ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.146 by root, Tue Nov 27 09:17:51 2007 UTC vs.
Revision 1.182 by root, Wed Dec 12 01:27:08 2007 UTC

94# else 94# else
95# define EV_USE_PORT 0 95# define EV_USE_PORT 0
96# endif 96# endif
97# endif 97# endif
98 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
99#endif 107#endif
100 108
101#include <math.h> 109#include <math.h>
102#include <stdlib.h> 110#include <stdlib.h>
103#include <fcntl.h> 111#include <fcntl.h>
109#include <errno.h> 117#include <errno.h>
110#include <sys/types.h> 118#include <sys/types.h>
111#include <time.h> 119#include <time.h>
112 120
113#include <signal.h> 121#include <signal.h>
122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
114 128
115#ifndef _WIN32 129#ifndef _WIN32
116# include <sys/time.h> 130# include <sys/time.h>
117# include <sys/wait.h> 131# include <sys/wait.h>
118# include <unistd.h> 132# include <unistd.h>
156 170
157#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 172# define EV_USE_PORT 0
159#endif 173#endif
160 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
161/**/ 195/**/
162 196
163#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
172 206
173#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 208# include <winsock.h>
175#endif 209#endif
176 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
177/**/ 219/**/
220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 230
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189 234
190#if __GNUC__ >= 3 235#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline)) 237# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
200#else 238#else
201# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
202# define inline_speed static
203# define inline_size static
204# define noinline 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
205#endif 244#endif
206 245
207#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
208#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
209 255
210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
211#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
212 258
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
215 261
216typedef ev_watcher *W; 262typedef ev_watcher *W;
217typedef ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
218typedef ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
254ev_set_allocator (void *(*cb)(void *ptr, long size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
255{ 301{
256 alloc = cb; 302 alloc = cb;
257} 303}
258 304
259static void * 305inline_speed void *
260ev_realloc (void *ptr, long size) 306ev_realloc (void *ptr, long size)
261{ 307{
262 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
263 309
264 if (!ptr && size) 310 if (!ptr && size)
288typedef struct 334typedef struct
289{ 335{
290 W w; 336 W w;
291 int events; 337 int events;
292} ANPENDING; 338} ANPENDING;
339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
293 346
294#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
295 348
296 struct ev_loop 349 struct ev_loop
297 { 350 {
354{ 407{
355 return ev_rt_now; 408 return ev_rt_now;
356} 409}
357#endif 410#endif
358 411
359#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
360 439
361#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
362 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
363 { \ 442 { \
364 int newcnt = cur; \ 443 int ocur_ = (cur); \
365 do \ 444 (base) = (type *)array_realloc \
366 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
367 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
368 } \
369 while ((cnt) > newcnt); \
370 \
371 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
372 init (base + cur, newcnt - cur); \
373 cur = newcnt; \
374 } 447 }
375 448
449#if 0
376#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
377 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
378 { \ 452 { \
379 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
382 } 456 }
457#endif
383 458
384#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
386 461
387/*****************************************************************************/ 462/*****************************************************************************/
388 463
389void noinline 464void noinline
390ev_feed_event (EV_P_ void *w, int revents) 465ev_feed_event (EV_P_ void *w, int revents)
391{ 466{
392 W w_ = (W)w; 467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
393 469
394 if (expect_false (w_->pending)) 470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
395 { 473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 477 pendings [pri][w_->pending - 1].events = revents;
397 return;
398 } 478 }
399
400 w_->pending = ++pendingcnt [ABSPRI (w_)];
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404} 479}
405 480
406void inline_size 481void inline_speed
407queue_events (EV_P_ W *events, int eventcnt, int type) 482queue_events (EV_P_ W *events, int eventcnt, int type)
408{ 483{
409 int i; 484 int i;
410 485
411 for (i = 0; i < eventcnt; ++i) 486 for (i = 0; i < eventcnt; ++i)
443} 518}
444 519
445void 520void
446ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
447{ 522{
523 if (fd >= 0 && fd < anfdmax)
448 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
449} 525}
450 526
451void inline_size 527void inline_size
452fd_reify (EV_P) 528fd_reify (EV_P)
453{ 529{
547static void noinline 623static void noinline
548fd_rearm_all (EV_P) 624fd_rearm_all (EV_P)
549{ 625{
550 int fd; 626 int fd;
551 627
552 /* this should be highly optimised to not do anything but set a flag */
553 for (fd = 0; fd < anfdmax; ++fd) 628 for (fd = 0; fd < anfdmax; ++fd)
554 if (anfds [fd].events) 629 if (anfds [fd].events)
555 { 630 {
556 anfds [fd].events = 0; 631 anfds [fd].events = 0;
557 fd_change (EV_A_ fd); 632 fd_change (EV_A_ fd);
563void inline_speed 638void inline_speed
564upheap (WT *heap, int k) 639upheap (WT *heap, int k)
565{ 640{
566 WT w = heap [k]; 641 WT w = heap [k];
567 642
568 while (k && heap [k >> 1]->at > w->at) 643 while (k)
569 { 644 {
645 int p = (k - 1) >> 1;
646
647 if (heap [p]->at <= w->at)
648 break;
649
570 heap [k] = heap [k >> 1]; 650 heap [k] = heap [p];
571 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
572 k >>= 1; 652 k = p;
573 } 653 }
574 654
575 heap [k] = w; 655 heap [k] = w;
576 ((W)heap [k])->active = k + 1; 656 ((W)heap [k])->active = k + 1;
577
578} 657}
579 658
580void inline_speed 659void inline_speed
581downheap (WT *heap, int N, int k) 660downheap (WT *heap, int N, int k)
582{ 661{
583 WT w = heap [k]; 662 WT w = heap [k];
584 663
585 while (k < (N >> 1)) 664 for (;;)
586 { 665 {
587 int j = k << 1; 666 int c = (k << 1) + 1;
588 667
589 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 668 if (c >= N)
590 ++j;
591
592 if (w->at <= heap [j]->at)
593 break; 669 break;
594 670
671 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
672 ? 1 : 0;
673
674 if (w->at <= heap [c]->at)
675 break;
676
595 heap [k] = heap [j]; 677 heap [k] = heap [c];
596 ((W)heap [k])->active = k + 1; 678 ((W)heap [k])->active = k + 1;
679
597 k = j; 680 k = c;
598 } 681 }
599 682
600 heap [k] = w; 683 heap [k] = w;
601 ((W)heap [k])->active = k + 1; 684 ((W)heap [k])->active = k + 1;
602} 685}
684 for (signum = signalmax; signum--; ) 767 for (signum = signalmax; signum--; )
685 if (signals [signum].gotsig) 768 if (signals [signum].gotsig)
686 ev_feed_signal_event (EV_A_ signum + 1); 769 ev_feed_signal_event (EV_A_ signum + 1);
687} 770}
688 771
689void inline_size 772void inline_speed
690fd_intern (int fd) 773fd_intern (int fd)
691{ 774{
692#ifdef _WIN32 775#ifdef _WIN32
693 int arg = 1; 776 int arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 777 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
709 ev_unref (EV_A); /* child watcher should not keep loop alive */ 792 ev_unref (EV_A); /* child watcher should not keep loop alive */
710} 793}
711 794
712/*****************************************************************************/ 795/*****************************************************************************/
713 796
714static ev_child *childs [PID_HASHSIZE]; 797static WL childs [EV_PID_HASHSIZE];
715 798
716#ifndef _WIN32 799#ifndef _WIN32
717 800
718static ev_signal childev; 801static ev_signal childev;
719 802
720void inline_speed 803void inline_speed
721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 804child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
722{ 805{
723 ev_child *w; 806 ev_child *w;
724 807
725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 808 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
726 if (w->pid == pid || !w->pid) 809 if (w->pid == pid || !w->pid)
727 { 810 {
728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 811 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
729 w->rpid = pid; 812 w->rpid = pid;
730 w->rstatus = status; 813 w->rstatus = status;
731 ev_feed_event (EV_A_ (W)w, EV_CHILD); 814 ev_feed_event (EV_A_ (W)w, EV_CHILD);
732 } 815 }
733} 816}
734 817
735#ifndef WCONTINUED 818#ifndef WCONTINUED
751 /* make sure we are called again until all childs have been reaped */ 834 /* make sure we are called again until all childs have been reaped */
752 /* we need to do it this way so that the callback gets called before we continue */ 835 /* we need to do it this way so that the callback gets called before we continue */
753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 836 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
754 837
755 child_reap (EV_A_ sw, pid, pid, status); 838 child_reap (EV_A_ sw, pid, pid, status);
839 if (EV_PID_HASHSIZE > 1)
756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 840 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
757} 841}
758 842
759#endif 843#endif
760 844
761/*****************************************************************************/ 845/*****************************************************************************/
844ev_backend (EV_P) 928ev_backend (EV_P)
845{ 929{
846 return backend; 930 return backend;
847} 931}
848 932
849static void 933unsigned int
934ev_loop_count (EV_P)
935{
936 return loop_count;
937}
938
939static void noinline
850loop_init (EV_P_ unsigned int flags) 940loop_init (EV_P_ unsigned int flags)
851{ 941{
852 if (!backend) 942 if (!backend)
853 { 943 {
854#if EV_USE_MONOTONIC 944#if EV_USE_MONOTONIC
862 ev_rt_now = ev_time (); 952 ev_rt_now = ev_time ();
863 mn_now = get_clock (); 953 mn_now = get_clock ();
864 now_floor = mn_now; 954 now_floor = mn_now;
865 rtmn_diff = ev_rt_now - mn_now; 955 rtmn_diff = ev_rt_now - mn_now;
866 956
957 /* pid check not overridable via env */
958#ifndef _WIN32
959 if (flags & EVFLAG_FORKCHECK)
960 curpid = getpid ();
961#endif
962
867 if (!(flags & EVFLAG_NOENV) 963 if (!(flags & EVFLAG_NOENV)
868 && !enable_secure () 964 && !enable_secure ()
869 && getenv ("LIBEV_FLAGS")) 965 && getenv ("LIBEV_FLAGS"))
870 flags = atoi (getenv ("LIBEV_FLAGS")); 966 flags = atoi (getenv ("LIBEV_FLAGS"));
871 967
872 if (!(flags & 0x0000ffffUL)) 968 if (!(flags & 0x0000ffffUL))
873 flags |= ev_recommended_backends (); 969 flags |= ev_recommended_backends ();
874 970
875 backend = 0; 971 backend = 0;
972 backend_fd = -1;
973#if EV_USE_INOTIFY
974 fs_fd = -2;
975#endif
976
876#if EV_USE_PORT 977#if EV_USE_PORT
877 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 978 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
878#endif 979#endif
879#if EV_USE_KQUEUE 980#if EV_USE_KQUEUE
880 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 981 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
892 ev_init (&sigev, sigcb); 993 ev_init (&sigev, sigcb);
893 ev_set_priority (&sigev, EV_MAXPRI); 994 ev_set_priority (&sigev, EV_MAXPRI);
894 } 995 }
895} 996}
896 997
897static void 998static void noinline
898loop_destroy (EV_P) 999loop_destroy (EV_P)
899{ 1000{
900 int i; 1001 int i;
1002
1003#if EV_USE_INOTIFY
1004 if (fs_fd >= 0)
1005 close (fs_fd);
1006#endif
1007
1008 if (backend_fd >= 0)
1009 close (backend_fd);
901 1010
902#if EV_USE_PORT 1011#if EV_USE_PORT
903 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1012 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
904#endif 1013#endif
905#if EV_USE_KQUEUE 1014#if EV_USE_KQUEUE
914#if EV_USE_SELECT 1023#if EV_USE_SELECT
915 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1024 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
916#endif 1025#endif
917 1026
918 for (i = NUMPRI; i--; ) 1027 for (i = NUMPRI; i--; )
1028 {
919 array_free (pending, [i]); 1029 array_free (pending, [i]);
1030#if EV_IDLE_ENABLE
1031 array_free (idle, [i]);
1032#endif
1033 }
920 1034
921 /* have to use the microsoft-never-gets-it-right macro */ 1035 /* have to use the microsoft-never-gets-it-right macro */
922 array_free (fdchange, EMPTY0); 1036 array_free (fdchange, EMPTY);
923 array_free (timer, EMPTY0); 1037 array_free (timer, EMPTY);
924#if EV_PERIODIC_ENABLE 1038#if EV_PERIODIC_ENABLE
925 array_free (periodic, EMPTY0); 1039 array_free (periodic, EMPTY);
926#endif 1040#endif
927 array_free (idle, EMPTY0);
928 array_free (prepare, EMPTY0); 1041 array_free (prepare, EMPTY);
929 array_free (check, EMPTY0); 1042 array_free (check, EMPTY);
930 1043
931 backend = 0; 1044 backend = 0;
932} 1045}
933 1046
934static void 1047void inline_size infy_fork (EV_P);
1048
1049void inline_size
935loop_fork (EV_P) 1050loop_fork (EV_P)
936{ 1051{
937#if EV_USE_PORT 1052#if EV_USE_PORT
938 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1053 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
939#endif 1054#endif
940#if EV_USE_KQUEUE 1055#if EV_USE_KQUEUE
941 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1056 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
942#endif 1057#endif
943#if EV_USE_EPOLL 1058#if EV_USE_EPOLL
944 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1059 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1060#endif
1061#if EV_USE_INOTIFY
1062 infy_fork (EV_A);
945#endif 1063#endif
946 1064
947 if (ev_is_active (&sigev)) 1065 if (ev_is_active (&sigev))
948 { 1066 {
949 /* default loop */ 1067 /* default loop */
1065 postfork = 1; 1183 postfork = 1;
1066} 1184}
1067 1185
1068/*****************************************************************************/ 1186/*****************************************************************************/
1069 1187
1070int inline_size 1188void
1071any_pending (EV_P) 1189ev_invoke (EV_P_ void *w, int revents)
1072{ 1190{
1073 int pri; 1191 EV_CB_INVOKE ((W)w, revents);
1074
1075 for (pri = NUMPRI; pri--; )
1076 if (pendingcnt [pri])
1077 return 1;
1078
1079 return 0;
1080} 1192}
1081 1193
1082void inline_speed 1194void inline_speed
1083call_pending (EV_P) 1195call_pending (EV_P)
1084{ 1196{
1089 { 1201 {
1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1202 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1091 1203
1092 if (expect_true (p->w)) 1204 if (expect_true (p->w))
1093 { 1205 {
1094 assert (("non-pending watcher on pending list", p->w->pending)); 1206 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1095 1207
1096 p->w->pending = 0; 1208 p->w->pending = 0;
1097 EV_CB_INVOKE (p->w, p->events); 1209 EV_CB_INVOKE (p->w, p->events);
1098 } 1210 }
1099 } 1211 }
1102void inline_size 1214void inline_size
1103timers_reify (EV_P) 1215timers_reify (EV_P)
1104{ 1216{
1105 while (timercnt && ((WT)timers [0])->at <= mn_now) 1217 while (timercnt && ((WT)timers [0])->at <= mn_now)
1106 { 1218 {
1107 ev_timer *w = timers [0]; 1219 ev_timer *w = (ev_timer *)timers [0];
1108 1220
1109 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1221 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1110 1222
1111 /* first reschedule or stop timer */ 1223 /* first reschedule or stop timer */
1112 if (w->repeat) 1224 if (w->repeat)
1113 { 1225 {
1114 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1226 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1115 1227
1116 ((WT)w)->at += w->repeat; 1228 ((WT)w)->at += w->repeat;
1117 if (((WT)w)->at < mn_now) 1229 if (((WT)w)->at < mn_now)
1118 ((WT)w)->at = mn_now; 1230 ((WT)w)->at = mn_now;
1119 1231
1120 downheap ((WT *)timers, timercnt, 0); 1232 downheap (timers, timercnt, 0);
1121 } 1233 }
1122 else 1234 else
1123 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1235 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 1236
1125 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1237 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1130void inline_size 1242void inline_size
1131periodics_reify (EV_P) 1243periodics_reify (EV_P)
1132{ 1244{
1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1245 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1134 { 1246 {
1135 ev_periodic *w = periodics [0]; 1247 ev_periodic *w = (ev_periodic *)periodics [0];
1136 1248
1137 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1249 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1138 1250
1139 /* first reschedule or stop timer */ 1251 /* first reschedule or stop timer */
1140 if (w->reschedule_cb) 1252 if (w->reschedule_cb)
1141 { 1253 {
1142 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1254 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1143 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1255 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1144 downheap ((WT *)periodics, periodiccnt, 0); 1256 downheap (periodics, periodiccnt, 0);
1145 } 1257 }
1146 else if (w->interval) 1258 else if (w->interval)
1147 { 1259 {
1148 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1260 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1261 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1149 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1262 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1150 downheap ((WT *)periodics, periodiccnt, 0); 1263 downheap (periodics, periodiccnt, 0);
1151 } 1264 }
1152 else 1265 else
1153 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1266 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1154 1267
1155 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1268 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1162 int i; 1275 int i;
1163 1276
1164 /* adjust periodics after time jump */ 1277 /* adjust periodics after time jump */
1165 for (i = 0; i < periodiccnt; ++i) 1278 for (i = 0; i < periodiccnt; ++i)
1166 { 1279 {
1167 ev_periodic *w = periodics [i]; 1280 ev_periodic *w = (ev_periodic *)periodics [i];
1168 1281
1169 if (w->reschedule_cb) 1282 if (w->reschedule_cb)
1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1283 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1171 else if (w->interval) 1284 else if (w->interval)
1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1285 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1173 } 1286 }
1174 1287
1175 /* now rebuild the heap */ 1288 /* now rebuild the heap */
1176 for (i = periodiccnt >> 1; i--; ) 1289 for (i = periodiccnt >> 1; i--; )
1177 downheap ((WT *)periodics, periodiccnt, i); 1290 downheap (periodics, periodiccnt, i);
1178} 1291}
1179#endif 1292#endif
1180 1293
1294#if EV_IDLE_ENABLE
1181int inline_size 1295void inline_size
1182time_update_monotonic (EV_P) 1296idle_reify (EV_P)
1183{ 1297{
1298 if (expect_false (idleall))
1299 {
1300 int pri;
1301
1302 for (pri = NUMPRI; pri--; )
1303 {
1304 if (pendingcnt [pri])
1305 break;
1306
1307 if (idlecnt [pri])
1308 {
1309 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1310 break;
1311 }
1312 }
1313 }
1314}
1315#endif
1316
1317void inline_speed
1318time_update (EV_P_ ev_tstamp max_block)
1319{
1320 int i;
1321
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1184 mn_now = get_clock (); 1327 mn_now = get_clock ();
1185 1328
1329 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1330 /* interpolate in the meantime */
1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1331 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1187 { 1332 {
1188 ev_rt_now = rtmn_diff + mn_now; 1333 ev_rt_now = rtmn_diff + mn_now;
1189 return 0; 1334 return;
1190 } 1335 }
1191 else 1336
1192 {
1193 now_floor = mn_now; 1337 now_floor = mn_now;
1194 ev_rt_now = ev_time (); 1338 ev_rt_now = ev_time ();
1195 return 1;
1196 }
1197}
1198 1339
1199void inline_size 1340 /* loop a few times, before making important decisions.
1200time_update (EV_P) 1341 * on the choice of "4": one iteration isn't enough,
1201{ 1342 * in case we get preempted during the calls to
1202 int i; 1343 * ev_time and get_clock. a second call is almost guaranteed
1203 1344 * to succeed in that case, though. and looping a few more times
1204#if EV_USE_MONOTONIC 1345 * doesn't hurt either as we only do this on time-jumps or
1205 if (expect_true (have_monotonic)) 1346 * in the unlikely event of having been preempted here.
1206 { 1347 */
1207 if (time_update_monotonic (EV_A)) 1348 for (i = 4; --i; )
1208 { 1349 {
1209 ev_tstamp odiff = rtmn_diff;
1210
1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
1220 {
1221 rtmn_diff = ev_rt_now - mn_now; 1350 rtmn_diff = ev_rt_now - mn_now;
1222 1351
1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1352 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1224 return; /* all is well */ 1353 return; /* all is well */
1225 1354
1226 ev_rt_now = ev_time (); 1355 ev_rt_now = ev_time ();
1227 mn_now = get_clock (); 1356 mn_now = get_clock ();
1228 now_floor = mn_now; 1357 now_floor = mn_now;
1229 } 1358 }
1230 1359
1231# if EV_PERIODIC_ENABLE 1360# if EV_PERIODIC_ENABLE
1232 periodics_reschedule (EV_A); 1361 periodics_reschedule (EV_A);
1233# endif 1362# endif
1234 /* no timer adjustment, as the monotonic clock doesn't jump */ 1363 /* no timer adjustment, as the monotonic clock doesn't jump */
1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1364 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1236 }
1237 } 1365 }
1238 else 1366 else
1239#endif 1367#endif
1240 { 1368 {
1241 ev_rt_now = ev_time (); 1369 ev_rt_now = ev_time ();
1242 1370
1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1371 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1244 { 1372 {
1245#if EV_PERIODIC_ENABLE 1373#if EV_PERIODIC_ENABLE
1246 periodics_reschedule (EV_A); 1374 periodics_reschedule (EV_A);
1247#endif 1375#endif
1248
1249 /* adjust timers. this is easy, as the offset is the same for all */ 1376 /* adjust timers. this is easy, as the offset is the same for all of them */
1250 for (i = 0; i < timercnt; ++i) 1377 for (i = 0; i < timercnt; ++i)
1251 ((WT)timers [i])->at += ev_rt_now - mn_now; 1378 ((WT)timers [i])->at += ev_rt_now - mn_now;
1252 } 1379 }
1253 1380
1254 mn_now = ev_rt_now; 1381 mn_now = ev_rt_now;
1274{ 1401{
1275 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1402 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1276 ? EVUNLOOP_ONE 1403 ? EVUNLOOP_ONE
1277 : EVUNLOOP_CANCEL; 1404 : EVUNLOOP_CANCEL;
1278 1405
1279 while (activecnt) 1406 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1407
1408 do
1280 { 1409 {
1410#ifndef _WIN32
1411 if (expect_false (curpid)) /* penalise the forking check even more */
1412 if (expect_false (getpid () != curpid))
1413 {
1414 curpid = getpid ();
1415 postfork = 1;
1416 }
1417#endif
1418
1419#if EV_FORK_ENABLE
1420 /* we might have forked, so queue fork handlers */
1421 if (expect_false (postfork))
1422 if (forkcnt)
1423 {
1424 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1425 call_pending (EV_A);
1426 }
1427#endif
1428
1281 /* queue check watchers (and execute them) */ 1429 /* queue prepare watchers (and execute them) */
1282 if (expect_false (preparecnt)) 1430 if (expect_false (preparecnt))
1283 { 1431 {
1284 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1432 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1285 call_pending (EV_A); 1433 call_pending (EV_A);
1286 } 1434 }
1287 1435
1436 if (expect_false (!activecnt))
1437 break;
1438
1288 /* we might have forked, so reify kernel state if necessary */ 1439 /* we might have forked, so reify kernel state if necessary */
1289 if (expect_false (postfork)) 1440 if (expect_false (postfork))
1290 loop_fork (EV_A); 1441 loop_fork (EV_A);
1291 1442
1292 /* update fd-related kernel structures */ 1443 /* update fd-related kernel structures */
1293 fd_reify (EV_A); 1444 fd_reify (EV_A);
1294 1445
1295 /* calculate blocking time */ 1446 /* calculate blocking time */
1296 { 1447 {
1297 double block; 1448 ev_tstamp block;
1298 1449
1299 if (flags & EVLOOP_NONBLOCK || idlecnt) 1450 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1300 block = 0.; /* do not block at all */ 1451 block = 0.; /* do not block at all */
1301 else 1452 else
1302 { 1453 {
1303 /* update time to cancel out callback processing overhead */ 1454 /* update time to cancel out callback processing overhead */
1304#if EV_USE_MONOTONIC
1305 if (expect_true (have_monotonic))
1306 time_update_monotonic (EV_A); 1455 time_update (EV_A_ 1e100);
1307 else
1308#endif
1309 {
1310 ev_rt_now = ev_time ();
1311 mn_now = ev_rt_now;
1312 }
1313 1456
1314 block = MAX_BLOCKTIME; 1457 block = MAX_BLOCKTIME;
1315 1458
1316 if (timercnt) 1459 if (timercnt)
1317 { 1460 {
1328#endif 1471#endif
1329 1472
1330 if (expect_false (block < 0.)) block = 0.; 1473 if (expect_false (block < 0.)) block = 0.;
1331 } 1474 }
1332 1475
1476 ++loop_count;
1333 backend_poll (EV_A_ block); 1477 backend_poll (EV_A_ block);
1478
1479 /* update ev_rt_now, do magic */
1480 time_update (EV_A_ block);
1334 } 1481 }
1335
1336 /* update ev_rt_now, do magic */
1337 time_update (EV_A);
1338 1482
1339 /* queue pending timers and reschedule them */ 1483 /* queue pending timers and reschedule them */
1340 timers_reify (EV_A); /* relative timers called last */ 1484 timers_reify (EV_A); /* relative timers called last */
1341#if EV_PERIODIC_ENABLE 1485#if EV_PERIODIC_ENABLE
1342 periodics_reify (EV_A); /* absolute timers called first */ 1486 periodics_reify (EV_A); /* absolute timers called first */
1343#endif 1487#endif
1344 1488
1489#if EV_IDLE_ENABLE
1345 /* queue idle watchers unless other events are pending */ 1490 /* queue idle watchers unless other events are pending */
1346 if (idlecnt && !any_pending (EV_A)) 1491 idle_reify (EV_A);
1347 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1492#endif
1348 1493
1349 /* queue check watchers, to be executed first */ 1494 /* queue check watchers, to be executed first */
1350 if (expect_false (checkcnt)) 1495 if (expect_false (checkcnt))
1351 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1496 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1352 1497
1353 call_pending (EV_A); 1498 call_pending (EV_A);
1354 1499
1355 if (expect_false (loop_done))
1356 break;
1357 } 1500 }
1501 while (expect_true (activecnt && !loop_done));
1358 1502
1359 if (loop_done == EVUNLOOP_ONE) 1503 if (loop_done == EVUNLOOP_ONE)
1360 loop_done = EVUNLOOP_CANCEL; 1504 loop_done = EVUNLOOP_CANCEL;
1361} 1505}
1362 1506
1389 head = &(*head)->next; 1533 head = &(*head)->next;
1390 } 1534 }
1391} 1535}
1392 1536
1393void inline_speed 1537void inline_speed
1394ev_clear_pending (EV_P_ W w) 1538clear_pending (EV_P_ W w)
1395{ 1539{
1396 if (w->pending) 1540 if (w->pending)
1397 { 1541 {
1398 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1542 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1399 w->pending = 0; 1543 w->pending = 0;
1400 } 1544 }
1401} 1545}
1402 1546
1547int
1548ev_clear_pending (EV_P_ void *w)
1549{
1550 W w_ = (W)w;
1551 int pending = w_->pending;
1552
1553 if (expect_true (pending))
1554 {
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1556 w_->pending = 0;
1557 p->w = 0;
1558 return p->events;
1559 }
1560 else
1561 return 0;
1562}
1563
1564void inline_size
1565pri_adjust (EV_P_ W w)
1566{
1567 int pri = w->priority;
1568 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1569 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1570 w->priority = pri;
1571}
1572
1403void inline_speed 1573void inline_speed
1404ev_start (EV_P_ W w, int active) 1574ev_start (EV_P_ W w, int active)
1405{ 1575{
1406 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1576 pri_adjust (EV_A_ w);
1407 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1408
1409 w->active = active; 1577 w->active = active;
1410 ev_ref (EV_A); 1578 ev_ref (EV_A);
1411} 1579}
1412 1580
1413void inline_size 1581void inline_size
1417 w->active = 0; 1585 w->active = 0;
1418} 1586}
1419 1587
1420/*****************************************************************************/ 1588/*****************************************************************************/
1421 1589
1422void 1590void noinline
1423ev_io_start (EV_P_ ev_io *w) 1591ev_io_start (EV_P_ ev_io *w)
1424{ 1592{
1425 int fd = w->fd; 1593 int fd = w->fd;
1426 1594
1427 if (expect_false (ev_is_active (w))) 1595 if (expect_false (ev_is_active (w)))
1429 1597
1430 assert (("ev_io_start called with negative fd", fd >= 0)); 1598 assert (("ev_io_start called with negative fd", fd >= 0));
1431 1599
1432 ev_start (EV_A_ (W)w, 1); 1600 ev_start (EV_A_ (W)w, 1);
1433 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1601 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1434 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1602 wlist_add (&anfds[fd].head, (WL)w);
1435 1603
1436 fd_change (EV_A_ fd); 1604 fd_change (EV_A_ fd);
1437} 1605}
1438 1606
1439void 1607void noinline
1440ev_io_stop (EV_P_ ev_io *w) 1608ev_io_stop (EV_P_ ev_io *w)
1441{ 1609{
1442 ev_clear_pending (EV_A_ (W)w); 1610 clear_pending (EV_A_ (W)w);
1443 if (expect_false (!ev_is_active (w))) 1611 if (expect_false (!ev_is_active (w)))
1444 return; 1612 return;
1445 1613
1446 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1614 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1447 1615
1448 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1616 wlist_del (&anfds[w->fd].head, (WL)w);
1449 ev_stop (EV_A_ (W)w); 1617 ev_stop (EV_A_ (W)w);
1450 1618
1451 fd_change (EV_A_ w->fd); 1619 fd_change (EV_A_ w->fd);
1452} 1620}
1453 1621
1454void 1622void noinline
1455ev_timer_start (EV_P_ ev_timer *w) 1623ev_timer_start (EV_P_ ev_timer *w)
1456{ 1624{
1457 if (expect_false (ev_is_active (w))) 1625 if (expect_false (ev_is_active (w)))
1458 return; 1626 return;
1459 1627
1460 ((WT)w)->at += mn_now; 1628 ((WT)w)->at += mn_now;
1461 1629
1462 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1630 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1463 1631
1464 ev_start (EV_A_ (W)w, ++timercnt); 1632 ev_start (EV_A_ (W)w, ++timercnt);
1465 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1633 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1466 timers [timercnt - 1] = w; 1634 timers [timercnt - 1] = (WT)w;
1467 upheap ((WT *)timers, timercnt - 1); 1635 upheap (timers, timercnt - 1);
1468 1636
1469 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1637 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1470} 1638}
1471 1639
1472void 1640void noinline
1473ev_timer_stop (EV_P_ ev_timer *w) 1641ev_timer_stop (EV_P_ ev_timer *w)
1474{ 1642{
1475 ev_clear_pending (EV_A_ (W)w); 1643 clear_pending (EV_A_ (W)w);
1476 if (expect_false (!ev_is_active (w))) 1644 if (expect_false (!ev_is_active (w)))
1477 return; 1645 return;
1478 1646
1479 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1647 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1480 1648
1649 {
1650 int active = ((W)w)->active;
1651
1481 if (expect_true (((W)w)->active < timercnt--)) 1652 if (expect_true (--active < --timercnt))
1482 { 1653 {
1483 timers [((W)w)->active - 1] = timers [timercnt]; 1654 timers [active] = timers [timercnt];
1484 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1655 adjustheap (timers, timercnt, active);
1485 } 1656 }
1657 }
1486 1658
1487 ((WT)w)->at -= mn_now; 1659 ((WT)w)->at -= mn_now;
1488 1660
1489 ev_stop (EV_A_ (W)w); 1661 ev_stop (EV_A_ (W)w);
1490} 1662}
1491 1663
1492void 1664void noinline
1493ev_timer_again (EV_P_ ev_timer *w) 1665ev_timer_again (EV_P_ ev_timer *w)
1494{ 1666{
1495 if (ev_is_active (w)) 1667 if (ev_is_active (w))
1496 { 1668 {
1497 if (w->repeat) 1669 if (w->repeat)
1498 { 1670 {
1499 ((WT)w)->at = mn_now + w->repeat; 1671 ((WT)w)->at = mn_now + w->repeat;
1500 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1672 adjustheap (timers, timercnt, ((W)w)->active - 1);
1501 } 1673 }
1502 else 1674 else
1503 ev_timer_stop (EV_A_ w); 1675 ev_timer_stop (EV_A_ w);
1504 } 1676 }
1505 else if (w->repeat) 1677 else if (w->repeat)
1508 ev_timer_start (EV_A_ w); 1680 ev_timer_start (EV_A_ w);
1509 } 1681 }
1510} 1682}
1511 1683
1512#if EV_PERIODIC_ENABLE 1684#if EV_PERIODIC_ENABLE
1513void 1685void noinline
1514ev_periodic_start (EV_P_ ev_periodic *w) 1686ev_periodic_start (EV_P_ ev_periodic *w)
1515{ 1687{
1516 if (expect_false (ev_is_active (w))) 1688 if (expect_false (ev_is_active (w)))
1517 return; 1689 return;
1518 1690
1520 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1692 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1521 else if (w->interval) 1693 else if (w->interval)
1522 { 1694 {
1523 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1695 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1524 /* this formula differs from the one in periodic_reify because we do not always round up */ 1696 /* this formula differs from the one in periodic_reify because we do not always round up */
1525 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1697 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1526 } 1698 }
1699 else
1700 ((WT)w)->at = w->offset;
1527 1701
1528 ev_start (EV_A_ (W)w, ++periodiccnt); 1702 ev_start (EV_A_ (W)w, ++periodiccnt);
1529 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1703 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1530 periodics [periodiccnt - 1] = w; 1704 periodics [periodiccnt - 1] = (WT)w;
1531 upheap ((WT *)periodics, periodiccnt - 1); 1705 upheap (periodics, periodiccnt - 1);
1532 1706
1533 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1707 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1534} 1708}
1535 1709
1536void 1710void noinline
1537ev_periodic_stop (EV_P_ ev_periodic *w) 1711ev_periodic_stop (EV_P_ ev_periodic *w)
1538{ 1712{
1539 ev_clear_pending (EV_A_ (W)w); 1713 clear_pending (EV_A_ (W)w);
1540 if (expect_false (!ev_is_active (w))) 1714 if (expect_false (!ev_is_active (w)))
1541 return; 1715 return;
1542 1716
1543 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1717 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1544 1718
1719 {
1720 int active = ((W)w)->active;
1721
1545 if (expect_true (((W)w)->active < periodiccnt--)) 1722 if (expect_true (--active < --periodiccnt))
1546 { 1723 {
1547 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1724 periodics [active] = periodics [periodiccnt];
1548 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1725 adjustheap (periodics, periodiccnt, active);
1549 } 1726 }
1727 }
1550 1728
1551 ev_stop (EV_A_ (W)w); 1729 ev_stop (EV_A_ (W)w);
1552} 1730}
1553 1731
1554void 1732void noinline
1555ev_periodic_again (EV_P_ ev_periodic *w) 1733ev_periodic_again (EV_P_ ev_periodic *w)
1556{ 1734{
1557 /* TODO: use adjustheap and recalculation */ 1735 /* TODO: use adjustheap and recalculation */
1558 ev_periodic_stop (EV_A_ w); 1736 ev_periodic_stop (EV_A_ w);
1559 ev_periodic_start (EV_A_ w); 1737 ev_periodic_start (EV_A_ w);
1562 1740
1563#ifndef SA_RESTART 1741#ifndef SA_RESTART
1564# define SA_RESTART 0 1742# define SA_RESTART 0
1565#endif 1743#endif
1566 1744
1567void 1745void noinline
1568ev_signal_start (EV_P_ ev_signal *w) 1746ev_signal_start (EV_P_ ev_signal *w)
1569{ 1747{
1570#if EV_MULTIPLICITY 1748#if EV_MULTIPLICITY
1571 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1749 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1572#endif 1750#endif
1573 if (expect_false (ev_is_active (w))) 1751 if (expect_false (ev_is_active (w)))
1574 return; 1752 return;
1575 1753
1576 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1754 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1577 1755
1756 {
1757#ifndef _WIN32
1758 sigset_t full, prev;
1759 sigfillset (&full);
1760 sigprocmask (SIG_SETMASK, &full, &prev);
1761#endif
1762
1763 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1764
1765#ifndef _WIN32
1766 sigprocmask (SIG_SETMASK, &prev, 0);
1767#endif
1768 }
1769
1578 ev_start (EV_A_ (W)w, 1); 1770 ev_start (EV_A_ (W)w, 1);
1579 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1580 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1771 wlist_add (&signals [w->signum - 1].head, (WL)w);
1581 1772
1582 if (!((WL)w)->next) 1773 if (!((WL)w)->next)
1583 { 1774 {
1584#if _WIN32 1775#if _WIN32
1585 signal (w->signum, sighandler); 1776 signal (w->signum, sighandler);
1591 sigaction (w->signum, &sa, 0); 1782 sigaction (w->signum, &sa, 0);
1592#endif 1783#endif
1593 } 1784 }
1594} 1785}
1595 1786
1596void 1787void noinline
1597ev_signal_stop (EV_P_ ev_signal *w) 1788ev_signal_stop (EV_P_ ev_signal *w)
1598{ 1789{
1599 ev_clear_pending (EV_A_ (W)w); 1790 clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w))) 1791 if (expect_false (!ev_is_active (w)))
1601 return; 1792 return;
1602 1793
1603 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1794 wlist_del (&signals [w->signum - 1].head, (WL)w);
1604 ev_stop (EV_A_ (W)w); 1795 ev_stop (EV_A_ (W)w);
1605 1796
1606 if (!signals [w->signum - 1].head) 1797 if (!signals [w->signum - 1].head)
1607 signal (w->signum, SIG_DFL); 1798 signal (w->signum, SIG_DFL);
1608} 1799}
1615#endif 1806#endif
1616 if (expect_false (ev_is_active (w))) 1807 if (expect_false (ev_is_active (w)))
1617 return; 1808 return;
1618 1809
1619 ev_start (EV_A_ (W)w, 1); 1810 ev_start (EV_A_ (W)w, 1);
1620 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1811 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1621} 1812}
1622 1813
1623void 1814void
1624ev_child_stop (EV_P_ ev_child *w) 1815ev_child_stop (EV_P_ ev_child *w)
1625{ 1816{
1626 ev_clear_pending (EV_A_ (W)w); 1817 clear_pending (EV_A_ (W)w);
1627 if (expect_false (!ev_is_active (w))) 1818 if (expect_false (!ev_is_active (w)))
1628 return; 1819 return;
1629 1820
1630 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1821 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1631 ev_stop (EV_A_ (W)w); 1822 ev_stop (EV_A_ (W)w);
1632} 1823}
1633 1824
1634#if EV_STAT_ENABLE 1825#if EV_STAT_ENABLE
1635 1826
1639# endif 1830# endif
1640 1831
1641#define DEF_STAT_INTERVAL 5.0074891 1832#define DEF_STAT_INTERVAL 5.0074891
1642#define MIN_STAT_INTERVAL 0.1074891 1833#define MIN_STAT_INTERVAL 0.1074891
1643 1834
1835static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1836
1837#if EV_USE_INOTIFY
1838# define EV_INOTIFY_BUFSIZE 8192
1839
1840static void noinline
1841infy_add (EV_P_ ev_stat *w)
1842{
1843 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1844
1845 if (w->wd < 0)
1846 {
1847 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1848
1849 /* monitor some parent directory for speedup hints */
1850 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1851 {
1852 char path [4096];
1853 strcpy (path, w->path);
1854
1855 do
1856 {
1857 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1858 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1859
1860 char *pend = strrchr (path, '/');
1861
1862 if (!pend)
1863 break; /* whoops, no '/', complain to your admin */
1864
1865 *pend = 0;
1866 w->wd = inotify_add_watch (fs_fd, path, mask);
1867 }
1868 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1869 }
1870 }
1871 else
1872 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1873
1874 if (w->wd >= 0)
1875 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1876}
1877
1878static void noinline
1879infy_del (EV_P_ ev_stat *w)
1880{
1881 int slot;
1882 int wd = w->wd;
1883
1884 if (wd < 0)
1885 return;
1886
1887 w->wd = -2;
1888 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1889 wlist_del (&fs_hash [slot].head, (WL)w);
1890
1891 /* remove this watcher, if others are watching it, they will rearm */
1892 inotify_rm_watch (fs_fd, wd);
1893}
1894
1895static void noinline
1896infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1897{
1898 if (slot < 0)
1899 /* overflow, need to check for all hahs slots */
1900 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1901 infy_wd (EV_A_ slot, wd, ev);
1902 else
1903 {
1904 WL w_;
1905
1906 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1907 {
1908 ev_stat *w = (ev_stat *)w_;
1909 w_ = w_->next; /* lets us remove this watcher and all before it */
1910
1911 if (w->wd == wd || wd == -1)
1912 {
1913 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1914 {
1915 w->wd = -1;
1916 infy_add (EV_A_ w); /* re-add, no matter what */
1917 }
1918
1919 stat_timer_cb (EV_A_ &w->timer, 0);
1920 }
1921 }
1922 }
1923}
1924
1925static void
1926infy_cb (EV_P_ ev_io *w, int revents)
1927{
1928 char buf [EV_INOTIFY_BUFSIZE];
1929 struct inotify_event *ev = (struct inotify_event *)buf;
1930 int ofs;
1931 int len = read (fs_fd, buf, sizeof (buf));
1932
1933 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1934 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1935}
1936
1937void inline_size
1938infy_init (EV_P)
1939{
1940 if (fs_fd != -2)
1941 return;
1942
1943 fs_fd = inotify_init ();
1944
1945 if (fs_fd >= 0)
1946 {
1947 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1948 ev_set_priority (&fs_w, EV_MAXPRI);
1949 ev_io_start (EV_A_ &fs_w);
1950 }
1951}
1952
1953void inline_size
1954infy_fork (EV_P)
1955{
1956 int slot;
1957
1958 if (fs_fd < 0)
1959 return;
1960
1961 close (fs_fd);
1962 fs_fd = inotify_init ();
1963
1964 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1965 {
1966 WL w_ = fs_hash [slot].head;
1967 fs_hash [slot].head = 0;
1968
1969 while (w_)
1970 {
1971 ev_stat *w = (ev_stat *)w_;
1972 w_ = w_->next; /* lets us add this watcher */
1973
1974 w->wd = -1;
1975
1976 if (fs_fd >= 0)
1977 infy_add (EV_A_ w); /* re-add, no matter what */
1978 else
1979 ev_timer_start (EV_A_ &w->timer);
1980 }
1981
1982 }
1983}
1984
1985#endif
1986
1644void 1987void
1645ev_stat_stat (EV_P_ ev_stat *w) 1988ev_stat_stat (EV_P_ ev_stat *w)
1646{ 1989{
1647 if (lstat (w->path, &w->attr) < 0) 1990 if (lstat (w->path, &w->attr) < 0)
1648 w->attr.st_nlink = 0; 1991 w->attr.st_nlink = 0;
1649 else if (!w->attr.st_nlink) 1992 else if (!w->attr.st_nlink)
1650 w->attr.st_nlink = 1; 1993 w->attr.st_nlink = 1;
1651} 1994}
1652 1995
1653static void 1996static void noinline
1654stat_timer_cb (EV_P_ ev_timer *w_, int revents) 1997stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1655{ 1998{
1656 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 1999 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1657 2000
1658 /* we copy this here each the time so that */ 2001 /* we copy this here each the time so that */
1659 /* prev has the old value when the callback gets invoked */ 2002 /* prev has the old value when the callback gets invoked */
1660 w->prev = w->attr; 2003 w->prev = w->attr;
1661 ev_stat_stat (EV_A_ w); 2004 ev_stat_stat (EV_A_ w);
1662 2005
1663 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2006 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2007 if (
2008 w->prev.st_dev != w->attr.st_dev
2009 || w->prev.st_ino != w->attr.st_ino
2010 || w->prev.st_mode != w->attr.st_mode
2011 || w->prev.st_nlink != w->attr.st_nlink
2012 || w->prev.st_uid != w->attr.st_uid
2013 || w->prev.st_gid != w->attr.st_gid
2014 || w->prev.st_rdev != w->attr.st_rdev
2015 || w->prev.st_size != w->attr.st_size
2016 || w->prev.st_atime != w->attr.st_atime
2017 || w->prev.st_mtime != w->attr.st_mtime
2018 || w->prev.st_ctime != w->attr.st_ctime
2019 ) {
2020 #if EV_USE_INOTIFY
2021 infy_del (EV_A_ w);
2022 infy_add (EV_A_ w);
2023 ev_stat_stat (EV_A_ w); /* avoid race... */
2024 #endif
2025
1664 ev_feed_event (EV_A_ w, EV_STAT); 2026 ev_feed_event (EV_A_ w, EV_STAT);
2027 }
1665} 2028}
1666 2029
1667void 2030void
1668ev_stat_start (EV_P_ ev_stat *w) 2031ev_stat_start (EV_P_ ev_stat *w)
1669{ 2032{
1679 if (w->interval < MIN_STAT_INTERVAL) 2042 if (w->interval < MIN_STAT_INTERVAL)
1680 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL; 2043 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1681 2044
1682 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2045 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1683 ev_set_priority (&w->timer, ev_priority (w)); 2046 ev_set_priority (&w->timer, ev_priority (w));
2047
2048#if EV_USE_INOTIFY
2049 infy_init (EV_A);
2050
2051 if (fs_fd >= 0)
2052 infy_add (EV_A_ w);
2053 else
2054#endif
1684 ev_timer_start (EV_A_ &w->timer); 2055 ev_timer_start (EV_A_ &w->timer);
1685 2056
1686 ev_start (EV_A_ (W)w, 1); 2057 ev_start (EV_A_ (W)w, 1);
1687} 2058}
1688 2059
1689void 2060void
1690ev_stat_stop (EV_P_ ev_stat *w) 2061ev_stat_stop (EV_P_ ev_stat *w)
1691{ 2062{
1692 ev_clear_pending (EV_A_ (W)w); 2063 clear_pending (EV_A_ (W)w);
1693 if (expect_false (!ev_is_active (w))) 2064 if (expect_false (!ev_is_active (w)))
1694 return; 2065 return;
1695 2066
2067#if EV_USE_INOTIFY
2068 infy_del (EV_A_ w);
2069#endif
1696 ev_timer_stop (EV_A_ &w->timer); 2070 ev_timer_stop (EV_A_ &w->timer);
1697 2071
1698 ev_stop (EV_A_ (W)w); 2072 ev_stop (EV_A_ (W)w);
1699} 2073}
1700#endif 2074#endif
1701 2075
2076#if EV_IDLE_ENABLE
1702void 2077void
1703ev_idle_start (EV_P_ ev_idle *w) 2078ev_idle_start (EV_P_ ev_idle *w)
1704{ 2079{
1705 if (expect_false (ev_is_active (w))) 2080 if (expect_false (ev_is_active (w)))
1706 return; 2081 return;
1707 2082
2083 pri_adjust (EV_A_ (W)w);
2084
2085 {
2086 int active = ++idlecnt [ABSPRI (w)];
2087
2088 ++idleall;
1708 ev_start (EV_A_ (W)w, ++idlecnt); 2089 ev_start (EV_A_ (W)w, active);
2090
1709 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2091 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1710 idles [idlecnt - 1] = w; 2092 idles [ABSPRI (w)][active - 1] = w;
2093 }
1711} 2094}
1712 2095
1713void 2096void
1714ev_idle_stop (EV_P_ ev_idle *w) 2097ev_idle_stop (EV_P_ ev_idle *w)
1715{ 2098{
1716 ev_clear_pending (EV_A_ (W)w); 2099 clear_pending (EV_A_ (W)w);
1717 if (expect_false (!ev_is_active (w))) 2100 if (expect_false (!ev_is_active (w)))
1718 return; 2101 return;
1719 2102
1720 { 2103 {
1721 int active = ((W)w)->active; 2104 int active = ((W)w)->active;
1722 idles [active - 1] = idles [--idlecnt]; 2105
2106 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1723 ((W)idles [active - 1])->active = active; 2107 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2108
2109 ev_stop (EV_A_ (W)w);
2110 --idleall;
1724 } 2111 }
1725
1726 ev_stop (EV_A_ (W)w);
1727} 2112}
2113#endif
1728 2114
1729void 2115void
1730ev_prepare_start (EV_P_ ev_prepare *w) 2116ev_prepare_start (EV_P_ ev_prepare *w)
1731{ 2117{
1732 if (expect_false (ev_is_active (w))) 2118 if (expect_false (ev_is_active (w)))
1738} 2124}
1739 2125
1740void 2126void
1741ev_prepare_stop (EV_P_ ev_prepare *w) 2127ev_prepare_stop (EV_P_ ev_prepare *w)
1742{ 2128{
1743 ev_clear_pending (EV_A_ (W)w); 2129 clear_pending (EV_A_ (W)w);
1744 if (expect_false (!ev_is_active (w))) 2130 if (expect_false (!ev_is_active (w)))
1745 return; 2131 return;
1746 2132
1747 { 2133 {
1748 int active = ((W)w)->active; 2134 int active = ((W)w)->active;
1765} 2151}
1766 2152
1767void 2153void
1768ev_check_stop (EV_P_ ev_check *w) 2154ev_check_stop (EV_P_ ev_check *w)
1769{ 2155{
1770 ev_clear_pending (EV_A_ (W)w); 2156 clear_pending (EV_A_ (W)w);
1771 if (expect_false (!ev_is_active (w))) 2157 if (expect_false (!ev_is_active (w)))
1772 return; 2158 return;
1773 2159
1774 { 2160 {
1775 int active = ((W)w)->active; 2161 int active = ((W)w)->active;
1817} 2203}
1818 2204
1819void 2205void
1820ev_embed_stop (EV_P_ ev_embed *w) 2206ev_embed_stop (EV_P_ ev_embed *w)
1821{ 2207{
1822 ev_clear_pending (EV_A_ (W)w); 2208 clear_pending (EV_A_ (W)w);
1823 if (expect_false (!ev_is_active (w))) 2209 if (expect_false (!ev_is_active (w)))
1824 return; 2210 return;
1825 2211
1826 ev_io_stop (EV_A_ &w->io); 2212 ev_io_stop (EV_A_ &w->io);
2213
2214 ev_stop (EV_A_ (W)w);
2215}
2216#endif
2217
2218#if EV_FORK_ENABLE
2219void
2220ev_fork_start (EV_P_ ev_fork *w)
2221{
2222 if (expect_false (ev_is_active (w)))
2223 return;
2224
2225 ev_start (EV_A_ (W)w, ++forkcnt);
2226 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2227 forks [forkcnt - 1] = w;
2228}
2229
2230void
2231ev_fork_stop (EV_P_ ev_fork *w)
2232{
2233 clear_pending (EV_A_ (W)w);
2234 if (expect_false (!ev_is_active (w)))
2235 return;
2236
2237 {
2238 int active = ((W)w)->active;
2239 forks [active - 1] = forks [--forkcnt];
2240 ((W)forks [active - 1])->active = active;
2241 }
1827 2242
1828 ev_stop (EV_A_ (W)w); 2243 ev_stop (EV_A_ (W)w);
1829} 2244}
1830#endif 2245#endif
1831 2246

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines