ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.59 by root, Sun Nov 4 18:15:16 2007 UTC vs.
Revision 1.144 by root, Tue Nov 27 08:11:52 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
42
43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
57# endif
58
59# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
65# endif
66
67# ifndef EV_USE_POLL
68# if HAVE_POLL && HAVE_POLL_H
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
73# endif
74
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
81# endif
82
83# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
97# endif
98
33#endif 99#endif
34 100
35#include <math.h> 101#include <math.h>
36#include <stdlib.h> 102#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 103#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 104#include <stddef.h>
41 105
42#include <stdio.h> 106#include <stdio.h>
43 107
44#include <assert.h> 108#include <assert.h>
45#include <errno.h> 109#include <errno.h>
46#include <sys/types.h> 110#include <sys/types.h>
111#include <time.h>
112
113#include <signal.h>
114
47#ifndef WIN32 115#ifndef _WIN32
116# include <sys/time.h>
48# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
49#endif 124# endif
50#include <sys/time.h> 125#endif
51#include <time.h>
52 126
53/**/ 127/**/
54 128
55#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
57#endif 135#endif
58 136
59#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
61#endif 139#endif
62 140
63#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
64# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
65#endif 147#endif
66 148
67#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
69#endif 151#endif
70 152
71#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
73#endif 155#endif
74 156
75#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
76# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
77#endif 159#endif
78 160
79/**/ 161/**/
80 162
81#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
86#ifndef CLOCK_REALTIME 168#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 169# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 170# define EV_USE_REALTIME 0
89#endif 171#endif
90 172
173#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h>
175#endif
176
91/**/ 177/**/
92 178
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
97 183
184#ifdef EV_H
185# include EV_H
186#else
98#include "ev.h" 187# include "ev.h"
188#endif
99 189
100#if __GNUC__ >= 3 190#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
102# define inline inline 194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
103#else 200#else
104# define expect(expr,value) (expr) 201# define expect(expr,value) (expr)
105# define inline static 202# define inline_speed static
203# define inline_minimal static
204# define noinline
106#endif 205#endif
107 206
108#define expect_false(expr) expect ((expr) != 0, 0) 207#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1) 208#define expect_true(expr) expect ((expr) != 0, 1)
110 209
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 211#define ABSPRI(w) ((w)->priority - EV_MINPRI)
113 212
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */
215
114typedef struct ev_watcher *W; 216typedef ev_watcher *W;
115typedef struct ev_watcher_list *WL; 217typedef ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 218typedef ev_watcher_time *WT;
117 219
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119 221
222#ifdef _WIN32
223# include "ev_win32.c"
224#endif
225
120/*****************************************************************************/ 226/*****************************************************************************/
121 227
228static void (*syserr_cb)(const char *msg);
229
230void
231ev_set_syserr_cb (void (*cb)(const char *msg))
232{
233 syserr_cb = cb;
234}
235
236static void noinline
237syserr (const char *msg)
238{
239 if (!msg)
240 msg = "(libev) system error";
241
242 if (syserr_cb)
243 syserr_cb (msg);
244 else
245 {
246 perror (msg);
247 abort ();
248 }
249}
250
251static void *(*alloc)(void *ptr, long size);
252
253void
254ev_set_allocator (void *(*cb)(void *ptr, long size))
255{
256 alloc = cb;
257}
258
259static void *
260ev_realloc (void *ptr, long size)
261{
262 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
263
264 if (!ptr && size)
265 {
266 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
267 abort ();
268 }
269
270 return ptr;
271}
272
273#define ev_malloc(size) ev_realloc (0, (size))
274#define ev_free(ptr) ev_realloc ((ptr), 0)
275
276/*****************************************************************************/
277
122typedef struct 278typedef struct
123{ 279{
124 struct ev_watcher_list *head; 280 WL head;
125 unsigned char events; 281 unsigned char events;
126 unsigned char reify; 282 unsigned char reify;
283#if EV_SELECT_IS_WINSOCKET
284 SOCKET handle;
285#endif
127} ANFD; 286} ANFD;
128 287
129typedef struct 288typedef struct
130{ 289{
131 W w; 290 W w;
132 int events; 291 int events;
133} ANPENDING; 292} ANPENDING;
134 293
135#if EV_MULTIPLICITY 294#if EV_MULTIPLICITY
136 295
137struct ev_loop 296 struct ev_loop
138{ 297 {
298 ev_tstamp ev_rt_now;
299 #define ev_rt_now ((loop)->ev_rt_now)
139# define VAR(name,decl) decl; 300 #define VAR(name,decl) decl;
140# include "ev_vars.h" 301 #include "ev_vars.h"
141};
142# undef VAR 302 #undef VAR
303 };
143# include "ev_wrap.h" 304 #include "ev_wrap.h"
305
306 static struct ev_loop default_loop_struct;
307 struct ev_loop *ev_default_loop_ptr;
144 308
145#else 309#else
146 310
311 ev_tstamp ev_rt_now;
147# define VAR(name,decl) static decl; 312 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 313 #include "ev_vars.h"
149# undef VAR 314 #undef VAR
315
316 static int ev_default_loop_ptr;
150 317
151#endif 318#endif
152 319
153/*****************************************************************************/ 320/*****************************************************************************/
154 321
155inline ev_tstamp 322ev_tstamp
156ev_time (void) 323ev_time (void)
157{ 324{
158#if EV_USE_REALTIME 325#if EV_USE_REALTIME
159 struct timespec ts; 326 struct timespec ts;
160 clock_gettime (CLOCK_REALTIME, &ts); 327 clock_gettime (CLOCK_REALTIME, &ts);
164 gettimeofday (&tv, 0); 331 gettimeofday (&tv, 0);
165 return tv.tv_sec + tv.tv_usec * 1e-6; 332 return tv.tv_sec + tv.tv_usec * 1e-6;
166#endif 333#endif
167} 334}
168 335
169inline ev_tstamp 336ev_tstamp inline_size
170get_clock (void) 337get_clock (void)
171{ 338{
172#if EV_USE_MONOTONIC 339#if EV_USE_MONOTONIC
173 if (expect_true (have_monotonic)) 340 if (expect_true (have_monotonic))
174 { 341 {
179#endif 346#endif
180 347
181 return ev_time (); 348 return ev_time ();
182} 349}
183 350
351#if EV_MULTIPLICITY
184ev_tstamp 352ev_tstamp
185ev_now (EV_P) 353ev_now (EV_P)
186{ 354{
187 return rt_now; 355 return ev_rt_now;
188} 356}
357#endif
189 358
190#define array_roundsize(base,n) ((n) | 4 & ~3) 359#define array_roundsize(type,n) (((n) | 4) & ~3)
191 360
192#define array_needsize(base,cur,cnt,init) \ 361#define array_needsize(type,base,cur,cnt,init) \
193 if (expect_false ((cnt) > cur)) \ 362 if (expect_false ((cnt) > cur)) \
194 { \ 363 { \
195 int newcnt = cur; \ 364 int newcnt = cur; \
196 do \ 365 do \
197 { \ 366 { \
198 newcnt = array_roundsize (base, newcnt << 1); \ 367 newcnt = array_roundsize (type, newcnt << 1); \
199 } \ 368 } \
200 while ((cnt) > newcnt); \ 369 while ((cnt) > newcnt); \
201 \ 370 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \ 371 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
203 init (base + cur, newcnt - cur); \ 372 init (base + cur, newcnt - cur); \
204 cur = newcnt; \ 373 cur = newcnt; \
205 } 374 }
375
376#define array_slim(type,stem) \
377 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
378 { \
379 stem ## max = array_roundsize (stem ## cnt >> 1); \
380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
382 }
383
384#define array_free(stem, idx) \
385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
206 386
207/*****************************************************************************/ 387/*****************************************************************************/
208 388
209static void 389void noinline
390ev_feed_event (EV_P_ void *w, int revents)
391{
392 W w_ = (W)w;
393
394 if (expect_false (w_->pending))
395 {
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
397 return;
398 }
399
400 w_->pending = ++pendingcnt [ABSPRI (w_)];
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404}
405
406void inline_size
407queue_events (EV_P_ W *events, int eventcnt, int type)
408{
409 int i;
410
411 for (i = 0; i < eventcnt; ++i)
412 ev_feed_event (EV_A_ events [i], type);
413}
414
415/*****************************************************************************/
416
417void inline_size
210anfds_init (ANFD *base, int count) 418anfds_init (ANFD *base, int count)
211{ 419{
212 while (count--) 420 while (count--)
213 { 421 {
214 base->head = 0; 422 base->head = 0;
217 425
218 ++base; 426 ++base;
219 } 427 }
220} 428}
221 429
222static void 430void inline_speed
223event (EV_P_ W w, int events)
224{
225 if (w->pending)
226 {
227 pendings [ABSPRI (w)][w->pending - 1].events |= events;
228 return;
229 }
230
231 w->pending = ++pendingcnt [ABSPRI (w)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233 pendings [ABSPRI (w)][w->pending - 1].w = w;
234 pendings [ABSPRI (w)][w->pending - 1].events = events;
235}
236
237static void
238queue_events (EV_P_ W *events, int eventcnt, int type)
239{
240 int i;
241
242 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type);
244}
245
246static void
247fd_event (EV_P_ int fd, int events) 431fd_event (EV_P_ int fd, int revents)
248{ 432{
249 ANFD *anfd = anfds + fd; 433 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 434 ev_io *w;
251 435
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 436 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
253 { 437 {
254 int ev = w->events & events; 438 int ev = w->events & revents;
255 439
256 if (ev) 440 if (ev)
257 event (EV_A_ (W)w, ev); 441 ev_feed_event (EV_A_ (W)w, ev);
258 } 442 }
259} 443}
260 444
261/*****************************************************************************/ 445void
446ev_feed_fd_event (EV_P_ int fd, int revents)
447{
448 fd_event (EV_A_ fd, revents);
449}
262 450
263static void 451void inline_size
264fd_reify (EV_P) 452fd_reify (EV_P)
265{ 453{
266 int i; 454 int i;
267 455
268 for (i = 0; i < fdchangecnt; ++i) 456 for (i = 0; i < fdchangecnt; ++i)
269 { 457 {
270 int fd = fdchanges [i]; 458 int fd = fdchanges [i];
271 ANFD *anfd = anfds + fd; 459 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 460 ev_io *w;
273 461
274 int events = 0; 462 int events = 0;
275 463
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
277 events |= w->events; 465 events |= w->events;
278 466
467#if EV_SELECT_IS_WINSOCKET
468 if (events)
469 {
470 unsigned long argp;
471 anfd->handle = _get_osfhandle (fd);
472 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
473 }
474#endif
475
279 anfd->reify = 0; 476 anfd->reify = 0;
280 477
281 if (anfd->events != events)
282 {
283 method_modify (EV_A_ fd, anfd->events, events); 478 backend_modify (EV_A_ fd, anfd->events, events);
284 anfd->events = events; 479 anfd->events = events;
285 }
286 } 480 }
287 481
288 fdchangecnt = 0; 482 fdchangecnt = 0;
289} 483}
290 484
291static void 485void inline_size
292fd_change (EV_P_ int fd) 486fd_change (EV_P_ int fd)
293{ 487{
294 if (anfds [fd].reify || fdchangecnt < 0) 488 if (expect_false (anfds [fd].reify))
295 return; 489 return;
296 490
297 anfds [fd].reify = 1; 491 anfds [fd].reify = 1;
298 492
299 ++fdchangecnt; 493 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
301 fdchanges [fdchangecnt - 1] = fd; 495 fdchanges [fdchangecnt - 1] = fd;
302} 496}
303 497
304static void 498void inline_speed
305fd_kill (EV_P_ int fd) 499fd_kill (EV_P_ int fd)
306{ 500{
307 struct ev_io *w; 501 ev_io *w;
308 502
309 while ((w = (struct ev_io *)anfds [fd].head)) 503 while ((w = (ev_io *)anfds [fd].head))
310 { 504 {
311 ev_io_stop (EV_A_ w); 505 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 506 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 507 }
508}
509
510int inline_size
511fd_valid (int fd)
512{
513#ifdef _WIN32
514 return _get_osfhandle (fd) != -1;
515#else
516 return fcntl (fd, F_GETFD) != -1;
517#endif
314} 518}
315 519
316/* called on EBADF to verify fds */ 520/* called on EBADF to verify fds */
317static void 521static void noinline
318fd_ebadf (EV_P) 522fd_ebadf (EV_P)
319{ 523{
320 int fd; 524 int fd;
321 525
322 for (fd = 0; fd < anfdmax; ++fd) 526 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 527 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 528 if (!fd_valid (fd) == -1 && errno == EBADF)
325 fd_kill (EV_A_ fd); 529 fd_kill (EV_A_ fd);
326} 530}
327 531
328/* called on ENOMEM in select/poll to kill some fds and retry */ 532/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 533static void noinline
330fd_enomem (EV_P) 534fd_enomem (EV_P)
331{ 535{
332 int fd = anfdmax; 536 int fd;
333 537
334 while (fd--) 538 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 539 if (anfds [fd].events)
336 { 540 {
337 close (fd);
338 fd_kill (EV_A_ fd); 541 fd_kill (EV_A_ fd);
339 return; 542 return;
340 } 543 }
341} 544}
342 545
343/* susually called after fork if method needs to re-arm all fds from scratch */ 546/* usually called after fork if backend needs to re-arm all fds from scratch */
344static void 547static void noinline
345fd_rearm_all (EV_P) 548fd_rearm_all (EV_P)
346{ 549{
347 int fd; 550 int fd;
348 551
349 /* this should be highly optimised to not do anything but set a flag */ 552 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd) 553 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events) 554 if (anfds [fd].events)
352 { 555 {
353 anfds [fd].events = 0; 556 anfds [fd].events = 0;
354 fd_change (fd); 557 fd_change (EV_A_ fd);
355 } 558 }
356} 559}
357 560
358/*****************************************************************************/ 561/*****************************************************************************/
359 562
360static void 563void inline_speed
361upheap (WT *heap, int k) 564upheap (WT *heap, int k)
362{ 565{
363 WT w = heap [k]; 566 WT w = heap [k];
364 567
365 while (k && heap [k >> 1]->at > w->at) 568 while (k && heap [k >> 1]->at > w->at)
366 { 569 {
367 heap [k] = heap [k >> 1]; 570 heap [k] = heap [k >> 1];
368 heap [k]->active = k + 1; 571 ((W)heap [k])->active = k + 1;
369 k >>= 1; 572 k >>= 1;
370 } 573 }
371 574
372 heap [k] = w; 575 heap [k] = w;
373 heap [k]->active = k + 1; 576 ((W)heap [k])->active = k + 1;
374 577
375} 578}
376 579
377static void 580void inline_speed
378downheap (WT *heap, int N, int k) 581downheap (WT *heap, int N, int k)
379{ 582{
380 WT w = heap [k]; 583 WT w = heap [k];
381 584
382 while (k < (N >> 1)) 585 while (k < (N >> 1))
388 591
389 if (w->at <= heap [j]->at) 592 if (w->at <= heap [j]->at)
390 break; 593 break;
391 594
392 heap [k] = heap [j]; 595 heap [k] = heap [j];
393 heap [k]->active = k + 1; 596 ((W)heap [k])->active = k + 1;
394 k = j; 597 k = j;
395 } 598 }
396 599
397 heap [k] = w; 600 heap [k] = w;
398 heap [k]->active = k + 1; 601 ((W)heap [k])->active = k + 1;
602}
603
604void inline_size
605adjustheap (WT *heap, int N, int k)
606{
607 upheap (heap, k);
608 downheap (heap, N, k);
399} 609}
400 610
401/*****************************************************************************/ 611/*****************************************************************************/
402 612
403typedef struct 613typedef struct
404{ 614{
405 struct ev_watcher_list *head; 615 WL head;
406 sig_atomic_t volatile gotsig; 616 sig_atomic_t volatile gotsig;
407} ANSIG; 617} ANSIG;
408 618
409static ANSIG *signals; 619static ANSIG *signals;
410static int signalmax; 620static int signalmax;
411 621
412static int sigpipe [2]; 622static int sigpipe [2];
413static sig_atomic_t volatile gotsig; 623static sig_atomic_t volatile gotsig;
414static struct ev_io sigev; 624static ev_io sigev;
415 625
416static void 626void inline_size
417signals_init (ANSIG *base, int count) 627signals_init (ANSIG *base, int count)
418{ 628{
419 while (count--) 629 while (count--)
420 { 630 {
421 base->head = 0; 631 base->head = 0;
426} 636}
427 637
428static void 638static void
429sighandler (int signum) 639sighandler (int signum)
430{ 640{
641#if _WIN32
642 signal (signum, sighandler);
643#endif
644
431 signals [signum - 1].gotsig = 1; 645 signals [signum - 1].gotsig = 1;
432 646
433 if (!gotsig) 647 if (!gotsig)
434 { 648 {
435 int old_errno = errno; 649 int old_errno = errno;
437 write (sigpipe [1], &signum, 1); 651 write (sigpipe [1], &signum, 1);
438 errno = old_errno; 652 errno = old_errno;
439 } 653 }
440} 654}
441 655
656void noinline
657ev_feed_signal_event (EV_P_ int signum)
658{
659 WL w;
660
661#if EV_MULTIPLICITY
662 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
663#endif
664
665 --signum;
666
667 if (signum < 0 || signum >= signalmax)
668 return;
669
670 signals [signum].gotsig = 0;
671
672 for (w = signals [signum].head; w; w = w->next)
673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
674}
675
442static void 676static void
443sigcb (EV_P_ struct ev_io *iow, int revents) 677sigcb (EV_P_ ev_io *iow, int revents)
444{ 678{
445 struct ev_watcher_list *w;
446 int signum; 679 int signum;
447 680
448 read (sigpipe [0], &revents, 1); 681 read (sigpipe [0], &revents, 1);
449 gotsig = 0; 682 gotsig = 0;
450 683
451 for (signum = signalmax; signum--; ) 684 for (signum = signalmax; signum--; )
452 if (signals [signum].gotsig) 685 if (signals [signum].gotsig)
453 { 686 ev_feed_signal_event (EV_A_ signum + 1);
454 signals [signum].gotsig = 0;
455
456 for (w = signals [signum].head; w; w = w->next)
457 event (EV_A_ (W)w, EV_SIGNAL);
458 }
459} 687}
460 688
461static void 689void inline_size
690fd_intern (int fd)
691{
692#ifdef _WIN32
693 int arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
695#else
696 fcntl (fd, F_SETFD, FD_CLOEXEC);
697 fcntl (fd, F_SETFL, O_NONBLOCK);
698#endif
699}
700
701static void noinline
462siginit (EV_P) 702siginit (EV_P)
463{ 703{
464#ifndef WIN32 704 fd_intern (sigpipe [0]);
465 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 705 fd_intern (sigpipe [1]);
466 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
467
468 /* rather than sort out wether we really need nb, set it */
469 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
470 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
471#endif
472 706
473 ev_io_set (&sigev, sigpipe [0], EV_READ); 707 ev_io_set (&sigev, sigpipe [0], EV_READ);
474 ev_io_start (EV_A_ &sigev); 708 ev_io_start (EV_A_ &sigev);
475 ev_unref (EV_A); /* child watcher should not keep loop alive */ 709 ev_unref (EV_A); /* child watcher should not keep loop alive */
476} 710}
477 711
478/*****************************************************************************/ 712/*****************************************************************************/
479 713
714static ev_child *childs [PID_HASHSIZE];
715
480#ifndef WIN32 716#ifndef _WIN32
481 717
482static struct ev_child *childs [PID_HASHSIZE];
483static struct ev_signal childev; 718static ev_signal childev;
719
720void inline_speed
721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
722{
723 ev_child *w;
724
725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
726 if (w->pid == pid || !w->pid)
727 {
728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
729 w->rpid = pid;
730 w->rstatus = status;
731 ev_feed_event (EV_A_ (W)w, EV_CHILD);
732 }
733}
484 734
485#ifndef WCONTINUED 735#ifndef WCONTINUED
486# define WCONTINUED 0 736# define WCONTINUED 0
487#endif 737#endif
488 738
489static void 739static void
490child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
491{
492 struct ev_child *w;
493
494 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
495 if (w->pid == pid || !w->pid)
496 {
497 w->priority = sw->priority; /* need to do it *now* */
498 w->rpid = pid;
499 w->rstatus = status;
500 event (EV_A_ (W)w, EV_CHILD);
501 }
502}
503
504static void
505childcb (EV_P_ struct ev_signal *sw, int revents) 740childcb (EV_P_ ev_signal *sw, int revents)
506{ 741{
507 int pid, status; 742 int pid, status;
508 743
744 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
509 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 745 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
510 { 746 if (!WCONTINUED
747 || errno != EINVAL
748 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
749 return;
750
511 /* make sure we are called again until all childs have been reaped */ 751 /* make sure we are called again until all childs have been reaped */
752 /* we need to do it this way so that the callback gets called before we continue */
512 event (EV_A_ (W)sw, EV_SIGNAL); 753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
513 754
514 child_reap (EV_A_ sw, pid, pid, status); 755 child_reap (EV_A_ sw, pid, pid, status);
515 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
516 }
517} 757}
518 758
519#endif 759#endif
520 760
521/*****************************************************************************/ 761/*****************************************************************************/
522 762
763#if EV_USE_PORT
764# include "ev_port.c"
765#endif
523#if EV_USE_KQUEUE 766#if EV_USE_KQUEUE
524# include "ev_kqueue.c" 767# include "ev_kqueue.c"
525#endif 768#endif
526#if EV_USE_EPOLL 769#if EV_USE_EPOLL
527# include "ev_epoll.c" 770# include "ev_epoll.c"
544{ 787{
545 return EV_VERSION_MINOR; 788 return EV_VERSION_MINOR;
546} 789}
547 790
548/* return true if we are running with elevated privileges and should ignore env variables */ 791/* return true if we are running with elevated privileges and should ignore env variables */
549static int 792int inline_size
550enable_secure (void) 793enable_secure (void)
551{ 794{
552#ifdef WIN32 795#ifdef _WIN32
553 return 0; 796 return 0;
554#else 797#else
555 return getuid () != geteuid () 798 return getuid () != geteuid ()
556 || getgid () != getegid (); 799 || getgid () != getegid ();
557#endif 800#endif
558} 801}
559 802
560int 803unsigned int
561ev_method (EV_P) 804ev_supported_backends (void)
562{ 805{
563 return method; 806 unsigned int flags = 0;
807
808 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
809 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
810 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
811 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
812 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
813
814 return flags;
815}
816
817unsigned int
818ev_recommended_backends (void)
819{
820 unsigned int flags = ev_supported_backends ();
821
822#ifndef __NetBSD__
823 /* kqueue is borked on everything but netbsd apparently */
824 /* it usually doesn't work correctly on anything but sockets and pipes */
825 flags &= ~EVBACKEND_KQUEUE;
826#endif
827#ifdef __APPLE__
828 // flags &= ~EVBACKEND_KQUEUE; for documentation
829 flags &= ~EVBACKEND_POLL;
830#endif
831
832 return flags;
833}
834
835unsigned int
836ev_embeddable_backends (void)
837{
838 return EVBACKEND_EPOLL
839 | EVBACKEND_KQUEUE
840 | EVBACKEND_PORT;
841}
842
843unsigned int
844ev_backend (EV_P)
845{
846 return backend;
564} 847}
565 848
566static void 849static void
567loop_init (EV_P_ int methods) 850loop_init (EV_P_ unsigned int flags)
568{ 851{
569 if (!method) 852 if (!backend)
570 { 853 {
571#if EV_USE_MONOTONIC 854#if EV_USE_MONOTONIC
572 { 855 {
573 struct timespec ts; 856 struct timespec ts;
574 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 857 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
575 have_monotonic = 1; 858 have_monotonic = 1;
576 } 859 }
577#endif 860#endif
578 861
579 rt_now = ev_time (); 862 ev_rt_now = ev_time ();
580 mn_now = get_clock (); 863 mn_now = get_clock ();
581 now_floor = mn_now; 864 now_floor = mn_now;
582 rtmn_diff = rt_now - mn_now; 865 rtmn_diff = ev_rt_now - mn_now;
583 866
584 if (methods == EVMETHOD_AUTO) 867 if (!(flags & EVFLAG_NOENV)
585 if (!enable_secure () && getenv ("LIBEV_METHODS")) 868 && !enable_secure ()
869 && getenv ("LIBEV_FLAGS"))
586 methods = atoi (getenv ("LIBEV_METHODS")); 870 flags = atoi (getenv ("LIBEV_FLAGS"));
587 else
588 methods = EVMETHOD_ANY;
589 871
590 method = 0; 872 if (!(flags & 0x0000ffffUL))
873 flags |= ev_recommended_backends ();
874
875 backend = 0;
876#if EV_USE_PORT
877 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
878#endif
591#if EV_USE_KQUEUE 879#if EV_USE_KQUEUE
592 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 880 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
593#endif 881#endif
594#if EV_USE_EPOLL 882#if EV_USE_EPOLL
595 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 883 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
596#endif 884#endif
597#if EV_USE_POLL 885#if EV_USE_POLL
598 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 886 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
599#endif 887#endif
600#if EV_USE_SELECT 888#if EV_USE_SELECT
601 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 889 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
602#endif 890#endif
603 }
604}
605 891
606void 892 ev_init (&sigev, sigcb);
893 ev_set_priority (&sigev, EV_MAXPRI);
894 }
895}
896
897static void
607loop_destroy (EV_P) 898loop_destroy (EV_P)
608{ 899{
900 int i;
901
902#if EV_USE_PORT
903 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
904#endif
609#if EV_USE_KQUEUE 905#if EV_USE_KQUEUE
610 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 906 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
611#endif 907#endif
612#if EV_USE_EPOLL 908#if EV_USE_EPOLL
613 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 909 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
614#endif 910#endif
615#if EV_USE_POLL 911#if EV_USE_POLL
616 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 912 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
617#endif 913#endif
618#if EV_USE_SELECT 914#if EV_USE_SELECT
619 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 915 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
620#endif 916#endif
621 917
622 method = 0; 918 for (i = NUMPRI; i--; )
623 /*TODO*/ 919 array_free (pending, [i]);
624}
625 920
626void 921 /* have to use the microsoft-never-gets-it-right macro */
922 array_free (fdchange, EMPTY0);
923 array_free (timer, EMPTY0);
924#if EV_PERIODIC_ENABLE
925 array_free (periodic, EMPTY0);
926#endif
927 array_free (idle, EMPTY0);
928 array_free (prepare, EMPTY0);
929 array_free (check, EMPTY0);
930
931 backend = 0;
932}
933
934static void
627loop_fork (EV_P) 935loop_fork (EV_P)
628{ 936{
629 /*TODO*/ 937#if EV_USE_PORT
938 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
939#endif
940#if EV_USE_KQUEUE
941 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
942#endif
630#if EV_USE_EPOLL 943#if EV_USE_EPOLL
631 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 944 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
632#endif 945#endif
633#if EV_USE_KQUEUE 946
634 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 947 if (ev_is_active (&sigev))
635#endif 948 {
949 /* default loop */
950
951 ev_ref (EV_A);
952 ev_io_stop (EV_A_ &sigev);
953 close (sigpipe [0]);
954 close (sigpipe [1]);
955
956 while (pipe (sigpipe))
957 syserr ("(libev) error creating pipe");
958
959 siginit (EV_A);
960 }
961
962 postfork = 0;
636} 963}
637 964
638#if EV_MULTIPLICITY 965#if EV_MULTIPLICITY
639struct ev_loop * 966struct ev_loop *
640ev_loop_new (int methods) 967ev_loop_new (unsigned int flags)
641{ 968{
642 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 969 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
643 970
971 memset (loop, 0, sizeof (struct ev_loop));
972
644 loop_init (EV_A_ methods); 973 loop_init (EV_A_ flags);
645 974
646 if (ev_methods (EV_A)) 975 if (ev_backend (EV_A))
647 return loop; 976 return loop;
648 977
649 return 0; 978 return 0;
650} 979}
651 980
652void 981void
653ev_loop_destroy (EV_P) 982ev_loop_destroy (EV_P)
654{ 983{
655 loop_destroy (EV_A); 984 loop_destroy (EV_A);
656 free (loop); 985 ev_free (loop);
657} 986}
658 987
659void 988void
660ev_loop_fork (EV_P) 989ev_loop_fork (EV_P)
661{ 990{
662 loop_fork (EV_A); 991 postfork = 1;
663} 992}
664 993
665#endif 994#endif
666 995
667#if EV_MULTIPLICITY 996#if EV_MULTIPLICITY
668struct ev_loop default_loop_struct;
669static struct ev_loop *default_loop;
670
671struct ev_loop * 997struct ev_loop *
998ev_default_loop_init (unsigned int flags)
672#else 999#else
673static int default_loop;
674
675int 1000int
1001ev_default_loop (unsigned int flags)
676#endif 1002#endif
677ev_default_loop (int methods)
678{ 1003{
679 if (sigpipe [0] == sigpipe [1]) 1004 if (sigpipe [0] == sigpipe [1])
680 if (pipe (sigpipe)) 1005 if (pipe (sigpipe))
681 return 0; 1006 return 0;
682 1007
683 if (!default_loop) 1008 if (!ev_default_loop_ptr)
684 { 1009 {
685#if EV_MULTIPLICITY 1010#if EV_MULTIPLICITY
686 struct ev_loop *loop = default_loop = &default_loop_struct; 1011 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
687#else 1012#else
688 default_loop = 1; 1013 ev_default_loop_ptr = 1;
689#endif 1014#endif
690 1015
691 loop_init (EV_A_ methods); 1016 loop_init (EV_A_ flags);
692 1017
693 if (ev_method (EV_A)) 1018 if (ev_backend (EV_A))
694 { 1019 {
695 ev_watcher_init (&sigev, sigcb);
696 ev_set_priority (&sigev, EV_MAXPRI);
697 siginit (EV_A); 1020 siginit (EV_A);
698 1021
699#ifndef WIN32 1022#ifndef _WIN32
700 ev_signal_init (&childev, childcb, SIGCHLD); 1023 ev_signal_init (&childev, childcb, SIGCHLD);
701 ev_set_priority (&childev, EV_MAXPRI); 1024 ev_set_priority (&childev, EV_MAXPRI);
702 ev_signal_start (EV_A_ &childev); 1025 ev_signal_start (EV_A_ &childev);
703 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1026 ev_unref (EV_A); /* child watcher should not keep loop alive */
704#endif 1027#endif
705 } 1028 }
706 else 1029 else
707 default_loop = 0; 1030 ev_default_loop_ptr = 0;
708 } 1031 }
709 1032
710 return default_loop; 1033 return ev_default_loop_ptr;
711} 1034}
712 1035
713void 1036void
714ev_default_destroy (void) 1037ev_default_destroy (void)
715{ 1038{
716#if EV_MULTIPLICITY 1039#if EV_MULTIPLICITY
717 struct ev_loop *loop = default_loop; 1040 struct ev_loop *loop = ev_default_loop_ptr;
718#endif 1041#endif
719 1042
1043#ifndef _WIN32
720 ev_ref (EV_A); /* child watcher */ 1044 ev_ref (EV_A); /* child watcher */
721 ev_signal_stop (EV_A_ &childev); 1045 ev_signal_stop (EV_A_ &childev);
1046#endif
722 1047
723 ev_ref (EV_A); /* signal watcher */ 1048 ev_ref (EV_A); /* signal watcher */
724 ev_io_stop (EV_A_ &sigev); 1049 ev_io_stop (EV_A_ &sigev);
725 1050
726 close (sigpipe [0]); sigpipe [0] = 0; 1051 close (sigpipe [0]); sigpipe [0] = 0;
728 1053
729 loop_destroy (EV_A); 1054 loop_destroy (EV_A);
730} 1055}
731 1056
732void 1057void
733ev_default_fork (EV_P) 1058ev_default_fork (void)
734{ 1059{
735 loop_fork (EV_A); 1060#if EV_MULTIPLICITY
1061 struct ev_loop *loop = ev_default_loop_ptr;
1062#endif
736 1063
737 ev_io_stop (EV_A_ &sigev); 1064 if (backend)
738 close (sigpipe [0]); 1065 postfork = 1;
739 close (sigpipe [1]);
740 pipe (sigpipe);
741
742 ev_ref (EV_A); /* signal watcher */
743 siginit (EV_A);
744} 1066}
745 1067
746/*****************************************************************************/ 1068/*****************************************************************************/
747 1069
748static void 1070int inline_size
1071any_pending (EV_P)
1072{
1073 int pri;
1074
1075 for (pri = NUMPRI; pri--; )
1076 if (pendingcnt [pri])
1077 return 1;
1078
1079 return 0;
1080}
1081
1082void inline_speed
749call_pending (EV_P) 1083call_pending (EV_P)
750{ 1084{
751 int pri; 1085 int pri;
752 1086
753 for (pri = NUMPRI; pri--; ) 1087 for (pri = NUMPRI; pri--; )
754 while (pendingcnt [pri]) 1088 while (pendingcnt [pri])
755 { 1089 {
756 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
757 1091
758 if (p->w) 1092 if (expect_true (p->w))
759 { 1093 {
1094 assert (("non-pending watcher on pending list", p->w->pending));
1095
760 p->w->pending = 0; 1096 p->w->pending = 0;
761 p->w->cb (EV_A_ p->w, p->events); 1097 EV_CB_INVOKE (p->w, p->events);
762 } 1098 }
763 } 1099 }
764} 1100}
765 1101
766static void 1102void inline_size
767timers_reify (EV_P) 1103timers_reify (EV_P)
768{ 1104{
769 while (timercnt && timers [0]->at <= mn_now) 1105 while (timercnt && ((WT)timers [0])->at <= mn_now)
770 { 1106 {
771 struct ev_timer *w = timers [0]; 1107 ev_timer *w = timers [0];
1108
1109 assert (("inactive timer on timer heap detected", ev_is_active (w)));
772 1110
773 /* first reschedule or stop timer */ 1111 /* first reschedule or stop timer */
774 if (w->repeat) 1112 if (w->repeat)
775 { 1113 {
776 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1114 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1115
777 w->at = mn_now + w->repeat; 1116 ((WT)w)->at += w->repeat;
1117 if (((WT)w)->at < mn_now)
1118 ((WT)w)->at = mn_now;
1119
778 downheap ((WT *)timers, timercnt, 0); 1120 downheap ((WT *)timers, timercnt, 0);
779 } 1121 }
780 else 1122 else
781 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1123 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
782 1124
783 event (EV_A_ (W)w, EV_TIMEOUT); 1125 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
784 } 1126 }
785} 1127}
786 1128
787static void 1129#if EV_PERIODIC_ENABLE
1130void inline_size
788periodics_reify (EV_P) 1131periodics_reify (EV_P)
789{ 1132{
790 while (periodiccnt && periodics [0]->at <= rt_now) 1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
791 { 1134 {
792 struct ev_periodic *w = periodics [0]; 1135 ev_periodic *w = periodics [0];
1136
1137 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
793 1138
794 /* first reschedule or stop timer */ 1139 /* first reschedule or stop timer */
795 if (w->interval) 1140 if (w->reschedule_cb)
796 { 1141 {
1142 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1143 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1144 downheap ((WT *)periodics, periodiccnt, 0);
1145 }
1146 else if (w->interval)
1147 {
797 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1148 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
798 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1149 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
799 downheap ((WT *)periodics, periodiccnt, 0); 1150 downheap ((WT *)periodics, periodiccnt, 0);
800 } 1151 }
801 else 1152 else
802 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1153 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
803 1154
804 event (EV_A_ (W)w, EV_PERIODIC); 1155 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
805 } 1156 }
806} 1157}
807 1158
808static void 1159static void noinline
809periodics_reschedule (EV_P) 1160periodics_reschedule (EV_P)
810{ 1161{
811 int i; 1162 int i;
812 1163
813 /* adjust periodics after time jump */ 1164 /* adjust periodics after time jump */
814 for (i = 0; i < periodiccnt; ++i) 1165 for (i = 0; i < periodiccnt; ++i)
815 { 1166 {
816 struct ev_periodic *w = periodics [i]; 1167 ev_periodic *w = periodics [i];
817 1168
1169 if (w->reschedule_cb)
1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
818 if (w->interval) 1171 else if (w->interval)
819 {
820 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
821
822 if (fabs (diff) >= 1e-4)
823 {
824 ev_periodic_stop (EV_A_ w);
825 ev_periodic_start (EV_A_ w);
826
827 i = 0; /* restart loop, inefficient, but time jumps should be rare */
828 }
829 }
830 } 1173 }
831}
832 1174
833inline int 1175 /* now rebuild the heap */
1176 for (i = periodiccnt >> 1; i--; )
1177 downheap ((WT *)periodics, periodiccnt, i);
1178}
1179#endif
1180
1181int inline_size
834time_update_monotonic (EV_P) 1182time_update_monotonic (EV_P)
835{ 1183{
836 mn_now = get_clock (); 1184 mn_now = get_clock ();
837 1185
838 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
839 { 1187 {
840 rt_now = rtmn_diff + mn_now; 1188 ev_rt_now = rtmn_diff + mn_now;
841 return 0; 1189 return 0;
842 } 1190 }
843 else 1191 else
844 { 1192 {
845 now_floor = mn_now; 1193 now_floor = mn_now;
846 rt_now = ev_time (); 1194 ev_rt_now = ev_time ();
847 return 1; 1195 return 1;
848 } 1196 }
849} 1197}
850 1198
851static void 1199void inline_size
852time_update (EV_P) 1200time_update (EV_P)
853{ 1201{
854 int i; 1202 int i;
855 1203
856#if EV_USE_MONOTONIC 1204#if EV_USE_MONOTONIC
858 { 1206 {
859 if (time_update_monotonic (EV_A)) 1207 if (time_update_monotonic (EV_A))
860 { 1208 {
861 ev_tstamp odiff = rtmn_diff; 1209 ev_tstamp odiff = rtmn_diff;
862 1210
863 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
864 { 1220 {
865 rtmn_diff = rt_now - mn_now; 1221 rtmn_diff = ev_rt_now - mn_now;
866 1222
867 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
868 return; /* all is well */ 1224 return; /* all is well */
869 1225
870 rt_now = ev_time (); 1226 ev_rt_now = ev_time ();
871 mn_now = get_clock (); 1227 mn_now = get_clock ();
872 now_floor = mn_now; 1228 now_floor = mn_now;
873 } 1229 }
874 1230
1231# if EV_PERIODIC_ENABLE
875 periodics_reschedule (EV_A); 1232 periodics_reschedule (EV_A);
1233# endif
876 /* no timer adjustment, as the monotonic clock doesn't jump */ 1234 /* no timer adjustment, as the monotonic clock doesn't jump */
877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
878 } 1236 }
879 } 1237 }
880 else 1238 else
881#endif 1239#endif
882 { 1240 {
883 rt_now = ev_time (); 1241 ev_rt_now = ev_time ();
884 1242
885 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
886 { 1244 {
1245#if EV_PERIODIC_ENABLE
887 periodics_reschedule (EV_A); 1246 periodics_reschedule (EV_A);
1247#endif
888 1248
889 /* adjust timers. this is easy, as the offset is the same for all */ 1249 /* adjust timers. this is easy, as the offset is the same for all */
890 for (i = 0; i < timercnt; ++i) 1250 for (i = 0; i < timercnt; ++i)
891 timers [i]->at += rt_now - mn_now; 1251 ((WT)timers [i])->at += ev_rt_now - mn_now;
892 } 1252 }
893 1253
894 mn_now = rt_now; 1254 mn_now = ev_rt_now;
895 } 1255 }
896} 1256}
897 1257
898void 1258void
899ev_ref (EV_P) 1259ev_ref (EV_P)
910static int loop_done; 1270static int loop_done;
911 1271
912void 1272void
913ev_loop (EV_P_ int flags) 1273ev_loop (EV_P_ int flags)
914{ 1274{
915 double block;
916 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1275 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1276 ? EVUNLOOP_ONE
1277 : EVUNLOOP_CANCEL;
917 1278
918 do 1279 while (activecnt)
919 { 1280 {
920 /* queue check watchers (and execute them) */ 1281 /* queue check watchers (and execute them) */
921 if (expect_false (preparecnt)) 1282 if (expect_false (preparecnt))
922 { 1283 {
923 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1284 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
924 call_pending (EV_A); 1285 call_pending (EV_A);
925 } 1286 }
926 1287
1288 /* we might have forked, so reify kernel state if necessary */
1289 if (expect_false (postfork))
1290 loop_fork (EV_A);
1291
927 /* update fd-related kernel structures */ 1292 /* update fd-related kernel structures */
928 fd_reify (EV_A); 1293 fd_reify (EV_A);
929 1294
930 /* calculate blocking time */ 1295 /* calculate blocking time */
1296 {
1297 double block;
931 1298
932 /* we only need this for !monotonic clockor timers, but as we basically 1299 if (flags & EVLOOP_NONBLOCK || idlecnt)
933 always have timers, we just calculate it always */ 1300 block = 0.; /* do not block at all */
1301 else
1302 {
1303 /* update time to cancel out callback processing overhead */
934#if EV_USE_MONOTONIC 1304#if EV_USE_MONOTONIC
935 if (expect_true (have_monotonic)) 1305 if (expect_true (have_monotonic))
936 time_update_monotonic (EV_A); 1306 time_update_monotonic (EV_A);
937 else 1307 else
938#endif 1308#endif
939 { 1309 {
940 rt_now = ev_time (); 1310 ev_rt_now = ev_time ();
941 mn_now = rt_now; 1311 mn_now = ev_rt_now;
942 } 1312 }
943 1313
944 if (flags & EVLOOP_NONBLOCK || idlecnt)
945 block = 0.;
946 else
947 {
948 block = MAX_BLOCKTIME; 1314 block = MAX_BLOCKTIME;
949 1315
950 if (timercnt) 1316 if (timercnt)
951 { 1317 {
952 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1318 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
953 if (block > to) block = to; 1319 if (block > to) block = to;
954 } 1320 }
955 1321
1322#if EV_PERIODIC_ENABLE
956 if (periodiccnt) 1323 if (periodiccnt)
957 { 1324 {
958 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1325 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
959 if (block > to) block = to; 1326 if (block > to) block = to;
960 } 1327 }
1328#endif
961 1329
962 if (block < 0.) block = 0.; 1330 if (expect_false (block < 0.)) block = 0.;
963 } 1331 }
964 1332
965 method_poll (EV_A_ block); 1333 backend_poll (EV_A_ block);
1334 }
966 1335
967 /* update rt_now, do magic */ 1336 /* update ev_rt_now, do magic */
968 time_update (EV_A); 1337 time_update (EV_A);
969 1338
970 /* queue pending timers and reschedule them */ 1339 /* queue pending timers and reschedule them */
971 timers_reify (EV_A); /* relative timers called last */ 1340 timers_reify (EV_A); /* relative timers called last */
1341#if EV_PERIODIC_ENABLE
972 periodics_reify (EV_A); /* absolute timers called first */ 1342 periodics_reify (EV_A); /* absolute timers called first */
1343#endif
973 1344
974 /* queue idle watchers unless io or timers are pending */ 1345 /* queue idle watchers unless other events are pending */
975 if (!pendingcnt) 1346 if (idlecnt && !any_pending (EV_A))
976 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1347 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
977 1348
978 /* queue check watchers, to be executed first */ 1349 /* queue check watchers, to be executed first */
979 if (checkcnt) 1350 if (expect_false (checkcnt))
980 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1351 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
981 1352
982 call_pending (EV_A); 1353 call_pending (EV_A);
983 }
984 while (activecnt && !loop_done);
985 1354
986 if (loop_done != 2) 1355 if (expect_false (loop_done))
987 loop_done = 0; 1356 break;
1357 }
1358
1359 if (loop_done == EVUNLOOP_ONE)
1360 loop_done = EVUNLOOP_CANCEL;
988} 1361}
989 1362
990void 1363void
991ev_unloop (EV_P_ int how) 1364ev_unloop (EV_P_ int how)
992{ 1365{
993 loop_done = how; 1366 loop_done = how;
994} 1367}
995 1368
996/*****************************************************************************/ 1369/*****************************************************************************/
997 1370
998inline void 1371void inline_size
999wlist_add (WL *head, WL elem) 1372wlist_add (WL *head, WL elem)
1000{ 1373{
1001 elem->next = *head; 1374 elem->next = *head;
1002 *head = elem; 1375 *head = elem;
1003} 1376}
1004 1377
1005inline void 1378void inline_size
1006wlist_del (WL *head, WL elem) 1379wlist_del (WL *head, WL elem)
1007{ 1380{
1008 while (*head) 1381 while (*head)
1009 { 1382 {
1010 if (*head == elem) 1383 if (*head == elem)
1015 1388
1016 head = &(*head)->next; 1389 head = &(*head)->next;
1017 } 1390 }
1018} 1391}
1019 1392
1020inline void 1393void inline_speed
1021ev_clear_pending (EV_P_ W w) 1394ev_clear_pending (EV_P_ W w)
1022{ 1395{
1023 if (w->pending) 1396 if (w->pending)
1024 { 1397 {
1025 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1398 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1026 w->pending = 0; 1399 w->pending = 0;
1027 } 1400 }
1028} 1401}
1029 1402
1030inline void 1403void inline_speed
1031ev_start (EV_P_ W w, int active) 1404ev_start (EV_P_ W w, int active)
1032{ 1405{
1033 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1406 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1034 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1407 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1035 1408
1036 w->active = active; 1409 w->active = active;
1037 ev_ref (EV_A); 1410 ev_ref (EV_A);
1038} 1411}
1039 1412
1040inline void 1413void inline_size
1041ev_stop (EV_P_ W w) 1414ev_stop (EV_P_ W w)
1042{ 1415{
1043 ev_unref (EV_A); 1416 ev_unref (EV_A);
1044 w->active = 0; 1417 w->active = 0;
1045} 1418}
1046 1419
1047/*****************************************************************************/ 1420/*****************************************************************************/
1048 1421
1049void 1422void
1050ev_io_start (EV_P_ struct ev_io *w) 1423ev_io_start (EV_P_ ev_io *w)
1051{ 1424{
1052 int fd = w->fd; 1425 int fd = w->fd;
1053 1426
1054 if (ev_is_active (w)) 1427 if (expect_false (ev_is_active (w)))
1055 return; 1428 return;
1056 1429
1057 assert (("ev_io_start called with negative fd", fd >= 0)); 1430 assert (("ev_io_start called with negative fd", fd >= 0));
1058 1431
1059 ev_start (EV_A_ (W)w, 1); 1432 ev_start (EV_A_ (W)w, 1);
1060 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1433 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1061 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1434 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1062 1435
1063 fd_change (EV_A_ fd); 1436 fd_change (EV_A_ fd);
1064} 1437}
1065 1438
1066void 1439void
1067ev_io_stop (EV_P_ struct ev_io *w) 1440ev_io_stop (EV_P_ ev_io *w)
1068{ 1441{
1069 ev_clear_pending (EV_A_ (W)w); 1442 ev_clear_pending (EV_A_ (W)w);
1070 if (!ev_is_active (w)) 1443 if (expect_false (!ev_is_active (w)))
1071 return; 1444 return;
1445
1446 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1072 1447
1073 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1448 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1074 ev_stop (EV_A_ (W)w); 1449 ev_stop (EV_A_ (W)w);
1075 1450
1076 fd_change (EV_A_ w->fd); 1451 fd_change (EV_A_ w->fd);
1077} 1452}
1078 1453
1079void 1454void
1080ev_timer_start (EV_P_ struct ev_timer *w) 1455ev_timer_start (EV_P_ ev_timer *w)
1081{ 1456{
1082 if (ev_is_active (w)) 1457 if (expect_false (ev_is_active (w)))
1083 return; 1458 return;
1084 1459
1085 w->at += mn_now; 1460 ((WT)w)->at += mn_now;
1086 1461
1087 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1462 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1088 1463
1089 ev_start (EV_A_ (W)w, ++timercnt); 1464 ev_start (EV_A_ (W)w, ++timercnt);
1090 array_needsize (timers, timermax, timercnt, ); 1465 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1091 timers [timercnt - 1] = w; 1466 timers [timercnt - 1] = w;
1092 upheap ((WT *)timers, timercnt - 1); 1467 upheap ((WT *)timers, timercnt - 1);
1093}
1094 1468
1469 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1470}
1471
1095void 1472void
1096ev_timer_stop (EV_P_ struct ev_timer *w) 1473ev_timer_stop (EV_P_ ev_timer *w)
1097{ 1474{
1098 ev_clear_pending (EV_A_ (W)w); 1475 ev_clear_pending (EV_A_ (W)w);
1099 if (!ev_is_active (w)) 1476 if (expect_false (!ev_is_active (w)))
1100 return; 1477 return;
1101 1478
1479 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1480
1102 if (w->active < timercnt--) 1481 if (expect_true (((W)w)->active < timercnt--))
1103 { 1482 {
1104 timers [w->active - 1] = timers [timercnt]; 1483 timers [((W)w)->active - 1] = timers [timercnt];
1105 downheap ((WT *)timers, timercnt, w->active - 1); 1484 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1106 } 1485 }
1107 1486
1108 w->at = w->repeat; 1487 ((WT)w)->at -= mn_now;
1109 1488
1110 ev_stop (EV_A_ (W)w); 1489 ev_stop (EV_A_ (W)w);
1111} 1490}
1112 1491
1113void 1492void
1114ev_timer_again (EV_P_ struct ev_timer *w) 1493ev_timer_again (EV_P_ ev_timer *w)
1115{ 1494{
1116 if (ev_is_active (w)) 1495 if (ev_is_active (w))
1117 { 1496 {
1118 if (w->repeat) 1497 if (w->repeat)
1119 { 1498 {
1120 w->at = mn_now + w->repeat; 1499 ((WT)w)->at = mn_now + w->repeat;
1121 downheap ((WT *)timers, timercnt, w->active - 1); 1500 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1122 } 1501 }
1123 else 1502 else
1124 ev_timer_stop (EV_A_ w); 1503 ev_timer_stop (EV_A_ w);
1125 } 1504 }
1126 else if (w->repeat) 1505 else if (w->repeat)
1506 {
1507 w->at = w->repeat;
1127 ev_timer_start (EV_A_ w); 1508 ev_timer_start (EV_A_ w);
1509 }
1128} 1510}
1129 1511
1512#if EV_PERIODIC_ENABLE
1130void 1513void
1131ev_periodic_start (EV_P_ struct ev_periodic *w) 1514ev_periodic_start (EV_P_ ev_periodic *w)
1132{ 1515{
1133 if (ev_is_active (w)) 1516 if (expect_false (ev_is_active (w)))
1134 return; 1517 return;
1135 1518
1519 if (w->reschedule_cb)
1520 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1521 else if (w->interval)
1522 {
1136 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1523 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1137
1138 /* this formula differs from the one in periodic_reify because we do not always round up */ 1524 /* this formula differs from the one in periodic_reify because we do not always round up */
1139 if (w->interval)
1140 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1525 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1526 }
1141 1527
1142 ev_start (EV_A_ (W)w, ++periodiccnt); 1528 ev_start (EV_A_ (W)w, ++periodiccnt);
1143 array_needsize (periodics, periodicmax, periodiccnt, ); 1529 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1144 periodics [periodiccnt - 1] = w; 1530 periodics [periodiccnt - 1] = w;
1145 upheap ((WT *)periodics, periodiccnt - 1); 1531 upheap ((WT *)periodics, periodiccnt - 1);
1146}
1147 1532
1533 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1534}
1535
1148void 1536void
1149ev_periodic_stop (EV_P_ struct ev_periodic *w) 1537ev_periodic_stop (EV_P_ ev_periodic *w)
1150{ 1538{
1151 ev_clear_pending (EV_A_ (W)w); 1539 ev_clear_pending (EV_A_ (W)w);
1152 if (!ev_is_active (w)) 1540 if (expect_false (!ev_is_active (w)))
1153 return; 1541 return;
1154 1542
1543 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1544
1155 if (w->active < periodiccnt--) 1545 if (expect_true (((W)w)->active < periodiccnt--))
1156 { 1546 {
1157 periodics [w->active - 1] = periodics [periodiccnt]; 1547 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1158 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1548 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1159 } 1549 }
1160 1550
1161 ev_stop (EV_A_ (W)w); 1551 ev_stop (EV_A_ (W)w);
1162} 1552}
1163 1553
1164void 1554void
1165ev_idle_start (EV_P_ struct ev_idle *w) 1555ev_periodic_again (EV_P_ ev_periodic *w)
1166{ 1556{
1167 if (ev_is_active (w)) 1557 /* TODO: use adjustheap and recalculation */
1168 return;
1169
1170 ev_start (EV_A_ (W)w, ++idlecnt);
1171 array_needsize (idles, idlemax, idlecnt, );
1172 idles [idlecnt - 1] = w;
1173}
1174
1175void
1176ev_idle_stop (EV_P_ struct ev_idle *w)
1177{
1178 ev_clear_pending (EV_A_ (W)w);
1179 if (ev_is_active (w))
1180 return;
1181
1182 idles [w->active - 1] = idles [--idlecnt];
1183 ev_stop (EV_A_ (W)w); 1558 ev_periodic_stop (EV_A_ w);
1559 ev_periodic_start (EV_A_ w);
1184} 1560}
1185 1561#endif
1186void
1187ev_prepare_start (EV_P_ struct ev_prepare *w)
1188{
1189 if (ev_is_active (w))
1190 return;
1191
1192 ev_start (EV_A_ (W)w, ++preparecnt);
1193 array_needsize (prepares, preparemax, preparecnt, );
1194 prepares [preparecnt - 1] = w;
1195}
1196
1197void
1198ev_prepare_stop (EV_P_ struct ev_prepare *w)
1199{
1200 ev_clear_pending (EV_A_ (W)w);
1201 if (ev_is_active (w))
1202 return;
1203
1204 prepares [w->active - 1] = prepares [--preparecnt];
1205 ev_stop (EV_A_ (W)w);
1206}
1207
1208void
1209ev_check_start (EV_P_ struct ev_check *w)
1210{
1211 if (ev_is_active (w))
1212 return;
1213
1214 ev_start (EV_A_ (W)w, ++checkcnt);
1215 array_needsize (checks, checkmax, checkcnt, );
1216 checks [checkcnt - 1] = w;
1217}
1218
1219void
1220ev_check_stop (EV_P_ struct ev_check *w)
1221{
1222 ev_clear_pending (EV_A_ (W)w);
1223 if (ev_is_active (w))
1224 return;
1225
1226 checks [w->active - 1] = checks [--checkcnt];
1227 ev_stop (EV_A_ (W)w);
1228}
1229 1562
1230#ifndef SA_RESTART 1563#ifndef SA_RESTART
1231# define SA_RESTART 0 1564# define SA_RESTART 0
1232#endif 1565#endif
1233 1566
1234void 1567void
1235ev_signal_start (EV_P_ struct ev_signal *w) 1568ev_signal_start (EV_P_ ev_signal *w)
1236{ 1569{
1237#if EV_MULTIPLICITY 1570#if EV_MULTIPLICITY
1238 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1571 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1239#endif 1572#endif
1240 if (ev_is_active (w)) 1573 if (expect_false (ev_is_active (w)))
1241 return; 1574 return;
1242 1575
1243 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1576 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1244 1577
1245 ev_start (EV_A_ (W)w, 1); 1578 ev_start (EV_A_ (W)w, 1);
1246 array_needsize (signals, signalmax, w->signum, signals_init); 1579 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1247 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1580 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1248 1581
1249 if (!w->next) 1582 if (!((WL)w)->next)
1250 { 1583 {
1584#if _WIN32
1585 signal (w->signum, sighandler);
1586#else
1251 struct sigaction sa; 1587 struct sigaction sa;
1252 sa.sa_handler = sighandler; 1588 sa.sa_handler = sighandler;
1253 sigfillset (&sa.sa_mask); 1589 sigfillset (&sa.sa_mask);
1254 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1590 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1255 sigaction (w->signum, &sa, 0); 1591 sigaction (w->signum, &sa, 0);
1592#endif
1256 } 1593 }
1257} 1594}
1258 1595
1259void 1596void
1260ev_signal_stop (EV_P_ struct ev_signal *w) 1597ev_signal_stop (EV_P_ ev_signal *w)
1261{ 1598{
1262 ev_clear_pending (EV_A_ (W)w); 1599 ev_clear_pending (EV_A_ (W)w);
1263 if (!ev_is_active (w)) 1600 if (expect_false (!ev_is_active (w)))
1264 return; 1601 return;
1265 1602
1266 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1603 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1267 ev_stop (EV_A_ (W)w); 1604 ev_stop (EV_A_ (W)w);
1268 1605
1269 if (!signals [w->signum - 1].head) 1606 if (!signals [w->signum - 1].head)
1270 signal (w->signum, SIG_DFL); 1607 signal (w->signum, SIG_DFL);
1271} 1608}
1272 1609
1273void 1610void
1274ev_child_start (EV_P_ struct ev_child *w) 1611ev_child_start (EV_P_ ev_child *w)
1275{ 1612{
1276#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
1277 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1614 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1278#endif 1615#endif
1279 if (ev_is_active (w)) 1616 if (expect_false (ev_is_active (w)))
1280 return; 1617 return;
1281 1618
1282 ev_start (EV_A_ (W)w, 1); 1619 ev_start (EV_A_ (W)w, 1);
1283 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1620 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1284} 1621}
1285 1622
1286void 1623void
1287ev_child_stop (EV_P_ struct ev_child *w) 1624ev_child_stop (EV_P_ ev_child *w)
1288{ 1625{
1289 ev_clear_pending (EV_A_ (W)w); 1626 ev_clear_pending (EV_A_ (W)w);
1290 if (ev_is_active (w)) 1627 if (expect_false (!ev_is_active (w)))
1291 return; 1628 return;
1292 1629
1293 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1630 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1294 ev_stop (EV_A_ (W)w); 1631 ev_stop (EV_A_ (W)w);
1295} 1632}
1296 1633
1634#if EV_STAT_ENABLE
1635
1636# ifdef _WIN32
1637# define lstat(a,b) stat(a,b)
1638# endif
1639
1640#define DEF_STAT_INTERVAL 5.0074891
1641#define MIN_STAT_INTERVAL 0.1074891
1642
1643void
1644ev_stat_stat (EV_P_ ev_stat *w)
1645{
1646 if (lstat (w->path, &w->attr) < 0)
1647 w->attr.st_nlink = 0;
1648 else if (!w->attr.st_nlink)
1649 w->attr.st_nlink = 1;
1650}
1651
1652static void
1653stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1654{
1655 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1656
1657 /* we copy this here each the time so that */
1658 /* prev has the old value when the callback gets invoked */
1659 w->prev = w->attr;
1660 ev_stat_stat (EV_A_ w);
1661
1662 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1663 ev_feed_event (EV_A_ w, EV_STAT);
1664}
1665
1666void
1667ev_stat_start (EV_P_ ev_stat *w)
1668{
1669 if (expect_false (ev_is_active (w)))
1670 return;
1671
1672 /* since we use memcmp, we need to clear any padding data etc. */
1673 memset (&w->prev, 0, sizeof (ev_statdata));
1674 memset (&w->attr, 0, sizeof (ev_statdata));
1675
1676 ev_stat_stat (EV_A_ w);
1677
1678 if (w->interval < MIN_STAT_INTERVAL)
1679 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1680
1681 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1682 ev_set_priority (&w->timer, ev_priority (w));
1683 ev_timer_start (EV_A_ &w->timer);
1684
1685 ev_start (EV_A_ (W)w, 1);
1686}
1687
1688void
1689ev_stat_stop (EV_P_ ev_stat *w)
1690{
1691 ev_clear_pending (EV_A_ (W)w);
1692 if (expect_false (!ev_is_active (w)))
1693 return;
1694
1695 ev_timer_stop (EV_A_ &w->timer);
1696
1697 ev_stop (EV_A_ (W)w);
1698}
1699#endif
1700
1701void
1702ev_idle_start (EV_P_ ev_idle *w)
1703{
1704 if (expect_false (ev_is_active (w)))
1705 return;
1706
1707 ev_start (EV_A_ (W)w, ++idlecnt);
1708 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1709 idles [idlecnt - 1] = w;
1710}
1711
1712void
1713ev_idle_stop (EV_P_ ev_idle *w)
1714{
1715 ev_clear_pending (EV_A_ (W)w);
1716 if (expect_false (!ev_is_active (w)))
1717 return;
1718
1719 {
1720 int active = ((W)w)->active;
1721 idles [active - 1] = idles [--idlecnt];
1722 ((W)idles [active - 1])->active = active;
1723 }
1724
1725 ev_stop (EV_A_ (W)w);
1726}
1727
1728void
1729ev_prepare_start (EV_P_ ev_prepare *w)
1730{
1731 if (expect_false (ev_is_active (w)))
1732 return;
1733
1734 ev_start (EV_A_ (W)w, ++preparecnt);
1735 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1736 prepares [preparecnt - 1] = w;
1737}
1738
1739void
1740ev_prepare_stop (EV_P_ ev_prepare *w)
1741{
1742 ev_clear_pending (EV_A_ (W)w);
1743 if (expect_false (!ev_is_active (w)))
1744 return;
1745
1746 {
1747 int active = ((W)w)->active;
1748 prepares [active - 1] = prepares [--preparecnt];
1749 ((W)prepares [active - 1])->active = active;
1750 }
1751
1752 ev_stop (EV_A_ (W)w);
1753}
1754
1755void
1756ev_check_start (EV_P_ ev_check *w)
1757{
1758 if (expect_false (ev_is_active (w)))
1759 return;
1760
1761 ev_start (EV_A_ (W)w, ++checkcnt);
1762 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1763 checks [checkcnt - 1] = w;
1764}
1765
1766void
1767ev_check_stop (EV_P_ ev_check *w)
1768{
1769 ev_clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w)))
1771 return;
1772
1773 {
1774 int active = ((W)w)->active;
1775 checks [active - 1] = checks [--checkcnt];
1776 ((W)checks [active - 1])->active = active;
1777 }
1778
1779 ev_stop (EV_A_ (W)w);
1780}
1781
1782#if EV_EMBED_ENABLE
1783void noinline
1784ev_embed_sweep (EV_P_ ev_embed *w)
1785{
1786 ev_loop (w->loop, EVLOOP_NONBLOCK);
1787}
1788
1789static void
1790embed_cb (EV_P_ ev_io *io, int revents)
1791{
1792 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1793
1794 if (ev_cb (w))
1795 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1796 else
1797 ev_embed_sweep (loop, w);
1798}
1799
1800void
1801ev_embed_start (EV_P_ ev_embed *w)
1802{
1803 if (expect_false (ev_is_active (w)))
1804 return;
1805
1806 {
1807 struct ev_loop *loop = w->loop;
1808 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1809 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1810 }
1811
1812 ev_set_priority (&w->io, ev_priority (w));
1813 ev_io_start (EV_A_ &w->io);
1814
1815 ev_start (EV_A_ (W)w, 1);
1816}
1817
1818void
1819ev_embed_stop (EV_P_ ev_embed *w)
1820{
1821 ev_clear_pending (EV_A_ (W)w);
1822 if (expect_false (!ev_is_active (w)))
1823 return;
1824
1825 ev_io_stop (EV_A_ &w->io);
1826
1827 ev_stop (EV_A_ (W)w);
1828}
1829#endif
1830
1297/*****************************************************************************/ 1831/*****************************************************************************/
1298 1832
1299struct ev_once 1833struct ev_once
1300{ 1834{
1301 struct ev_io io; 1835 ev_io io;
1302 struct ev_timer to; 1836 ev_timer to;
1303 void (*cb)(int revents, void *arg); 1837 void (*cb)(int revents, void *arg);
1304 void *arg; 1838 void *arg;
1305}; 1839};
1306 1840
1307static void 1841static void
1310 void (*cb)(int revents, void *arg) = once->cb; 1844 void (*cb)(int revents, void *arg) = once->cb;
1311 void *arg = once->arg; 1845 void *arg = once->arg;
1312 1846
1313 ev_io_stop (EV_A_ &once->io); 1847 ev_io_stop (EV_A_ &once->io);
1314 ev_timer_stop (EV_A_ &once->to); 1848 ev_timer_stop (EV_A_ &once->to);
1315 free (once); 1849 ev_free (once);
1316 1850
1317 cb (revents, arg); 1851 cb (revents, arg);
1318} 1852}
1319 1853
1320static void 1854static void
1321once_cb_io (EV_P_ struct ev_io *w, int revents) 1855once_cb_io (EV_P_ ev_io *w, int revents)
1322{ 1856{
1323 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1857 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1324} 1858}
1325 1859
1326static void 1860static void
1327once_cb_to (EV_P_ struct ev_timer *w, int revents) 1861once_cb_to (EV_P_ ev_timer *w, int revents)
1328{ 1862{
1329 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1863 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1330} 1864}
1331 1865
1332void 1866void
1333ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1867ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1334{ 1868{
1335 struct ev_once *once = malloc (sizeof (struct ev_once)); 1869 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1336 1870
1337 if (!once) 1871 if (expect_false (!once))
1872 {
1338 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1873 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1339 else 1874 return;
1340 { 1875 }
1876
1341 once->cb = cb; 1877 once->cb = cb;
1342 once->arg = arg; 1878 once->arg = arg;
1343 1879
1344 ev_watcher_init (&once->io, once_cb_io); 1880 ev_init (&once->io, once_cb_io);
1345 if (fd >= 0) 1881 if (fd >= 0)
1346 { 1882 {
1347 ev_io_set (&once->io, fd, events); 1883 ev_io_set (&once->io, fd, events);
1348 ev_io_start (EV_A_ &once->io); 1884 ev_io_start (EV_A_ &once->io);
1349 } 1885 }
1350 1886
1351 ev_watcher_init (&once->to, once_cb_to); 1887 ev_init (&once->to, once_cb_to);
1352 if (timeout >= 0.) 1888 if (timeout >= 0.)
1353 { 1889 {
1354 ev_timer_set (&once->to, timeout, 0.); 1890 ev_timer_set (&once->to, timeout, 0.);
1355 ev_timer_start (EV_A_ &once->to); 1891 ev_timer_start (EV_A_ &once->to);
1356 }
1357 } 1892 }
1358} 1893}
1359 1894
1895#ifdef __cplusplus
1896}
1897#endif
1898

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines