ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.145 by root, Tue Nov 27 08:54:38 2007 UTC vs.
Revision 1.263 by root, Wed Oct 1 18:50:03 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 111# else
95# define EV_USE_PORT 0 112# define EV_USE_PORT 0
96# endif 113# endif
97# endif 114# endif
98 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
99#endif 132#endif
100 133
101#include <math.h> 134#include <math.h>
102#include <stdlib.h> 135#include <stdlib.h>
103#include <fcntl.h> 136#include <fcntl.h>
109#include <errno.h> 142#include <errno.h>
110#include <sys/types.h> 143#include <sys/types.h>
111#include <time.h> 144#include <time.h>
112 145
113#include <signal.h> 146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
114 153
115#ifndef _WIN32 154#ifndef _WIN32
116# include <sys/time.h> 155# include <sys/time.h>
117# include <sys/wait.h> 156# include <sys/wait.h>
118# include <unistd.h> 157# include <unistd.h>
119#else 158#else
159# include <io.h>
120# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 161# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
124# endif 164# endif
125#endif 165#endif
126 166
127/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
128 168
129#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
130# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
131#endif 175#endif
132 176
133#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
135#endif 187#endif
136 188
137#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
139#endif 191#endif
145# define EV_USE_POLL 1 197# define EV_USE_POLL 1
146# endif 198# endif
147#endif 199#endif
148 200
149#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
150# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
151#endif 207#endif
152 208
153#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
155#endif 211#endif
156 212
157#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 214# define EV_USE_PORT 0
159#endif 215#endif
160 216
161/**/ 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
221# define EV_USE_INOTIFY 0
222# endif
223#endif
224
225#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif
232
233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 268
163#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
166#endif 272#endif
168#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
171#endif 277#endif
172 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/inotify.h>
292/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
293# ifndef IN_DONT_FOLLOW
294# undef EV_USE_INOTIFY
295# define EV_USE_INOTIFY 0
296# endif
297#endif
298
173#if EV_SELECT_IS_WINSOCKET 299#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 300# include <winsock.h>
175#endif 301#endif
176 302
303#if EV_USE_EVENTFD
304/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
305# include <stdint.h>
306# ifdef __cplusplus
307extern "C" {
308# endif
309int eventfd (unsigned int initval, int flags);
310# ifdef __cplusplus
311}
312# endif
313#endif
314
177/**/ 315/**/
316
317#if EV_VERIFY >= 3
318# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
319#else
320# define EV_FREQUENT_CHECK do { } while (0)
321#endif
322
323/*
324 * This is used to avoid floating point rounding problems.
325 * It is added to ev_rt_now when scheduling periodics
326 * to ensure progress, time-wise, even when rounding
327 * errors are against us.
328 * This value is good at least till the year 4000.
329 * Better solutions welcome.
330 */
331#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 332
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 333#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 334#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 335/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 336
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 337#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 338# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline)) 339# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
200#else 340#else
201# define expect(expr,value) (expr) 341# define expect(expr,value) (expr)
202# define inline_speed static
203# define inline_size static
204# define noinline 342# define noinline
343# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
344# define inline
345# endif
205#endif 346#endif
206 347
207#define expect_false(expr) expect ((expr) != 0, 0) 348#define expect_false(expr) expect ((expr) != 0, 0)
208#define expect_true(expr) expect ((expr) != 0, 1) 349#define expect_true(expr) expect ((expr) != 0, 1)
350#define inline_size static inline
351
352#if EV_MINIMAL
353# define inline_speed static noinline
354#else
355# define inline_speed static inline
356#endif
209 357
210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 358#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
211#define ABSPRI(w) ((w)->priority - EV_MINPRI) 359#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
212 360
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 361#define EMPTY /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */ 362#define EMPTY2(a,b) /* used to suppress some warnings */
215 363
216typedef ev_watcher *W; 364typedef ev_watcher *W;
217typedef ev_watcher_list *WL; 365typedef ev_watcher_list *WL;
218typedef ev_watcher_time *WT; 366typedef ev_watcher_time *WT;
219 367
368#define ev_active(w) ((W)(w))->active
369#define ev_at(w) ((WT)(w))->at
370
371#if EV_USE_MONOTONIC
372/* sig_atomic_t is used to avoid per-thread variables or locking but still */
373/* giving it a reasonably high chance of working on typical architetcures */
220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 374static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
375#endif
221 376
222#ifdef _WIN32 377#ifdef _WIN32
223# include "ev_win32.c" 378# include "ev_win32.c"
224#endif 379#endif
225 380
246 perror (msg); 401 perror (msg);
247 abort (); 402 abort ();
248 } 403 }
249} 404}
250 405
406static void *
407ev_realloc_emul (void *ptr, long size)
408{
409 /* some systems, notably openbsd and darwin, fail to properly
410 * implement realloc (x, 0) (as required by both ansi c-98 and
411 * the single unix specification, so work around them here.
412 */
413
414 if (size)
415 return realloc (ptr, size);
416
417 free (ptr);
418 return 0;
419}
420
251static void *(*alloc)(void *ptr, long size); 421static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
252 422
253void 423void
254ev_set_allocator (void *(*cb)(void *ptr, long size)) 424ev_set_allocator (void *(*cb)(void *ptr, long size))
255{ 425{
256 alloc = cb; 426 alloc = cb;
257} 427}
258 428
259static void * 429inline_speed void *
260ev_realloc (void *ptr, long size) 430ev_realloc (void *ptr, long size)
261{ 431{
262 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 432 ptr = alloc (ptr, size);
263 433
264 if (!ptr && size) 434 if (!ptr && size)
265 { 435 {
266 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 436 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
267 abort (); 437 abort ();
288typedef struct 458typedef struct
289{ 459{
290 W w; 460 W w;
291 int events; 461 int events;
292} ANPENDING; 462} ANPENDING;
463
464#if EV_USE_INOTIFY
465/* hash table entry per inotify-id */
466typedef struct
467{
468 WL head;
469} ANFS;
470#endif
471
472/* Heap Entry */
473#if EV_HEAP_CACHE_AT
474 typedef struct {
475 ev_tstamp at;
476 WT w;
477 } ANHE;
478
479 #define ANHE_w(he) (he).w /* access watcher, read-write */
480 #define ANHE_at(he) (he).at /* access cached at, read-only */
481 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
482#else
483 typedef WT ANHE;
484
485 #define ANHE_w(he) (he)
486 #define ANHE_at(he) (he)->at
487 #define ANHE_at_cache(he)
488#endif
293 489
294#if EV_MULTIPLICITY 490#if EV_MULTIPLICITY
295 491
296 struct ev_loop 492 struct ev_loop
297 { 493 {
354{ 550{
355 return ev_rt_now; 551 return ev_rt_now;
356} 552}
357#endif 553#endif
358 554
359#define array_roundsize(type,n) (((n) | 4) & ~3) 555void
556ev_sleep (ev_tstamp delay)
557{
558 if (delay > 0.)
559 {
560#if EV_USE_NANOSLEEP
561 struct timespec ts;
562
563 ts.tv_sec = (time_t)delay;
564 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
565
566 nanosleep (&ts, 0);
567#elif defined(_WIN32)
568 Sleep ((unsigned long)(delay * 1e3));
569#else
570 struct timeval tv;
571
572 tv.tv_sec = (time_t)delay;
573 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
574
575 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
576 /* somehting nto guaranteed by newer posix versions, but guaranteed */
577 /* by older ones */
578 select (0, 0, 0, 0, &tv);
579#endif
580 }
581}
582
583/*****************************************************************************/
584
585#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
586
587int inline_size
588array_nextsize (int elem, int cur, int cnt)
589{
590 int ncur = cur + 1;
591
592 do
593 ncur <<= 1;
594 while (cnt > ncur);
595
596 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
597 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
598 {
599 ncur *= elem;
600 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
601 ncur = ncur - sizeof (void *) * 4;
602 ncur /= elem;
603 }
604
605 return ncur;
606}
607
608static noinline void *
609array_realloc (int elem, void *base, int *cur, int cnt)
610{
611 *cur = array_nextsize (elem, *cur, cnt);
612 return ev_realloc (base, elem * *cur);
613}
360 614
361#define array_needsize(type,base,cur,cnt,init) \ 615#define array_needsize(type,base,cur,cnt,init) \
362 if (expect_false ((cnt) > cur)) \ 616 if (expect_false ((cnt) > (cur))) \
363 { \ 617 { \
364 int newcnt = cur; \ 618 int ocur_ = (cur); \
365 do \ 619 (base) = (type *)array_realloc \
366 { \ 620 (sizeof (type), (base), &(cur), (cnt)); \
367 newcnt = array_roundsize (type, newcnt << 1); \ 621 init ((base) + (ocur_), (cur) - ocur_); \
368 } \
369 while ((cnt) > newcnt); \
370 \
371 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
372 init (base + cur, newcnt - cur); \
373 cur = newcnt; \
374 } 622 }
375 623
624#if 0
376#define array_slim(type,stem) \ 625#define array_slim(type,stem) \
377 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 626 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
378 { \ 627 { \
379 stem ## max = array_roundsize (stem ## cnt >> 1); \ 628 stem ## max = array_roundsize (stem ## cnt >> 1); \
380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 629 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 630 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
382 } 631 }
632#endif
383 633
384#define array_free(stem, idx) \ 634#define array_free(stem, idx) \
385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 635 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
386 636
387/*****************************************************************************/ 637/*****************************************************************************/
388 638
389void noinline 639void noinline
390ev_feed_event (EV_P_ void *w, int revents) 640ev_feed_event (EV_P_ void *w, int revents)
391{ 641{
392 W w_ = (W)w; 642 W w_ = (W)w;
643 int pri = ABSPRI (w_);
393 644
394 if (expect_false (w_->pending)) 645 if (expect_false (w_->pending))
646 pendings [pri][w_->pending - 1].events |= revents;
647 else
395 { 648 {
649 w_->pending = ++pendingcnt [pri];
650 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
651 pendings [pri][w_->pending - 1].w = w_;
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 652 pendings [pri][w_->pending - 1].events = revents;
397 return;
398 } 653 }
399
400 w_->pending = ++pendingcnt [ABSPRI (w_)];
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404} 654}
405 655
406void inline_size 656void inline_speed
407queue_events (EV_P_ W *events, int eventcnt, int type) 657queue_events (EV_P_ W *events, int eventcnt, int type)
408{ 658{
409 int i; 659 int i;
410 660
411 for (i = 0; i < eventcnt; ++i) 661 for (i = 0; i < eventcnt; ++i)
443} 693}
444 694
445void 695void
446ev_feed_fd_event (EV_P_ int fd, int revents) 696ev_feed_fd_event (EV_P_ int fd, int revents)
447{ 697{
698 if (fd >= 0 && fd < anfdmax)
448 fd_event (EV_A_ fd, revents); 699 fd_event (EV_A_ fd, revents);
449} 700}
450 701
451void inline_size 702void inline_size
452fd_reify (EV_P) 703fd_reify (EV_P)
453{ 704{
457 { 708 {
458 int fd = fdchanges [i]; 709 int fd = fdchanges [i];
459 ANFD *anfd = anfds + fd; 710 ANFD *anfd = anfds + fd;
460 ev_io *w; 711 ev_io *w;
461 712
462 int events = 0; 713 unsigned char events = 0;
463 714
464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 715 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
465 events |= w->events; 716 events |= (unsigned char)w->events;
466 717
467#if EV_SELECT_IS_WINSOCKET 718#if EV_SELECT_IS_WINSOCKET
468 if (events) 719 if (events)
469 { 720 {
470 unsigned long argp; 721 unsigned long arg;
722 #ifdef EV_FD_TO_WIN32_HANDLE
723 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
724 #else
471 anfd->handle = _get_osfhandle (fd); 725 anfd->handle = _get_osfhandle (fd);
726 #endif
472 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 727 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
473 } 728 }
474#endif 729#endif
475 730
731 {
732 unsigned char o_events = anfd->events;
733 unsigned char o_reify = anfd->reify;
734
476 anfd->reify = 0; 735 anfd->reify = 0;
477
478 backend_modify (EV_A_ fd, anfd->events, events);
479 anfd->events = events; 736 anfd->events = events;
737
738 if (o_events != events || o_reify & EV_IOFDSET)
739 backend_modify (EV_A_ fd, o_events, events);
740 }
480 } 741 }
481 742
482 fdchangecnt = 0; 743 fdchangecnt = 0;
483} 744}
484 745
485void inline_size 746void inline_size
486fd_change (EV_P_ int fd) 747fd_change (EV_P_ int fd, int flags)
487{ 748{
488 if (expect_false (anfds [fd].reify)) 749 unsigned char reify = anfds [fd].reify;
489 return;
490
491 anfds [fd].reify = 1; 750 anfds [fd].reify |= flags;
492 751
752 if (expect_true (!reify))
753 {
493 ++fdchangecnt; 754 ++fdchangecnt;
494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 755 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
495 fdchanges [fdchangecnt - 1] = fd; 756 fdchanges [fdchangecnt - 1] = fd;
757 }
496} 758}
497 759
498void inline_speed 760void inline_speed
499fd_kill (EV_P_ int fd) 761fd_kill (EV_P_ int fd)
500{ 762{
523{ 785{
524 int fd; 786 int fd;
525 787
526 for (fd = 0; fd < anfdmax; ++fd) 788 for (fd = 0; fd < anfdmax; ++fd)
527 if (anfds [fd].events) 789 if (anfds [fd].events)
528 if (!fd_valid (fd) == -1 && errno == EBADF) 790 if (!fd_valid (fd) && errno == EBADF)
529 fd_kill (EV_A_ fd); 791 fd_kill (EV_A_ fd);
530} 792}
531 793
532/* called on ENOMEM in select/poll to kill some fds and retry */ 794/* called on ENOMEM in select/poll to kill some fds and retry */
533static void noinline 795static void noinline
547static void noinline 809static void noinline
548fd_rearm_all (EV_P) 810fd_rearm_all (EV_P)
549{ 811{
550 int fd; 812 int fd;
551 813
552 /* this should be highly optimised to not do anything but set a flag */
553 for (fd = 0; fd < anfdmax; ++fd) 814 for (fd = 0; fd < anfdmax; ++fd)
554 if (anfds [fd].events) 815 if (anfds [fd].events)
555 { 816 {
556 anfds [fd].events = 0; 817 anfds [fd].events = 0;
557 fd_change (EV_A_ fd); 818 fd_change (EV_A_ fd, EV_IOFDSET | 1);
558 } 819 }
559} 820}
560 821
561/*****************************************************************************/ 822/*****************************************************************************/
562 823
824/*
825 * the heap functions want a real array index. array index 0 uis guaranteed to not
826 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
827 * the branching factor of the d-tree.
828 */
829
830/*
831 * at the moment we allow libev the luxury of two heaps,
832 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
833 * which is more cache-efficient.
834 * the difference is about 5% with 50000+ watchers.
835 */
836#if EV_USE_4HEAP
837
838#define DHEAP 4
839#define HEAP0 (DHEAP - 1) /* index of first element in heap */
840#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
841#define UPHEAP_DONE(p,k) ((p) == (k))
842
843/* away from the root */
563void inline_speed 844void inline_speed
564upheap (WT *heap, int k) 845downheap (ANHE *heap, int N, int k)
565{ 846{
566 WT w = heap [k]; 847 ANHE he = heap [k];
848 ANHE *E = heap + N + HEAP0;
567 849
568 while (k && heap [k >> 1]->at > w->at) 850 for (;;)
569 {
570 heap [k] = heap [k >> 1];
571 ((W)heap [k])->active = k + 1;
572 k >>= 1;
573 } 851 {
852 ev_tstamp minat;
853 ANHE *minpos;
854 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
574 855
856 /* find minimum child */
857 if (expect_true (pos + DHEAP - 1 < E))
858 {
859 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
860 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
861 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
863 }
864 else if (pos < E)
865 {
866 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
867 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
868 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
869 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
870 }
871 else
872 break;
873
874 if (ANHE_at (he) <= minat)
875 break;
876
877 heap [k] = *minpos;
878 ev_active (ANHE_w (*minpos)) = k;
879
880 k = minpos - heap;
881 }
882
575 heap [k] = w; 883 heap [k] = he;
576 ((W)heap [k])->active = k + 1; 884 ev_active (ANHE_w (he)) = k;
577
578} 885}
579 886
887#else /* 4HEAP */
888
889#define HEAP0 1
890#define HPARENT(k) ((k) >> 1)
891#define UPHEAP_DONE(p,k) (!(p))
892
893/* away from the root */
580void inline_speed 894void inline_speed
581downheap (WT *heap, int N, int k) 895downheap (ANHE *heap, int N, int k)
582{ 896{
583 WT w = heap [k]; 897 ANHE he = heap [k];
584 898
585 while (k < (N >> 1)) 899 for (;;)
586 { 900 {
587 int j = k << 1; 901 int c = k << 1;
588 902
589 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 903 if (c > N + HEAP0 - 1)
590 ++j;
591
592 if (w->at <= heap [j]->at)
593 break; 904 break;
594 905
906 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
907 ? 1 : 0;
908
909 if (ANHE_at (he) <= ANHE_at (heap [c]))
910 break;
911
595 heap [k] = heap [j]; 912 heap [k] = heap [c];
596 ((W)heap [k])->active = k + 1; 913 ev_active (ANHE_w (heap [k])) = k;
914
597 k = j; 915 k = c;
598 } 916 }
599 917
600 heap [k] = w; 918 heap [k] = he;
601 ((W)heap [k])->active = k + 1; 919 ev_active (ANHE_w (he)) = k;
920}
921#endif
922
923/* towards the root */
924void inline_speed
925upheap (ANHE *heap, int k)
926{
927 ANHE he = heap [k];
928
929 for (;;)
930 {
931 int p = HPARENT (k);
932
933 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
934 break;
935
936 heap [k] = heap [p];
937 ev_active (ANHE_w (heap [k])) = k;
938 k = p;
939 }
940
941 heap [k] = he;
942 ev_active (ANHE_w (he)) = k;
602} 943}
603 944
604void inline_size 945void inline_size
605adjustheap (WT *heap, int N, int k) 946adjustheap (ANHE *heap, int N, int k)
606{ 947{
948 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
607 upheap (heap, k); 949 upheap (heap, k);
950 else
608 downheap (heap, N, k); 951 downheap (heap, N, k);
952}
953
954/* rebuild the heap: this function is used only once and executed rarely */
955void inline_size
956reheap (ANHE *heap, int N)
957{
958 int i;
959
960 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
961 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
962 for (i = 0; i < N; ++i)
963 upheap (heap, i + HEAP0);
609} 964}
610 965
611/*****************************************************************************/ 966/*****************************************************************************/
612 967
613typedef struct 968typedef struct
614{ 969{
615 WL head; 970 WL head;
616 sig_atomic_t volatile gotsig; 971 EV_ATOMIC_T gotsig;
617} ANSIG; 972} ANSIG;
618 973
619static ANSIG *signals; 974static ANSIG *signals;
620static int signalmax; 975static int signalmax;
621 976
622static int sigpipe [2]; 977static EV_ATOMIC_T gotsig;
623static sig_atomic_t volatile gotsig;
624static ev_io sigev;
625 978
626void inline_size 979void inline_size
627signals_init (ANSIG *base, int count) 980signals_init (ANSIG *base, int count)
628{ 981{
629 while (count--) 982 while (count--)
633 986
634 ++base; 987 ++base;
635 } 988 }
636} 989}
637 990
638static void 991/*****************************************************************************/
639sighandler (int signum)
640{
641#if _WIN32
642 signal (signum, sighandler);
643#endif
644 992
645 signals [signum - 1].gotsig = 1;
646
647 if (!gotsig)
648 {
649 int old_errno = errno;
650 gotsig = 1;
651 write (sigpipe [1], &signum, 1);
652 errno = old_errno;
653 }
654}
655
656void noinline
657ev_feed_signal_event (EV_P_ int signum)
658{
659 WL w;
660
661#if EV_MULTIPLICITY
662 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
663#endif
664
665 --signum;
666
667 if (signum < 0 || signum >= signalmax)
668 return;
669
670 signals [signum].gotsig = 0;
671
672 for (w = signals [signum].head; w; w = w->next)
673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
674}
675
676static void
677sigcb (EV_P_ ev_io *iow, int revents)
678{
679 int signum;
680
681 read (sigpipe [0], &revents, 1);
682 gotsig = 0;
683
684 for (signum = signalmax; signum--; )
685 if (signals [signum].gotsig)
686 ev_feed_signal_event (EV_A_ signum + 1);
687}
688
689void inline_size 993void inline_speed
690fd_intern (int fd) 994fd_intern (int fd)
691{ 995{
692#ifdef _WIN32 996#ifdef _WIN32
693 int arg = 1; 997 unsigned long arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 998 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
695#else 999#else
696 fcntl (fd, F_SETFD, FD_CLOEXEC); 1000 fcntl (fd, F_SETFD, FD_CLOEXEC);
697 fcntl (fd, F_SETFL, O_NONBLOCK); 1001 fcntl (fd, F_SETFL, O_NONBLOCK);
698#endif 1002#endif
699} 1003}
700 1004
701static void noinline 1005static void noinline
702siginit (EV_P) 1006evpipe_init (EV_P)
703{ 1007{
1008 if (!ev_is_active (&pipeev))
1009 {
1010#if EV_USE_EVENTFD
1011 if ((evfd = eventfd (0, 0)) >= 0)
1012 {
1013 evpipe [0] = -1;
1014 fd_intern (evfd);
1015 ev_io_set (&pipeev, evfd, EV_READ);
1016 }
1017 else
1018#endif
1019 {
1020 while (pipe (evpipe))
1021 syserr ("(libev) error creating signal/async pipe");
1022
704 fd_intern (sigpipe [0]); 1023 fd_intern (evpipe [0]);
705 fd_intern (sigpipe [1]); 1024 fd_intern (evpipe [1]);
1025 ev_io_set (&pipeev, evpipe [0], EV_READ);
1026 }
706 1027
707 ev_io_set (&sigev, sigpipe [0], EV_READ);
708 ev_io_start (EV_A_ &sigev); 1028 ev_io_start (EV_A_ &pipeev);
709 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1029 ev_unref (EV_A); /* watcher should not keep loop alive */
1030 }
1031}
1032
1033void inline_size
1034evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1035{
1036 if (!*flag)
1037 {
1038 int old_errno = errno; /* save errno because write might clobber it */
1039
1040 *flag = 1;
1041
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter = 1;
1046 write (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 write (evpipe [1], &old_errno, 1);
1051
1052 errno = old_errno;
1053 }
1054}
1055
1056static void
1057pipecb (EV_P_ ev_io *iow, int revents)
1058{
1059#if EV_USE_EVENTFD
1060 if (evfd >= 0)
1061 {
1062 uint64_t counter;
1063 read (evfd, &counter, sizeof (uint64_t));
1064 }
1065 else
1066#endif
1067 {
1068 char dummy;
1069 read (evpipe [0], &dummy, 1);
1070 }
1071
1072 if (gotsig && ev_is_default_loop (EV_A))
1073 {
1074 int signum;
1075 gotsig = 0;
1076
1077 for (signum = signalmax; signum--; )
1078 if (signals [signum].gotsig)
1079 ev_feed_signal_event (EV_A_ signum + 1);
1080 }
1081
1082#if EV_ASYNC_ENABLE
1083 if (gotasync)
1084 {
1085 int i;
1086 gotasync = 0;
1087
1088 for (i = asynccnt; i--; )
1089 if (asyncs [i]->sent)
1090 {
1091 asyncs [i]->sent = 0;
1092 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1093 }
1094 }
1095#endif
710} 1096}
711 1097
712/*****************************************************************************/ 1098/*****************************************************************************/
713 1099
1100static void
1101ev_sighandler (int signum)
1102{
1103#if EV_MULTIPLICITY
1104 struct ev_loop *loop = &default_loop_struct;
1105#endif
1106
1107#if _WIN32
1108 signal (signum, ev_sighandler);
1109#endif
1110
1111 signals [signum - 1].gotsig = 1;
1112 evpipe_write (EV_A_ &gotsig);
1113}
1114
1115void noinline
1116ev_feed_signal_event (EV_P_ int signum)
1117{
1118 WL w;
1119
1120#if EV_MULTIPLICITY
1121 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1122#endif
1123
1124 --signum;
1125
1126 if (signum < 0 || signum >= signalmax)
1127 return;
1128
1129 signals [signum].gotsig = 0;
1130
1131 for (w = signals [signum].head; w; w = w->next)
1132 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1133}
1134
1135/*****************************************************************************/
1136
714static ev_child *childs [PID_HASHSIZE]; 1137static WL childs [EV_PID_HASHSIZE];
715 1138
716#ifndef _WIN32 1139#ifndef _WIN32
717 1140
718static ev_signal childev; 1141static ev_signal childev;
719 1142
1143#ifndef WIFCONTINUED
1144# define WIFCONTINUED(status) 0
1145#endif
1146
720void inline_speed 1147void inline_speed
721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1148child_reap (EV_P_ int chain, int pid, int status)
722{ 1149{
723 ev_child *w; 1150 ev_child *w;
1151 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
724 1152
725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1153 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1154 {
726 if (w->pid == pid || !w->pid) 1155 if ((w->pid == pid || !w->pid)
1156 && (!traced || (w->flags & 1)))
727 { 1157 {
728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1158 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
729 w->rpid = pid; 1159 w->rpid = pid;
730 w->rstatus = status; 1160 w->rstatus = status;
731 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1161 ev_feed_event (EV_A_ (W)w, EV_CHILD);
732 } 1162 }
1163 }
733} 1164}
734 1165
735#ifndef WCONTINUED 1166#ifndef WCONTINUED
736# define WCONTINUED 0 1167# define WCONTINUED 0
737#endif 1168#endif
746 if (!WCONTINUED 1177 if (!WCONTINUED
747 || errno != EINVAL 1178 || errno != EINVAL
748 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1179 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
749 return; 1180 return;
750 1181
751 /* make sure we are called again until all childs have been reaped */ 1182 /* make sure we are called again until all children have been reaped */
752 /* we need to do it this way so that the callback gets called before we continue */ 1183 /* we need to do it this way so that the callback gets called before we continue */
753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1184 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
754 1185
755 child_reap (EV_A_ sw, pid, pid, status); 1186 child_reap (EV_A_ pid, pid, status);
1187 if (EV_PID_HASHSIZE > 1)
756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1188 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
757} 1189}
758 1190
759#endif 1191#endif
760 1192
761/*****************************************************************************/ 1193/*****************************************************************************/
833} 1265}
834 1266
835unsigned int 1267unsigned int
836ev_embeddable_backends (void) 1268ev_embeddable_backends (void)
837{ 1269{
838 return EVBACKEND_EPOLL 1270 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
839 | EVBACKEND_KQUEUE 1271
840 | EVBACKEND_PORT; 1272 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1273 /* please fix it and tell me how to detect the fix */
1274 flags &= ~EVBACKEND_EPOLL;
1275
1276 return flags;
841} 1277}
842 1278
843unsigned int 1279unsigned int
844ev_backend (EV_P) 1280ev_backend (EV_P)
845{ 1281{
846 return backend; 1282 return backend;
847} 1283}
848 1284
849static void 1285unsigned int
1286ev_loop_count (EV_P)
1287{
1288 return loop_count;
1289}
1290
1291void
1292ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1293{
1294 io_blocktime = interval;
1295}
1296
1297void
1298ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1299{
1300 timeout_blocktime = interval;
1301}
1302
1303static void noinline
850loop_init (EV_P_ unsigned int flags) 1304loop_init (EV_P_ unsigned int flags)
851{ 1305{
852 if (!backend) 1306 if (!backend)
853 { 1307 {
854#if EV_USE_MONOTONIC 1308#if EV_USE_MONOTONIC
857 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1311 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
858 have_monotonic = 1; 1312 have_monotonic = 1;
859 } 1313 }
860#endif 1314#endif
861 1315
862 ev_rt_now = ev_time (); 1316 ev_rt_now = ev_time ();
863 mn_now = get_clock (); 1317 mn_now = get_clock ();
864 now_floor = mn_now; 1318 now_floor = mn_now;
865 rtmn_diff = ev_rt_now - mn_now; 1319 rtmn_diff = ev_rt_now - mn_now;
1320
1321 io_blocktime = 0.;
1322 timeout_blocktime = 0.;
1323 backend = 0;
1324 backend_fd = -1;
1325 gotasync = 0;
1326#if EV_USE_INOTIFY
1327 fs_fd = -2;
1328#endif
1329
1330 /* pid check not overridable via env */
1331#ifndef _WIN32
1332 if (flags & EVFLAG_FORKCHECK)
1333 curpid = getpid ();
1334#endif
866 1335
867 if (!(flags & EVFLAG_NOENV) 1336 if (!(flags & EVFLAG_NOENV)
868 && !enable_secure () 1337 && !enable_secure ()
869 && getenv ("LIBEV_FLAGS")) 1338 && getenv ("LIBEV_FLAGS"))
870 flags = atoi (getenv ("LIBEV_FLAGS")); 1339 flags = atoi (getenv ("LIBEV_FLAGS"));
871 1340
872 if (!(flags & 0x0000ffffUL)) 1341 if (!(flags & 0x0000ffffU))
873 flags |= ev_recommended_backends (); 1342 flags |= ev_recommended_backends ();
874 1343
875 backend = 0;
876#if EV_USE_PORT 1344#if EV_USE_PORT
877 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1345 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
878#endif 1346#endif
879#if EV_USE_KQUEUE 1347#if EV_USE_KQUEUE
880 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1348 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
887#endif 1355#endif
888#if EV_USE_SELECT 1356#if EV_USE_SELECT
889 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1357 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
890#endif 1358#endif
891 1359
892 ev_init (&sigev, sigcb); 1360 ev_init (&pipeev, pipecb);
893 ev_set_priority (&sigev, EV_MAXPRI); 1361 ev_set_priority (&pipeev, EV_MAXPRI);
894 } 1362 }
895} 1363}
896 1364
897static void 1365static void noinline
898loop_destroy (EV_P) 1366loop_destroy (EV_P)
899{ 1367{
900 int i; 1368 int i;
1369
1370 if (ev_is_active (&pipeev))
1371 {
1372 ev_ref (EV_A); /* signal watcher */
1373 ev_io_stop (EV_A_ &pipeev);
1374
1375#if EV_USE_EVENTFD
1376 if (evfd >= 0)
1377 close (evfd);
1378#endif
1379
1380 if (evpipe [0] >= 0)
1381 {
1382 close (evpipe [0]);
1383 close (evpipe [1]);
1384 }
1385 }
1386
1387#if EV_USE_INOTIFY
1388 if (fs_fd >= 0)
1389 close (fs_fd);
1390#endif
1391
1392 if (backend_fd >= 0)
1393 close (backend_fd);
901 1394
902#if EV_USE_PORT 1395#if EV_USE_PORT
903 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1396 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
904#endif 1397#endif
905#if EV_USE_KQUEUE 1398#if EV_USE_KQUEUE
914#if EV_USE_SELECT 1407#if EV_USE_SELECT
915 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1408 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
916#endif 1409#endif
917 1410
918 for (i = NUMPRI; i--; ) 1411 for (i = NUMPRI; i--; )
1412 {
919 array_free (pending, [i]); 1413 array_free (pending, [i]);
1414#if EV_IDLE_ENABLE
1415 array_free (idle, [i]);
1416#endif
1417 }
1418
1419 ev_free (anfds); anfdmax = 0;
920 1420
921 /* have to use the microsoft-never-gets-it-right macro */ 1421 /* have to use the microsoft-never-gets-it-right macro */
922 array_free (fdchange, EMPTY0); 1422 array_free (fdchange, EMPTY);
923 array_free (timer, EMPTY0); 1423 array_free (timer, EMPTY);
924#if EV_PERIODIC_ENABLE 1424#if EV_PERIODIC_ENABLE
925 array_free (periodic, EMPTY0); 1425 array_free (periodic, EMPTY);
926#endif 1426#endif
1427#if EV_FORK_ENABLE
927 array_free (idle, EMPTY0); 1428 array_free (fork, EMPTY);
1429#endif
928 array_free (prepare, EMPTY0); 1430 array_free (prepare, EMPTY);
929 array_free (check, EMPTY0); 1431 array_free (check, EMPTY);
1432#if EV_ASYNC_ENABLE
1433 array_free (async, EMPTY);
1434#endif
930 1435
931 backend = 0; 1436 backend = 0;
932} 1437}
933 1438
934static void 1439#if EV_USE_INOTIFY
1440void inline_size infy_fork (EV_P);
1441#endif
1442
1443void inline_size
935loop_fork (EV_P) 1444loop_fork (EV_P)
936{ 1445{
937#if EV_USE_PORT 1446#if EV_USE_PORT
938 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1447 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
939#endif 1448#endif
941 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1450 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
942#endif 1451#endif
943#if EV_USE_EPOLL 1452#if EV_USE_EPOLL
944 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1453 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
945#endif 1454#endif
1455#if EV_USE_INOTIFY
1456 infy_fork (EV_A);
1457#endif
946 1458
947 if (ev_is_active (&sigev)) 1459 if (ev_is_active (&pipeev))
948 { 1460 {
949 /* default loop */ 1461 /* this "locks" the handlers against writing to the pipe */
1462 /* while we modify the fd vars */
1463 gotsig = 1;
1464#if EV_ASYNC_ENABLE
1465 gotasync = 1;
1466#endif
950 1467
951 ev_ref (EV_A); 1468 ev_ref (EV_A);
952 ev_io_stop (EV_A_ &sigev); 1469 ev_io_stop (EV_A_ &pipeev);
1470
1471#if EV_USE_EVENTFD
1472 if (evfd >= 0)
1473 close (evfd);
1474#endif
1475
1476 if (evpipe [0] >= 0)
1477 {
953 close (sigpipe [0]); 1478 close (evpipe [0]);
954 close (sigpipe [1]); 1479 close (evpipe [1]);
1480 }
955 1481
956 while (pipe (sigpipe))
957 syserr ("(libev) error creating pipe");
958
959 siginit (EV_A); 1482 evpipe_init (EV_A);
1483 /* now iterate over everything, in case we missed something */
1484 pipecb (EV_A_ &pipeev, EV_READ);
960 } 1485 }
961 1486
962 postfork = 0; 1487 postfork = 0;
963} 1488}
964 1489
965#if EV_MULTIPLICITY 1490#if EV_MULTIPLICITY
1491
966struct ev_loop * 1492struct ev_loop *
967ev_loop_new (unsigned int flags) 1493ev_loop_new (unsigned int flags)
968{ 1494{
969 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1495 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
970 1496
986} 1512}
987 1513
988void 1514void
989ev_loop_fork (EV_P) 1515ev_loop_fork (EV_P)
990{ 1516{
991 postfork = 1; 1517 postfork = 1; /* must be in line with ev_default_fork */
992} 1518}
993 1519
1520#if EV_VERIFY
1521static void noinline
1522verify_watcher (EV_P_ W w)
1523{
1524 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1525
1526 if (w->pending)
1527 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1528}
1529
1530static void noinline
1531verify_heap (EV_P_ ANHE *heap, int N)
1532{
1533 int i;
1534
1535 for (i = HEAP0; i < N + HEAP0; ++i)
1536 {
1537 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1538 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1539 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1540
1541 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1542 }
1543}
1544
1545static void noinline
1546array_verify (EV_P_ W *ws, int cnt)
1547{
1548 while (cnt--)
1549 {
1550 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1551 verify_watcher (EV_A_ ws [cnt]);
1552 }
1553}
1554#endif
1555
1556void
1557ev_loop_verify (EV_P)
1558{
1559#if EV_VERIFY
1560 int i;
1561 WL w;
1562
1563 assert (activecnt >= -1);
1564
1565 assert (fdchangemax >= fdchangecnt);
1566 for (i = 0; i < fdchangecnt; ++i)
1567 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1568
1569 assert (anfdmax >= 0);
1570 for (i = 0; i < anfdmax; ++i)
1571 for (w = anfds [i].head; w; w = w->next)
1572 {
1573 verify_watcher (EV_A_ (W)w);
1574 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1575 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1576 }
1577
1578 assert (timermax >= timercnt);
1579 verify_heap (EV_A_ timers, timercnt);
1580
1581#if EV_PERIODIC_ENABLE
1582 assert (periodicmax >= periodiccnt);
1583 verify_heap (EV_A_ periodics, periodiccnt);
1584#endif
1585
1586 for (i = NUMPRI; i--; )
1587 {
1588 assert (pendingmax [i] >= pendingcnt [i]);
1589#if EV_IDLE_ENABLE
1590 assert (idleall >= 0);
1591 assert (idlemax [i] >= idlecnt [i]);
1592 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1593#endif
1594 }
1595
1596#if EV_FORK_ENABLE
1597 assert (forkmax >= forkcnt);
1598 array_verify (EV_A_ (W *)forks, forkcnt);
1599#endif
1600
1601#if EV_ASYNC_ENABLE
1602 assert (asyncmax >= asynccnt);
1603 array_verify (EV_A_ (W *)asyncs, asynccnt);
1604#endif
1605
1606 assert (preparemax >= preparecnt);
1607 array_verify (EV_A_ (W *)prepares, preparecnt);
1608
1609 assert (checkmax >= checkcnt);
1610 array_verify (EV_A_ (W *)checks, checkcnt);
1611
1612# if 0
1613 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1614 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
994#endif 1615# endif
1616#endif
1617}
1618
1619#endif /* multiplicity */
995 1620
996#if EV_MULTIPLICITY 1621#if EV_MULTIPLICITY
997struct ev_loop * 1622struct ev_loop *
998ev_default_loop_init (unsigned int flags) 1623ev_default_loop_init (unsigned int flags)
999#else 1624#else
1000int 1625int
1001ev_default_loop (unsigned int flags) 1626ev_default_loop (unsigned int flags)
1002#endif 1627#endif
1003{ 1628{
1004 if (sigpipe [0] == sigpipe [1])
1005 if (pipe (sigpipe))
1006 return 0;
1007
1008 if (!ev_default_loop_ptr) 1629 if (!ev_default_loop_ptr)
1009 { 1630 {
1010#if EV_MULTIPLICITY 1631#if EV_MULTIPLICITY
1011 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1632 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1012#else 1633#else
1015 1636
1016 loop_init (EV_A_ flags); 1637 loop_init (EV_A_ flags);
1017 1638
1018 if (ev_backend (EV_A)) 1639 if (ev_backend (EV_A))
1019 { 1640 {
1020 siginit (EV_A);
1021
1022#ifndef _WIN32 1641#ifndef _WIN32
1023 ev_signal_init (&childev, childcb, SIGCHLD); 1642 ev_signal_init (&childev, childcb, SIGCHLD);
1024 ev_set_priority (&childev, EV_MAXPRI); 1643 ev_set_priority (&childev, EV_MAXPRI);
1025 ev_signal_start (EV_A_ &childev); 1644 ev_signal_start (EV_A_ &childev);
1026 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1645 ev_unref (EV_A); /* child watcher should not keep loop alive */
1043#ifndef _WIN32 1662#ifndef _WIN32
1044 ev_ref (EV_A); /* child watcher */ 1663 ev_ref (EV_A); /* child watcher */
1045 ev_signal_stop (EV_A_ &childev); 1664 ev_signal_stop (EV_A_ &childev);
1046#endif 1665#endif
1047 1666
1048 ev_ref (EV_A); /* signal watcher */
1049 ev_io_stop (EV_A_ &sigev);
1050
1051 close (sigpipe [0]); sigpipe [0] = 0;
1052 close (sigpipe [1]); sigpipe [1] = 0;
1053
1054 loop_destroy (EV_A); 1667 loop_destroy (EV_A);
1055} 1668}
1056 1669
1057void 1670void
1058ev_default_fork (void) 1671ev_default_fork (void)
1060#if EV_MULTIPLICITY 1673#if EV_MULTIPLICITY
1061 struct ev_loop *loop = ev_default_loop_ptr; 1674 struct ev_loop *loop = ev_default_loop_ptr;
1062#endif 1675#endif
1063 1676
1064 if (backend) 1677 if (backend)
1065 postfork = 1; 1678 postfork = 1; /* must be in line with ev_loop_fork */
1066} 1679}
1067 1680
1068/*****************************************************************************/ 1681/*****************************************************************************/
1069 1682
1070int inline_size 1683void
1071any_pending (EV_P) 1684ev_invoke (EV_P_ void *w, int revents)
1072{ 1685{
1073 int pri; 1686 EV_CB_INVOKE ((W)w, revents);
1074
1075 for (pri = NUMPRI; pri--; )
1076 if (pendingcnt [pri])
1077 return 1;
1078
1079 return 0;
1080} 1687}
1081 1688
1082void inline_speed 1689void inline_speed
1083call_pending (EV_P) 1690call_pending (EV_P)
1084{ 1691{
1089 { 1696 {
1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1697 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1091 1698
1092 if (expect_true (p->w)) 1699 if (expect_true (p->w))
1093 { 1700 {
1094 assert (("non-pending watcher on pending list", p->w->pending)); 1701 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1095 1702
1096 p->w->pending = 0; 1703 p->w->pending = 0;
1097 EV_CB_INVOKE (p->w, p->events); 1704 EV_CB_INVOKE (p->w, p->events);
1705 EV_FREQUENT_CHECK;
1098 } 1706 }
1099 } 1707 }
1100} 1708}
1101 1709
1710#if EV_IDLE_ENABLE
1711void inline_size
1712idle_reify (EV_P)
1713{
1714 if (expect_false (idleall))
1715 {
1716 int pri;
1717
1718 for (pri = NUMPRI; pri--; )
1719 {
1720 if (pendingcnt [pri])
1721 break;
1722
1723 if (idlecnt [pri])
1724 {
1725 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1726 break;
1727 }
1728 }
1729 }
1730}
1731#endif
1732
1102void inline_size 1733void inline_size
1103timers_reify (EV_P) 1734timers_reify (EV_P)
1104{ 1735{
1736 EV_FREQUENT_CHECK;
1737
1105 while (timercnt && ((WT)timers [0])->at <= mn_now) 1738 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1106 { 1739 {
1107 ev_timer *w = timers [0]; 1740 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1108 1741
1109 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1742 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1110 1743
1111 /* first reschedule or stop timer */ 1744 /* first reschedule or stop timer */
1112 if (w->repeat) 1745 if (w->repeat)
1113 { 1746 {
1747 ev_at (w) += w->repeat;
1748 if (ev_at (w) < mn_now)
1749 ev_at (w) = mn_now;
1750
1114 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1751 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1115 1752
1116 ((WT)w)->at += w->repeat; 1753 ANHE_at_cache (timers [HEAP0]);
1117 if (((WT)w)->at < mn_now)
1118 ((WT)w)->at = mn_now;
1119
1120 downheap ((WT *)timers, timercnt, 0); 1754 downheap (timers, timercnt, HEAP0);
1121 } 1755 }
1122 else 1756 else
1123 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1757 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 1758
1759 EV_FREQUENT_CHECK;
1125 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1760 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1126 } 1761 }
1127} 1762}
1128 1763
1129#if EV_PERIODIC_ENABLE 1764#if EV_PERIODIC_ENABLE
1130void inline_size 1765void inline_size
1131periodics_reify (EV_P) 1766periodics_reify (EV_P)
1132{ 1767{
1768 EV_FREQUENT_CHECK;
1769
1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1770 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1134 { 1771 {
1135 ev_periodic *w = periodics [0]; 1772 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1136 1773
1137 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1774 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1138 1775
1139 /* first reschedule or stop timer */ 1776 /* first reschedule or stop timer */
1140 if (w->reschedule_cb) 1777 if (w->reschedule_cb)
1141 { 1778 {
1142 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1779 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780
1143 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1781 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1782
1783 ANHE_at_cache (periodics [HEAP0]);
1144 downheap ((WT *)periodics, periodiccnt, 0); 1784 downheap (periodics, periodiccnt, HEAP0);
1145 } 1785 }
1146 else if (w->interval) 1786 else if (w->interval)
1147 { 1787 {
1148 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1788 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1149 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1789 /* if next trigger time is not sufficiently in the future, put it there */
1790 /* this might happen because of floating point inexactness */
1791 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1792 {
1793 ev_at (w) += w->interval;
1794
1795 /* if interval is unreasonably low we might still have a time in the past */
1796 /* so correct this. this will make the periodic very inexact, but the user */
1797 /* has effectively asked to get triggered more often than possible */
1798 if (ev_at (w) < ev_rt_now)
1799 ev_at (w) = ev_rt_now;
1800 }
1801
1802 ANHE_at_cache (periodics [HEAP0]);
1150 downheap ((WT *)periodics, periodiccnt, 0); 1803 downheap (periodics, periodiccnt, HEAP0);
1151 } 1804 }
1152 else 1805 else
1153 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1806 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1154 1807
1808 EV_FREQUENT_CHECK;
1155 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1809 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1156 } 1810 }
1157} 1811}
1158 1812
1159static void noinline 1813static void noinline
1160periodics_reschedule (EV_P) 1814periodics_reschedule (EV_P)
1161{ 1815{
1162 int i; 1816 int i;
1163 1817
1164 /* adjust periodics after time jump */ 1818 /* adjust periodics after time jump */
1165 for (i = 0; i < periodiccnt; ++i) 1819 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1166 { 1820 {
1167 ev_periodic *w = periodics [i]; 1821 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1168 1822
1169 if (w->reschedule_cb) 1823 if (w->reschedule_cb)
1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1824 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1171 else if (w->interval) 1825 else if (w->interval)
1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1826 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1827
1828 ANHE_at_cache (periodics [i]);
1829 }
1830
1831 reheap (periodics, periodiccnt);
1832}
1833#endif
1834
1835void inline_speed
1836time_update (EV_P_ ev_tstamp max_block)
1837{
1838 int i;
1839
1840#if EV_USE_MONOTONIC
1841 if (expect_true (have_monotonic))
1173 } 1842 {
1843 ev_tstamp odiff = rtmn_diff;
1174 1844
1175 /* now rebuild the heap */
1176 for (i = periodiccnt >> 1; i--; )
1177 downheap ((WT *)periodics, periodiccnt, i);
1178}
1179#endif
1180
1181int inline_size
1182time_update_monotonic (EV_P)
1183{
1184 mn_now = get_clock (); 1845 mn_now = get_clock ();
1185 1846
1847 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1848 /* interpolate in the meantime */
1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1849 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1187 { 1850 {
1188 ev_rt_now = rtmn_diff + mn_now; 1851 ev_rt_now = rtmn_diff + mn_now;
1189 return 0; 1852 return;
1190 } 1853 }
1191 else 1854
1192 {
1193 now_floor = mn_now; 1855 now_floor = mn_now;
1194 ev_rt_now = ev_time (); 1856 ev_rt_now = ev_time ();
1195 return 1;
1196 }
1197}
1198 1857
1199void inline_size 1858 /* loop a few times, before making important decisions.
1200time_update (EV_P) 1859 * on the choice of "4": one iteration isn't enough,
1201{ 1860 * in case we get preempted during the calls to
1202 int i; 1861 * ev_time and get_clock. a second call is almost guaranteed
1203 1862 * to succeed in that case, though. and looping a few more times
1204#if EV_USE_MONOTONIC 1863 * doesn't hurt either as we only do this on time-jumps or
1205 if (expect_true (have_monotonic)) 1864 * in the unlikely event of having been preempted here.
1206 { 1865 */
1207 if (time_update_monotonic (EV_A)) 1866 for (i = 4; --i; )
1208 { 1867 {
1209 ev_tstamp odiff = rtmn_diff;
1210
1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
1220 {
1221 rtmn_diff = ev_rt_now - mn_now; 1868 rtmn_diff = ev_rt_now - mn_now;
1222 1869
1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1870 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1224 return; /* all is well */ 1871 return; /* all is well */
1225 1872
1226 ev_rt_now = ev_time (); 1873 ev_rt_now = ev_time ();
1227 mn_now = get_clock (); 1874 mn_now = get_clock ();
1228 now_floor = mn_now; 1875 now_floor = mn_now;
1229 } 1876 }
1230 1877
1231# if EV_PERIODIC_ENABLE 1878# if EV_PERIODIC_ENABLE
1232 periodics_reschedule (EV_A); 1879 periodics_reschedule (EV_A);
1233# endif 1880# endif
1234 /* no timer adjustment, as the monotonic clock doesn't jump */ 1881 /* no timer adjustment, as the monotonic clock doesn't jump */
1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1882 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1236 }
1237 } 1883 }
1238 else 1884 else
1239#endif 1885#endif
1240 { 1886 {
1241 ev_rt_now = ev_time (); 1887 ev_rt_now = ev_time ();
1242 1888
1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1889 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1244 { 1890 {
1245#if EV_PERIODIC_ENABLE 1891#if EV_PERIODIC_ENABLE
1246 periodics_reschedule (EV_A); 1892 periodics_reschedule (EV_A);
1247#endif 1893#endif
1248
1249 /* adjust timers. this is easy, as the offset is the same for all */ 1894 /* adjust timers. this is easy, as the offset is the same for all of them */
1250 for (i = 0; i < timercnt; ++i) 1895 for (i = 0; i < timercnt; ++i)
1896 {
1897 ANHE *he = timers + i + HEAP0;
1251 ((WT)timers [i])->at += ev_rt_now - mn_now; 1898 ANHE_w (*he)->at += ev_rt_now - mn_now;
1899 ANHE_at_cache (*he);
1900 }
1252 } 1901 }
1253 1902
1254 mn_now = ev_rt_now; 1903 mn_now = ev_rt_now;
1255 } 1904 }
1256} 1905}
1265ev_unref (EV_P) 1914ev_unref (EV_P)
1266{ 1915{
1267 --activecnt; 1916 --activecnt;
1268} 1917}
1269 1918
1919void
1920ev_now_update (EV_P)
1921{
1922 time_update (EV_A_ 1e100);
1923}
1924
1270static int loop_done; 1925static int loop_done;
1271 1926
1272void 1927void
1273ev_loop (EV_P_ int flags) 1928ev_loop (EV_P_ int flags)
1274{ 1929{
1275 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1930 loop_done = EVUNLOOP_CANCEL;
1276 ? EVUNLOOP_ONE
1277 : EVUNLOOP_CANCEL;
1278 1931
1279 while (activecnt) 1932 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1933
1934 do
1280 { 1935 {
1936#if EV_VERIFY >= 2
1937 ev_loop_verify (EV_A);
1938#endif
1939
1940#ifndef _WIN32
1941 if (expect_false (curpid)) /* penalise the forking check even more */
1942 if (expect_false (getpid () != curpid))
1943 {
1944 curpid = getpid ();
1945 postfork = 1;
1946 }
1947#endif
1948
1949#if EV_FORK_ENABLE
1950 /* we might have forked, so queue fork handlers */
1951 if (expect_false (postfork))
1952 if (forkcnt)
1953 {
1954 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1955 call_pending (EV_A);
1956 }
1957#endif
1958
1281 /* queue check watchers (and execute them) */ 1959 /* queue prepare watchers (and execute them) */
1282 if (expect_false (preparecnt)) 1960 if (expect_false (preparecnt))
1283 { 1961 {
1284 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1962 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1285 call_pending (EV_A); 1963 call_pending (EV_A);
1286 } 1964 }
1287 1965
1966 if (expect_false (!activecnt))
1967 break;
1968
1288 /* we might have forked, so reify kernel state if necessary */ 1969 /* we might have forked, so reify kernel state if necessary */
1289 if (expect_false (postfork)) 1970 if (expect_false (postfork))
1290 loop_fork (EV_A); 1971 loop_fork (EV_A);
1291 1972
1292 /* update fd-related kernel structures */ 1973 /* update fd-related kernel structures */
1293 fd_reify (EV_A); 1974 fd_reify (EV_A);
1294 1975
1295 /* calculate blocking time */ 1976 /* calculate blocking time */
1296 { 1977 {
1297 double block; 1978 ev_tstamp waittime = 0.;
1979 ev_tstamp sleeptime = 0.;
1298 1980
1299 if (flags & EVLOOP_NONBLOCK || idlecnt) 1981 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1300 block = 0.; /* do not block at all */
1301 else
1302 { 1982 {
1303 /* update time to cancel out callback processing overhead */ 1983 /* update time to cancel out callback processing overhead */
1304#if EV_USE_MONOTONIC
1305 if (expect_true (have_monotonic))
1306 time_update_monotonic (EV_A); 1984 time_update (EV_A_ 1e100);
1307 else
1308#endif
1309 {
1310 ev_rt_now = ev_time ();
1311 mn_now = ev_rt_now;
1312 }
1313 1985
1314 block = MAX_BLOCKTIME; 1986 waittime = MAX_BLOCKTIME;
1315 1987
1316 if (timercnt) 1988 if (timercnt)
1317 { 1989 {
1318 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1990 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1319 if (block > to) block = to; 1991 if (waittime > to) waittime = to;
1320 } 1992 }
1321 1993
1322#if EV_PERIODIC_ENABLE 1994#if EV_PERIODIC_ENABLE
1323 if (periodiccnt) 1995 if (periodiccnt)
1324 { 1996 {
1325 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1997 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1326 if (block > to) block = to; 1998 if (waittime > to) waittime = to;
1327 } 1999 }
1328#endif 2000#endif
1329 2001
1330 if (expect_false (block < 0.)) block = 0.; 2002 if (expect_false (waittime < timeout_blocktime))
2003 waittime = timeout_blocktime;
2004
2005 sleeptime = waittime - backend_fudge;
2006
2007 if (expect_true (sleeptime > io_blocktime))
2008 sleeptime = io_blocktime;
2009
2010 if (sleeptime)
2011 {
2012 ev_sleep (sleeptime);
2013 waittime -= sleeptime;
2014 }
1331 } 2015 }
1332 2016
2017 ++loop_count;
1333 backend_poll (EV_A_ block); 2018 backend_poll (EV_A_ waittime);
2019
2020 /* update ev_rt_now, do magic */
2021 time_update (EV_A_ waittime + sleeptime);
1334 } 2022 }
1335
1336 /* update ev_rt_now, do magic */
1337 time_update (EV_A);
1338 2023
1339 /* queue pending timers and reschedule them */ 2024 /* queue pending timers and reschedule them */
1340 timers_reify (EV_A); /* relative timers called last */ 2025 timers_reify (EV_A); /* relative timers called last */
1341#if EV_PERIODIC_ENABLE 2026#if EV_PERIODIC_ENABLE
1342 periodics_reify (EV_A); /* absolute timers called first */ 2027 periodics_reify (EV_A); /* absolute timers called first */
1343#endif 2028#endif
1344 2029
2030#if EV_IDLE_ENABLE
1345 /* queue idle watchers unless other events are pending */ 2031 /* queue idle watchers unless other events are pending */
1346 if (idlecnt && !any_pending (EV_A)) 2032 idle_reify (EV_A);
1347 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2033#endif
1348 2034
1349 /* queue check watchers, to be executed first */ 2035 /* queue check watchers, to be executed first */
1350 if (expect_false (checkcnt)) 2036 if (expect_false (checkcnt))
1351 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1352 2038
1353 call_pending (EV_A); 2039 call_pending (EV_A);
1354
1355 if (expect_false (loop_done))
1356 break;
1357 } 2040 }
2041 while (expect_true (
2042 activecnt
2043 && !loop_done
2044 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2045 ));
1358 2046
1359 if (loop_done == EVUNLOOP_ONE) 2047 if (loop_done == EVUNLOOP_ONE)
1360 loop_done = EVUNLOOP_CANCEL; 2048 loop_done = EVUNLOOP_CANCEL;
1361} 2049}
1362 2050
1389 head = &(*head)->next; 2077 head = &(*head)->next;
1390 } 2078 }
1391} 2079}
1392 2080
1393void inline_speed 2081void inline_speed
1394ev_clear_pending (EV_P_ W w) 2082clear_pending (EV_P_ W w)
1395{ 2083{
1396 if (w->pending) 2084 if (w->pending)
1397 { 2085 {
1398 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2086 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1399 w->pending = 0; 2087 w->pending = 0;
1400 } 2088 }
1401} 2089}
1402 2090
2091int
2092ev_clear_pending (EV_P_ void *w)
2093{
2094 W w_ = (W)w;
2095 int pending = w_->pending;
2096
2097 if (expect_true (pending))
2098 {
2099 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2100 w_->pending = 0;
2101 p->w = 0;
2102 return p->events;
2103 }
2104 else
2105 return 0;
2106}
2107
2108void inline_size
2109pri_adjust (EV_P_ W w)
2110{
2111 int pri = w->priority;
2112 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2113 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2114 w->priority = pri;
2115}
2116
1403void inline_speed 2117void inline_speed
1404ev_start (EV_P_ W w, int active) 2118ev_start (EV_P_ W w, int active)
1405{ 2119{
1406 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2120 pri_adjust (EV_A_ w);
1407 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1408
1409 w->active = active; 2121 w->active = active;
1410 ev_ref (EV_A); 2122 ev_ref (EV_A);
1411} 2123}
1412 2124
1413void inline_size 2125void inline_size
1417 w->active = 0; 2129 w->active = 0;
1418} 2130}
1419 2131
1420/*****************************************************************************/ 2132/*****************************************************************************/
1421 2133
1422void 2134void noinline
1423ev_io_start (EV_P_ ev_io *w) 2135ev_io_start (EV_P_ ev_io *w)
1424{ 2136{
1425 int fd = w->fd; 2137 int fd = w->fd;
1426 2138
1427 if (expect_false (ev_is_active (w))) 2139 if (expect_false (ev_is_active (w)))
1428 return; 2140 return;
1429 2141
1430 assert (("ev_io_start called with negative fd", fd >= 0)); 2142 assert (("ev_io_start called with negative fd", fd >= 0));
1431 2143
2144 EV_FREQUENT_CHECK;
2145
1432 ev_start (EV_A_ (W)w, 1); 2146 ev_start (EV_A_ (W)w, 1);
1433 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2147 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1434 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2148 wlist_add (&anfds[fd].head, (WL)w);
1435 2149
1436 fd_change (EV_A_ fd); 2150 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1437} 2151 w->events &= ~EV_IOFDSET;
1438 2152
1439void 2153 EV_FREQUENT_CHECK;
2154}
2155
2156void noinline
1440ev_io_stop (EV_P_ ev_io *w) 2157ev_io_stop (EV_P_ ev_io *w)
1441{ 2158{
1442 ev_clear_pending (EV_A_ (W)w); 2159 clear_pending (EV_A_ (W)w);
1443 if (expect_false (!ev_is_active (w))) 2160 if (expect_false (!ev_is_active (w)))
1444 return; 2161 return;
1445 2162
1446 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2163 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1447 2164
2165 EV_FREQUENT_CHECK;
2166
1448 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2167 wlist_del (&anfds[w->fd].head, (WL)w);
1449 ev_stop (EV_A_ (W)w); 2168 ev_stop (EV_A_ (W)w);
1450 2169
1451 fd_change (EV_A_ w->fd); 2170 fd_change (EV_A_ w->fd, 1);
1452}
1453 2171
1454void 2172 EV_FREQUENT_CHECK;
2173}
2174
2175void noinline
1455ev_timer_start (EV_P_ ev_timer *w) 2176ev_timer_start (EV_P_ ev_timer *w)
1456{ 2177{
1457 if (expect_false (ev_is_active (w))) 2178 if (expect_false (ev_is_active (w)))
1458 return; 2179 return;
1459 2180
1460 ((WT)w)->at += mn_now; 2181 ev_at (w) += mn_now;
1461 2182
1462 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2183 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1463 2184
2185 EV_FREQUENT_CHECK;
2186
2187 ++timercnt;
1464 ev_start (EV_A_ (W)w, ++timercnt); 2188 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1465 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2189 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1466 timers [timercnt - 1] = w; 2190 ANHE_w (timers [ev_active (w)]) = (WT)w;
1467 upheap ((WT *)timers, timercnt - 1); 2191 ANHE_at_cache (timers [ev_active (w)]);
2192 upheap (timers, ev_active (w));
1468 2193
2194 EV_FREQUENT_CHECK;
2195
1469 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2196 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1470} 2197}
1471 2198
1472void 2199void noinline
1473ev_timer_stop (EV_P_ ev_timer *w) 2200ev_timer_stop (EV_P_ ev_timer *w)
1474{ 2201{
1475 ev_clear_pending (EV_A_ (W)w); 2202 clear_pending (EV_A_ (W)w);
1476 if (expect_false (!ev_is_active (w))) 2203 if (expect_false (!ev_is_active (w)))
1477 return; 2204 return;
1478 2205
2206 EV_FREQUENT_CHECK;
2207
2208 {
2209 int active = ev_active (w);
2210
1479 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2211 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1480 2212
2213 --timercnt;
2214
1481 if (expect_true (((W)w)->active < timercnt--)) 2215 if (expect_true (active < timercnt + HEAP0))
1482 { 2216 {
1483 timers [((W)w)->active - 1] = timers [timercnt]; 2217 timers [active] = timers [timercnt + HEAP0];
1484 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2218 adjustheap (timers, timercnt, active);
1485 } 2219 }
2220 }
1486 2221
1487 ((WT)w)->at -= mn_now; 2222 EV_FREQUENT_CHECK;
2223
2224 ev_at (w) -= mn_now;
1488 2225
1489 ev_stop (EV_A_ (W)w); 2226 ev_stop (EV_A_ (W)w);
1490} 2227}
1491 2228
1492void 2229void noinline
1493ev_timer_again (EV_P_ ev_timer *w) 2230ev_timer_again (EV_P_ ev_timer *w)
1494{ 2231{
2232 EV_FREQUENT_CHECK;
2233
1495 if (ev_is_active (w)) 2234 if (ev_is_active (w))
1496 { 2235 {
1497 if (w->repeat) 2236 if (w->repeat)
1498 { 2237 {
1499 ((WT)w)->at = mn_now + w->repeat; 2238 ev_at (w) = mn_now + w->repeat;
2239 ANHE_at_cache (timers [ev_active (w)]);
1500 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2240 adjustheap (timers, timercnt, ev_active (w));
1501 } 2241 }
1502 else 2242 else
1503 ev_timer_stop (EV_A_ w); 2243 ev_timer_stop (EV_A_ w);
1504 } 2244 }
1505 else if (w->repeat) 2245 else if (w->repeat)
1506 { 2246 {
1507 w->at = w->repeat; 2247 ev_at (w) = w->repeat;
1508 ev_timer_start (EV_A_ w); 2248 ev_timer_start (EV_A_ w);
1509 } 2249 }
2250
2251 EV_FREQUENT_CHECK;
1510} 2252}
1511 2253
1512#if EV_PERIODIC_ENABLE 2254#if EV_PERIODIC_ENABLE
1513void 2255void noinline
1514ev_periodic_start (EV_P_ ev_periodic *w) 2256ev_periodic_start (EV_P_ ev_periodic *w)
1515{ 2257{
1516 if (expect_false (ev_is_active (w))) 2258 if (expect_false (ev_is_active (w)))
1517 return; 2259 return;
1518 2260
1519 if (w->reschedule_cb) 2261 if (w->reschedule_cb)
1520 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2262 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1521 else if (w->interval) 2263 else if (w->interval)
1522 { 2264 {
1523 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2265 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1524 /* this formula differs from the one in periodic_reify because we do not always round up */ 2266 /* this formula differs from the one in periodic_reify because we do not always round up */
1525 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2267 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1526 } 2268 }
2269 else
2270 ev_at (w) = w->offset;
1527 2271
2272 EV_FREQUENT_CHECK;
2273
2274 ++periodiccnt;
1528 ev_start (EV_A_ (W)w, ++periodiccnt); 2275 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1529 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2276 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1530 periodics [periodiccnt - 1] = w; 2277 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1531 upheap ((WT *)periodics, periodiccnt - 1); 2278 ANHE_at_cache (periodics [ev_active (w)]);
2279 upheap (periodics, ev_active (w));
1532 2280
2281 EV_FREQUENT_CHECK;
2282
1533 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2283 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1534} 2284}
1535 2285
1536void 2286void noinline
1537ev_periodic_stop (EV_P_ ev_periodic *w) 2287ev_periodic_stop (EV_P_ ev_periodic *w)
1538{ 2288{
1539 ev_clear_pending (EV_A_ (W)w); 2289 clear_pending (EV_A_ (W)w);
1540 if (expect_false (!ev_is_active (w))) 2290 if (expect_false (!ev_is_active (w)))
1541 return; 2291 return;
1542 2292
2293 EV_FREQUENT_CHECK;
2294
2295 {
2296 int active = ev_active (w);
2297
1543 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2298 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1544 2299
2300 --periodiccnt;
2301
1545 if (expect_true (((W)w)->active < periodiccnt--)) 2302 if (expect_true (active < periodiccnt + HEAP0))
1546 { 2303 {
1547 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2304 periodics [active] = periodics [periodiccnt + HEAP0];
1548 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2305 adjustheap (periodics, periodiccnt, active);
1549 } 2306 }
2307 }
2308
2309 EV_FREQUENT_CHECK;
1550 2310
1551 ev_stop (EV_A_ (W)w); 2311 ev_stop (EV_A_ (W)w);
1552} 2312}
1553 2313
1554void 2314void noinline
1555ev_periodic_again (EV_P_ ev_periodic *w) 2315ev_periodic_again (EV_P_ ev_periodic *w)
1556{ 2316{
1557 /* TODO: use adjustheap and recalculation */ 2317 /* TODO: use adjustheap and recalculation */
1558 ev_periodic_stop (EV_A_ w); 2318 ev_periodic_stop (EV_A_ w);
1559 ev_periodic_start (EV_A_ w); 2319 ev_periodic_start (EV_A_ w);
1562 2322
1563#ifndef SA_RESTART 2323#ifndef SA_RESTART
1564# define SA_RESTART 0 2324# define SA_RESTART 0
1565#endif 2325#endif
1566 2326
1567void 2327void noinline
1568ev_signal_start (EV_P_ ev_signal *w) 2328ev_signal_start (EV_P_ ev_signal *w)
1569{ 2329{
1570#if EV_MULTIPLICITY 2330#if EV_MULTIPLICITY
1571 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2331 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1572#endif 2332#endif
1573 if (expect_false (ev_is_active (w))) 2333 if (expect_false (ev_is_active (w)))
1574 return; 2334 return;
1575 2335
1576 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2336 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1577 2337
2338 evpipe_init (EV_A);
2339
2340 EV_FREQUENT_CHECK;
2341
2342 {
2343#ifndef _WIN32
2344 sigset_t full, prev;
2345 sigfillset (&full);
2346 sigprocmask (SIG_SETMASK, &full, &prev);
2347#endif
2348
2349 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2350
2351#ifndef _WIN32
2352 sigprocmask (SIG_SETMASK, &prev, 0);
2353#endif
2354 }
2355
1578 ev_start (EV_A_ (W)w, 1); 2356 ev_start (EV_A_ (W)w, 1);
1579 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1580 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2357 wlist_add (&signals [w->signum - 1].head, (WL)w);
1581 2358
1582 if (!((WL)w)->next) 2359 if (!((WL)w)->next)
1583 { 2360 {
1584#if _WIN32 2361#if _WIN32
1585 signal (w->signum, sighandler); 2362 signal (w->signum, ev_sighandler);
1586#else 2363#else
1587 struct sigaction sa; 2364 struct sigaction sa;
1588 sa.sa_handler = sighandler; 2365 sa.sa_handler = ev_sighandler;
1589 sigfillset (&sa.sa_mask); 2366 sigfillset (&sa.sa_mask);
1590 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2367 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1591 sigaction (w->signum, &sa, 0); 2368 sigaction (w->signum, &sa, 0);
1592#endif 2369#endif
1593 } 2370 }
1594}
1595 2371
1596void 2372 EV_FREQUENT_CHECK;
2373}
2374
2375void noinline
1597ev_signal_stop (EV_P_ ev_signal *w) 2376ev_signal_stop (EV_P_ ev_signal *w)
1598{ 2377{
1599 ev_clear_pending (EV_A_ (W)w); 2378 clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w))) 2379 if (expect_false (!ev_is_active (w)))
1601 return; 2380 return;
1602 2381
2382 EV_FREQUENT_CHECK;
2383
1603 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2384 wlist_del (&signals [w->signum - 1].head, (WL)w);
1604 ev_stop (EV_A_ (W)w); 2385 ev_stop (EV_A_ (W)w);
1605 2386
1606 if (!signals [w->signum - 1].head) 2387 if (!signals [w->signum - 1].head)
1607 signal (w->signum, SIG_DFL); 2388 signal (w->signum, SIG_DFL);
2389
2390 EV_FREQUENT_CHECK;
1608} 2391}
1609 2392
1610void 2393void
1611ev_child_start (EV_P_ ev_child *w) 2394ev_child_start (EV_P_ ev_child *w)
1612{ 2395{
1614 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2397 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1615#endif 2398#endif
1616 if (expect_false (ev_is_active (w))) 2399 if (expect_false (ev_is_active (w)))
1617 return; 2400 return;
1618 2401
2402 EV_FREQUENT_CHECK;
2403
1619 ev_start (EV_A_ (W)w, 1); 2404 ev_start (EV_A_ (W)w, 1);
1620 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2405 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2406
2407 EV_FREQUENT_CHECK;
1621} 2408}
1622 2409
1623void 2410void
1624ev_child_stop (EV_P_ ev_child *w) 2411ev_child_stop (EV_P_ ev_child *w)
1625{ 2412{
1626 ev_clear_pending (EV_A_ (W)w); 2413 clear_pending (EV_A_ (W)w);
1627 if (expect_false (!ev_is_active (w))) 2414 if (expect_false (!ev_is_active (w)))
1628 return; 2415 return;
1629 2416
2417 EV_FREQUENT_CHECK;
2418
1630 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2419 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1631 ev_stop (EV_A_ (W)w); 2420 ev_stop (EV_A_ (W)w);
2421
2422 EV_FREQUENT_CHECK;
1632} 2423}
1633 2424
1634#if EV_STAT_ENABLE 2425#if EV_STAT_ENABLE
1635 2426
1636# ifdef _WIN32 2427# ifdef _WIN32
2428# undef lstat
1637# define lstat(a,b) stat(a,b) 2429# define lstat(a,b) _stati64 (a,b)
1638# endif 2430# endif
1639 2431
1640#define DEF_STAT_INTERVAL 5.0074891 2432#define DEF_STAT_INTERVAL 5.0074891
1641#define MIN_STAT_INTERVAL 0.1074891 2433#define MIN_STAT_INTERVAL 0.1074891
2434
2435static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2436
2437#if EV_USE_INOTIFY
2438# define EV_INOTIFY_BUFSIZE 8192
2439
2440static void noinline
2441infy_add (EV_P_ ev_stat *w)
2442{
2443 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2444
2445 if (w->wd < 0)
2446 {
2447 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2448
2449 /* monitor some parent directory for speedup hints */
2450 /* note that exceeding the hardcoded limit is not a correctness issue, */
2451 /* but an efficiency issue only */
2452 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2453 {
2454 char path [4096];
2455 strcpy (path, w->path);
2456
2457 do
2458 {
2459 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2460 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2461
2462 char *pend = strrchr (path, '/');
2463
2464 if (!pend)
2465 break; /* whoops, no '/', complain to your admin */
2466
2467 *pend = 0;
2468 w->wd = inotify_add_watch (fs_fd, path, mask);
2469 }
2470 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2471 }
2472 }
2473 else
2474 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2475
2476 if (w->wd >= 0)
2477 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2478}
2479
2480static void noinline
2481infy_del (EV_P_ ev_stat *w)
2482{
2483 int slot;
2484 int wd = w->wd;
2485
2486 if (wd < 0)
2487 return;
2488
2489 w->wd = -2;
2490 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2491 wlist_del (&fs_hash [slot].head, (WL)w);
2492
2493 /* remove this watcher, if others are watching it, they will rearm */
2494 inotify_rm_watch (fs_fd, wd);
2495}
2496
2497static void noinline
2498infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2499{
2500 if (slot < 0)
2501 /* overflow, need to check for all hahs slots */
2502 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2503 infy_wd (EV_A_ slot, wd, ev);
2504 else
2505 {
2506 WL w_;
2507
2508 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2509 {
2510 ev_stat *w = (ev_stat *)w_;
2511 w_ = w_->next; /* lets us remove this watcher and all before it */
2512
2513 if (w->wd == wd || wd == -1)
2514 {
2515 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2516 {
2517 w->wd = -1;
2518 infy_add (EV_A_ w); /* re-add, no matter what */
2519 }
2520
2521 stat_timer_cb (EV_A_ &w->timer, 0);
2522 }
2523 }
2524 }
2525}
2526
2527static void
2528infy_cb (EV_P_ ev_io *w, int revents)
2529{
2530 char buf [EV_INOTIFY_BUFSIZE];
2531 struct inotify_event *ev = (struct inotify_event *)buf;
2532 int ofs;
2533 int len = read (fs_fd, buf, sizeof (buf));
2534
2535 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2536 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2537}
2538
2539void inline_size
2540infy_init (EV_P)
2541{
2542 if (fs_fd != -2)
2543 return;
2544
2545 fs_fd = inotify_init ();
2546
2547 if (fs_fd >= 0)
2548 {
2549 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2550 ev_set_priority (&fs_w, EV_MAXPRI);
2551 ev_io_start (EV_A_ &fs_w);
2552 }
2553}
2554
2555void inline_size
2556infy_fork (EV_P)
2557{
2558 int slot;
2559
2560 if (fs_fd < 0)
2561 return;
2562
2563 close (fs_fd);
2564 fs_fd = inotify_init ();
2565
2566 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2567 {
2568 WL w_ = fs_hash [slot].head;
2569 fs_hash [slot].head = 0;
2570
2571 while (w_)
2572 {
2573 ev_stat *w = (ev_stat *)w_;
2574 w_ = w_->next; /* lets us add this watcher */
2575
2576 w->wd = -1;
2577
2578 if (fs_fd >= 0)
2579 infy_add (EV_A_ w); /* re-add, no matter what */
2580 else
2581 ev_timer_start (EV_A_ &w->timer);
2582 }
2583
2584 }
2585}
2586
2587#endif
2588
2589#ifdef _WIN32
2590# define EV_LSTAT(p,b) _stati64 (p, b)
2591#else
2592# define EV_LSTAT(p,b) lstat (p, b)
2593#endif
1642 2594
1643void 2595void
1644ev_stat_stat (EV_P_ ev_stat *w) 2596ev_stat_stat (EV_P_ ev_stat *w)
1645{ 2597{
1646 if (lstat (w->path, &w->attr) < 0) 2598 if (lstat (w->path, &w->attr) < 0)
1647 w->attr.st_nlink = 0; 2599 w->attr.st_nlink = 0;
1648 else if (!w->attr.st_nlink) 2600 else if (!w->attr.st_nlink)
1649 w->attr.st_nlink = 1; 2601 w->attr.st_nlink = 1;
1650} 2602}
1651 2603
1652static void 2604static void noinline
1653stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2605stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1654{ 2606{
1655 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2607 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1656 2608
1657 /* we copy this here each the time so that */ 2609 /* we copy this here each the time so that */
1658 /* prev has the old value when the callback gets invoked */ 2610 /* prev has the old value when the callback gets invoked */
1659 w->prev = w->attr; 2611 w->prev = w->attr;
1660 ev_stat_stat (EV_A_ w); 2612 ev_stat_stat (EV_A_ w);
1661 2613
1662 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2614 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2615 if (
2616 w->prev.st_dev != w->attr.st_dev
2617 || w->prev.st_ino != w->attr.st_ino
2618 || w->prev.st_mode != w->attr.st_mode
2619 || w->prev.st_nlink != w->attr.st_nlink
2620 || w->prev.st_uid != w->attr.st_uid
2621 || w->prev.st_gid != w->attr.st_gid
2622 || w->prev.st_rdev != w->attr.st_rdev
2623 || w->prev.st_size != w->attr.st_size
2624 || w->prev.st_atime != w->attr.st_atime
2625 || w->prev.st_mtime != w->attr.st_mtime
2626 || w->prev.st_ctime != w->attr.st_ctime
2627 ) {
2628 #if EV_USE_INOTIFY
2629 infy_del (EV_A_ w);
2630 infy_add (EV_A_ w);
2631 ev_stat_stat (EV_A_ w); /* avoid race... */
2632 #endif
2633
1663 ev_feed_event (EV_A_ w, EV_STAT); 2634 ev_feed_event (EV_A_ w, EV_STAT);
2635 }
1664} 2636}
1665 2637
1666void 2638void
1667ev_stat_start (EV_P_ ev_stat *w) 2639ev_stat_start (EV_P_ ev_stat *w)
1668{ 2640{
1678 if (w->interval < MIN_STAT_INTERVAL) 2650 if (w->interval < MIN_STAT_INTERVAL)
1679 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL; 2651 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1680 2652
1681 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2653 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1682 ev_set_priority (&w->timer, ev_priority (w)); 2654 ev_set_priority (&w->timer, ev_priority (w));
2655
2656#if EV_USE_INOTIFY
2657 infy_init (EV_A);
2658
2659 if (fs_fd >= 0)
2660 infy_add (EV_A_ w);
2661 else
2662#endif
1683 ev_timer_start (EV_A_ &w->timer); 2663 ev_timer_start (EV_A_ &w->timer);
1684 2664
1685 ev_start (EV_A_ (W)w, 1); 2665 ev_start (EV_A_ (W)w, 1);
2666
2667 EV_FREQUENT_CHECK;
1686} 2668}
1687 2669
1688void 2670void
1689ev_stat_stop (EV_P_ ev_stat *w) 2671ev_stat_stop (EV_P_ ev_stat *w)
1690{ 2672{
1691 ev_clear_pending (EV_A_ (W)w); 2673 clear_pending (EV_A_ (W)w);
1692 if (expect_false (!ev_is_active (w))) 2674 if (expect_false (!ev_is_active (w)))
1693 return; 2675 return;
1694 2676
2677 EV_FREQUENT_CHECK;
2678
2679#if EV_USE_INOTIFY
2680 infy_del (EV_A_ w);
2681#endif
1695 ev_timer_stop (EV_A_ &w->timer); 2682 ev_timer_stop (EV_A_ &w->timer);
1696 2683
1697 ev_stop (EV_A_ (W)w); 2684 ev_stop (EV_A_ (W)w);
1698}
1699#endif
1700 2685
2686 EV_FREQUENT_CHECK;
2687}
2688#endif
2689
2690#if EV_IDLE_ENABLE
1701void 2691void
1702ev_idle_start (EV_P_ ev_idle *w) 2692ev_idle_start (EV_P_ ev_idle *w)
1703{ 2693{
1704 if (expect_false (ev_is_active (w))) 2694 if (expect_false (ev_is_active (w)))
1705 return; 2695 return;
1706 2696
2697 pri_adjust (EV_A_ (W)w);
2698
2699 EV_FREQUENT_CHECK;
2700
2701 {
2702 int active = ++idlecnt [ABSPRI (w)];
2703
2704 ++idleall;
1707 ev_start (EV_A_ (W)w, ++idlecnt); 2705 ev_start (EV_A_ (W)w, active);
2706
1708 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2707 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1709 idles [idlecnt - 1] = w; 2708 idles [ABSPRI (w)][active - 1] = w;
2709 }
2710
2711 EV_FREQUENT_CHECK;
1710} 2712}
1711 2713
1712void 2714void
1713ev_idle_stop (EV_P_ ev_idle *w) 2715ev_idle_stop (EV_P_ ev_idle *w)
1714{ 2716{
1715 ev_clear_pending (EV_A_ (W)w); 2717 clear_pending (EV_A_ (W)w);
1716 if (expect_false (!ev_is_active (w))) 2718 if (expect_false (!ev_is_active (w)))
1717 return; 2719 return;
1718 2720
2721 EV_FREQUENT_CHECK;
2722
1719 { 2723 {
1720 int active = ((W)w)->active; 2724 int active = ev_active (w);
1721 idles [active - 1] = idles [--idlecnt]; 2725
1722 ((W)idles [active - 1])->active = active; 2726 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2727 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2728
2729 ev_stop (EV_A_ (W)w);
2730 --idleall;
1723 } 2731 }
1724 2732
1725 ev_stop (EV_A_ (W)w); 2733 EV_FREQUENT_CHECK;
1726} 2734}
2735#endif
1727 2736
1728void 2737void
1729ev_prepare_start (EV_P_ ev_prepare *w) 2738ev_prepare_start (EV_P_ ev_prepare *w)
1730{ 2739{
1731 if (expect_false (ev_is_active (w))) 2740 if (expect_false (ev_is_active (w)))
1732 return; 2741 return;
2742
2743 EV_FREQUENT_CHECK;
1733 2744
1734 ev_start (EV_A_ (W)w, ++preparecnt); 2745 ev_start (EV_A_ (W)w, ++preparecnt);
1735 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2746 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1736 prepares [preparecnt - 1] = w; 2747 prepares [preparecnt - 1] = w;
2748
2749 EV_FREQUENT_CHECK;
1737} 2750}
1738 2751
1739void 2752void
1740ev_prepare_stop (EV_P_ ev_prepare *w) 2753ev_prepare_stop (EV_P_ ev_prepare *w)
1741{ 2754{
1742 ev_clear_pending (EV_A_ (W)w); 2755 clear_pending (EV_A_ (W)w);
1743 if (expect_false (!ev_is_active (w))) 2756 if (expect_false (!ev_is_active (w)))
1744 return; 2757 return;
1745 2758
2759 EV_FREQUENT_CHECK;
2760
1746 { 2761 {
1747 int active = ((W)w)->active; 2762 int active = ev_active (w);
2763
1748 prepares [active - 1] = prepares [--preparecnt]; 2764 prepares [active - 1] = prepares [--preparecnt];
1749 ((W)prepares [active - 1])->active = active; 2765 ev_active (prepares [active - 1]) = active;
1750 } 2766 }
1751 2767
1752 ev_stop (EV_A_ (W)w); 2768 ev_stop (EV_A_ (W)w);
2769
2770 EV_FREQUENT_CHECK;
1753} 2771}
1754 2772
1755void 2773void
1756ev_check_start (EV_P_ ev_check *w) 2774ev_check_start (EV_P_ ev_check *w)
1757{ 2775{
1758 if (expect_false (ev_is_active (w))) 2776 if (expect_false (ev_is_active (w)))
1759 return; 2777 return;
2778
2779 EV_FREQUENT_CHECK;
1760 2780
1761 ev_start (EV_A_ (W)w, ++checkcnt); 2781 ev_start (EV_A_ (W)w, ++checkcnt);
1762 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2782 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1763 checks [checkcnt - 1] = w; 2783 checks [checkcnt - 1] = w;
2784
2785 EV_FREQUENT_CHECK;
1764} 2786}
1765 2787
1766void 2788void
1767ev_check_stop (EV_P_ ev_check *w) 2789ev_check_stop (EV_P_ ev_check *w)
1768{ 2790{
1769 ev_clear_pending (EV_A_ (W)w); 2791 clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w))) 2792 if (expect_false (!ev_is_active (w)))
1771 return; 2793 return;
1772 2794
2795 EV_FREQUENT_CHECK;
2796
1773 { 2797 {
1774 int active = ((W)w)->active; 2798 int active = ev_active (w);
2799
1775 checks [active - 1] = checks [--checkcnt]; 2800 checks [active - 1] = checks [--checkcnt];
1776 ((W)checks [active - 1])->active = active; 2801 ev_active (checks [active - 1]) = active;
1777 } 2802 }
1778 2803
1779 ev_stop (EV_A_ (W)w); 2804 ev_stop (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
1780} 2807}
1781 2808
1782#if EV_EMBED_ENABLE 2809#if EV_EMBED_ENABLE
1783void noinline 2810void noinline
1784ev_embed_sweep (EV_P_ ev_embed *w) 2811ev_embed_sweep (EV_P_ ev_embed *w)
1785{ 2812{
1786 ev_loop (w->loop, EVLOOP_NONBLOCK); 2813 ev_loop (w->other, EVLOOP_NONBLOCK);
1787} 2814}
1788 2815
1789static void 2816static void
1790embed_cb (EV_P_ ev_io *io, int revents) 2817embed_io_cb (EV_P_ ev_io *io, int revents)
1791{ 2818{
1792 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2819 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1793 2820
1794 if (ev_cb (w)) 2821 if (ev_cb (w))
1795 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2822 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1796 else 2823 else
1797 ev_embed_sweep (loop, w); 2824 ev_loop (w->other, EVLOOP_NONBLOCK);
1798} 2825}
2826
2827static void
2828embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2829{
2830 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2831
2832 {
2833 struct ev_loop *loop = w->other;
2834
2835 while (fdchangecnt)
2836 {
2837 fd_reify (EV_A);
2838 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2839 }
2840 }
2841}
2842
2843static void
2844embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2845{
2846 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2847
2848 {
2849 struct ev_loop *loop = w->other;
2850
2851 ev_loop_fork (EV_A);
2852 }
2853}
2854
2855#if 0
2856static void
2857embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2858{
2859 ev_idle_stop (EV_A_ idle);
2860}
2861#endif
1799 2862
1800void 2863void
1801ev_embed_start (EV_P_ ev_embed *w) 2864ev_embed_start (EV_P_ ev_embed *w)
1802{ 2865{
1803 if (expect_false (ev_is_active (w))) 2866 if (expect_false (ev_is_active (w)))
1804 return; 2867 return;
1805 2868
1806 { 2869 {
1807 struct ev_loop *loop = w->loop; 2870 struct ev_loop *loop = w->other;
1808 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2871 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1809 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2872 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1810 } 2873 }
2874
2875 EV_FREQUENT_CHECK;
1811 2876
1812 ev_set_priority (&w->io, ev_priority (w)); 2877 ev_set_priority (&w->io, ev_priority (w));
1813 ev_io_start (EV_A_ &w->io); 2878 ev_io_start (EV_A_ &w->io);
1814 2879
2880 ev_prepare_init (&w->prepare, embed_prepare_cb);
2881 ev_set_priority (&w->prepare, EV_MINPRI);
2882 ev_prepare_start (EV_A_ &w->prepare);
2883
2884 ev_fork_init (&w->fork, embed_fork_cb);
2885 ev_fork_start (EV_A_ &w->fork);
2886
2887 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2888
1815 ev_start (EV_A_ (W)w, 1); 2889 ev_start (EV_A_ (W)w, 1);
2890
2891 EV_FREQUENT_CHECK;
1816} 2892}
1817 2893
1818void 2894void
1819ev_embed_stop (EV_P_ ev_embed *w) 2895ev_embed_stop (EV_P_ ev_embed *w)
1820{ 2896{
1821 ev_clear_pending (EV_A_ (W)w); 2897 clear_pending (EV_A_ (W)w);
1822 if (expect_false (!ev_is_active (w))) 2898 if (expect_false (!ev_is_active (w)))
1823 return; 2899 return;
1824 2900
2901 EV_FREQUENT_CHECK;
2902
1825 ev_io_stop (EV_A_ &w->io); 2903 ev_io_stop (EV_A_ &w->io);
2904 ev_prepare_stop (EV_A_ &w->prepare);
2905 ev_fork_stop (EV_A_ &w->fork);
2906
2907 EV_FREQUENT_CHECK;
2908}
2909#endif
2910
2911#if EV_FORK_ENABLE
2912void
2913ev_fork_start (EV_P_ ev_fork *w)
2914{
2915 if (expect_false (ev_is_active (w)))
2916 return;
2917
2918 EV_FREQUENT_CHECK;
2919
2920 ev_start (EV_A_ (W)w, ++forkcnt);
2921 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2922 forks [forkcnt - 1] = w;
2923
2924 EV_FREQUENT_CHECK;
2925}
2926
2927void
2928ev_fork_stop (EV_P_ ev_fork *w)
2929{
2930 clear_pending (EV_A_ (W)w);
2931 if (expect_false (!ev_is_active (w)))
2932 return;
2933
2934 EV_FREQUENT_CHECK;
2935
2936 {
2937 int active = ev_active (w);
2938
2939 forks [active - 1] = forks [--forkcnt];
2940 ev_active (forks [active - 1]) = active;
2941 }
1826 2942
1827 ev_stop (EV_A_ (W)w); 2943 ev_stop (EV_A_ (W)w);
2944
2945 EV_FREQUENT_CHECK;
2946}
2947#endif
2948
2949#if EV_ASYNC_ENABLE
2950void
2951ev_async_start (EV_P_ ev_async *w)
2952{
2953 if (expect_false (ev_is_active (w)))
2954 return;
2955
2956 evpipe_init (EV_A);
2957
2958 EV_FREQUENT_CHECK;
2959
2960 ev_start (EV_A_ (W)w, ++asynccnt);
2961 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2962 asyncs [asynccnt - 1] = w;
2963
2964 EV_FREQUENT_CHECK;
2965}
2966
2967void
2968ev_async_stop (EV_P_ ev_async *w)
2969{
2970 clear_pending (EV_A_ (W)w);
2971 if (expect_false (!ev_is_active (w)))
2972 return;
2973
2974 EV_FREQUENT_CHECK;
2975
2976 {
2977 int active = ev_active (w);
2978
2979 asyncs [active - 1] = asyncs [--asynccnt];
2980 ev_active (asyncs [active - 1]) = active;
2981 }
2982
2983 ev_stop (EV_A_ (W)w);
2984
2985 EV_FREQUENT_CHECK;
2986}
2987
2988void
2989ev_async_send (EV_P_ ev_async *w)
2990{
2991 w->sent = 1;
2992 evpipe_write (EV_A_ &gotasync);
1828} 2993}
1829#endif 2994#endif
1830 2995
1831/*****************************************************************************/ 2996/*****************************************************************************/
1832 2997
1842once_cb (EV_P_ struct ev_once *once, int revents) 3007once_cb (EV_P_ struct ev_once *once, int revents)
1843{ 3008{
1844 void (*cb)(int revents, void *arg) = once->cb; 3009 void (*cb)(int revents, void *arg) = once->cb;
1845 void *arg = once->arg; 3010 void *arg = once->arg;
1846 3011
1847 ev_io_stop (EV_A_ &once->io); 3012 ev_io_stop (EV_A_ &once->io);
1848 ev_timer_stop (EV_A_ &once->to); 3013 ev_timer_stop (EV_A_ &once->to);
1849 ev_free (once); 3014 ev_free (once);
1850 3015
1851 cb (revents, arg); 3016 cb (revents, arg);
1852} 3017}
1853 3018
1854static void 3019static void
1855once_cb_io (EV_P_ ev_io *w, int revents) 3020once_cb_io (EV_P_ ev_io *w, int revents)
1856{ 3021{
1857 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3022 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3023
3024 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1858} 3025}
1859 3026
1860static void 3027static void
1861once_cb_to (EV_P_ ev_timer *w, int revents) 3028once_cb_to (EV_P_ ev_timer *w, int revents)
1862{ 3029{
1863 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3030 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3031
3032 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1864} 3033}
1865 3034
1866void 3035void
1867ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3036ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1868{ 3037{
1890 ev_timer_set (&once->to, timeout, 0.); 3059 ev_timer_set (&once->to, timeout, 0.);
1891 ev_timer_start (EV_A_ &once->to); 3060 ev_timer_start (EV_A_ &once->to);
1892 } 3061 }
1893} 3062}
1894 3063
3064#if EV_MULTIPLICITY
3065 #include "ev_wrap.h"
3066#endif
3067
1895#ifdef __cplusplus 3068#ifdef __cplusplus
1896} 3069}
1897#endif 3070#endif
1898 3071

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines