipe [1] < 0)
2236 evpipe [1] = fds [1]; /* first call, set write fd */
2237 else
2238 {
2239 /* on subsequent calls, do not change evpipe [1] */
2240 /* so that evpipe_write can always rely on its value. */
2241 /* this branch does not do anything sensible on windows, */
2242 /* so must not be executed on windows */
2243
2244 dup2 (fds [1], evpipe [1]);
2245 close (fds [1]);
2246 }
2247
2248 fd_intern (evpipe [1]);
2249
2250 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2251 ev_io_start (EV_A_ &pipe_w);
2252 ev_unref (EV_A); /* watcher should not keep loop alive */
2253 }
2254}
2255
2256inline_speed void
2257evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2258{
2259 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2260
2261 if (expect_true (*flag))
2262 return;
2263
2264 *flag = 1;
2265 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2266
2267 pipe_write_skipped = 1;
2268
2269 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2270
2271 if (pipe_write_wanted)
2272 {
2273 int old_errno;
2274
2275 pipe_write_skipped = 0;
2276 ECB_MEMORY_FENCE_RELEASE;
2277
2278 old_errno = errno; /* save errno because write will clobber it */
2279
2280#if EV_USE_EVENTFD
2281 if (evpipe [0] < 0)
2282 {
2283 uint64_t counter = 1;
2284 write (evpipe [1], &counter, sizeof (uint64_t));
2285 }
2286 else
2287#endif
2288 {
716#ifndef _WIN32 2289#ifdef _WIN32
2290 WSABUF buf;
2291 DWORD sent;
2292 buf.buf = &buf;
2293 buf.len = 1;
2294 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2295#else
2296 write (evpipe [1], &(evpipe [1]), 1);
2297#endif
2298 }
2299
2300 errno = old_errno;
2301 }
2302}
2303
2304/* called whenever the libev signal pipe */
2305/* got some events (signal, async) */
2306static void
2307pipecb (EV_P_ ev_io *iow, int revents)
2308{
2309 int i;
2310
2311 if (revents & EV_READ)
2312 {
2313#if EV_USE_EVENTFD
2314 if (evpipe [0] < 0)
2315 {
2316 uint64_t counter;
2317 read (evpipe [1], &counter, sizeof (uint64_t));
2318 }
2319 else
2320#endif
2321 {
2322 char dummy[4];
2323#ifdef _WIN32
2324 WSABUF buf;
2325 DWORD recvd;
2326 DWORD flags = 0;
2327 buf.buf = dummy;
2328 buf.len = sizeof (dummy);
2329 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2330#else
2331 read (evpipe [0], &dummy, sizeof (dummy));
2332#endif
2333 }
2334 }
2335
2336 pipe_write_skipped = 0;
2337
2338 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2339
2340#if EV_SIGNAL_ENABLE
2341 if (sig_pending)
2342 {
2343 sig_pending = 0;
2344
2345 ECB_MEMORY_FENCE;
2346
2347 for (i = EV_NSIG - 1; i--; )
2348 if (expect_false (signals [i].pending))
2349 ev_feed_signal_event (EV_A_ i + 1);
2350 }
2351#endif
2352
2353#if EV_ASYNC_ENABLE
2354 if (async_pending)
2355 {
2356 async_pending = 0;
2357
2358 ECB_MEMORY_FENCE;
2359
2360 for (i = asynccnt; i--; )
2361 if (asyncs [i]->sent)
2362 {
2363 asyncs [i]->sent = 0;
2364 ECB_MEMORY_FENCE_RELEASE;
2365 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2366 }
2367 }
2368#endif
2369}
2370
2371/*****************************************************************************/
2372
2373void
2374ev_feed_signal (int signum) EV_THROW
2375{
2376#if EV_MULTIPLICITY
2377 EV_P;
2378 ECB_MEMORY_FENCE_ACQUIRE;
2379 EV_A = signals [signum - 1].loop;
2380
2381 if (!EV_A)
2382 return;
2383#endif
2384
2385 signals [signum - 1].pending = 1;
2386 evpipe_write (EV_A_ &sig_pending);
2387}
2388
2389static void
2390ev_sighandler (int signum)
2391{
2392#ifdef _WIN32
2393 signal (signum, ev_sighandler);
2394#endif
2395
2396 ev_feed_signal (signum);
2397}
2398
2399void noinline
2400ev_feed_signal_event (EV_P_ int signum) EV_THROW
2401{
2402 WL w;
2403
2404 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2405 return;
2406
2407 --signum;
2408
2409#if EV_MULTIPLICITY
2410 /* it is permissible to try to feed a signal to the wrong loop */
2411 /* or, likely more useful, feeding a signal nobody is waiting for */
2412
2413 if (expect_false (signals [signum].loop != EV_A))
2414 return;
2415#endif
2416
2417 signals [signum].pending = 0;
2418 ECB_MEMORY_FENCE_RELEASE;
2419
2420 for (w = signals [signum].head; w; w = w->next)
2421 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2422}
2423
2424#if EV_USE_SIGNALFD
2425static void
2426sigfdcb (EV_P_ ev_io *iow, int revents)
2427{
2428 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2429
2430 for (;;)
2431 {
2432 ssize_t res = read (sigfd, si, sizeof (si));
2433
2434 /* not ISO-C, as res might be -1, but works with SuS */
2435 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2436 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2437
2438 if (res < (ssize_t)sizeof (si))
2439 break;
2440 }
2441}
2442#endif
2443
2444#endif
2445
2446/*****************************************************************************/
2447
2448#if EV_CHILD_ENABLE
2449static WL childs [EV_PID_HASHSIZE];
717 2450
718static ev_signal childev; 2451static ev_signal childev;
719 2452
720void inline_speed 2453#ifndef WIFCONTINUED
2454# define WIFCONTINUED(status) 0
2455#endif
2456
2457/* handle a single child status event */
2458inline_speed void
721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2459child_reap (EV_P_ int chain, int pid, int status)
722{ 2460{
723 ev_child *w; 2461 ev_child *w;
2462 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
724 2463
725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2464 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2465 {
726 if (w->pid == pid || !w->pid) 2466 if ((w->pid == pid || !w->pid)
2467 && (!traced || (w->flags & 1)))
727 { 2468 {
728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 2469 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
729 w->rpid = pid; 2470 w->rpid = pid;
730 w->rstatus = status; 2471 w->rstatus = status;
731 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2472 ev_feed_event (EV_A_ (W)w, EV_CHILD);
732 } 2473 }
2474 }
733} 2475}
734 2476
735#ifndef WCONTINUED 2477#ifndef WCONTINUED
736# define WCONTINUED 0 2478# define WCONTINUED 0
737#endif 2479#endif
738 2480
2481/* called on sigchld etc., calls waitpid */
739static void 2482static void
740childcb (EV_P_ ev_signal *sw, int revents) 2483childcb (EV_P_ ev_signal *sw, int revents)
741{ 2484{
742 int pid, status; 2485 int pid, status;
743 2486
746 if (!WCONTINUED 2489 if (!WCONTINUED
747 || errno != EINVAL 2490 || errno != EINVAL
748 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2491 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
749 return; 2492 return;
750 2493
751 /* make sure we are called again until all childs have been reaped */ 2494 /* make sure we are called again until all children have been reaped */
752 /* we need to do it this way so that the callback gets called before we continue */ 2495 /* we need to do it this way so that the callback gets called before we continue */
753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2496 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
754 2497
755 child_reap (EV_A_ sw, pid, pid, status); 2498 child_reap (EV_A_ pid, pid, status);
2499 if ((EV_PID_HASHSIZE) > 1)
756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2500 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
757} 2501}
758 2502
759#endif 2503#endif
760 2504
761/*****************************************************************************/ 2505/*****************************************************************************/
762 2506
2507#if EV_USE_IOCP
2508# include "ev_iocp.c"
2509#endif
763#if EV_USE_PORT 2510#if EV_USE_PORT
764# include "ev_port.c" 2511# include "ev_port.c"
765#endif 2512#endif
766#if EV_USE_KQUEUE 2513#if EV_USE_KQUEUE
767# include "ev_kqueue.c" 2514# include "ev_kqueue.c"
774#endif 2521#endif
775#if EV_USE_SELECT 2522#if EV_USE_SELECT
776# include "ev_select.c" 2523# include "ev_select.c"
777#endif 2524#endif
778 2525
779int 2526int ecb_cold
780ev_version_major (void) 2527ev_version_major (void) EV_THROW
781{ 2528{
782 return EV_VERSION_MAJOR; 2529 return EV_VERSION_MAJOR;
783} 2530}
784 2531
785int 2532int ecb_cold
786ev_version_minor (void) 2533ev_version_minor (void) EV_THROW
787{ 2534{
788 return EV_VERSION_MINOR; 2535 return EV_VERSION_MINOR;
789} 2536}
790 2537
791/* return true if we are running with elevated privileges and should ignore env variables */ 2538/* return true if we are running with elevated privileges and should ignore env variables */
792int inline_size 2539int inline_size ecb_cold
793enable_secure (void) 2540enable_secure (void)
794{ 2541{
795#ifdef _WIN32 2542#ifdef _WIN32
796 return 0; 2543 return 0;
797#else 2544#else
798 return getuid () != geteuid () 2545 return getuid () != geteuid ()
799 || getgid () != getegid (); 2546 || getgid () != getegid ();
800#endif 2547#endif
801} 2548}
802 2549
803unsigned int 2550unsigned int ecb_cold
804ev_supported_backends (void) 2551ev_supported_backends (void) EV_THROW
805{ 2552{
806 unsigned int flags = 0; 2553 unsigned int flags = 0;
807 2554
808 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2555 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
809 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2556 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
812 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2559 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
813 2560
814 return flags; 2561 return flags;
815} 2562}
816 2563
817unsigned int 2564unsigned int ecb_cold
818ev_recommended_backends (void) 2565ev_recommended_backends (void) EV_THROW
819{ 2566{
820 unsigned int flags = ev_supported_backends (); 2567 unsigned int flags = ev_supported_backends ();
821 2568
822#ifndef __NetBSD__ 2569#ifndef __NetBSD__
823 /* kqueue is borked on everything but netbsd apparently */ 2570 /* kqueue is borked on everything but netbsd apparently */
824 /* it usually doesn't work correctly on anything but sockets and pipes */ 2571 /* it usually doesn't work correctly on anything but sockets and pipes */
825 flags &= ~EVBACKEND_KQUEUE; 2572 flags &= ~EVBACKEND_KQUEUE;
826#endif 2573#endif
827#ifdef __APPLE__ 2574#ifdef __APPLE__
828 // flags &= ~EVBACKEND_KQUEUE; for documentation 2575 /* only select works correctly on that "unix-certified" platform */
829 flags &= ~EVBACKEND_POLL; 2576 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2577 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2578#endif
2579#ifdef __FreeBSD__
2580 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
830#endif 2581#endif
831 2582
832 return flags; 2583 return flags;
833} 2584}
834 2585
2586unsigned int ecb_cold
2587ev_embeddable_backends (void) EV_THROW
2588{
2589 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2590
2591 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2592 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2593 flags &= ~EVBACKEND_EPOLL;
2594
2595 return flags;
2596}
2597
835unsigned int 2598unsigned int
836ev_embeddable_backends (void) 2599ev_backend (EV_P) EV_THROW
837{ 2600{
838 return EVBACKEND_EPOLL 2601 return backend;
839 | EVBACKEND_KQUEUE
840 | EVBACKEND_PORT;
841} 2602}
842 2603
2604#if EV_FEATURE_API
843unsigned int 2605unsigned int
844ev_backend (EV_P) 2606ev_iteration (EV_P) EV_THROW
845{ 2607{
846 return backend; 2608 return loop_count;
847} 2609}
848 2610
849static void 2611unsigned int
2612ev_depth (EV_P) EV_THROW
2613{
2614 return loop_depth;
2615}
2616
2617void
2618ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2619{
2620 io_blocktime = interval;
2621}
2622
2623void
2624ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2625{
2626 timeout_blocktime = interval;
2627}
2628
2629void
2630ev_set_userdata (EV_P_ void *data) EV_THROW
2631{
2632 userdata = data;
2633}
2634
2635void *
2636ev_userdata (EV_P) EV_THROW
2637{
2638 return userdata;
2639}
2640
2641void
2642ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2643{
2644 invoke_cb = invoke_pending_cb;
2645}
2646
2647void
2648ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2649{
2650 release_cb = release;
2651 acquire_cb = acquire;
2652}
2653#endif
2654
2655/* initialise a loop structure, must be zero-initialised */
2656static void noinline ecb_cold
850loop_init (EV_P_ unsigned int flags) 2657loop_init (EV_P_ unsigned int flags) EV_THROW
851{ 2658{
852 if (!backend) 2659 if (!backend)
853 { 2660 {
2661 origflags = flags;
2662
2663#if EV_USE_REALTIME
2664 if (!have_realtime)
2665 {
2666 struct timespec ts;
2667
2668 if (!clock_gettime (CLOCK_REALTIME, &ts))
2669 have_realtime = 1;
2670 }
2671#endif
2672
854#if EV_USE_MONOTONIC 2673#if EV_USE_MONOTONIC
2674 if (!have_monotonic)
855 { 2675 {
856 struct timespec ts; 2676 struct timespec ts;
2677
857 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2678 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
858 have_monotonic = 1; 2679 have_monotonic = 1;
859 } 2680 }
860#endif 2681#endif
861 2682
862 ev_rt_now = ev_time (); 2683 /* pid check not overridable via env */
863 mn_now = get_clock (); 2684#ifndef _WIN32
864 now_floor = mn_now; 2685 if (flags & EVFLAG_FORKCHECK)
865 rtmn_diff = ev_rt_now - mn_now; 2686 curpid = getpid ();
2687#endif
866 2688
867 if (!(flags & EVFLAG_NOENV) 2689 if (!(flags & EVFLAG_NOENV)
868 && !enable_secure () 2690 && !enable_secure ()
869 && getenv ("LIBEV_FLAGS")) 2691 && getenv ("LIBEV_FLAGS"))
870 flags = atoi (getenv ("LIBEV_FLAGS")); 2692 flags = atoi (getenv ("LIBEV_FLAGS"));
871 2693
872 if (!(flags & 0x0000ffffUL)) 2694 ev_rt_now = ev_time ();
2695 mn_now = get_clock ();
2696 now_floor = mn_now;
2697 rtmn_diff = ev_rt_now - mn_now;
2698#if EV_FEATURE_API
2699 invoke_cb = ev_invoke_pending;
2700#endif
2701
2702 io_blocktime = 0.;
2703 timeout_blocktime = 0.;
2704 backend = 0;
2705 backend_fd = -1;
2706 sig_pending = 0;
2707#if EV_ASYNC_ENABLE
2708 async_pending = 0;
2709#endif
2710 pipe_write_skipped = 0;
2711 pipe_write_wanted = 0;
2712 evpipe [0] = -1;
2713 evpipe [1] = -1;
2714#if EV_USE_INOTIFY
2715 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2716#endif
2717#if EV_USE_SIGNALFD
2718 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2719#endif
2720
2721 if (!(flags & EVBACKEND_MASK))
873 flags |= ev_recommended_backends (); 2722 flags |= ev_recommended_backends ();
874 2723
875 backend = 0; 2724#if EV_USE_IOCP
2725 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2726#endif
876#if EV_USE_PORT 2727#if EV_USE_PORT
877 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2728 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
878#endif 2729#endif
879#if EV_USE_KQUEUE 2730#if EV_USE_KQUEUE
880 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2731 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
887#endif 2738#endif
888#if EV_USE_SELECT 2739#if EV_USE_SELECT
889 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2740 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
890#endif 2741#endif
891 2742
2743 ev_prepare_init (&pending_w, pendingcb);
2744
2745#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
892 ev_init (&sigev, sigcb); 2746 ev_init (&pipe_w, pipecb);
893 ev_set_priority (&sigev, EV_MAXPRI); 2747 ev_set_priority (&pipe_w, EV_MAXPRI);
2748#endif
894 } 2749 }
895} 2750}
896 2751
897static void 2752/* free up a loop structure */
2753void ecb_cold
898loop_destroy (EV_P) 2754ev_loop_destroy (EV_P)
899{ 2755{
900 int i; 2756 int i;
901 2757
2758#if EV_MULTIPLICITY
2759 /* mimic free (0) */
2760 if (!EV_A)
2761 return;
2762#endif
2763
2764#if EV_CLEANUP_ENABLE
2765 /* queue cleanup watchers (and execute them) */
2766 if (expect_false (cleanupcnt))
2767 {
2768 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2769 EV_INVOKE_PENDING;
2770 }
2771#endif
2772
2773#if EV_CHILD_ENABLE
2774 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2775 {
2776 ev_ref (EV_A); /* child watcher */
2777 ev_signal_stop (EV_A_ &childev);
2778 }
2779#endif
2780
2781 if (ev_is_active (&pipe_w))
2782 {
2783 /*ev_ref (EV_A);*/
2784 /*ev_io_stop (EV_A_ &pipe_w);*/
2785
2786 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2787 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2788 }
2789
2790#if EV_USE_SIGNALFD
2791 if (ev_is_active (&sigfd_w))
2792 close (sigfd);
2793#endif
2794
2795#if EV_USE_INOTIFY
2796 if (fs_fd >= 0)
2797 close (fs_fd);
2798#endif
2799
2800 if (backend_fd >= 0)
2801 close (backend_fd);
2802
2803#if EV_USE_IOCP
2804 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2805#endif
902#if EV_USE_PORT 2806#if EV_USE_PORT
903 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2807 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
904#endif 2808#endif
905#if EV_USE_KQUEUE 2809#if EV_USE_KQUEUE
906 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2810 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
914#if EV_USE_SELECT 2818#if EV_USE_SELECT
915 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 2819 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
916#endif 2820#endif
917 2821
918 for (i = NUMPRI; i--; ) 2822 for (i = NUMPRI; i--; )
2823 {
919 array_free (pending, [i]); 2824 array_free (pending, [i]);
2825#if EV_IDLE_ENABLE
2826 array_free (idle, [i]);
2827#endif
2828 }
2829
2830 ev_free (anfds); anfds = 0; anfdmax = 0;
920 2831
921 /* have to use the microsoft-never-gets-it-right macro */ 2832 /* have to use the microsoft-never-gets-it-right macro */
2833 array_free (rfeed, EMPTY);
922 array_free (fdchange, EMPTY0); 2834 array_free (fdchange, EMPTY);
923 array_free (timer, EMPTY0); 2835 array_free (timer, EMPTY);
924#if EV_PERIODIC_ENABLE 2836#if EV_PERIODIC_ENABLE
925 array_free (periodic, EMPTY0); 2837 array_free (periodic, EMPTY);
926#endif 2838#endif
2839#if EV_FORK_ENABLE
2840 array_free (fork, EMPTY);
2841#endif
2842#if EV_CLEANUP_ENABLE
927 array_free (idle, EMPTY0); 2843 array_free (cleanup, EMPTY);
2844#endif
928 array_free (prepare, EMPTY0); 2845 array_free (prepare, EMPTY);
929 array_free (check, EMPTY0); 2846 array_free (check, EMPTY);
2847#if EV_ASYNC_ENABLE
2848 array_free (async, EMPTY);
2849#endif
930 2850
931 backend = 0; 2851 backend = 0;
932}
933 2852
934static void 2853#if EV_MULTIPLICITY
2854 if (ev_is_default_loop (EV_A))
2855#endif
2856 ev_default_loop_ptr = 0;
2857#if EV_MULTIPLICITY
2858 else
2859 ev_free (EV_A);
2860#endif
2861}
2862
2863#if EV_USE_INOTIFY
2864inline_size void infy_fork (EV_P);
2865#endif
2866
2867inline_size void
935loop_fork (EV_P) 2868loop_fork (EV_P)
936{ 2869{
937#if EV_USE_PORT 2870#if EV_USE_PORT
938 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2871 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
939#endif 2872#endif
941 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 2874 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
942#endif 2875#endif
943#if EV_USE_EPOLL 2876#if EV_USE_EPOLL
944 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 2877 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
945#endif 2878#endif
2879#if EV_USE_INOTIFY
2880 infy_fork (EV_A);
2881#endif
946 2882
2883#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
947 if (ev_is_active (&sigev)) 2884 if (ev_is_active (&pipe_w))
948 { 2885 {
949 /* default loop */ 2886 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
950 2887
951 ev_ref (EV_A); 2888 ev_ref (EV_A);
952 ev_io_stop (EV_A_ &sigev); 2889 ev_io_stop (EV_A_ &pipe_w);
953 close (sigpipe [0]);
954 close (sigpipe [1]);
955 2890
956 while (pipe (sigpipe)) 2891 if (evpipe [0] >= 0)
957 syserr ("(libev) error creating pipe"); 2892 EV_WIN32_CLOSE_FD (evpipe [0]);
958 2893
959 siginit (EV_A); 2894 evpipe_init (EV_A);
2895 /* iterate over everything, in case we missed something before */
2896 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
960 } 2897 }
2898#endif
961 2899
962 postfork = 0; 2900 postfork = 0;
963} 2901}
964 2902
965#if EV_MULTIPLICITY 2903#if EV_MULTIPLICITY
2904
966struct ev_loop * 2905struct ev_loop * ecb_cold
967ev_loop_new (unsigned int flags) 2906ev_loop_new (unsigned int flags) EV_THROW
968{ 2907{
969 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2908 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
970 2909
971 memset (loop, 0, sizeof (struct ev_loop)); 2910 memset (EV_A, 0, sizeof (struct ev_loop));
972
973 loop_init (EV_A_ flags); 2911 loop_init (EV_A_ flags);
974 2912
975 if (ev_backend (EV_A)) 2913 if (ev_backend (EV_A))
976 return loop; 2914 return EV_A;
977 2915
2916 ev_free (EV_A);
978 return 0; 2917 return 0;
979} 2918}
980 2919
981void 2920#endif /* multiplicity */
982ev_loop_destroy (EV_P)
983{
984 loop_destroy (EV_A);
985 ev_free (loop);
986}
987 2921
988void 2922#if EV_VERIFY
989ev_loop_fork (EV_P) 2923static void noinline ecb_cold
2924verify_watcher (EV_P_ W w)
990{ 2925{
991 postfork = 1; 2926 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
992}
993 2927
2928 if (w->pending)
2929 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2930}
2931
2932static void noinline ecb_cold
2933verify_heap (EV_P_ ANHE *heap, int N)
2934{
2935 int i;
2936
2937 for (i = HEAP0; i < N + HEAP0; ++i)
2938 {
2939 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2940 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2941 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2942
2943 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2944 }
2945}
2946
2947static void noinline ecb_cold
2948array_verify (EV_P_ W *ws, int cnt)
2949{
2950 while (cnt--)
2951 {
2952 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2953 verify_watcher (EV_A_ ws [cnt]);
2954 }
2955}
2956#endif
2957
2958#if EV_FEATURE_API
2959void ecb_cold
2960ev_verify (EV_P) EV_THROW
2961{
2962#if EV_VERIFY
2963 int i;
2964 WL w, w2;
2965
2966 assert (activecnt >= -1);
2967
2968 assert (fdchangemax >= fdchangecnt);
2969 for (i = 0; i < fdchangecnt; ++i)
2970 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2971
2972 assert (anfdmax >= 0);
2973 for (i = 0; i < anfdmax; ++i)
2974 {
2975 int j = 0;
2976
2977 for (w = w2 = anfds [i].head; w; w = w->next)
2978 {
2979 verify_watcher (EV_A_ (W)w);
2980
2981 if (j++ & 1)
2982 {
2983 assert (("libev: io watcher list contains a loop", w != w2));
2984 w2 = w2->next;
2985 }
2986
2987 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2988 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2989 }
2990 }
2991
2992 assert (timermax >= timercnt);
2993 verify_heap (EV_A_ timers, timercnt);
2994
2995#if EV_PERIODIC_ENABLE
2996 assert (periodicmax >= periodiccnt);
2997 verify_heap (EV_A_ periodics, periodiccnt);
2998#endif
2999
3000 for (i = NUMPRI; i--; )
3001 {
3002 assert (pendingmax [i] >= pendingcnt [i]);
3003#if EV_IDLE_ENABLE
3004 assert (idleall >= 0);
3005 assert (idlemax [i] >= idlecnt [i]);
3006 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3007#endif
3008 }
3009
3010#if EV_FORK_ENABLE
3011 assert (forkmax >= forkcnt);
3012 array_verify (EV_A_ (W *)forks, forkcnt);
3013#endif
3014
3015#if EV_CLEANUP_ENABLE
3016 assert (cleanupmax >= cleanupcnt);
3017 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3018#endif
3019
3020#if EV_ASYNC_ENABLE
3021 assert (asyncmax >= asynccnt);
3022 array_verify (EV_A_ (W *)asyncs, asynccnt);
3023#endif
3024
3025#if EV_PREPARE_ENABLE
3026 assert (preparemax >= preparecnt);
3027 array_verify (EV_A_ (W *)prepares, preparecnt);
3028#endif
3029
3030#if EV_CHECK_ENABLE
3031 assert (checkmax >= checkcnt);
3032 array_verify (EV_A_ (W *)checks, checkcnt);
3033#endif
3034
3035# if 0
3036#if EV_CHILD_ENABLE
3037 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3038 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3039#endif
3040# endif
3041#endif
3042}
994#endif 3043#endif
995 3044
996#if EV_MULTIPLICITY 3045#if EV_MULTIPLICITY
997struct ev_loop * 3046struct ev_loop * ecb_cold
998ev_default_loop_init (unsigned int flags)
999#else 3047#else
1000int 3048int
3049#endif
1001ev_default_loop (unsigned int flags) 3050ev_default_loop (unsigned int flags) EV_THROW
1002#endif
1003{ 3051{
1004 if (sigpipe [0] == sigpipe [1])
1005 if (pipe (sigpipe))
1006 return 0;
1007
1008 if (!ev_default_loop_ptr) 3052 if (!ev_default_loop_ptr)
1009 { 3053 {
1010#if EV_MULTIPLICITY 3054#if EV_MULTIPLICITY
1011 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3055 EV_P = ev_default_loop_ptr = &default_loop_struct;
1012#else 3056#else
1013 ev_default_loop_ptr = 1; 3057 ev_default_loop_ptr = 1;
1014#endif 3058#endif
1015 3059
1016 loop_init (EV_A_ flags); 3060 loop_init (EV_A_ flags);
1017 3061
1018 if (ev_backend (EV_A)) 3062 if (ev_backend (EV_A))
1019 { 3063 {
1020 siginit (EV_A); 3064#if EV_CHILD_ENABLE
1021
1022#ifndef _WIN32
1023 ev_signal_init (&childev, childcb, SIGCHLD); 3065 ev_signal_init (&childev, childcb, SIGCHLD);
1024 ev_set_priority (&childev, EV_MAXPRI); 3066 ev_set_priority (&childev, EV_MAXPRI);
1025 ev_signal_start (EV_A_ &childev); 3067 ev_signal_start (EV_A_ &childev);
1026 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3068 ev_unref (EV_A); /* child watcher should not keep loop alive */
1027#endif 3069#endif
1032 3074
1033 return ev_default_loop_ptr; 3075 return ev_default_loop_ptr;
1034} 3076}
1035 3077
1036void 3078void
1037ev_default_destroy (void) 3079ev_loop_fork (EV_P) EV_THROW
1038{ 3080{
1039#if EV_MULTIPLICITY 3081 postfork = 1;
1040 struct ev_loop *loop = ev_default_loop_ptr;
1041#endif
1042
1043#ifndef _WIN32
1044 ev_ref (EV_A); /* child watcher */
1045 ev_signal_stop (EV_A_ &childev);
1046#endif
1047
1048 ev_ref (EV_A); /* signal watcher */
1049 ev_io_stop (EV_A_ &sigev);
1050
1051 close (sigpipe [0]); sigpipe [0] = 0;
1052 close (sigpipe [1]); sigpipe [1] = 0;
1053
1054 loop_destroy (EV_A);
1055} 3082}
3083
3084/*****************************************************************************/
1056 3085
1057void 3086void
1058ev_default_fork (void) 3087ev_invoke (EV_P_ void *w, int revents)
1059{ 3088{
1060#if EV_MULTIPLICITY 3089 EV_CB_INVOKE ((W)w, revents);
1061 struct ev_loop *loop = ev_default_loop_ptr;
1062#endif
1063
1064 if (backend)
1065 postfork = 1;
1066} 3090}
1067 3091
1068/*****************************************************************************/ 3092unsigned int
1069 3093ev_pending_count (EV_P) EV_THROW
1070int inline_size
1071any_pending (EV_P)
1072{ 3094{
1073 int pri; 3095 int pri;
3096 unsigned int count = 0;
1074 3097
1075 for (pri = NUMPRI; pri--; ) 3098 for (pri = NUMPRI; pri--; )
1076 if (pendingcnt [pri]) 3099 count += pendingcnt [pri];
1077 return 1;
1078 3100
1079 return 0; 3101 return count;
1080} 3102}
1081 3103
1082void inline_speed 3104void noinline
1083call_pending (EV_P) 3105ev_invoke_pending (EV_P)
1084{ 3106{
1085 int pri; 3107 pendingpri = NUMPRI;
1086 3108
1087 for (pri = NUMPRI; pri--; ) 3109 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3110 {
3111 --pendingpri;
3112
1088 while (pendingcnt [pri]) 3113 while (pendingcnt [pendingpri])
1089 {
1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1091
1092 if (expect_true (p->w))
1093 { 3114 {
1094 assert (("non-pending watcher on pending list", p->w->pending)); 3115 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1095 3116
1096 p->w->pending = 0; 3117 p->w->pending = 0;
1097 EV_CB_INVOKE (p->w, p->events); 3118 EV_CB_INVOKE (p->w, p->events);
3119 EV_FREQUENT_CHECK;
3120 }
3121 }
3122}
3123
3124#if EV_IDLE_ENABLE
3125/* make idle watchers pending. this handles the "call-idle */
3126/* only when higher priorities are idle" logic */
3127inline_size void
3128idle_reify (EV_P)
3129{
3130 if (expect_false (idleall))
3131 {
3132 int pri;
3133
3134 for (pri = NUMPRI; pri--; )
3135 {
3136 if (pendingcnt [pri])
3137 break;
3138
3139 if (idlecnt [pri])
3140 {
3141 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3142 break;
1098 } 3143 }
1099 } 3144 }
3145 }
1100} 3146}
3147#endif
1101 3148
1102void inline_size 3149/* make timers pending */
3150inline_size void
1103timers_reify (EV_P) 3151timers_reify (EV_P)
1104{ 3152{
3153 EV_FREQUENT_CHECK;
3154
1105 while (timercnt && ((WT)timers [0])->at <= mn_now) 3155 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1106 { 3156 {
1107 ev_timer *w = timers [0]; 3157 do
1108
1109 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1110
1111 /* first reschedule or stop timer */
1112 if (w->repeat)
1113 { 3158 {
3159 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3160
3161 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3162
3163 /* first reschedule or stop timer */
3164 if (w->repeat)
3165 {
3166 ev_at (w) += w->repeat;
3167 if (ev_at (w) < mn_now)
3168 ev_at (w) = mn_now;
3169
1114 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3170 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1115 3171
1116 ((WT)w)->at += w->repeat; 3172 ANHE_at_cache (timers [HEAP0]);
1117 if (((WT)w)->at < mn_now)
1118 ((WT)w)->at = mn_now;
1119
1120 downheap ((WT *)timers, timercnt, 0); 3173 downheap (timers, timercnt, HEAP0);
3174 }
3175 else
3176 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3177
3178 EV_FREQUENT_CHECK;
3179 feed_reverse (EV_A_ (W)w);
1121 } 3180 }
1122 else 3181 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1123 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 3182
1125 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3183 feed_reverse_done (EV_A_ EV_TIMER);
1126 } 3184 }
1127} 3185}
1128 3186
1129#if EV_PERIODIC_ENABLE 3187#if EV_PERIODIC_ENABLE
1130void inline_size 3188
3189static void noinline
3190periodic_recalc (EV_P_ ev_periodic *w)
3191{
3192 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3193 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3194
3195 /* the above almost always errs on the low side */
3196 while (at <= ev_rt_now)
3197 {
3198 ev_tstamp nat = at + w->interval;
3199
3200 /* when resolution fails us, we use ev_rt_now */
3201 if (expect_false (nat == at))
3202 {
3203 at = ev_rt_now;
3204 break;
3205 }
3206
3207 at = nat;
3208 }
3209
3210 ev_at (w) = at;
3211}
3212
3213/* make periodics pending */
3214inline_size void
1131periodics_reify (EV_P) 3215periodics_reify (EV_P)
1132{ 3216{
3217 EV_FREQUENT_CHECK;
3218
1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 3219 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1134 { 3220 {
1135 ev_periodic *w = periodics [0]; 3221 do
3222 {
3223 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1136 3224
1137 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 3225 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1138 3226
1139 /* first reschedule or stop timer */ 3227 /* first reschedule or stop timer */
3228 if (w->reschedule_cb)
3229 {
3230 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3231
3232 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3233
3234 ANHE_at_cache (periodics [HEAP0]);
3235 downheap (periodics, periodiccnt, HEAP0);
3236 }
3237 else if (w->interval)
3238 {
3239 periodic_recalc (EV_A_ w);
3240 ANHE_at_cache (periodics [HEAP0]);
3241 downheap (periodics, periodiccnt, HEAP0);
3242 }
3243 else
3244 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3245
3246 EV_FREQUENT_CHECK;
3247 feed_reverse (EV_A_ (W)w);
3248 }
3249 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3250
3251 feed_reverse_done (EV_A_ EV_PERIODIC);
3252 }
3253}
3254
3255/* simply recalculate all periodics */
3256/* TODO: maybe ensure that at least one event happens when jumping forward? */
3257static void noinline ecb_cold
3258periodics_reschedule (EV_P)
3259{
3260 int i;
3261
3262 /* adjust periodics after time jump */
3263 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3264 {
3265 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3266
1140 if (w->reschedule_cb) 3267 if (w->reschedule_cb)
3268 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3269 else if (w->interval)
3270 periodic_recalc (EV_A_ w);
3271
3272 ANHE_at_cache (periodics [i]);
3273 }
3274
3275 reheap (periodics, periodiccnt);
3276}
3277#endif
3278
3279/* adjust all timers by a given offset */
3280static void noinline ecb_cold
3281timers_reschedule (EV_P_ ev_tstamp adjust)
3282{
3283 int i;
3284
3285 for (i = 0; i < timercnt; ++i)
3286 {
3287 ANHE *he = timers + i + HEAP0;
3288 ANHE_w (*he)->at += adjust;
3289 ANHE_at_cache (*he);
3290 }
3291}
3292
3293/* fetch new monotonic and realtime times from the kernel */
3294/* also detect if there was a timejump, and act accordingly */
3295inline_speed void
3296time_update (EV_P_ ev_tstamp max_block)
3297{
3298#if EV_USE_MONOTONIC
3299 if (expect_true (have_monotonic))
3300 {
3301 int i;
3302 ev_tstamp odiff = rtmn_diff;
3303
3304 mn_now = get_clock ();
3305
3306 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3307 /* interpolate in the meantime */
3308 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1141 { 3309 {
1142 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 3310 ev_rt_now = rtmn_diff + mn_now;
1143 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 3311 return;
1144 downheap ((WT *)periodics, periodiccnt, 0);
1145 } 3312 }
1146 else if (w->interval)
1147 {
1148 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1149 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1150 downheap ((WT *)periodics, periodiccnt, 0);
1151 }
1152 else
1153 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1154 3313
1155 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1156 }
1157}
1158
1159static void noinline
1160periodics_reschedule (EV_P)
1161{
1162 int i;
1163
1164 /* adjust periodics after time jump */
1165 for (i = 0; i < periodiccnt; ++i)
1166 {
1167 ev_periodic *w = periodics [i];
1168
1169 if (w->reschedule_cb)
1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1171 else if (w->interval)
1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1173 }
1174
1175 /* now rebuild the heap */
1176 for (i = periodiccnt >> 1; i--; )
1177 downheap ((WT *)periodics, periodiccnt, i);
1178}
1179#endif
1180
1181int inline_size
1182time_update_monotonic (EV_P)
1183{
1184 mn_now = get_clock ();
1185
1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1187 {
1188 ev_rt_now = rtmn_diff + mn_now;
1189 return 0;
1190 }
1191 else
1192 {
1193 now_floor = mn_now; 3314 now_floor = mn_now;
1194 ev_rt_now = ev_time (); 3315 ev_rt_now = ev_time ();
1195 return 1;
1196 }
1197}
1198 3316
1199void inline_size 3317 /* loop a few times, before making important decisions.
1200time_update (EV_P) 3318 * on the choice of "4": one iteration isn't enough,
1201{ 3319 * in case we get preempted during the calls to
1202 int i; 3320 * ev_time and get_clock. a second call is almost guaranteed
1203 3321 * to succeed in that case, though. and looping a few more times
1204#if EV_USE_MONOTONIC 3322 * doesn't hurt either as we only do this on time-jumps or
1205 if (expect_true (have_monotonic)) 3323 * in the unlikely event of having been preempted here.
1206 { 3324 */
1207 if (time_update_monotonic (EV_A)) 3325 for (i = 4; --i; )
1208 { 3326 {
1209 ev_tstamp odiff = rtmn_diff; 3327 ev_tstamp diff;
1210
1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
1220 {
1221 rtmn_diff = ev_rt_now - mn_now; 3328 rtmn_diff = ev_rt_now - mn_now;
1222 3329
1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3330 diff = odiff - rtmn_diff;
3331
3332 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1224 return; /* all is well */ 3333 return; /* all is well */
1225 3334
1226 ev_rt_now = ev_time (); 3335 ev_rt_now = ev_time ();
1227 mn_now = get_clock (); 3336 mn_now = get_clock ();
1228 now_floor = mn_now; 3337 now_floor = mn_now;
1229 } 3338 }
1230 3339
3340 /* no timer adjustment, as the monotonic clock doesn't jump */
3341 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1231# if EV_PERIODIC_ENABLE 3342# if EV_PERIODIC_ENABLE
1232 periodics_reschedule (EV_A); 3343 periodics_reschedule (EV_A);
1233# endif 3344# endif
1234 /* no timer adjustment, as the monotonic clock doesn't jump */
1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1236 }
1237 } 3345 }
1238 else 3346 else
1239#endif 3347#endif
1240 { 3348 {
1241 ev_rt_now = ev_time (); 3349 ev_rt_now = ev_time ();
1242 3350
1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 3351 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1244 { 3352 {
3353 /* adjust timers. this is easy, as the offset is the same for all of them */
3354 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1245#if EV_PERIODIC_ENABLE 3355#if EV_PERIODIC_ENABLE
1246 periodics_reschedule (EV_A); 3356 periodics_reschedule (EV_A);
1247#endif 3357#endif
1248
1249 /* adjust timers. this is easy, as the offset is the same for all */
1250 for (i = 0; i < timercnt; ++i)
1251 ((WT)timers [i])->at += ev_rt_now - mn_now;
1252 } 3358 }
1253 3359
1254 mn_now = ev_rt_now; 3360 mn_now = ev_rt_now;
1255 } 3361 }
1256} 3362}
1257 3363
1258void 3364int
1259ev_ref (EV_P)
1260{
1261 ++activecnt;
1262}
1263
1264void
1265ev_unref (EV_P)
1266{
1267 --activecnt;
1268}
1269
1270static int loop_done;
1271
1272void
1273ev_loop (EV_P_ int flags) 3365ev_run (EV_P_ int flags)
1274{ 3366{
1275 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3367#if EV_FEATURE_API
1276 ? EVUNLOOP_ONE 3368 ++loop_depth;
1277 : EVUNLOOP_CANCEL; 3369#endif
1278 3370
1279 while (activecnt) 3371 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3372
3373 loop_done = EVBREAK_CANCEL;
3374
3375 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3376
3377 do
1280 { 3378 {
3379#if EV_VERIFY >= 2
3380 ev_verify (EV_A);
3381#endif
3382
3383#ifndef _WIN32
3384 if (expect_false (curpid)) /* penalise the forking check even more */
3385 if (expect_false (getpid () != curpid))
3386 {
3387 curpid = getpid ();
3388 postfork = 1;
3389 }
3390#endif
3391
3392#if EV_FORK_ENABLE
3393 /* we might have forked, so queue fork handlers */
3394 if (expect_false (postfork))
3395 if (forkcnt)
3396 {
3397 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3398 EV_INVOKE_PENDING;
3399 }
3400#endif
3401
3402#if EV_PREPARE_ENABLE
1281 /* queue check watchers (and execute them) */ 3403 /* queue prepare watchers (and execute them) */
1282 if (expect_false (preparecnt)) 3404 if (expect_false (preparecnt))
1283 { 3405 {
1284 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3406 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1285 call_pending (EV_A); 3407 EV_INVOKE_PENDING;
1286 } 3408 }
3409#endif
3410
3411 if (expect_false (loop_done))
3412 break;
1287 3413
1288 /* we might have forked, so reify kernel state if necessary */ 3414 /* we might have forked, so reify kernel state if necessary */
1289 if (expect_false (postfork)) 3415 if (expect_false (postfork))
1290 loop_fork (EV_A); 3416 loop_fork (EV_A);
1291 3417
1292 /* update fd-related kernel structures */ 3418 /* update fd-related kernel structures */
1293 fd_reify (EV_A); 3419 fd_reify (EV_A);
1294 3420
1295 /* calculate blocking time */ 3421 /* calculate blocking time */
1296 { 3422 {
1297 double block; 3423 ev_tstamp waittime = 0.;
3424 ev_tstamp sleeptime = 0.;
1298 3425
1299 if (flags & EVLOOP_NONBLOCK || idlecnt) 3426 /* remember old timestamp for io_blocktime calculation */
1300 block = 0.; /* do not block at all */ 3427 ev_tstamp prev_mn_now = mn_now;
1301 else 3428
3429 /* update time to cancel out callback processing overhead */
3430 time_update (EV_A_ 1e100);
3431
3432 /* from now on, we want a pipe-wake-up */
3433 pipe_write_wanted = 1;
3434
3435 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3436
3437 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1302 { 3438 {
1303 /* update time to cancel out callback processing overhead */
1304#if EV_USE_MONOTONIC
1305 if (expect_true (have_monotonic))
1306 time_update_monotonic (EV_A);
1307 else
1308#endif
1309 {
1310 ev_rt_now = ev_time ();
1311 mn_now = ev_rt_now;
1312 }
1313
1314 block = MAX_BLOCKTIME; 3439 waittime = MAX_BLOCKTIME;
1315 3440
1316 if (timercnt) 3441 if (timercnt)
1317 { 3442 {
1318 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3443 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1319 if (block > to) block = to; 3444 if (waittime > to) waittime = to;
1320 } 3445 }
1321 3446
1322#if EV_PERIODIC_ENABLE 3447#if EV_PERIODIC_ENABLE
1323 if (periodiccnt) 3448 if (periodiccnt)
1324 { 3449 {
1325 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3450 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1326 if (block > to) block = to; 3451 if (waittime > to) waittime = to;
1327 } 3452 }
1328#endif 3453#endif
1329 3454
3455 /* don't let timeouts decrease the waittime below timeout_blocktime */
3456 if (expect_false (waittime < timeout_blocktime))
3457 waittime = timeout_blocktime;
3458
3459 /* at this point, we NEED to wait, so we have to ensure */
3460 /* to pass a minimum nonzero value to the backend */
3461 if (expect_false (waittime < backend_mintime))
3462 waittime = backend_mintime;
3463
3464 /* extra check because io_blocktime is commonly 0 */
1330 if (expect_false (block < 0.)) block = 0.; 3465 if (expect_false (io_blocktime))
3466 {
3467 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3468
3469 if (sleeptime > waittime - backend_mintime)
3470 sleeptime = waittime - backend_mintime;
3471
3472 if (expect_true (sleeptime > 0.))
3473 {
3474 ev_sleep (sleeptime);
3475 waittime -= sleeptime;
3476 }
3477 }
1331 } 3478 }
1332 3479
3480#if EV_FEATURE_API
3481 ++loop_count;
3482#endif
3483 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1333 backend_poll (EV_A_ block); 3484 backend_poll (EV_A_ waittime);
3485 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3486
3487 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3488
3489 ECB_MEMORY_FENCE_ACQUIRE;
3490 if (pipe_write_skipped)
3491 {
3492 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3493 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3494 }
3495
3496
3497 /* update ev_rt_now, do magic */
3498 time_update (EV_A_ waittime + sleeptime);
1334 } 3499 }
1335
1336 /* update ev_rt_now, do magic */
1337 time_update (EV_A);
1338 3500
1339 /* queue pending timers and reschedule them */ 3501 /* queue pending timers and reschedule them */
1340 timers_reify (EV_A); /* relative timers called last */ 3502 timers_reify (EV_A); /* relative timers called last */
1341#if EV_PERIODIC_ENABLE 3503#if EV_PERIODIC_ENABLE
1342 periodics_reify (EV_A); /* absolute timers called first */ 3504 periodics_reify (EV_A); /* absolute timers called first */
1343#endif 3505#endif
1344 3506
3507#if EV_IDLE_ENABLE
1345 /* queue idle watchers unless other events are pending */ 3508 /* queue idle watchers unless other events are pending */
1346 if (idlecnt && !any_pending (EV_A)) 3509 idle_reify (EV_A);
1347 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3510#endif
1348 3511
3512#if EV_CHECK_ENABLE
1349 /* queue check watchers, to be executed first */ 3513 /* queue check watchers, to be executed first */
1350 if (expect_false (checkcnt)) 3514 if (expect_false (checkcnt))
1351 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3515 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3516#endif
1352 3517
1353 call_pending (EV_A); 3518 EV_INVOKE_PENDING;
1354
1355 if (expect_false (loop_done))
1356 break;
1357 } 3519 }
3520 while (expect_true (
3521 activecnt
3522 && !loop_done
3523 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3524 ));
1358 3525
1359 if (loop_done == EVUNLOOP_ONE) 3526 if (loop_done == EVBREAK_ONE)
1360 loop_done = EVUNLOOP_CANCEL; 3527 loop_done = EVBREAK_CANCEL;
3528
3529#if EV_FEATURE_API
3530 --loop_depth;
3531#endif
3532
3533 return activecnt;
1361} 3534}
1362 3535
1363void 3536void
1364ev_unloop (EV_P_ int how) 3537ev_break (EV_P_ int how) EV_THROW
1365{ 3538{
1366 loop_done = how; 3539 loop_done = how;
1367} 3540}
1368 3541
3542void
3543ev_ref (EV_P) EV_THROW
3544{
3545 ++activecnt;
3546}
3547
3548void
3549ev_unref (EV_P) EV_THROW
3550{
3551 --activecnt;
3552}
3553
3554void
3555ev_now_update (EV_P) EV_THROW
3556{
3557 time_update (EV_A_ 1e100);
3558}
3559
3560void
3561ev_suspend (EV_P) EV_THROW
3562{
3563 ev_now_update (EV_A);
3564}
3565
3566void
3567ev_resume (EV_P) EV_THROW
3568{
3569 ev_tstamp mn_prev = mn_now;
3570
3571 ev_now_update (EV_A);
3572 timers_reschedule (EV_A_ mn_now - mn_prev);
3573#if EV_PERIODIC_ENABLE
3574 /* TODO: really do this? */
3575 periodics_reschedule (EV_A);
3576#endif
3577}
3578
1369/*****************************************************************************/ 3579/*****************************************************************************/
3580/* singly-linked list management, used when the expected list length is short */
1370 3581
1371void inline_size 3582inline_size void
1372wlist_add (WL *head, WL elem) 3583wlist_add (WL *head, WL elem)
1373{ 3584{
1374 elem->next = *head; 3585 elem->next = *head;
1375 *head = elem; 3586 *head = elem;
1376} 3587}
1377 3588
1378void inline_size 3589inline_size void
1379wlist_del (WL *head, WL elem) 3590wlist_del (WL *head, WL elem)
1380{ 3591{
1381 while (*head) 3592 while (*head)
1382 { 3593 {
1383 if (*head == elem) 3594 if (expect_true (*head == elem))
1384 { 3595 {
1385 *head = elem->next; 3596 *head = elem->next;
1386 return; 3597 break;
1387 } 3598 }
1388 3599
1389 head = &(*head)->next; 3600 head = &(*head)->next;
1390 } 3601 }
1391} 3602}
1392 3603
1393void inline_speed 3604/* internal, faster, version of ev_clear_pending */
3605inline_speed void
1394ev_clear_pending (EV_P_ W w) 3606clear_pending (EV_P_ W w)
1395{ 3607{
1396 if (w->pending) 3608 if (w->pending)
1397 { 3609 {
1398 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3610 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1399 w->pending = 0; 3611 w->pending = 0;
1400 } 3612 }
1401} 3613}
1402 3614
1403void inline_speed 3615int
3616ev_clear_pending (EV_P_ void *w) EV_THROW
3617{
3618 W w_ = (W)w;
3619 int pending = w_->pending;
3620
3621 if (expect_true (pending))
3622 {
3623 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3624 p->w = (W)&pending_w;
3625 w_->pending = 0;
3626 return p->events;
3627 }
3628 else
3629 return 0;
3630}
3631
3632inline_size void
3633pri_adjust (EV_P_ W w)
3634{
3635 int pri = ev_priority (w);
3636 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3637 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3638 ev_set_priority (w, pri);
3639}
3640
3641inline_speed void
1404ev_start (EV_P_ W w, int active) 3642ev_start (EV_P_ W w, int active)
1405{ 3643{
1406 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3644 pri_adjust (EV_A_ w);
1407 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1408
1409 w->active = active; 3645 w->active = active;
1410 ev_ref (EV_A); 3646 ev_ref (EV_A);
1411} 3647}
1412 3648
1413void inline_size 3649inline_size void
1414ev_stop (EV_P_ W w) 3650ev_stop (EV_P_ W w)
1415{ 3651{
1416 ev_unref (EV_A); 3652 ev_unref (EV_A);
1417 w->active = 0; 3653 w->active = 0;
1418} 3654}
1419 3655
1420/*****************************************************************************/ 3656/*****************************************************************************/
1421 3657
1422void 3658void noinline
1423ev_io_start (EV_P_ ev_io *w) 3659ev_io_start (EV_P_ ev_io *w) EV_THROW
1424{ 3660{
1425 int fd = w->fd; 3661 int fd = w->fd;
1426 3662
1427 if (expect_false (ev_is_active (w))) 3663 if (expect_false (ev_is_active (w)))
1428 return; 3664 return;
1429 3665
1430 assert (("ev_io_start called with negative fd", fd >= 0)); 3666 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3667 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3668
3669 EV_FREQUENT_CHECK;
1431 3670
1432 ev_start (EV_A_ (W)w, 1); 3671 ev_start (EV_A_ (W)w, 1);
1433 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3672 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1434 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3673 wlist_add (&anfds[fd].head, (WL)w);
1435 3674
1436 fd_change (EV_A_ fd); 3675 /* common bug, apparently */
1437} 3676 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1438 3677
1439void 3678 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3679 w->events &= ~EV__IOFDSET;
3680
3681 EV_FREQUENT_CHECK;
3682}
3683
3684void noinline
1440ev_io_stop (EV_P_ ev_io *w) 3685ev_io_stop (EV_P_ ev_io *w) EV_THROW
1441{ 3686{
1442 ev_clear_pending (EV_A_ (W)w); 3687 clear_pending (EV_A_ (W)w);
1443 if (expect_false (!ev_is_active (w))) 3688 if (expect_false (!ev_is_active (w)))
1444 return; 3689 return;
1445 3690
1446 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3691 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1447 3692
3693 EV_FREQUENT_CHECK;
3694
1448 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3695 wlist_del (&anfds[w->fd].head, (WL)w);
1449 ev_stop (EV_A_ (W)w); 3696 ev_stop (EV_A_ (W)w);
1450 3697
1451 fd_change (EV_A_ w->fd); 3698 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1452}
1453 3699
1454void 3700 EV_FREQUENT_CHECK;
3701}
3702
3703void noinline
1455ev_timer_start (EV_P_ ev_timer *w) 3704ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1456{ 3705{
1457 if (expect_false (ev_is_active (w))) 3706 if (expect_false (ev_is_active (w)))
1458 return; 3707 return;
1459 3708
1460 ((WT)w)->at += mn_now; 3709 ev_at (w) += mn_now;
1461 3710
1462 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3711 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1463 3712
3713 EV_FREQUENT_CHECK;
3714
3715 ++timercnt;
1464 ev_start (EV_A_ (W)w, ++timercnt); 3716 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1465 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 3717 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1466 timers [timercnt - 1] = w; 3718 ANHE_w (timers [ev_active (w)]) = (WT)w;
1467 upheap ((WT *)timers, timercnt - 1); 3719 ANHE_at_cache (timers [ev_active (w)]);
3720 upheap (timers, ev_active (w));
1468 3721
3722 EV_FREQUENT_CHECK;
3723
1469 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3724 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1470} 3725}
1471 3726
1472void 3727void noinline
1473ev_timer_stop (EV_P_ ev_timer *w) 3728ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1474{ 3729{
1475 ev_clear_pending (EV_A_ (W)w); 3730 clear_pending (EV_A_ (W)w);
1476 if (expect_false (!ev_is_active (w))) 3731 if (expect_false (!ev_is_active (w)))
1477 return; 3732 return;
1478 3733
3734 EV_FREQUENT_CHECK;
3735
3736 {
3737 int active = ev_active (w);
3738
1479 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3739 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1480 3740
3741 --timercnt;
3742
1481 if (expect_true (((W)w)->active < timercnt--)) 3743 if (expect_true (active < timercnt + HEAP0))
1482 { 3744 {
1483 timers [((W)w)->active - 1] = timers [timercnt]; 3745 timers [active] = timers [timercnt + HEAP0];
1484 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3746 adjustheap (timers, timercnt, active);
1485 } 3747 }
3748 }
1486 3749
1487 ((WT)w)->at -= mn_now; 3750 ev_at (w) -= mn_now;
1488 3751
1489 ev_stop (EV_A_ (W)w); 3752 ev_stop (EV_A_ (W)w);
1490}
1491 3753
1492void 3754 EV_FREQUENT_CHECK;
3755}
3756
3757void noinline
1493ev_timer_again (EV_P_ ev_timer *w) 3758ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1494{ 3759{
3760 EV_FREQUENT_CHECK;
3761
3762 clear_pending (EV_A_ (W)w);
3763
1495 if (ev_is_active (w)) 3764 if (ev_is_active (w))
1496 { 3765 {
1497 if (w->repeat) 3766 if (w->repeat)
1498 { 3767 {
1499 ((WT)w)->at = mn_now + w->repeat; 3768 ev_at (w) = mn_now + w->repeat;
3769 ANHE_at_cache (timers [ev_active (w)]);
1500 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3770 adjustheap (timers, timercnt, ev_active (w));
1501 } 3771 }
1502 else 3772 else
1503 ev_timer_stop (EV_A_ w); 3773 ev_timer_stop (EV_A_ w);
1504 } 3774 }
1505 else if (w->repeat) 3775 else if (w->repeat)
1506 { 3776 {
1507 w->at = w->repeat; 3777 ev_at (w) = w->repeat;
1508 ev_timer_start (EV_A_ w); 3778 ev_timer_start (EV_A_ w);
1509 } 3779 }
3780
3781 EV_FREQUENT_CHECK;
3782}
3783
3784ev_tstamp
3785ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3786{
3787 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1510} 3788}
1511 3789
1512#if EV_PERIODIC_ENABLE 3790#if EV_PERIODIC_ENABLE
1513void 3791void noinline
1514ev_periodic_start (EV_P_ ev_periodic *w) 3792ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1515{ 3793{
1516 if (expect_false (ev_is_active (w))) 3794 if (expect_false (ev_is_active (w)))
1517 return; 3795 return;
1518 3796
1519 if (w->reschedule_cb) 3797 if (w->reschedule_cb)
1520 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3798 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1521 else if (w->interval) 3799 else if (w->interval)
1522 { 3800 {
1523 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3801 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1524 /* this formula differs from the one in periodic_reify because we do not always round up */ 3802 periodic_recalc (EV_A_ w);
1525 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1526 } 3803 }
3804 else
3805 ev_at (w) = w->offset;
1527 3806
3807 EV_FREQUENT_CHECK;
3808
3809 ++periodiccnt;
1528 ev_start (EV_A_ (W)w, ++periodiccnt); 3810 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1529 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3811 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1530 periodics [periodiccnt - 1] = w; 3812 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1531 upheap ((WT *)periodics, periodiccnt - 1); 3813 ANHE_at_cache (periodics [ev_active (w)]);
3814 upheap (periodics, ev_active (w));
1532 3815
3816 EV_FREQUENT_CHECK;
3817
1533 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3818 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1534} 3819}
1535 3820
1536void 3821void noinline
1537ev_periodic_stop (EV_P_ ev_periodic *w) 3822ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1538{ 3823{
1539 ev_clear_pending (EV_A_ (W)w); 3824 clear_pending (EV_A_ (W)w);
1540 if (expect_false (!ev_is_active (w))) 3825 if (expect_false (!ev_is_active (w)))
1541 return; 3826 return;
1542 3827
3828 EV_FREQUENT_CHECK;
3829
3830 {
3831 int active = ev_active (w);
3832
1543 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3833 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1544 3834
3835 --periodiccnt;
3836
1545 if (expect_true (((W)w)->active < periodiccnt--)) 3837 if (expect_true (active < periodiccnt + HEAP0))
1546 { 3838 {
1547 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3839 periodics [active] = periodics [periodiccnt + HEAP0];
1548 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3840 adjustheap (periodics, periodiccnt, active);
1549 } 3841 }
3842 }
1550 3843
1551 ev_stop (EV_A_ (W)w); 3844 ev_stop (EV_A_ (W)w);
1552}
1553 3845
1554void 3846 EV_FREQUENT_CHECK;
3847}
3848
3849void noinline
1555ev_periodic_again (EV_P_ ev_periodic *w) 3850ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1556{ 3851{
1557 /* TODO: use adjustheap and recalculation */ 3852 /* TODO: use adjustheap and recalculation */
1558 ev_periodic_stop (EV_A_ w); 3853 ev_periodic_stop (EV_A_ w);
1559 ev_periodic_start (EV_A_ w); 3854 ev_periodic_start (EV_A_ w);
1560} 3855}
1562 3857
1563#ifndef SA_RESTART 3858#ifndef SA_RESTART
1564# define SA_RESTART 0 3859# define SA_RESTART 0
1565#endif 3860#endif
1566 3861
1567void 3862#if EV_SIGNAL_ENABLE
3863
3864void noinline
1568ev_signal_start (EV_P_ ev_signal *w) 3865ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1569{ 3866{
1570#if EV_MULTIPLICITY
1571 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1572#endif
1573 if (expect_false (ev_is_active (w))) 3867 if (expect_false (ev_is_active (w)))
1574 return; 3868 return;
1575 3869
1576 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3870 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3871
3872#if EV_MULTIPLICITY
3873 assert (("libev: a signal must not be attached to two different loops",
3874 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3875
3876 signals [w->signum - 1].loop = EV_A;
3877 ECB_MEMORY_FENCE_RELEASE;
3878#endif
3879
3880 EV_FREQUENT_CHECK;
3881
3882#if EV_USE_SIGNALFD
3883 if (sigfd == -2)
3884 {
3885 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3886 if (sigfd < 0 && errno == EINVAL)
3887 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3888
3889 if (sigfd >= 0)
3890 {
3891 fd_intern (sigfd); /* doing it twice will not hurt */
3892
3893 sigemptyset (&sigfd_set);
3894
3895 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3896 ev_set_priority (&sigfd_w, EV_MAXPRI);
3897 ev_io_start (EV_A_ &sigfd_w);
3898 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3899 }
3900 }
3901
3902 if (sigfd >= 0)
3903 {
3904 /* TODO: check .head */
3905 sigaddset (&sigfd_set, w->signum);
3906 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3907
3908 signalfd (sigfd, &sigfd_set, 0);
3909 }
3910#endif
1577 3911
1578 ev_start (EV_A_ (W)w, 1); 3912 ev_start (EV_A_ (W)w, 1);
1579 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1580 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 3913 wlist_add (&signals [w->signum - 1].head, (WL)w);
1581 3914
1582 if (!((WL)w)->next) 3915 if (!((WL)w)->next)
3916# if EV_USE_SIGNALFD
3917 if (sigfd < 0) /*TODO*/
3918# endif
1583 { 3919 {
1584#if _WIN32 3920# ifdef _WIN32
3921 evpipe_init (EV_A);
3922
1585 signal (w->signum, sighandler); 3923 signal (w->signum, ev_sighandler);
1586#else 3924# else
1587 struct sigaction sa; 3925 struct sigaction sa;
3926
3927 evpipe_init (EV_A);
3928
1588 sa.sa_handler = sighandler; 3929 sa.sa_handler = ev_sighandler;
1589 sigfillset (&sa.sa_mask); 3930 sigfillset (&sa.sa_mask);
1590 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3931 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1591 sigaction (w->signum, &sa, 0); 3932 sigaction (w->signum, &sa, 0);
3933
3934 if (origflags & EVFLAG_NOSIGMASK)
3935 {
3936 sigemptyset (&sa.sa_mask);
3937 sigaddset (&sa.sa_mask, w->signum);
3938 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3939 }
1592#endif 3940#endif
1593 } 3941 }
1594}
1595 3942
1596void 3943 EV_FREQUENT_CHECK;
3944}
3945
3946void noinline
1597ev_signal_stop (EV_P_ ev_signal *w) 3947ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1598{ 3948{
1599 ev_clear_pending (EV_A_ (W)w); 3949 clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w))) 3950 if (expect_false (!ev_is_active (w)))
1601 return; 3951 return;
1602 3952
3953 EV_FREQUENT_CHECK;
3954
1603 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3955 wlist_del (&signals [w->signum - 1].head, (WL)w);
1604 ev_stop (EV_A_ (W)w); 3956 ev_stop (EV_A_ (W)w);
1605 3957
1606 if (!signals [w->signum - 1].head) 3958 if (!signals [w->signum - 1].head)
3959 {
3960#if EV_MULTIPLICITY
3961 signals [w->signum - 1].loop = 0; /* unattach from signal */
3962#endif
3963#if EV_USE_SIGNALFD
3964 if (sigfd >= 0)
3965 {
3966 sigset_t ss;
3967
3968 sigemptyset (&ss);
3969 sigaddset (&ss, w->signum);
3970 sigdelset (&sigfd_set, w->signum);
3971
3972 signalfd (sigfd, &sigfd_set, 0);
3973 sigprocmask (SIG_UNBLOCK, &ss, 0);
3974 }
3975 else
3976#endif
1607 signal (w->signum, SIG_DFL); 3977 signal (w->signum, SIG_DFL);
3978 }
3979
3980 EV_FREQUENT_CHECK;
1608} 3981}
3982
3983#endif
3984
3985#if EV_CHILD_ENABLE
1609 3986
1610void 3987void
1611ev_child_start (EV_P_ ev_child *w) 3988ev_child_start (EV_P_ ev_child *w) EV_THROW
1612{ 3989{
1613#if EV_MULTIPLICITY 3990#if EV_MULTIPLICITY
1614 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3991 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1615#endif 3992#endif
1616 if (expect_false (ev_is_active (w))) 3993 if (expect_false (ev_is_active (w)))
1617 return; 3994 return;
1618 3995
3996 EV_FREQUENT_CHECK;
3997
1619 ev_start (EV_A_ (W)w, 1); 3998 ev_start (EV_A_ (W)w, 1);
1620 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3999 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4000
4001 EV_FREQUENT_CHECK;
1621} 4002}
1622 4003
1623void 4004void
1624ev_child_stop (EV_P_ ev_child *w) 4005ev_child_stop (EV_P_ ev_child *w) EV_THROW
1625{ 4006{
1626 ev_clear_pending (EV_A_ (W)w); 4007 clear_pending (EV_A_ (W)w);
1627 if (expect_false (!ev_is_active (w))) 4008 if (expect_false (!ev_is_active (w)))
1628 return; 4009 return;
1629 4010
4011 EV_FREQUENT_CHECK;
4012
1630 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4013 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1631 ev_stop (EV_A_ (W)w); 4014 ev_stop (EV_A_ (W)w);
4015
4016 EV_FREQUENT_CHECK;
1632} 4017}
4018
4019#endif
1633 4020
1634#if EV_STAT_ENABLE 4021#if EV_STAT_ENABLE
1635 4022
1636# ifdef _WIN32 4023# ifdef _WIN32
4024# undef lstat
1637# define lstat(a,b) stat(a,b) 4025# define lstat(a,b) _stati64 (a,b)
1638# endif 4026# endif
1639 4027
1640#define DEF_STAT_INTERVAL 5.0074891 4028#define DEF_STAT_INTERVAL 5.0074891
4029#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1641#define MIN_STAT_INTERVAL 0.1074891 4030#define MIN_STAT_INTERVAL 0.1074891
4031
4032static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4033
4034#if EV_USE_INOTIFY
4035
4036/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4037# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4038
4039static void noinline
4040infy_add (EV_P_ ev_stat *w)
4041{
4042 w->wd = inotify_add_watch (fs_fd, w->path,
4043 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4044 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4045 | IN_DONT_FOLLOW | IN_MASK_ADD);
4046
4047 if (w->wd >= 0)
4048 {
4049 struct statfs sfs;
4050
4051 /* now local changes will be tracked by inotify, but remote changes won't */
4052 /* unless the filesystem is known to be local, we therefore still poll */
4053 /* also do poll on <2.6.25, but with normal frequency */
4054
4055 if (!fs_2625)
4056 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4057 else if (!statfs (w->path, &sfs)
4058 && (sfs.f_type == 0x1373 /* devfs */
4059 || sfs.f_type == 0x4006 /* fat */
4060 || sfs.f_type == 0x4d44 /* msdos */
4061 || sfs.f_type == 0xEF53 /* ext2/3 */
4062 || sfs.f_type == 0x72b6 /* jffs2 */
4063 || sfs.f_type == 0x858458f6 /* ramfs */
4064 || sfs.f_type == 0x5346544e /* ntfs */
4065 || sfs.f_type == 0x3153464a /* jfs */
4066 || sfs.f_type == 0x9123683e /* btrfs */
4067 || sfs.f_type == 0x52654973 /* reiser3 */
4068 || sfs.f_type == 0x01021994 /* tmpfs */
4069 || sfs.f_type == 0x58465342 /* xfs */))
4070 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4071 else
4072 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4073 }
4074 else
4075 {
4076 /* can't use inotify, continue to stat */
4077 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4078
4079 /* if path is not there, monitor some parent directory for speedup hints */
4080 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4081 /* but an efficiency issue only */
4082 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4083 {
4084 char path [4096];
4085 strcpy (path, w->path);
4086
4087 do
4088 {
4089 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4090 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4091
4092 char *pend = strrchr (path, '/');
4093
4094 if (!pend || pend == path)
4095 break;
4096
4097 *pend = 0;
4098 w->wd = inotify_add_watch (fs_fd, path, mask);
4099 }
4100 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4101 }
4102 }
4103
4104 if (w->wd >= 0)
4105 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4106
4107 /* now re-arm timer, if required */
4108 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4109 ev_timer_again (EV_A_ &w->timer);
4110 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4111}
4112
4113static void noinline
4114infy_del (EV_P_ ev_stat *w)
4115{
4116 int slot;
4117 int wd = w->wd;
4118
4119 if (wd < 0)
4120 return;
4121
4122 w->wd = -2;
4123 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4124 wlist_del (&fs_hash [slot].head, (WL)w);
4125
4126 /* remove this watcher, if others are watching it, they will rearm */
4127 inotify_rm_watch (fs_fd, wd);
4128}
4129
4130static void noinline
4131infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4132{
4133 if (slot < 0)
4134 /* overflow, need to check for all hash slots */
4135 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4136 infy_wd (EV_A_ slot, wd, ev);
4137 else
4138 {
4139 WL w_;
4140
4141 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4142 {
4143 ev_stat *w = (ev_stat *)w_;
4144 w_ = w_->next; /* lets us remove this watcher and all before it */
4145
4146 if (w->wd == wd || wd == -1)
4147 {
4148 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4149 {
4150 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4151 w->wd = -1;
4152 infy_add (EV_A_ w); /* re-add, no matter what */
4153 }
4154
4155 stat_timer_cb (EV_A_ &w->timer, 0);
4156 }
4157 }
4158 }
4159}
4160
4161static void
4162infy_cb (EV_P_ ev_io *w, int revents)
4163{
4164 char buf [EV_INOTIFY_BUFSIZE];
4165 int ofs;
4166 int len = read (fs_fd, buf, sizeof (buf));
4167
4168 for (ofs = 0; ofs < len; )
4169 {
4170 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4171 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4172 ofs += sizeof (struct inotify_event) + ev->len;
4173 }
4174}
4175
4176inline_size void ecb_cold
4177ev_check_2625 (EV_P)
4178{
4179 /* kernels < 2.6.25 are borked
4180 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4181 */
4182 if (ev_linux_version () < 0x020619)
4183 return;
4184
4185 fs_2625 = 1;
4186}
4187
4188inline_size int
4189infy_newfd (void)
4190{
4191#if defined IN_CLOEXEC && defined IN_NONBLOCK
4192 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4193 if (fd >= 0)
4194 return fd;
4195#endif
4196 return inotify_init ();
4197}
4198
4199inline_size void
4200infy_init (EV_P)
4201{
4202 if (fs_fd != -2)
4203 return;
4204
4205 fs_fd = -1;
4206
4207 ev_check_2625 (EV_A);
4208
4209 fs_fd = infy_newfd ();
4210
4211 if (fs_fd >= 0)
4212 {
4213 fd_intern (fs_fd);
4214 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4215 ev_set_priority (&fs_w, EV_MAXPRI);
4216 ev_io_start (EV_A_ &fs_w);
4217 ev_unref (EV_A);
4218 }
4219}
4220
4221inline_size void
4222infy_fork (EV_P)
4223{
4224 int slot;
4225
4226 if (fs_fd < 0)
4227 return;
4228
4229 ev_ref (EV_A);
4230 ev_io_stop (EV_A_ &fs_w);
4231 close (fs_fd);
4232 fs_fd = infy_newfd ();
4233
4234 if (fs_fd >= 0)
4235 {
4236 fd_intern (fs_fd);
4237 ev_io_set (&fs_w, fs_fd, EV_READ);
4238 ev_io_start (EV_A_ &fs_w);
4239 ev_unref (EV_A);
4240 }
4241
4242 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4243 {
4244 WL w_ = fs_hash [slot].head;
4245 fs_hash [slot].head = 0;
4246
4247 while (w_)
4248 {
4249 ev_stat *w = (ev_stat *)w_;
4250 w_ = w_->next; /* lets us add this watcher */
4251
4252 w->wd = -1;
4253
4254 if (fs_fd >= 0)
4255 infy_add (EV_A_ w); /* re-add, no matter what */
4256 else
4257 {
4258 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4259 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4260 ev_timer_again (EV_A_ &w->timer);
4261 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4262 }
4263 }
4264 }
4265}
4266
4267#endif
4268
4269#ifdef _WIN32
4270# define EV_LSTAT(p,b) _stati64 (p, b)
4271#else
4272# define EV_LSTAT(p,b) lstat (p, b)
4273#endif
1642 4274
1643void 4275void
1644ev_stat_stat (EV_P_ ev_stat *w) 4276ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1645{ 4277{
1646 if (lstat (w->path, &w->attr) < 0) 4278 if (lstat (w->path, &w->attr) < 0)
1647 w->attr.st_nlink = 0; 4279 w->attr.st_nlink = 0;
1648 else if (!w->attr.st_nlink) 4280 else if (!w->attr.st_nlink)
1649 w->attr.st_nlink = 1; 4281 w->attr.st_nlink = 1;
1650} 4282}
1651 4283
1652static void 4284static void noinline
1653stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4285stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1654{ 4286{
1655 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4287 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1656 4288
1657 /* we copy this here each the time so that */ 4289 ev_statdata prev = w->attr;
1658 /* prev has the old value when the callback gets invoked */
1659 w->prev = w->attr;
1660 ev_stat_stat (EV_A_ w); 4290 ev_stat_stat (EV_A_ w);
1661 4291
1662 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 4292 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4293 if (
4294 prev.st_dev != w->attr.st_dev
4295 || prev.st_ino != w->attr.st_ino
4296 || prev.st_mode != w->attr.st_mode
4297 || prev.st_nlink != w->attr.st_nlink
4298 || prev.st_uid != w->attr.st_uid
4299 || prev.st_gid != w->attr.st_gid
4300 || prev.st_rdev != w->attr.st_rdev
4301 || prev.st_size != w->attr.st_size
4302 || prev.st_atime != w->attr.st_atime
4303 || prev.st_mtime != w->attr.st_mtime
4304 || prev.st_ctime != w->attr.st_ctime
4305 ) {
4306 /* we only update w->prev on actual differences */
4307 /* in case we test more often than invoke the callback, */
4308 /* to ensure that prev is always different to attr */
4309 w->prev = prev;
4310
4311 #if EV_USE_INOTIFY
4312 if (fs_fd >= 0)
4313 {
4314 infy_del (EV_A_ w);
4315 infy_add (EV_A_ w);
4316 ev_stat_stat (EV_A_ w); /* avoid race... */
4317 }
4318 #endif
4319
1663 ev_feed_event (EV_A_ w, EV_STAT); 4320 ev_feed_event (EV_A_ w, EV_STAT);
4321 }
1664} 4322}
1665 4323
1666void 4324void
1667ev_stat_start (EV_P_ ev_stat *w) 4325ev_stat_start (EV_P_ ev_stat *w) EV_THROW
1668{ 4326{
1669 if (expect_false (ev_is_active (w))) 4327 if (expect_false (ev_is_active (w)))
1670 return; 4328 return;
1671 4329
1672 /* since we use memcmp, we need to clear any padding data etc. */
1673 memset (&w->prev, 0, sizeof (ev_statdata));
1674 memset (&w->attr, 0, sizeof (ev_statdata));
1675
1676 ev_stat_stat (EV_A_ w); 4330 ev_stat_stat (EV_A_ w);
1677 4331
4332 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1678 if (w->interval < MIN_STAT_INTERVAL) 4333 w->interval = MIN_STAT_INTERVAL;
1679 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1680 4334
1681 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4335 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1682 ev_set_priority (&w->timer, ev_priority (w)); 4336 ev_set_priority (&w->timer, ev_priority (w));
4337
4338#if EV_USE_INOTIFY
4339 infy_init (EV_A);
4340
4341 if (fs_fd >= 0)
4342 infy_add (EV_A_ w);
4343 else
4344#endif
4345 {
1683 ev_timer_start (EV_A_ &w->timer); 4346 ev_timer_again (EV_A_ &w->timer);
4347 ev_unref (EV_A);
4348 }
1684 4349
1685 ev_start (EV_A_ (W)w, 1); 4350 ev_start (EV_A_ (W)w, 1);
4351
4352 EV_FREQUENT_CHECK;
1686} 4353}
1687 4354
1688void 4355void
1689ev_stat_stop (EV_P_ ev_stat *w) 4356ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
1690{ 4357{
1691 ev_clear_pending (EV_A_ (W)w); 4358 clear_pending (EV_A_ (W)w);
1692 if (expect_false (!ev_is_active (w))) 4359 if (expect_false (!ev_is_active (w)))
1693 return; 4360 return;
1694 4361
4362 EV_FREQUENT_CHECK;
4363
4364#if EV_USE_INOTIFY
4365 infy_del (EV_A_ w);
4366#endif
4367
4368 if (ev_is_active (&w->timer))
4369 {
4370 ev_ref (EV_A);
1695 ev_timer_stop (EV_A_ &w->timer); 4371 ev_timer_stop (EV_A_ &w->timer);
4372 }
1696 4373
1697 ev_stop (EV_A_ (W)w); 4374 ev_stop (EV_A_ (W)w);
1698}
1699#endif
1700 4375
4376 EV_FREQUENT_CHECK;
4377}
4378#endif
4379
4380#if EV_IDLE_ENABLE
1701void 4381void
1702ev_idle_start (EV_P_ ev_idle *w) 4382ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1703{ 4383{
1704 if (expect_false (ev_is_active (w))) 4384 if (expect_false (ev_is_active (w)))
1705 return; 4385 return;
1706 4386
4387 pri_adjust (EV_A_ (W)w);
4388
4389 EV_FREQUENT_CHECK;
4390
4391 {
4392 int active = ++idlecnt [ABSPRI (w)];
4393
4394 ++idleall;
1707 ev_start (EV_A_ (W)w, ++idlecnt); 4395 ev_start (EV_A_ (W)w, active);
4396
1708 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 4397 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1709 idles [idlecnt - 1] = w; 4398 idles [ABSPRI (w)][active - 1] = w;
4399 }
4400
4401 EV_FREQUENT_CHECK;
1710} 4402}
1711 4403
1712void 4404void
1713ev_idle_stop (EV_P_ ev_idle *w) 4405ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
1714{ 4406{
1715 ev_clear_pending (EV_A_ (W)w); 4407 clear_pending (EV_A_ (W)w);
1716 if (expect_false (!ev_is_active (w))) 4408 if (expect_false (!ev_is_active (w)))
1717 return; 4409 return;
1718 4410
4411 EV_FREQUENT_CHECK;
4412
1719 { 4413 {
1720 int active = ((W)w)->active; 4414 int active = ev_active (w);
1721 idles [active - 1] = idles [--idlecnt]; 4415
1722 ((W)idles [active - 1])->active = active; 4416 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4417 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4418
4419 ev_stop (EV_A_ (W)w);
4420 --idleall;
1723 } 4421 }
1724 4422
1725 ev_stop (EV_A_ (W)w); 4423 EV_FREQUENT_CHECK;
1726} 4424}
4425#endif
1727 4426
4427#if EV_PREPARE_ENABLE
1728void 4428void
1729ev_prepare_start (EV_P_ ev_prepare *w) 4429ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
1730{ 4430{
1731 if (expect_false (ev_is_active (w))) 4431 if (expect_false (ev_is_active (w)))
1732 return; 4432 return;
4433
4434 EV_FREQUENT_CHECK;
1733 4435
1734 ev_start (EV_A_ (W)w, ++preparecnt); 4436 ev_start (EV_A_ (W)w, ++preparecnt);
1735 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4437 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1736 prepares [preparecnt - 1] = w; 4438 prepares [preparecnt - 1] = w;
4439
4440 EV_FREQUENT_CHECK;
1737} 4441}
1738 4442
1739void 4443void
1740ev_prepare_stop (EV_P_ ev_prepare *w) 4444ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
1741{ 4445{
1742 ev_clear_pending (EV_A_ (W)w); 4446 clear_pending (EV_A_ (W)w);
1743 if (expect_false (!ev_is_active (w))) 4447 if (expect_false (!ev_is_active (w)))
1744 return; 4448 return;
1745 4449
4450 EV_FREQUENT_CHECK;
4451
1746 { 4452 {
1747 int active = ((W)w)->active; 4453 int active = ev_active (w);
4454
1748 prepares [active - 1] = prepares [--preparecnt]; 4455 prepares [active - 1] = prepares [--preparecnt];
1749 ((W)prepares [active - 1])->active = active; 4456 ev_active (prepares [active - 1]) = active;
1750 } 4457 }
1751 4458
1752 ev_stop (EV_A_ (W)w); 4459 ev_stop (EV_A_ (W)w);
1753}
1754 4460
4461 EV_FREQUENT_CHECK;
4462}
4463#endif
4464
4465#if EV_CHECK_ENABLE
1755void 4466void
1756ev_check_start (EV_P_ ev_check *w) 4467ev_check_start (EV_P_ ev_check *w) EV_THROW
1757{ 4468{
1758 if (expect_false (ev_is_active (w))) 4469 if (expect_false (ev_is_active (w)))
1759 return; 4470 return;
4471
4472 EV_FREQUENT_CHECK;
1760 4473
1761 ev_start (EV_A_ (W)w, ++checkcnt); 4474 ev_start (EV_A_ (W)w, ++checkcnt);
1762 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4475 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1763 checks [checkcnt - 1] = w; 4476 checks [checkcnt - 1] = w;
4477
4478 EV_FREQUENT_CHECK;
1764} 4479}
1765 4480
1766void 4481void
1767ev_check_stop (EV_P_ ev_check *w) 4482ev_check_stop (EV_P_ ev_check *w) EV_THROW
1768{ 4483{
1769 ev_clear_pending (EV_A_ (W)w); 4484 clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w))) 4485 if (expect_false (!ev_is_active (w)))
1771 return; 4486 return;
1772 4487
4488 EV_FREQUENT_CHECK;
4489
1773 { 4490 {
1774 int active = ((W)w)->active; 4491 int active = ev_active (w);
4492
1775 checks [active - 1] = checks [--checkcnt]; 4493 checks [active - 1] = checks [--checkcnt];
1776 ((W)checks [active - 1])->active = active; 4494 ev_active (checks [active - 1]) = active;
1777 } 4495 }
1778 4496
1779 ev_stop (EV_A_ (W)w); 4497 ev_stop (EV_A_ (W)w);
4498
4499 EV_FREQUENT_CHECK;
1780} 4500}
4501#endif
1781 4502
1782#if EV_EMBED_ENABLE 4503#if EV_EMBED_ENABLE
1783void noinline 4504void noinline
1784ev_embed_sweep (EV_P_ ev_embed *w) 4505ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
1785{ 4506{
1786 ev_loop (w->loop, EVLOOP_NONBLOCK); 4507 ev_run (w->other, EVRUN_NOWAIT);
1787} 4508}
1788 4509
1789static void 4510static void
1790embed_cb (EV_P_ ev_io *io, int revents) 4511embed_io_cb (EV_P_ ev_io *io, int revents)
1791{ 4512{
1792 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4513 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1793 4514
1794 if (ev_cb (w)) 4515 if (ev_cb (w))
1795 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4516 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1796 else 4517 else
1797 ev_embed_sweep (loop, w); 4518 ev_run (w->other, EVRUN_NOWAIT);
1798} 4519}
4520
4521static void
4522embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4523{
4524 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4525
4526 {
4527 EV_P = w->other;
4528
4529 while (fdchangecnt)
4530 {
4531 fd_reify (EV_A);
4532 ev_run (EV_A_ EVRUN_NOWAIT);
4533 }
4534 }
4535}
4536
4537static void
4538embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4539{
4540 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4541
4542 ev_embed_stop (EV_A_ w);
4543
4544 {
4545 EV_P = w->other;
4546
4547 ev_loop_fork (EV_A);
4548 ev_run (EV_A_ EVRUN_NOWAIT);
4549 }
4550
4551 ev_embed_start (EV_A_ w);
4552}
4553
4554#if 0
4555static void
4556embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4557{
4558 ev_idle_stop (EV_A_ idle);
4559}
4560#endif
1799 4561
1800void 4562void
1801ev_embed_start (EV_P_ ev_embed *w) 4563ev_embed_start (EV_P_ ev_embed *w) EV_THROW
1802{ 4564{
1803 if (expect_false (ev_is_active (w))) 4565 if (expect_false (ev_is_active (w)))
1804 return; 4566 return;
1805 4567
1806 { 4568 {
1807 struct ev_loop *loop = w->loop; 4569 EV_P = w->other;
1808 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4570 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1809 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 4571 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1810 } 4572 }
4573
4574 EV_FREQUENT_CHECK;
1811 4575
1812 ev_set_priority (&w->io, ev_priority (w)); 4576 ev_set_priority (&w->io, ev_priority (w));
1813 ev_io_start (EV_A_ &w->io); 4577 ev_io_start (EV_A_ &w->io);
1814 4578
4579 ev_prepare_init (&w->prepare, embed_prepare_cb);
4580 ev_set_priority (&w->prepare, EV_MINPRI);
4581 ev_prepare_start (EV_A_ &w->prepare);
4582
4583 ev_fork_init (&w->fork, embed_fork_cb);
4584 ev_fork_start (EV_A_ &w->fork);
4585
4586 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4587
1815 ev_start (EV_A_ (W)w, 1); 4588 ev_start (EV_A_ (W)w, 1);
4589
4590 EV_FREQUENT_CHECK;
1816} 4591}
1817 4592
1818void 4593void
1819ev_embed_stop (EV_P_ ev_embed *w) 4594ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
1820{ 4595{
1821 ev_clear_pending (EV_A_ (W)w); 4596 clear_pending (EV_A_ (W)w);
1822 if (expect_false (!ev_is_active (w))) 4597 if (expect_false (!ev_is_active (w)))
1823 return; 4598 return;
1824 4599
4600 EV_FREQUENT_CHECK;
4601
1825 ev_io_stop (EV_A_ &w->io); 4602 ev_io_stop (EV_A_ &w->io);
4603 ev_prepare_stop (EV_A_ &w->prepare);
4604 ev_fork_stop (EV_A_ &w->fork);
1826 4605
1827 ev_stop (EV_A_ (W)w); 4606 ev_stop (EV_A_ (W)w);
4607
4608 EV_FREQUENT_CHECK;
4609}
4610#endif
4611
4612#if EV_FORK_ENABLE
4613void
4614ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4615{
4616 if (expect_false (ev_is_active (w)))
4617 return;
4618
4619 EV_FREQUENT_CHECK;
4620
4621 ev_start (EV_A_ (W)w, ++forkcnt);
4622 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4623 forks [forkcnt - 1] = w;
4624
4625 EV_FREQUENT_CHECK;
4626}
4627
4628void
4629ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4630{
4631 clear_pending (EV_A_ (W)w);
4632 if (expect_false (!ev_is_active (w)))
4633 return;
4634
4635 EV_FREQUENT_CHECK;
4636
4637 {
4638 int active = ev_active (w);
4639
4640 forks [active - 1] = forks [--forkcnt];
4641 ev_active (forks [active - 1]) = active;
4642 }
4643
4644 ev_stop (EV_A_ (W)w);
4645
4646 EV_FREQUENT_CHECK;
4647}
4648#endif
4649
4650#if EV_CLEANUP_ENABLE
4651void
4652ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4653{
4654 if (expect_false (ev_is_active (w)))
4655 return;
4656
4657 EV_FREQUENT_CHECK;
4658
4659 ev_start (EV_A_ (W)w, ++cleanupcnt);
4660 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4661 cleanups [cleanupcnt - 1] = w;
4662
4663 /* cleanup watchers should never keep a refcount on the loop */
4664 ev_unref (EV_A);
4665 EV_FREQUENT_CHECK;
4666}
4667
4668void
4669ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4670{
4671 clear_pending (EV_A_ (W)w);
4672 if (expect_false (!ev_is_active (w)))
4673 return;
4674
4675 EV_FREQUENT_CHECK;
4676 ev_ref (EV_A);
4677
4678 {
4679 int active = ev_active (w);
4680
4681 cleanups [active - 1] = cleanups [--cleanupcnt];
4682 ev_active (cleanups [active - 1]) = active;
4683 }
4684
4685 ev_stop (EV_A_ (W)w);
4686
4687 EV_FREQUENT_CHECK;
4688}
4689#endif
4690
4691#if EV_ASYNC_ENABLE
4692void
4693ev_async_start (EV_P_ ev_async *w) EV_THROW
4694{
4695 if (expect_false (ev_is_active (w)))
4696 return;
4697
4698 w->sent = 0;
4699
4700 evpipe_init (EV_A);
4701
4702 EV_FREQUENT_CHECK;
4703
4704 ev_start (EV_A_ (W)w, ++asynccnt);
4705 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4706 asyncs [asynccnt - 1] = w;
4707
4708 EV_FREQUENT_CHECK;
4709}
4710
4711void
4712ev_async_stop (EV_P_ ev_async *w) EV_THROW
4713{
4714 clear_pending (EV_A_ (W)w);
4715 if (expect_false (!ev_is_active (w)))
4716 return;
4717
4718 EV_FREQUENT_CHECK;
4719
4720 {
4721 int active = ev_active (w);
4722
4723 asyncs [active - 1] = asyncs [--asynccnt];
4724 ev_active (asyncs [active - 1]) = active;
4725 }
4726
4727 ev_stop (EV_A_ (W)w);
4728
4729 EV_FREQUENT_CHECK;
4730}
4731
4732void
4733ev_async_send (EV_P_ ev_async *w) EV_THROW
4734{
4735 w->sent = 1;
4736 evpipe_write (EV_A_ &async_pending);
1828} 4737}
1829#endif 4738#endif
1830 4739
1831/*****************************************************************************/ 4740/*****************************************************************************/
1832 4741
1842once_cb (EV_P_ struct ev_once *once, int revents) 4751once_cb (EV_P_ struct ev_once *once, int revents)
1843{ 4752{
1844 void (*cb)(int revents, void *arg) = once->cb; 4753 void (*cb)(int revents, void *arg) = once->cb;
1845 void *arg = once->arg; 4754 void *arg = once->arg;
1846 4755
1847 ev_io_stop (EV_A_ &once->io); 4756 ev_io_stop (EV_A_ &once->io);
1848 ev_timer_stop (EV_A_ &once->to); 4757 ev_timer_stop (EV_A_ &once->to);
1849 ev_free (once); 4758 ev_free (once);
1850 4759
1851 cb (revents, arg); 4760 cb (revents, arg);
1852} 4761}
1853 4762
1854static void 4763static void
1855once_cb_io (EV_P_ ev_io *w, int revents) 4764once_cb_io (EV_P_ ev_io *w, int revents)
1856{ 4765{
1857 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4766 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4767
4768 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1858} 4769}
1859 4770
1860static void 4771static void
1861once_cb_to (EV_P_ ev_timer *w, int revents) 4772once_cb_to (EV_P_ ev_timer *w, int revents)
1862{ 4773{
1863 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4774 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4775
4776 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1864} 4777}
1865 4778
1866void 4779void
1867ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4780ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1868{ 4781{
1869 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4782 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1870 4783
1871 if (expect_false (!once)) 4784 if (expect_false (!once))
1872 { 4785 {
1873 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4786 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1874 return; 4787 return;
1875 } 4788 }
1876 4789
1877 once->cb = cb; 4790 once->cb = cb;
1878 once->arg = arg; 4791 once->arg = arg;
1890 ev_timer_set (&once->to, timeout, 0.); 4803 ev_timer_set (&once->to, timeout, 0.);
1891 ev_timer_start (EV_A_ &once->to); 4804 ev_timer_start (EV_A_ &once->to);
1892 } 4805 }
1893} 4806}
1894 4807
1895#ifdef __cplusplus 4808/*****************************************************************************/
1896} 4809
4810#if EV_WALK_ENABLE
4811void ecb_cold
4812ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4813{
4814 int i, j;
4815 ev_watcher_list *wl, *wn;
4816
4817 if (types & (EV_IO | EV_EMBED))
4818 for (i = 0; i < anfdmax; ++i)
4819 for (wl = anfds [i].head; wl; )
4820 {
4821 wn = wl->next;
4822
4823#if EV_EMBED_ENABLE
4824 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4825 {
4826 if (types & EV_EMBED)
4827 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4828 }
4829 else
4830#endif
4831#if EV_USE_INOTIFY
4832 if (ev_cb ((ev_io *)wl) == infy_cb)
4833 ;
4834 else
4835#endif
4836 if ((ev_io *)wl != &pipe_w)
4837 if (types & EV_IO)
4838 cb (EV_A_ EV_IO, wl);
4839
4840 wl = wn;
4841 }
4842
4843 if (types & (EV_TIMER | EV_STAT))
4844 for (i = timercnt + HEAP0; i-- > HEAP0; )
4845#if EV_STAT_ENABLE
4846 /*TODO: timer is not always active*/
4847 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4848 {
4849 if (types & EV_STAT)
4850 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4851 }
4852 else
4853#endif
4854 if (types & EV_TIMER)
4855 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4856
4857#if EV_PERIODIC_ENABLE
4858 if (types & EV_PERIODIC)
4859 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4860 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4861#endif
4862
4863#if EV_IDLE_ENABLE
4864 if (types & EV_IDLE)
4865 for (j = NUMPRI; j--; )
4866 for (i = idlecnt [j]; i--; )
4867 cb (EV_A_ EV_IDLE, idles [j][i]);
4868#endif
4869
4870#if EV_FORK_ENABLE
4871 if (types & EV_FORK)
4872 for (i = forkcnt; i--; )
4873 if (ev_cb (forks [i]) != embed_fork_cb)
4874 cb (EV_A_ EV_FORK, forks [i]);
4875#endif
4876
4877#if EV_ASYNC_ENABLE
4878 if (types & EV_ASYNC)
4879 for (i = asynccnt; i--; )
4880 cb (EV_A_ EV_ASYNC, asyncs [i]);
4881#endif
4882
4883#if EV_PREPARE_ENABLE
4884 if (types & EV_PREPARE)
4885 for (i = preparecnt; i--; )
4886# if EV_EMBED_ENABLE
4887 if (ev_cb (prepares [i]) != embed_prepare_cb)
1897#endif 4888# endif
4889 cb (EV_A_ EV_PREPARE, prepares [i]);
4890#endif
1898 4891
4892#if EV_CHECK_ENABLE
4893 if (types & EV_CHECK)
4894 for (i = checkcnt; i--; )
4895 cb (EV_A_ EV_CHECK, checks [i]);
4896#endif
4897
4898#if EV_SIGNAL_ENABLE
4899 if (types & EV_SIGNAL)
4900 for (i = 0; i < EV_NSIG - 1; ++i)
4901 for (wl = signals [i].head; wl; )
4902 {
4903 wn = wl->next;
4904 cb (EV_A_ EV_SIGNAL, wl);
4905 wl = wn;
4906 }
4907#endif
4908
4909#if EV_CHILD_ENABLE
4910 if (types & EV_CHILD)
4911 for (i = (EV_PID_HASHSIZE); i--; )
4912 for (wl = childs [i]; wl; )
4913 {
4914 wn = wl->next;
4915 cb (EV_A_ EV_CHILD, wl);
4916 wl = wn;
4917 }
4918#endif
4919/* EV_STAT 0x00001000 /* stat data changed */
4920/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4921}
4922#endif
4923
4924#if EV_MULTIPLICITY
4925 #include "ev_wrap.h"
4926#endif
4927

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines