ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.146 by root, Tue Nov 27 09:17:51 2007 UTC vs.
Revision 1.244 by root, Tue May 20 23:49:41 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 111# else
95# define EV_USE_PORT 0 112# define EV_USE_PORT 0
96# endif 113# endif
97# endif 114# endif
98 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
99#endif 132#endif
100 133
101#include <math.h> 134#include <math.h>
102#include <stdlib.h> 135#include <stdlib.h>
103#include <fcntl.h> 136#include <fcntl.h>
109#include <errno.h> 142#include <errno.h>
110#include <sys/types.h> 143#include <sys/types.h>
111#include <time.h> 144#include <time.h>
112 145
113#include <signal.h> 146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
114 153
115#ifndef _WIN32 154#ifndef _WIN32
116# include <sys/time.h> 155# include <sys/time.h>
117# include <sys/wait.h> 156# include <sys/wait.h>
118# include <unistd.h> 157# include <unistd.h>
122# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
124# endif 163# endif
125#endif 164#endif
126 165
127/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
128 167
129#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
130# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
131#endif 170#endif
132 171
133#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
135#endif 178#endif
136 179
137#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
139#endif 182#endif
145# define EV_USE_POLL 1 188# define EV_USE_POLL 1
146# endif 189# endif
147#endif 190#endif
148 191
149#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
150# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
151#endif 198#endif
152 199
153#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
155#endif 202#endif
156 203
157#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 205# define EV_USE_PORT 0
159#endif 206#endif
160 207
161/**/ 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 249
163#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
166#endif 253#endif
168#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
171#endif 258#endif
172 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
173#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 276# include <winsock.h>
175#endif 277#endif
176 278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
289#endif
290
177/**/ 291/**/
292
293/*
294 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 302
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 306
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 307#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline)) 309# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
200#else 310#else
201# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
202# define inline_speed static
203# define inline_size static
204# define noinline 312# define noinline
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314# define inline
315# endif
205#endif 316#endif
206 317
207#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
208#define expect_true(expr) expect ((expr) != 0, 1) 319#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline
321
322#if EV_MINIMAL
323# define inline_speed static noinline
324#else
325# define inline_speed static inline
326#endif
209 327
210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
211#define ABSPRI(w) ((w)->priority - EV_MINPRI) 329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
212 330
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 331#define EMPTY /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */ 332#define EMPTY2(a,b) /* used to suppress some warnings */
215 333
216typedef ev_watcher *W; 334typedef ev_watcher *W;
217typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
218typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
219 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
341#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif
221 346
222#ifdef _WIN32 347#ifdef _WIN32
223# include "ev_win32.c" 348# include "ev_win32.c"
224#endif 349#endif
225 350
246 perror (msg); 371 perror (msg);
247 abort (); 372 abort ();
248 } 373 }
249} 374}
250 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
251static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
252 392
253void 393void
254ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
255{ 395{
256 alloc = cb; 396 alloc = cb;
257} 397}
258 398
259static void * 399inline_speed void *
260ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
261{ 401{
262 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
263 403
264 if (!ptr && size) 404 if (!ptr && size)
265 { 405 {
266 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
267 abort (); 407 abort ();
288typedef struct 428typedef struct
289{ 429{
290 W w; 430 W w;
291 int events; 431 int events;
292} ANPENDING; 432} ANPENDING;
433
434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
436typedef struct
437{
438 WL head;
439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
458#endif
293 459
294#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
295 461
296 struct ev_loop 462 struct ev_loop
297 { 463 {
354{ 520{
355 return ev_rt_now; 521 return ev_rt_now;
356} 522}
357#endif 523#endif
358 524
359#define array_roundsize(type,n) (((n) | 4) & ~3) 525void
526ev_sleep (ev_tstamp delay)
527{
528 if (delay > 0.)
529 {
530#if EV_USE_NANOSLEEP
531 struct timespec ts;
532
533 ts.tv_sec = (time_t)delay;
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0);
537#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3));
539#else
540 struct timeval tv;
541
542 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544
545 select (0, 0, 0, 0, &tv);
546#endif
547 }
548}
549
550/*****************************************************************************/
551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
554int inline_size
555array_nextsize (int elem, int cur, int cnt)
556{
557 int ncur = cur + 1;
558
559 do
560 ncur <<= 1;
561 while (cnt > ncur);
562
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 {
566 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4;
569 ncur /= elem;
570 }
571
572 return ncur;
573}
574
575static noinline void *
576array_realloc (int elem, void *base, int *cur, int cnt)
577{
578 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur);
580}
360 581
361#define array_needsize(type,base,cur,cnt,init) \ 582#define array_needsize(type,base,cur,cnt,init) \
362 if (expect_false ((cnt) > cur)) \ 583 if (expect_false ((cnt) > (cur))) \
363 { \ 584 { \
364 int newcnt = cur; \ 585 int ocur_ = (cur); \
365 do \ 586 (base) = (type *)array_realloc \
366 { \ 587 (sizeof (type), (base), &(cur), (cnt)); \
367 newcnt = array_roundsize (type, newcnt << 1); \ 588 init ((base) + (ocur_), (cur) - ocur_); \
368 } \
369 while ((cnt) > newcnt); \
370 \
371 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
372 init (base + cur, newcnt - cur); \
373 cur = newcnt; \
374 } 589 }
375 590
591#if 0
376#define array_slim(type,stem) \ 592#define array_slim(type,stem) \
377 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 593 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
378 { \ 594 { \
379 stem ## max = array_roundsize (stem ## cnt >> 1); \ 595 stem ## max = array_roundsize (stem ## cnt >> 1); \
380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 596 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
382 } 598 }
599#endif
383 600
384#define array_free(stem, idx) \ 601#define array_free(stem, idx) \
385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
386 603
387/*****************************************************************************/ 604/*****************************************************************************/
388 605
389void noinline 606void noinline
390ev_feed_event (EV_P_ void *w, int revents) 607ev_feed_event (EV_P_ void *w, int revents)
391{ 608{
392 W w_ = (W)w; 609 W w_ = (W)w;
610 int pri = ABSPRI (w_);
393 611
394 if (expect_false (w_->pending)) 612 if (expect_false (w_->pending))
613 pendings [pri][w_->pending - 1].events |= revents;
614 else
395 { 615 {
616 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_;
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 619 pendings [pri][w_->pending - 1].events = revents;
397 return;
398 } 620 }
399
400 w_->pending = ++pendingcnt [ABSPRI (w_)];
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404} 621}
405 622
406void inline_size 623void inline_speed
407queue_events (EV_P_ W *events, int eventcnt, int type) 624queue_events (EV_P_ W *events, int eventcnt, int type)
408{ 625{
409 int i; 626 int i;
410 627
411 for (i = 0; i < eventcnt; ++i) 628 for (i = 0; i < eventcnt; ++i)
443} 660}
444 661
445void 662void
446ev_feed_fd_event (EV_P_ int fd, int revents) 663ev_feed_fd_event (EV_P_ int fd, int revents)
447{ 664{
665 if (fd >= 0 && fd < anfdmax)
448 fd_event (EV_A_ fd, revents); 666 fd_event (EV_A_ fd, revents);
449} 667}
450 668
451void inline_size 669void inline_size
452fd_reify (EV_P) 670fd_reify (EV_P)
453{ 671{
457 { 675 {
458 int fd = fdchanges [i]; 676 int fd = fdchanges [i];
459 ANFD *anfd = anfds + fd; 677 ANFD *anfd = anfds + fd;
460 ev_io *w; 678 ev_io *w;
461 679
462 int events = 0; 680 unsigned char events = 0;
463 681
464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
465 events |= w->events; 683 events |= (unsigned char)w->events;
466 684
467#if EV_SELECT_IS_WINSOCKET 685#if EV_SELECT_IS_WINSOCKET
468 if (events) 686 if (events)
469 { 687 {
470 unsigned long argp; 688 unsigned long argp;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
471 anfd->handle = _get_osfhandle (fd); 692 anfd->handle = _get_osfhandle (fd);
693 #endif
472 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
473 } 695 }
474#endif 696#endif
475 697
698 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
476 anfd->reify = 0; 702 anfd->reify = 0;
477
478 backend_modify (EV_A_ fd, anfd->events, events);
479 anfd->events = events; 703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events);
707 }
480 } 708 }
481 709
482 fdchangecnt = 0; 710 fdchangecnt = 0;
483} 711}
484 712
485void inline_size 713void inline_size
486fd_change (EV_P_ int fd) 714fd_change (EV_P_ int fd, int flags)
487{ 715{
488 if (expect_false (anfds [fd].reify)) 716 unsigned char reify = anfds [fd].reify;
489 return;
490
491 anfds [fd].reify = 1; 717 anfds [fd].reify |= flags;
492 718
719 if (expect_true (!reify))
720 {
493 ++fdchangecnt; 721 ++fdchangecnt;
494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
495 fdchanges [fdchangecnt - 1] = fd; 723 fdchanges [fdchangecnt - 1] = fd;
724 }
496} 725}
497 726
498void inline_speed 727void inline_speed
499fd_kill (EV_P_ int fd) 728fd_kill (EV_P_ int fd)
500{ 729{
547static void noinline 776static void noinline
548fd_rearm_all (EV_P) 777fd_rearm_all (EV_P)
549{ 778{
550 int fd; 779 int fd;
551 780
552 /* this should be highly optimised to not do anything but set a flag */
553 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
554 if (anfds [fd].events) 782 if (anfds [fd].events)
555 { 783 {
556 anfds [fd].events = 0; 784 anfds [fd].events = 0;
557 fd_change (EV_A_ fd); 785 fd_change (EV_A_ fd, EV_IOFDSET | 1);
558 } 786 }
559} 787}
560 788
561/*****************************************************************************/ 789/*****************************************************************************/
562 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807
808/* towards the root */
563void inline_speed 809void inline_speed
564upheap (WT *heap, int k) 810upheap (ANHE *heap, int k)
565{ 811{
566 WT w = heap [k]; 812 ANHE he = heap [k];
567 813
568 while (k && heap [k >> 1]->at > w->at) 814 for (;;)
569 { 815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
570 heap [k] = heap [k >> 1]; 821 heap [k] = heap [p];
571 ((W)heap [k])->active = k + 1; 822 ev_active (ANHE_w (heap [k])) = k;
572 k >>= 1; 823 k = p;
573 } 824 }
574 825
826 ev_active (ANHE_w (he)) = k;
575 heap [k] = w; 827 heap [k] = he;
576 ((W)heap [k])->active = k + 1;
577
578} 828}
579 829
830/* away from the root */
580void inline_speed 831void inline_speed
581downheap (WT *heap, int N, int k) 832downheap (ANHE *heap, int N, int k)
582{ 833{
583 WT w = heap [k]; 834 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0;
584 836
585 while (k < (N >> 1)) 837 for (;;)
586 { 838 {
587 int j = k << 1; 839 ev_tstamp minat;
840 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
588 842
589 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 843 // find minimum child
844 if (expect_true (pos + DHEAP - 1 < E))
590 ++j; 845 {
591 846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
592 if (w->at <= heap [j]->at) 847 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else
593 break; 859 break;
594 860
861 if (ANHE_at (he) <= minat)
862 break;
863
864 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866
867 k = minpos - heap;
868 }
869
870 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872}
873
874#else // 4HEAP
875
876#define HEAP0 1
877
878/* towards the root */
879void inline_speed
880upheap (ANHE *heap, int k)
881{
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
595 heap [k] = heap [j]; 892 heap [k] = heap [p];
596 ((W)heap [k])->active = k + 1; 893 ev_active (ANHE_w (heap [k])) = k;
597 k = j; 894 k = p;
598 } 895 }
599 896
600 heap [k] = w; 897 heap [k] = he;
601 ((W)heap [k])->active = k + 1; 898 ev_active (ANHE_w (heap [k])) = k;
602} 899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0;
916
917 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break;
919
920 heap [k] = heap [c];
921 ev_active (ANHE_w (heap [k])) = k;
922
923 k = c;
924 }
925
926 heap [k] = he;
927 ev_active (ANHE_w (he)) = k;
928}
929#endif
603 930
604void inline_size 931void inline_size
605adjustheap (WT *heap, int N, int k) 932adjustheap (ANHE *heap, int N, int k)
606{ 933{
607 upheap (heap, k); 934 upheap (heap, k);
608 downheap (heap, N, k); 935 downheap (heap, N, k);
609} 936}
610 937
611/*****************************************************************************/ 938/*****************************************************************************/
612 939
613typedef struct 940typedef struct
614{ 941{
615 WL head; 942 WL head;
616 sig_atomic_t volatile gotsig; 943 EV_ATOMIC_T gotsig;
617} ANSIG; 944} ANSIG;
618 945
619static ANSIG *signals; 946static ANSIG *signals;
620static int signalmax; 947static int signalmax;
621 948
622static int sigpipe [2]; 949static EV_ATOMIC_T gotsig;
623static sig_atomic_t volatile gotsig;
624static ev_io sigev;
625 950
626void inline_size 951void inline_size
627signals_init (ANSIG *base, int count) 952signals_init (ANSIG *base, int count)
628{ 953{
629 while (count--) 954 while (count--)
633 958
634 ++base; 959 ++base;
635 } 960 }
636} 961}
637 962
638static void 963/*****************************************************************************/
639sighandler (int signum)
640{
641#if _WIN32
642 signal (signum, sighandler);
643#endif
644 964
645 signals [signum - 1].gotsig = 1;
646
647 if (!gotsig)
648 {
649 int old_errno = errno;
650 gotsig = 1;
651 write (sigpipe [1], &signum, 1);
652 errno = old_errno;
653 }
654}
655
656void noinline
657ev_feed_signal_event (EV_P_ int signum)
658{
659 WL w;
660
661#if EV_MULTIPLICITY
662 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
663#endif
664
665 --signum;
666
667 if (signum < 0 || signum >= signalmax)
668 return;
669
670 signals [signum].gotsig = 0;
671
672 for (w = signals [signum].head; w; w = w->next)
673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
674}
675
676static void
677sigcb (EV_P_ ev_io *iow, int revents)
678{
679 int signum;
680
681 read (sigpipe [0], &revents, 1);
682 gotsig = 0;
683
684 for (signum = signalmax; signum--; )
685 if (signals [signum].gotsig)
686 ev_feed_signal_event (EV_A_ signum + 1);
687}
688
689void inline_size 965void inline_speed
690fd_intern (int fd) 966fd_intern (int fd)
691{ 967{
692#ifdef _WIN32 968#ifdef _WIN32
693 int arg = 1; 969 int arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
697 fcntl (fd, F_SETFL, O_NONBLOCK); 973 fcntl (fd, F_SETFL, O_NONBLOCK);
698#endif 974#endif
699} 975}
700 976
701static void noinline 977static void noinline
702siginit (EV_P) 978evpipe_init (EV_P)
703{ 979{
980 if (!ev_is_active (&pipeev))
981 {
982#if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0)
984 {
985 evpipe [0] = -1;
986 fd_intern (evfd);
987 ev_io_set (&pipeev, evfd, EV_READ);
988 }
989 else
990#endif
991 {
992 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe");
994
704 fd_intern (sigpipe [0]); 995 fd_intern (evpipe [0]);
705 fd_intern (sigpipe [1]); 996 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ);
998 }
706 999
707 ev_io_set (&sigev, sigpipe [0], EV_READ);
708 ev_io_start (EV_A_ &sigev); 1000 ev_io_start (EV_A_ &pipeev);
709 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1001 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 }
1003}
1004
1005void inline_size
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{
1008 if (!*flag)
1009 {
1010 int old_errno = errno; /* save errno because write might clobber it */
1011
1012 *flag = 1;
1013
1014#if EV_USE_EVENTFD
1015 if (evfd >= 0)
1016 {
1017 uint64_t counter = 1;
1018 write (evfd, &counter, sizeof (uint64_t));
1019 }
1020 else
1021#endif
1022 write (evpipe [1], &old_errno, 1);
1023
1024 errno = old_errno;
1025 }
1026}
1027
1028static void
1029pipecb (EV_P_ ev_io *iow, int revents)
1030{
1031#if EV_USE_EVENTFD
1032 if (evfd >= 0)
1033 {
1034 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t));
1036 }
1037 else
1038#endif
1039 {
1040 char dummy;
1041 read (evpipe [0], &dummy, 1);
1042 }
1043
1044 if (gotsig && ev_is_default_loop (EV_A))
1045 {
1046 int signum;
1047 gotsig = 0;
1048
1049 for (signum = signalmax; signum--; )
1050 if (signals [signum].gotsig)
1051 ev_feed_signal_event (EV_A_ signum + 1);
1052 }
1053
1054#if EV_ASYNC_ENABLE
1055 if (gotasync)
1056 {
1057 int i;
1058 gotasync = 0;
1059
1060 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent)
1062 {
1063 asyncs [i]->sent = 0;
1064 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1065 }
1066 }
1067#endif
710} 1068}
711 1069
712/*****************************************************************************/ 1070/*****************************************************************************/
713 1071
1072static void
1073ev_sighandler (int signum)
1074{
1075#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct;
1077#endif
1078
1079#if _WIN32
1080 signal (signum, ev_sighandler);
1081#endif
1082
1083 signals [signum - 1].gotsig = 1;
1084 evpipe_write (EV_A_ &gotsig);
1085}
1086
1087void noinline
1088ev_feed_signal_event (EV_P_ int signum)
1089{
1090 WL w;
1091
1092#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094#endif
1095
1096 --signum;
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return;
1100
1101 signals [signum].gotsig = 0;
1102
1103 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105}
1106
1107/*****************************************************************************/
1108
714static ev_child *childs [PID_HASHSIZE]; 1109static WL childs [EV_PID_HASHSIZE];
715 1110
716#ifndef _WIN32 1111#ifndef _WIN32
717 1112
718static ev_signal childev; 1113static ev_signal childev;
719 1114
1115#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0
1117#endif
1118
720void inline_speed 1119void inline_speed
721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1120child_reap (EV_P_ int chain, int pid, int status)
722{ 1121{
723 ev_child *w; 1122 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
724 1124
725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 {
726 if (w->pid == pid || !w->pid) 1127 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1)))
727 { 1129 {
728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
729 w->rpid = pid; 1131 w->rpid = pid;
730 w->rstatus = status; 1132 w->rstatus = status;
731 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1133 ev_feed_event (EV_A_ (W)w, EV_CHILD);
732 } 1134 }
1135 }
733} 1136}
734 1137
735#ifndef WCONTINUED 1138#ifndef WCONTINUED
736# define WCONTINUED 0 1139# define WCONTINUED 0
737#endif 1140#endif
746 if (!WCONTINUED 1149 if (!WCONTINUED
747 || errno != EINVAL 1150 || errno != EINVAL
748 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1151 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
749 return; 1152 return;
750 1153
751 /* make sure we are called again until all childs have been reaped */ 1154 /* make sure we are called again until all children have been reaped */
752 /* we need to do it this way so that the callback gets called before we continue */ 1155 /* we need to do it this way so that the callback gets called before we continue */
753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
754 1157
755 child_reap (EV_A_ sw, pid, pid, status); 1158 child_reap (EV_A_ pid, pid, status);
1159 if (EV_PID_HASHSIZE > 1)
756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
757} 1161}
758 1162
759#endif 1163#endif
760 1164
761/*****************************************************************************/ 1165/*****************************************************************************/
833} 1237}
834 1238
835unsigned int 1239unsigned int
836ev_embeddable_backends (void) 1240ev_embeddable_backends (void)
837{ 1241{
838 return EVBACKEND_EPOLL 1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
839 | EVBACKEND_KQUEUE 1243
840 | EVBACKEND_PORT; 1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */
1246 flags &= ~EVBACKEND_EPOLL;
1247
1248 return flags;
841} 1249}
842 1250
843unsigned int 1251unsigned int
844ev_backend (EV_P) 1252ev_backend (EV_P)
845{ 1253{
846 return backend; 1254 return backend;
847} 1255}
848 1256
849static void 1257unsigned int
1258ev_loop_count (EV_P)
1259{
1260 return loop_count;
1261}
1262
1263void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{
1266 io_blocktime = interval;
1267}
1268
1269void
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{
1272 timeout_blocktime = interval;
1273}
1274
1275static void noinline
850loop_init (EV_P_ unsigned int flags) 1276loop_init (EV_P_ unsigned int flags)
851{ 1277{
852 if (!backend) 1278 if (!backend)
853 { 1279 {
854#if EV_USE_MONOTONIC 1280#if EV_USE_MONOTONIC
857 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
858 have_monotonic = 1; 1284 have_monotonic = 1;
859 } 1285 }
860#endif 1286#endif
861 1287
862 ev_rt_now = ev_time (); 1288 ev_rt_now = ev_time ();
863 mn_now = get_clock (); 1289 mn_now = get_clock ();
864 now_floor = mn_now; 1290 now_floor = mn_now;
865 rtmn_diff = ev_rt_now - mn_now; 1291 rtmn_diff = ev_rt_now - mn_now;
1292
1293 io_blocktime = 0.;
1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298#if EV_USE_INOTIFY
1299 fs_fd = -2;
1300#endif
1301
1302 /* pid check not overridable via env */
1303#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK)
1305 curpid = getpid ();
1306#endif
866 1307
867 if (!(flags & EVFLAG_NOENV) 1308 if (!(flags & EVFLAG_NOENV)
868 && !enable_secure () 1309 && !enable_secure ()
869 && getenv ("LIBEV_FLAGS")) 1310 && getenv ("LIBEV_FLAGS"))
870 flags = atoi (getenv ("LIBEV_FLAGS")); 1311 flags = atoi (getenv ("LIBEV_FLAGS"));
871 1312
872 if (!(flags & 0x0000ffffUL)) 1313 if (!(flags & 0x0000ffffU))
873 flags |= ev_recommended_backends (); 1314 flags |= ev_recommended_backends ();
874 1315
875 backend = 0;
876#if EV_USE_PORT 1316#if EV_USE_PORT
877 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
878#endif 1318#endif
879#if EV_USE_KQUEUE 1319#if EV_USE_KQUEUE
880 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
887#endif 1327#endif
888#if EV_USE_SELECT 1328#if EV_USE_SELECT
889 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
890#endif 1330#endif
891 1331
892 ev_init (&sigev, sigcb); 1332 ev_init (&pipeev, pipecb);
893 ev_set_priority (&sigev, EV_MAXPRI); 1333 ev_set_priority (&pipeev, EV_MAXPRI);
894 } 1334 }
895} 1335}
896 1336
897static void 1337static void noinline
898loop_destroy (EV_P) 1338loop_destroy (EV_P)
899{ 1339{
900 int i; 1340 int i;
1341
1342 if (ev_is_active (&pipeev))
1343 {
1344 ev_ref (EV_A); /* signal watcher */
1345 ev_io_stop (EV_A_ &pipeev);
1346
1347#if EV_USE_EVENTFD
1348 if (evfd >= 0)
1349 close (evfd);
1350#endif
1351
1352 if (evpipe [0] >= 0)
1353 {
1354 close (evpipe [0]);
1355 close (evpipe [1]);
1356 }
1357 }
1358
1359#if EV_USE_INOTIFY
1360 if (fs_fd >= 0)
1361 close (fs_fd);
1362#endif
1363
1364 if (backend_fd >= 0)
1365 close (backend_fd);
901 1366
902#if EV_USE_PORT 1367#if EV_USE_PORT
903 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1368 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
904#endif 1369#endif
905#if EV_USE_KQUEUE 1370#if EV_USE_KQUEUE
914#if EV_USE_SELECT 1379#if EV_USE_SELECT
915 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1380 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
916#endif 1381#endif
917 1382
918 for (i = NUMPRI; i--; ) 1383 for (i = NUMPRI; i--; )
1384 {
919 array_free (pending, [i]); 1385 array_free (pending, [i]);
1386#if EV_IDLE_ENABLE
1387 array_free (idle, [i]);
1388#endif
1389 }
1390
1391 ev_free (anfds); anfdmax = 0;
920 1392
921 /* have to use the microsoft-never-gets-it-right macro */ 1393 /* have to use the microsoft-never-gets-it-right macro */
922 array_free (fdchange, EMPTY0); 1394 array_free (fdchange, EMPTY);
923 array_free (timer, EMPTY0); 1395 array_free (timer, EMPTY);
924#if EV_PERIODIC_ENABLE 1396#if EV_PERIODIC_ENABLE
925 array_free (periodic, EMPTY0); 1397 array_free (periodic, EMPTY);
926#endif 1398#endif
1399#if EV_FORK_ENABLE
927 array_free (idle, EMPTY0); 1400 array_free (fork, EMPTY);
1401#endif
928 array_free (prepare, EMPTY0); 1402 array_free (prepare, EMPTY);
929 array_free (check, EMPTY0); 1403 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY);
1406#endif
930 1407
931 backend = 0; 1408 backend = 0;
932} 1409}
933 1410
934static void 1411#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P);
1413#endif
1414
1415void inline_size
935loop_fork (EV_P) 1416loop_fork (EV_P)
936{ 1417{
937#if EV_USE_PORT 1418#if EV_USE_PORT
938 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
939#endif 1420#endif
941 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1422 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
942#endif 1423#endif
943#if EV_USE_EPOLL 1424#if EV_USE_EPOLL
944 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1425 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
945#endif 1426#endif
1427#if EV_USE_INOTIFY
1428 infy_fork (EV_A);
1429#endif
946 1430
947 if (ev_is_active (&sigev)) 1431 if (ev_is_active (&pipeev))
948 { 1432 {
949 /* default loop */ 1433 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */
1435 gotsig = 1;
1436#if EV_ASYNC_ENABLE
1437 gotasync = 1;
1438#endif
950 1439
951 ev_ref (EV_A); 1440 ev_ref (EV_A);
952 ev_io_stop (EV_A_ &sigev); 1441 ev_io_stop (EV_A_ &pipeev);
1442
1443#if EV_USE_EVENTFD
1444 if (evfd >= 0)
1445 close (evfd);
1446#endif
1447
1448 if (evpipe [0] >= 0)
1449 {
953 close (sigpipe [0]); 1450 close (evpipe [0]);
954 close (sigpipe [1]); 1451 close (evpipe [1]);
1452 }
955 1453
956 while (pipe (sigpipe))
957 syserr ("(libev) error creating pipe");
958
959 siginit (EV_A); 1454 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ);
960 } 1457 }
961 1458
962 postfork = 0; 1459 postfork = 0;
963} 1460}
964 1461
986} 1483}
987 1484
988void 1485void
989ev_loop_fork (EV_P) 1486ev_loop_fork (EV_P)
990{ 1487{
991 postfork = 1; 1488 postfork = 1; /* must be in line with ev_default_fork */
992} 1489}
993
994#endif 1490#endif
995 1491
996#if EV_MULTIPLICITY 1492#if EV_MULTIPLICITY
997struct ev_loop * 1493struct ev_loop *
998ev_default_loop_init (unsigned int flags) 1494ev_default_loop_init (unsigned int flags)
999#else 1495#else
1000int 1496int
1001ev_default_loop (unsigned int flags) 1497ev_default_loop (unsigned int flags)
1002#endif 1498#endif
1003{ 1499{
1004 if (sigpipe [0] == sigpipe [1])
1005 if (pipe (sigpipe))
1006 return 0;
1007
1008 if (!ev_default_loop_ptr) 1500 if (!ev_default_loop_ptr)
1009 { 1501 {
1010#if EV_MULTIPLICITY 1502#if EV_MULTIPLICITY
1011 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1012#else 1504#else
1015 1507
1016 loop_init (EV_A_ flags); 1508 loop_init (EV_A_ flags);
1017 1509
1018 if (ev_backend (EV_A)) 1510 if (ev_backend (EV_A))
1019 { 1511 {
1020 siginit (EV_A);
1021
1022#ifndef _WIN32 1512#ifndef _WIN32
1023 ev_signal_init (&childev, childcb, SIGCHLD); 1513 ev_signal_init (&childev, childcb, SIGCHLD);
1024 ev_set_priority (&childev, EV_MAXPRI); 1514 ev_set_priority (&childev, EV_MAXPRI);
1025 ev_signal_start (EV_A_ &childev); 1515 ev_signal_start (EV_A_ &childev);
1026 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1516 ev_unref (EV_A); /* child watcher should not keep loop alive */
1043#ifndef _WIN32 1533#ifndef _WIN32
1044 ev_ref (EV_A); /* child watcher */ 1534 ev_ref (EV_A); /* child watcher */
1045 ev_signal_stop (EV_A_ &childev); 1535 ev_signal_stop (EV_A_ &childev);
1046#endif 1536#endif
1047 1537
1048 ev_ref (EV_A); /* signal watcher */
1049 ev_io_stop (EV_A_ &sigev);
1050
1051 close (sigpipe [0]); sigpipe [0] = 0;
1052 close (sigpipe [1]); sigpipe [1] = 0;
1053
1054 loop_destroy (EV_A); 1538 loop_destroy (EV_A);
1055} 1539}
1056 1540
1057void 1541void
1058ev_default_fork (void) 1542ev_default_fork (void)
1060#if EV_MULTIPLICITY 1544#if EV_MULTIPLICITY
1061 struct ev_loop *loop = ev_default_loop_ptr; 1545 struct ev_loop *loop = ev_default_loop_ptr;
1062#endif 1546#endif
1063 1547
1064 if (backend) 1548 if (backend)
1065 postfork = 1; 1549 postfork = 1; /* must be in line with ev_loop_fork */
1066} 1550}
1067 1551
1068/*****************************************************************************/ 1552/*****************************************************************************/
1069 1553
1070int inline_size 1554void
1071any_pending (EV_P) 1555ev_invoke (EV_P_ void *w, int revents)
1072{ 1556{
1073 int pri; 1557 EV_CB_INVOKE ((W)w, revents);
1074
1075 for (pri = NUMPRI; pri--; )
1076 if (pendingcnt [pri])
1077 return 1;
1078
1079 return 0;
1080} 1558}
1081 1559
1082void inline_speed 1560void inline_speed
1083call_pending (EV_P) 1561call_pending (EV_P)
1084{ 1562{
1089 { 1567 {
1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1091 1569
1092 if (expect_true (p->w)) 1570 if (expect_true (p->w))
1093 { 1571 {
1094 assert (("non-pending watcher on pending list", p->w->pending)); 1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1095 1573
1096 p->w->pending = 0; 1574 p->w->pending = 0;
1097 EV_CB_INVOKE (p->w, p->events); 1575 EV_CB_INVOKE (p->w, p->events);
1098 } 1576 }
1099 } 1577 }
1100} 1578}
1101 1579
1580#if EV_IDLE_ENABLE
1581void inline_size
1582idle_reify (EV_P)
1583{
1584 if (expect_false (idleall))
1585 {
1586 int pri;
1587
1588 for (pri = NUMPRI; pri--; )
1589 {
1590 if (pendingcnt [pri])
1591 break;
1592
1593 if (idlecnt [pri])
1594 {
1595 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1596 break;
1597 }
1598 }
1599 }
1600}
1601#endif
1602
1102void inline_size 1603void inline_size
1103timers_reify (EV_P) 1604timers_reify (EV_P)
1104{ 1605{
1105 while (timercnt && ((WT)timers [0])->at <= mn_now) 1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1106 { 1607 {
1107 ev_timer *w = timers [0]; 1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1108 1609
1109 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1110 1611
1111 /* first reschedule or stop timer */ 1612 /* first reschedule or stop timer */
1112 if (w->repeat) 1613 if (w->repeat)
1113 { 1614 {
1615 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now;
1618
1114 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1115 1620
1116 ((WT)w)->at += w->repeat; 1621 ANHE_at_set (timers [HEAP0]);
1117 if (((WT)w)->at < mn_now)
1118 ((WT)w)->at = mn_now;
1119
1120 downheap ((WT *)timers, timercnt, 0); 1622 downheap (timers, timercnt, HEAP0);
1121 } 1623 }
1122 else 1624 else
1123 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 1626
1125 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1128 1630
1129#if EV_PERIODIC_ENABLE 1631#if EV_PERIODIC_ENABLE
1130void inline_size 1632void inline_size
1131periodics_reify (EV_P) 1633periodics_reify (EV_P)
1132{ 1634{
1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1134 { 1636 {
1135 ev_periodic *w = periodics [0]; 1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1136 1638
1137 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1138 1640
1139 /* first reschedule or stop timer */ 1641 /* first reschedule or stop timer */
1140 if (w->reschedule_cb) 1642 if (w->reschedule_cb)
1141 { 1643 {
1142 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645
1143 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
1144 downheap ((WT *)periodics, periodiccnt, 0); 1649 downheap (periodics, periodiccnt, HEAP0);
1145 } 1650 }
1146 else if (w->interval) 1651 else if (w->interval)
1147 { 1652 {
1148 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1655
1149 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1656 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) >= ev_rt_now));
1657
1658 ANHE_at_set (periodics [HEAP0]);
1150 downheap ((WT *)periodics, periodiccnt, 0); 1659 downheap (periodics, periodiccnt, HEAP0);
1151 } 1660 }
1152 else 1661 else
1153 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1662 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1154 1663
1155 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1664 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1160periodics_reschedule (EV_P) 1669periodics_reschedule (EV_P)
1161{ 1670{
1162 int i; 1671 int i;
1163 1672
1164 /* adjust periodics after time jump */ 1673 /* adjust periodics after time jump */
1674 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1675 {
1676 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1677
1678 if (w->reschedule_cb)
1679 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1680 else if (w->interval)
1681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1682
1683 ANHE_at_set (periodics [i]);
1684 }
1685
1686 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1687 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1165 for (i = 0; i < periodiccnt; ++i) 1688 for (i = 0; i < periodiccnt; ++i)
1166 { 1689 upheap (periodics, i + HEAP0);
1167 ev_periodic *w = periodics [i]; 1690}
1691#endif
1168 1692
1169 if (w->reschedule_cb) 1693void inline_speed
1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1694time_update (EV_P_ ev_tstamp max_block)
1171 else if (w->interval) 1695{
1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1696 int i;
1697
1698#if EV_USE_MONOTONIC
1699 if (expect_true (have_monotonic))
1173 } 1700 {
1701 ev_tstamp odiff = rtmn_diff;
1174 1702
1175 /* now rebuild the heap */
1176 for (i = periodiccnt >> 1; i--; )
1177 downheap ((WT *)periodics, periodiccnt, i);
1178}
1179#endif
1180
1181int inline_size
1182time_update_monotonic (EV_P)
1183{
1184 mn_now = get_clock (); 1703 mn_now = get_clock ();
1185 1704
1705 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1706 /* interpolate in the meantime */
1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1707 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1187 { 1708 {
1188 ev_rt_now = rtmn_diff + mn_now; 1709 ev_rt_now = rtmn_diff + mn_now;
1189 return 0; 1710 return;
1190 } 1711 }
1191 else 1712
1192 {
1193 now_floor = mn_now; 1713 now_floor = mn_now;
1194 ev_rt_now = ev_time (); 1714 ev_rt_now = ev_time ();
1195 return 1;
1196 }
1197}
1198 1715
1199void inline_size 1716 /* loop a few times, before making important decisions.
1200time_update (EV_P) 1717 * on the choice of "4": one iteration isn't enough,
1201{ 1718 * in case we get preempted during the calls to
1202 int i; 1719 * ev_time and get_clock. a second call is almost guaranteed
1203 1720 * to succeed in that case, though. and looping a few more times
1204#if EV_USE_MONOTONIC 1721 * doesn't hurt either as we only do this on time-jumps or
1205 if (expect_true (have_monotonic)) 1722 * in the unlikely event of having been preempted here.
1206 { 1723 */
1207 if (time_update_monotonic (EV_A)) 1724 for (i = 4; --i; )
1208 { 1725 {
1209 ev_tstamp odiff = rtmn_diff;
1210
1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
1220 {
1221 rtmn_diff = ev_rt_now - mn_now; 1726 rtmn_diff = ev_rt_now - mn_now;
1222 1727
1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1728 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1224 return; /* all is well */ 1729 return; /* all is well */
1225 1730
1226 ev_rt_now = ev_time (); 1731 ev_rt_now = ev_time ();
1227 mn_now = get_clock (); 1732 mn_now = get_clock ();
1228 now_floor = mn_now; 1733 now_floor = mn_now;
1229 } 1734 }
1230 1735
1231# if EV_PERIODIC_ENABLE 1736# if EV_PERIODIC_ENABLE
1232 periodics_reschedule (EV_A); 1737 periodics_reschedule (EV_A);
1233# endif 1738# endif
1234 /* no timer adjustment, as the monotonic clock doesn't jump */ 1739 /* no timer adjustment, as the monotonic clock doesn't jump */
1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1740 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1236 }
1237 } 1741 }
1238 else 1742 else
1239#endif 1743#endif
1240 { 1744 {
1241 ev_rt_now = ev_time (); 1745 ev_rt_now = ev_time ();
1242 1746
1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1747 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1244 { 1748 {
1245#if EV_PERIODIC_ENABLE 1749#if EV_PERIODIC_ENABLE
1246 periodics_reschedule (EV_A); 1750 periodics_reschedule (EV_A);
1247#endif 1751#endif
1248
1249 /* adjust timers. this is easy, as the offset is the same for all */ 1752 /* adjust timers. this is easy, as the offset is the same for all of them */
1250 for (i = 0; i < timercnt; ++i) 1753 for (i = 0; i < timercnt; ++i)
1754 {
1755 ANHE *he = timers + i + HEAP0;
1251 ((WT)timers [i])->at += ev_rt_now - mn_now; 1756 ANHE_w (*he)->at += ev_rt_now - mn_now;
1757 ANHE_at_set (*he);
1758 }
1252 } 1759 }
1253 1760
1254 mn_now = ev_rt_now; 1761 mn_now = ev_rt_now;
1255 } 1762 }
1256} 1763}
1270static int loop_done; 1777static int loop_done;
1271 1778
1272void 1779void
1273ev_loop (EV_P_ int flags) 1780ev_loop (EV_P_ int flags)
1274{ 1781{
1275 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1782 loop_done = EVUNLOOP_CANCEL;
1276 ? EVUNLOOP_ONE
1277 : EVUNLOOP_CANCEL;
1278 1783
1279 while (activecnt) 1784 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1785
1786 do
1280 { 1787 {
1788#ifndef _WIN32
1789 if (expect_false (curpid)) /* penalise the forking check even more */
1790 if (expect_false (getpid () != curpid))
1791 {
1792 curpid = getpid ();
1793 postfork = 1;
1794 }
1795#endif
1796
1797#if EV_FORK_ENABLE
1798 /* we might have forked, so queue fork handlers */
1799 if (expect_false (postfork))
1800 if (forkcnt)
1801 {
1802 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1803 call_pending (EV_A);
1804 }
1805#endif
1806
1281 /* queue check watchers (and execute them) */ 1807 /* queue prepare watchers (and execute them) */
1282 if (expect_false (preparecnt)) 1808 if (expect_false (preparecnt))
1283 { 1809 {
1284 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1285 call_pending (EV_A); 1811 call_pending (EV_A);
1286 } 1812 }
1287 1813
1814 if (expect_false (!activecnt))
1815 break;
1816
1288 /* we might have forked, so reify kernel state if necessary */ 1817 /* we might have forked, so reify kernel state if necessary */
1289 if (expect_false (postfork)) 1818 if (expect_false (postfork))
1290 loop_fork (EV_A); 1819 loop_fork (EV_A);
1291 1820
1292 /* update fd-related kernel structures */ 1821 /* update fd-related kernel structures */
1293 fd_reify (EV_A); 1822 fd_reify (EV_A);
1294 1823
1295 /* calculate blocking time */ 1824 /* calculate blocking time */
1296 { 1825 {
1297 double block; 1826 ev_tstamp waittime = 0.;
1827 ev_tstamp sleeptime = 0.;
1298 1828
1299 if (flags & EVLOOP_NONBLOCK || idlecnt) 1829 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1300 block = 0.; /* do not block at all */
1301 else
1302 { 1830 {
1303 /* update time to cancel out callback processing overhead */ 1831 /* update time to cancel out callback processing overhead */
1304#if EV_USE_MONOTONIC
1305 if (expect_true (have_monotonic))
1306 time_update_monotonic (EV_A); 1832 time_update (EV_A_ 1e100);
1307 else
1308#endif
1309 {
1310 ev_rt_now = ev_time ();
1311 mn_now = ev_rt_now;
1312 }
1313 1833
1314 block = MAX_BLOCKTIME; 1834 waittime = MAX_BLOCKTIME;
1315 1835
1316 if (timercnt) 1836 if (timercnt)
1317 { 1837 {
1318 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1838 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1319 if (block > to) block = to; 1839 if (waittime > to) waittime = to;
1320 } 1840 }
1321 1841
1322#if EV_PERIODIC_ENABLE 1842#if EV_PERIODIC_ENABLE
1323 if (periodiccnt) 1843 if (periodiccnt)
1324 { 1844 {
1325 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1845 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1326 if (block > to) block = to; 1846 if (waittime > to) waittime = to;
1327 } 1847 }
1328#endif 1848#endif
1329 1849
1330 if (expect_false (block < 0.)) block = 0.; 1850 if (expect_false (waittime < timeout_blocktime))
1851 waittime = timeout_blocktime;
1852
1853 sleeptime = waittime - backend_fudge;
1854
1855 if (expect_true (sleeptime > io_blocktime))
1856 sleeptime = io_blocktime;
1857
1858 if (sleeptime)
1859 {
1860 ev_sleep (sleeptime);
1861 waittime -= sleeptime;
1862 }
1331 } 1863 }
1332 1864
1865 ++loop_count;
1333 backend_poll (EV_A_ block); 1866 backend_poll (EV_A_ waittime);
1867
1868 /* update ev_rt_now, do magic */
1869 time_update (EV_A_ waittime + sleeptime);
1334 } 1870 }
1335
1336 /* update ev_rt_now, do magic */
1337 time_update (EV_A);
1338 1871
1339 /* queue pending timers and reschedule them */ 1872 /* queue pending timers and reschedule them */
1340 timers_reify (EV_A); /* relative timers called last */ 1873 timers_reify (EV_A); /* relative timers called last */
1341#if EV_PERIODIC_ENABLE 1874#if EV_PERIODIC_ENABLE
1342 periodics_reify (EV_A); /* absolute timers called first */ 1875 periodics_reify (EV_A); /* absolute timers called first */
1343#endif 1876#endif
1344 1877
1878#if EV_IDLE_ENABLE
1345 /* queue idle watchers unless other events are pending */ 1879 /* queue idle watchers unless other events are pending */
1346 if (idlecnt && !any_pending (EV_A)) 1880 idle_reify (EV_A);
1347 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1881#endif
1348 1882
1349 /* queue check watchers, to be executed first */ 1883 /* queue check watchers, to be executed first */
1350 if (expect_false (checkcnt)) 1884 if (expect_false (checkcnt))
1351 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1885 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1352 1886
1353 call_pending (EV_A); 1887 call_pending (EV_A);
1354
1355 if (expect_false (loop_done))
1356 break;
1357 } 1888 }
1889 while (expect_true (
1890 activecnt
1891 && !loop_done
1892 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1893 ));
1358 1894
1359 if (loop_done == EVUNLOOP_ONE) 1895 if (loop_done == EVUNLOOP_ONE)
1360 loop_done = EVUNLOOP_CANCEL; 1896 loop_done = EVUNLOOP_CANCEL;
1361} 1897}
1362 1898
1389 head = &(*head)->next; 1925 head = &(*head)->next;
1390 } 1926 }
1391} 1927}
1392 1928
1393void inline_speed 1929void inline_speed
1394ev_clear_pending (EV_P_ W w) 1930clear_pending (EV_P_ W w)
1395{ 1931{
1396 if (w->pending) 1932 if (w->pending)
1397 { 1933 {
1398 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1934 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1399 w->pending = 0; 1935 w->pending = 0;
1400 } 1936 }
1401} 1937}
1402 1938
1939int
1940ev_clear_pending (EV_P_ void *w)
1941{
1942 W w_ = (W)w;
1943 int pending = w_->pending;
1944
1945 if (expect_true (pending))
1946 {
1947 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1948 w_->pending = 0;
1949 p->w = 0;
1950 return p->events;
1951 }
1952 else
1953 return 0;
1954}
1955
1956void inline_size
1957pri_adjust (EV_P_ W w)
1958{
1959 int pri = w->priority;
1960 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1961 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1962 w->priority = pri;
1963}
1964
1403void inline_speed 1965void inline_speed
1404ev_start (EV_P_ W w, int active) 1966ev_start (EV_P_ W w, int active)
1405{ 1967{
1406 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1968 pri_adjust (EV_A_ w);
1407 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1408
1409 w->active = active; 1969 w->active = active;
1410 ev_ref (EV_A); 1970 ev_ref (EV_A);
1411} 1971}
1412 1972
1413void inline_size 1973void inline_size
1417 w->active = 0; 1977 w->active = 0;
1418} 1978}
1419 1979
1420/*****************************************************************************/ 1980/*****************************************************************************/
1421 1981
1422void 1982void noinline
1423ev_io_start (EV_P_ ev_io *w) 1983ev_io_start (EV_P_ ev_io *w)
1424{ 1984{
1425 int fd = w->fd; 1985 int fd = w->fd;
1426 1986
1427 if (expect_false (ev_is_active (w))) 1987 if (expect_false (ev_is_active (w)))
1429 1989
1430 assert (("ev_io_start called with negative fd", fd >= 0)); 1990 assert (("ev_io_start called with negative fd", fd >= 0));
1431 1991
1432 ev_start (EV_A_ (W)w, 1); 1992 ev_start (EV_A_ (W)w, 1);
1433 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1993 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1434 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1994 wlist_add (&anfds[fd].head, (WL)w);
1435 1995
1436 fd_change (EV_A_ fd); 1996 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1997 w->events &= ~EV_IOFDSET;
1437} 1998}
1438 1999
1439void 2000void noinline
1440ev_io_stop (EV_P_ ev_io *w) 2001ev_io_stop (EV_P_ ev_io *w)
1441{ 2002{
1442 ev_clear_pending (EV_A_ (W)w); 2003 clear_pending (EV_A_ (W)w);
1443 if (expect_false (!ev_is_active (w))) 2004 if (expect_false (!ev_is_active (w)))
1444 return; 2005 return;
1445 2006
1446 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2007 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1447 2008
1448 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2009 wlist_del (&anfds[w->fd].head, (WL)w);
1449 ev_stop (EV_A_ (W)w); 2010 ev_stop (EV_A_ (W)w);
1450 2011
1451 fd_change (EV_A_ w->fd); 2012 fd_change (EV_A_ w->fd, 1);
1452} 2013}
1453 2014
1454void 2015void noinline
1455ev_timer_start (EV_P_ ev_timer *w) 2016ev_timer_start (EV_P_ ev_timer *w)
1456{ 2017{
1457 if (expect_false (ev_is_active (w))) 2018 if (expect_false (ev_is_active (w)))
1458 return; 2019 return;
1459 2020
1460 ((WT)w)->at += mn_now; 2021 ev_at (w) += mn_now;
1461 2022
1462 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2023 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1463 2024
1464 ev_start (EV_A_ (W)w, ++timercnt); 2025 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1465 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2026 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1466 timers [timercnt - 1] = w; 2027 ANHE_w (timers [ev_active (w)]) = (WT)w;
1467 upheap ((WT *)timers, timercnt - 1); 2028 ANHE_at_set (timers [ev_active (w)]);
2029 upheap (timers, ev_active (w));
1468 2030
1469 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2031 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1470} 2032}
1471 2033
1472void 2034void noinline
1473ev_timer_stop (EV_P_ ev_timer *w) 2035ev_timer_stop (EV_P_ ev_timer *w)
1474{ 2036{
1475 ev_clear_pending (EV_A_ (W)w); 2037 clear_pending (EV_A_ (W)w);
1476 if (expect_false (!ev_is_active (w))) 2038 if (expect_false (!ev_is_active (w)))
1477 return; 2039 return;
1478 2040
2041 {
2042 int active = ev_active (w);
2043
1479 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2044 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1480 2045
1481 if (expect_true (((W)w)->active < timercnt--)) 2046 if (expect_true (active < timercnt + HEAP0 - 1))
1482 { 2047 {
1483 timers [((W)w)->active - 1] = timers [timercnt]; 2048 timers [active] = timers [timercnt + HEAP0 - 1];
1484 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2049 adjustheap (timers, timercnt, active);
1485 } 2050 }
1486 2051
1487 ((WT)w)->at -= mn_now; 2052 --timercnt;
2053 }
2054
2055 ev_at (w) -= mn_now;
1488 2056
1489 ev_stop (EV_A_ (W)w); 2057 ev_stop (EV_A_ (W)w);
1490} 2058}
1491 2059
1492void 2060void noinline
1493ev_timer_again (EV_P_ ev_timer *w) 2061ev_timer_again (EV_P_ ev_timer *w)
1494{ 2062{
1495 if (ev_is_active (w)) 2063 if (ev_is_active (w))
1496 { 2064 {
1497 if (w->repeat) 2065 if (w->repeat)
1498 { 2066 {
1499 ((WT)w)->at = mn_now + w->repeat; 2067 ev_at (w) = mn_now + w->repeat;
2068 ANHE_at_set (timers [ev_active (w)]);
1500 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2069 adjustheap (timers, timercnt, ev_active (w));
1501 } 2070 }
1502 else 2071 else
1503 ev_timer_stop (EV_A_ w); 2072 ev_timer_stop (EV_A_ w);
1504 } 2073 }
1505 else if (w->repeat) 2074 else if (w->repeat)
1506 { 2075 {
1507 w->at = w->repeat; 2076 ev_at (w) = w->repeat;
1508 ev_timer_start (EV_A_ w); 2077 ev_timer_start (EV_A_ w);
1509 } 2078 }
1510} 2079}
1511 2080
1512#if EV_PERIODIC_ENABLE 2081#if EV_PERIODIC_ENABLE
1513void 2082void noinline
1514ev_periodic_start (EV_P_ ev_periodic *w) 2083ev_periodic_start (EV_P_ ev_periodic *w)
1515{ 2084{
1516 if (expect_false (ev_is_active (w))) 2085 if (expect_false (ev_is_active (w)))
1517 return; 2086 return;
1518 2087
1519 if (w->reschedule_cb) 2088 if (w->reschedule_cb)
1520 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1521 else if (w->interval) 2090 else if (w->interval)
1522 { 2091 {
1523 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2092 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1524 /* this formula differs from the one in periodic_reify because we do not always round up */ 2093 /* this formula differs from the one in periodic_reify because we do not always round up */
1525 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1526 } 2095 }
2096 else
2097 ev_at (w) = w->offset;
1527 2098
1528 ev_start (EV_A_ (W)w, ++periodiccnt); 2099 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1529 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2100 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1530 periodics [periodiccnt - 1] = w; 2101 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1531 upheap ((WT *)periodics, periodiccnt - 1); 2102 ANHE_at_set (periodics [ev_active (w)]);
2103 upheap (periodics, ev_active (w));
1532 2104
1533 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2105 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1534} 2106}
1535 2107
1536void 2108void noinline
1537ev_periodic_stop (EV_P_ ev_periodic *w) 2109ev_periodic_stop (EV_P_ ev_periodic *w)
1538{ 2110{
1539 ev_clear_pending (EV_A_ (W)w); 2111 clear_pending (EV_A_ (W)w);
1540 if (expect_false (!ev_is_active (w))) 2112 if (expect_false (!ev_is_active (w)))
1541 return; 2113 return;
1542 2114
2115 {
2116 int active = ev_active (w);
2117
1543 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2118 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1544 2119
1545 if (expect_true (((W)w)->active < periodiccnt--)) 2120 if (expect_true (active < periodiccnt + HEAP0 - 1))
1546 { 2121 {
1547 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2122 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1548 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2123 adjustheap (periodics, periodiccnt, active);
1549 } 2124 }
2125
2126 --periodiccnt;
2127 }
1550 2128
1551 ev_stop (EV_A_ (W)w); 2129 ev_stop (EV_A_ (W)w);
1552} 2130}
1553 2131
1554void 2132void noinline
1555ev_periodic_again (EV_P_ ev_periodic *w) 2133ev_periodic_again (EV_P_ ev_periodic *w)
1556{ 2134{
1557 /* TODO: use adjustheap and recalculation */ 2135 /* TODO: use adjustheap and recalculation */
1558 ev_periodic_stop (EV_A_ w); 2136 ev_periodic_stop (EV_A_ w);
1559 ev_periodic_start (EV_A_ w); 2137 ev_periodic_start (EV_A_ w);
1562 2140
1563#ifndef SA_RESTART 2141#ifndef SA_RESTART
1564# define SA_RESTART 0 2142# define SA_RESTART 0
1565#endif 2143#endif
1566 2144
1567void 2145void noinline
1568ev_signal_start (EV_P_ ev_signal *w) 2146ev_signal_start (EV_P_ ev_signal *w)
1569{ 2147{
1570#if EV_MULTIPLICITY 2148#if EV_MULTIPLICITY
1571 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2149 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1572#endif 2150#endif
1573 if (expect_false (ev_is_active (w))) 2151 if (expect_false (ev_is_active (w)))
1574 return; 2152 return;
1575 2153
1576 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2154 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1577 2155
2156 evpipe_init (EV_A);
2157
2158 {
2159#ifndef _WIN32
2160 sigset_t full, prev;
2161 sigfillset (&full);
2162 sigprocmask (SIG_SETMASK, &full, &prev);
2163#endif
2164
2165 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2166
2167#ifndef _WIN32
2168 sigprocmask (SIG_SETMASK, &prev, 0);
2169#endif
2170 }
2171
1578 ev_start (EV_A_ (W)w, 1); 2172 ev_start (EV_A_ (W)w, 1);
1579 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1580 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2173 wlist_add (&signals [w->signum - 1].head, (WL)w);
1581 2174
1582 if (!((WL)w)->next) 2175 if (!((WL)w)->next)
1583 { 2176 {
1584#if _WIN32 2177#if _WIN32
1585 signal (w->signum, sighandler); 2178 signal (w->signum, ev_sighandler);
1586#else 2179#else
1587 struct sigaction sa; 2180 struct sigaction sa;
1588 sa.sa_handler = sighandler; 2181 sa.sa_handler = ev_sighandler;
1589 sigfillset (&sa.sa_mask); 2182 sigfillset (&sa.sa_mask);
1590 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2183 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1591 sigaction (w->signum, &sa, 0); 2184 sigaction (w->signum, &sa, 0);
1592#endif 2185#endif
1593 } 2186 }
1594} 2187}
1595 2188
1596void 2189void noinline
1597ev_signal_stop (EV_P_ ev_signal *w) 2190ev_signal_stop (EV_P_ ev_signal *w)
1598{ 2191{
1599 ev_clear_pending (EV_A_ (W)w); 2192 clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w))) 2193 if (expect_false (!ev_is_active (w)))
1601 return; 2194 return;
1602 2195
1603 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2196 wlist_del (&signals [w->signum - 1].head, (WL)w);
1604 ev_stop (EV_A_ (W)w); 2197 ev_stop (EV_A_ (W)w);
1605 2198
1606 if (!signals [w->signum - 1].head) 2199 if (!signals [w->signum - 1].head)
1607 signal (w->signum, SIG_DFL); 2200 signal (w->signum, SIG_DFL);
1608} 2201}
1615#endif 2208#endif
1616 if (expect_false (ev_is_active (w))) 2209 if (expect_false (ev_is_active (w)))
1617 return; 2210 return;
1618 2211
1619 ev_start (EV_A_ (W)w, 1); 2212 ev_start (EV_A_ (W)w, 1);
1620 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2213 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1621} 2214}
1622 2215
1623void 2216void
1624ev_child_stop (EV_P_ ev_child *w) 2217ev_child_stop (EV_P_ ev_child *w)
1625{ 2218{
1626 ev_clear_pending (EV_A_ (W)w); 2219 clear_pending (EV_A_ (W)w);
1627 if (expect_false (!ev_is_active (w))) 2220 if (expect_false (!ev_is_active (w)))
1628 return; 2221 return;
1629 2222
1630 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2223 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1631 ev_stop (EV_A_ (W)w); 2224 ev_stop (EV_A_ (W)w);
1632} 2225}
1633 2226
1634#if EV_STAT_ENABLE 2227#if EV_STAT_ENABLE
1635 2228
1639# endif 2232# endif
1640 2233
1641#define DEF_STAT_INTERVAL 5.0074891 2234#define DEF_STAT_INTERVAL 5.0074891
1642#define MIN_STAT_INTERVAL 0.1074891 2235#define MIN_STAT_INTERVAL 0.1074891
1643 2236
2237static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2238
2239#if EV_USE_INOTIFY
2240# define EV_INOTIFY_BUFSIZE 8192
2241
2242static void noinline
2243infy_add (EV_P_ ev_stat *w)
2244{
2245 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2246
2247 if (w->wd < 0)
2248 {
2249 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2250
2251 /* monitor some parent directory for speedup hints */
2252 /* note that exceeding the hardcoded limit is not a correctness issue, */
2253 /* but an efficiency issue only */
2254 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2255 {
2256 char path [4096];
2257 strcpy (path, w->path);
2258
2259 do
2260 {
2261 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2262 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2263
2264 char *pend = strrchr (path, '/');
2265
2266 if (!pend)
2267 break; /* whoops, no '/', complain to your admin */
2268
2269 *pend = 0;
2270 w->wd = inotify_add_watch (fs_fd, path, mask);
2271 }
2272 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2273 }
2274 }
2275 else
2276 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2277
2278 if (w->wd >= 0)
2279 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2280}
2281
2282static void noinline
2283infy_del (EV_P_ ev_stat *w)
2284{
2285 int slot;
2286 int wd = w->wd;
2287
2288 if (wd < 0)
2289 return;
2290
2291 w->wd = -2;
2292 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2293 wlist_del (&fs_hash [slot].head, (WL)w);
2294
2295 /* remove this watcher, if others are watching it, they will rearm */
2296 inotify_rm_watch (fs_fd, wd);
2297}
2298
2299static void noinline
2300infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2301{
2302 if (slot < 0)
2303 /* overflow, need to check for all hahs slots */
2304 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2305 infy_wd (EV_A_ slot, wd, ev);
2306 else
2307 {
2308 WL w_;
2309
2310 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2311 {
2312 ev_stat *w = (ev_stat *)w_;
2313 w_ = w_->next; /* lets us remove this watcher and all before it */
2314
2315 if (w->wd == wd || wd == -1)
2316 {
2317 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2318 {
2319 w->wd = -1;
2320 infy_add (EV_A_ w); /* re-add, no matter what */
2321 }
2322
2323 stat_timer_cb (EV_A_ &w->timer, 0);
2324 }
2325 }
2326 }
2327}
2328
2329static void
2330infy_cb (EV_P_ ev_io *w, int revents)
2331{
2332 char buf [EV_INOTIFY_BUFSIZE];
2333 struct inotify_event *ev = (struct inotify_event *)buf;
2334 int ofs;
2335 int len = read (fs_fd, buf, sizeof (buf));
2336
2337 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2338 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2339}
2340
2341void inline_size
2342infy_init (EV_P)
2343{
2344 if (fs_fd != -2)
2345 return;
2346
2347 fs_fd = inotify_init ();
2348
2349 if (fs_fd >= 0)
2350 {
2351 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2352 ev_set_priority (&fs_w, EV_MAXPRI);
2353 ev_io_start (EV_A_ &fs_w);
2354 }
2355}
2356
2357void inline_size
2358infy_fork (EV_P)
2359{
2360 int slot;
2361
2362 if (fs_fd < 0)
2363 return;
2364
2365 close (fs_fd);
2366 fs_fd = inotify_init ();
2367
2368 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2369 {
2370 WL w_ = fs_hash [slot].head;
2371 fs_hash [slot].head = 0;
2372
2373 while (w_)
2374 {
2375 ev_stat *w = (ev_stat *)w_;
2376 w_ = w_->next; /* lets us add this watcher */
2377
2378 w->wd = -1;
2379
2380 if (fs_fd >= 0)
2381 infy_add (EV_A_ w); /* re-add, no matter what */
2382 else
2383 ev_timer_start (EV_A_ &w->timer);
2384 }
2385
2386 }
2387}
2388
2389#endif
2390
1644void 2391void
1645ev_stat_stat (EV_P_ ev_stat *w) 2392ev_stat_stat (EV_P_ ev_stat *w)
1646{ 2393{
1647 if (lstat (w->path, &w->attr) < 0) 2394 if (lstat (w->path, &w->attr) < 0)
1648 w->attr.st_nlink = 0; 2395 w->attr.st_nlink = 0;
1649 else if (!w->attr.st_nlink) 2396 else if (!w->attr.st_nlink)
1650 w->attr.st_nlink = 1; 2397 w->attr.st_nlink = 1;
1651} 2398}
1652 2399
1653static void 2400static void noinline
1654stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2401stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1655{ 2402{
1656 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2403 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1657 2404
1658 /* we copy this here each the time so that */ 2405 /* we copy this here each the time so that */
1659 /* prev has the old value when the callback gets invoked */ 2406 /* prev has the old value when the callback gets invoked */
1660 w->prev = w->attr; 2407 w->prev = w->attr;
1661 ev_stat_stat (EV_A_ w); 2408 ev_stat_stat (EV_A_ w);
1662 2409
1663 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2410 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2411 if (
2412 w->prev.st_dev != w->attr.st_dev
2413 || w->prev.st_ino != w->attr.st_ino
2414 || w->prev.st_mode != w->attr.st_mode
2415 || w->prev.st_nlink != w->attr.st_nlink
2416 || w->prev.st_uid != w->attr.st_uid
2417 || w->prev.st_gid != w->attr.st_gid
2418 || w->prev.st_rdev != w->attr.st_rdev
2419 || w->prev.st_size != w->attr.st_size
2420 || w->prev.st_atime != w->attr.st_atime
2421 || w->prev.st_mtime != w->attr.st_mtime
2422 || w->prev.st_ctime != w->attr.st_ctime
2423 ) {
2424 #if EV_USE_INOTIFY
2425 infy_del (EV_A_ w);
2426 infy_add (EV_A_ w);
2427 ev_stat_stat (EV_A_ w); /* avoid race... */
2428 #endif
2429
1664 ev_feed_event (EV_A_ w, EV_STAT); 2430 ev_feed_event (EV_A_ w, EV_STAT);
2431 }
1665} 2432}
1666 2433
1667void 2434void
1668ev_stat_start (EV_P_ ev_stat *w) 2435ev_stat_start (EV_P_ ev_stat *w)
1669{ 2436{
1679 if (w->interval < MIN_STAT_INTERVAL) 2446 if (w->interval < MIN_STAT_INTERVAL)
1680 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL; 2447 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1681 2448
1682 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2449 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1683 ev_set_priority (&w->timer, ev_priority (w)); 2450 ev_set_priority (&w->timer, ev_priority (w));
2451
2452#if EV_USE_INOTIFY
2453 infy_init (EV_A);
2454
2455 if (fs_fd >= 0)
2456 infy_add (EV_A_ w);
2457 else
2458#endif
1684 ev_timer_start (EV_A_ &w->timer); 2459 ev_timer_start (EV_A_ &w->timer);
1685 2460
1686 ev_start (EV_A_ (W)w, 1); 2461 ev_start (EV_A_ (W)w, 1);
1687} 2462}
1688 2463
1689void 2464void
1690ev_stat_stop (EV_P_ ev_stat *w) 2465ev_stat_stop (EV_P_ ev_stat *w)
1691{ 2466{
1692 ev_clear_pending (EV_A_ (W)w); 2467 clear_pending (EV_A_ (W)w);
1693 if (expect_false (!ev_is_active (w))) 2468 if (expect_false (!ev_is_active (w)))
1694 return; 2469 return;
1695 2470
2471#if EV_USE_INOTIFY
2472 infy_del (EV_A_ w);
2473#endif
1696 ev_timer_stop (EV_A_ &w->timer); 2474 ev_timer_stop (EV_A_ &w->timer);
1697 2475
1698 ev_stop (EV_A_ (W)w); 2476 ev_stop (EV_A_ (W)w);
1699} 2477}
1700#endif 2478#endif
1701 2479
2480#if EV_IDLE_ENABLE
1702void 2481void
1703ev_idle_start (EV_P_ ev_idle *w) 2482ev_idle_start (EV_P_ ev_idle *w)
1704{ 2483{
1705 if (expect_false (ev_is_active (w))) 2484 if (expect_false (ev_is_active (w)))
1706 return; 2485 return;
1707 2486
2487 pri_adjust (EV_A_ (W)w);
2488
2489 {
2490 int active = ++idlecnt [ABSPRI (w)];
2491
2492 ++idleall;
1708 ev_start (EV_A_ (W)w, ++idlecnt); 2493 ev_start (EV_A_ (W)w, active);
2494
1709 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2495 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1710 idles [idlecnt - 1] = w; 2496 idles [ABSPRI (w)][active - 1] = w;
2497 }
1711} 2498}
1712 2499
1713void 2500void
1714ev_idle_stop (EV_P_ ev_idle *w) 2501ev_idle_stop (EV_P_ ev_idle *w)
1715{ 2502{
1716 ev_clear_pending (EV_A_ (W)w); 2503 clear_pending (EV_A_ (W)w);
1717 if (expect_false (!ev_is_active (w))) 2504 if (expect_false (!ev_is_active (w)))
1718 return; 2505 return;
1719 2506
1720 { 2507 {
1721 int active = ((W)w)->active; 2508 int active = ev_active (w);
1722 idles [active - 1] = idles [--idlecnt]; 2509
1723 ((W)idles [active - 1])->active = active; 2510 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2511 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2512
2513 ev_stop (EV_A_ (W)w);
2514 --idleall;
1724 } 2515 }
1725
1726 ev_stop (EV_A_ (W)w);
1727} 2516}
2517#endif
1728 2518
1729void 2519void
1730ev_prepare_start (EV_P_ ev_prepare *w) 2520ev_prepare_start (EV_P_ ev_prepare *w)
1731{ 2521{
1732 if (expect_false (ev_is_active (w))) 2522 if (expect_false (ev_is_active (w)))
1738} 2528}
1739 2529
1740void 2530void
1741ev_prepare_stop (EV_P_ ev_prepare *w) 2531ev_prepare_stop (EV_P_ ev_prepare *w)
1742{ 2532{
1743 ev_clear_pending (EV_A_ (W)w); 2533 clear_pending (EV_A_ (W)w);
1744 if (expect_false (!ev_is_active (w))) 2534 if (expect_false (!ev_is_active (w)))
1745 return; 2535 return;
1746 2536
1747 { 2537 {
1748 int active = ((W)w)->active; 2538 int active = ev_active (w);
2539
1749 prepares [active - 1] = prepares [--preparecnt]; 2540 prepares [active - 1] = prepares [--preparecnt];
1750 ((W)prepares [active - 1])->active = active; 2541 ev_active (prepares [active - 1]) = active;
1751 } 2542 }
1752 2543
1753 ev_stop (EV_A_ (W)w); 2544 ev_stop (EV_A_ (W)w);
1754} 2545}
1755 2546
1765} 2556}
1766 2557
1767void 2558void
1768ev_check_stop (EV_P_ ev_check *w) 2559ev_check_stop (EV_P_ ev_check *w)
1769{ 2560{
1770 ev_clear_pending (EV_A_ (W)w); 2561 clear_pending (EV_A_ (W)w);
1771 if (expect_false (!ev_is_active (w))) 2562 if (expect_false (!ev_is_active (w)))
1772 return; 2563 return;
1773 2564
1774 { 2565 {
1775 int active = ((W)w)->active; 2566 int active = ev_active (w);
2567
1776 checks [active - 1] = checks [--checkcnt]; 2568 checks [active - 1] = checks [--checkcnt];
1777 ((W)checks [active - 1])->active = active; 2569 ev_active (checks [active - 1]) = active;
1778 } 2570 }
1779 2571
1780 ev_stop (EV_A_ (W)w); 2572 ev_stop (EV_A_ (W)w);
1781} 2573}
1782 2574
1783#if EV_EMBED_ENABLE 2575#if EV_EMBED_ENABLE
1784void noinline 2576void noinline
1785ev_embed_sweep (EV_P_ ev_embed *w) 2577ev_embed_sweep (EV_P_ ev_embed *w)
1786{ 2578{
1787 ev_loop (w->loop, EVLOOP_NONBLOCK); 2579 ev_loop (w->other, EVLOOP_NONBLOCK);
1788} 2580}
1789 2581
1790static void 2582static void
1791embed_cb (EV_P_ ev_io *io, int revents) 2583embed_io_cb (EV_P_ ev_io *io, int revents)
1792{ 2584{
1793 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2585 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1794 2586
1795 if (ev_cb (w)) 2587 if (ev_cb (w))
1796 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2588 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1797 else 2589 else
1798 ev_embed_sweep (loop, w); 2590 ev_loop (w->other, EVLOOP_NONBLOCK);
1799} 2591}
2592
2593static void
2594embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2595{
2596 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2597
2598 {
2599 struct ev_loop *loop = w->other;
2600
2601 while (fdchangecnt)
2602 {
2603 fd_reify (EV_A);
2604 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2605 }
2606 }
2607}
2608
2609#if 0
2610static void
2611embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2612{
2613 ev_idle_stop (EV_A_ idle);
2614}
2615#endif
1800 2616
1801void 2617void
1802ev_embed_start (EV_P_ ev_embed *w) 2618ev_embed_start (EV_P_ ev_embed *w)
1803{ 2619{
1804 if (expect_false (ev_is_active (w))) 2620 if (expect_false (ev_is_active (w)))
1805 return; 2621 return;
1806 2622
1807 { 2623 {
1808 struct ev_loop *loop = w->loop; 2624 struct ev_loop *loop = w->other;
1809 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2625 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1810 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2626 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1811 } 2627 }
1812 2628
1813 ev_set_priority (&w->io, ev_priority (w)); 2629 ev_set_priority (&w->io, ev_priority (w));
1814 ev_io_start (EV_A_ &w->io); 2630 ev_io_start (EV_A_ &w->io);
1815 2631
2632 ev_prepare_init (&w->prepare, embed_prepare_cb);
2633 ev_set_priority (&w->prepare, EV_MINPRI);
2634 ev_prepare_start (EV_A_ &w->prepare);
2635
2636 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2637
1816 ev_start (EV_A_ (W)w, 1); 2638 ev_start (EV_A_ (W)w, 1);
1817} 2639}
1818 2640
1819void 2641void
1820ev_embed_stop (EV_P_ ev_embed *w) 2642ev_embed_stop (EV_P_ ev_embed *w)
1821{ 2643{
1822 ev_clear_pending (EV_A_ (W)w); 2644 clear_pending (EV_A_ (W)w);
1823 if (expect_false (!ev_is_active (w))) 2645 if (expect_false (!ev_is_active (w)))
1824 return; 2646 return;
1825 2647
1826 ev_io_stop (EV_A_ &w->io); 2648 ev_io_stop (EV_A_ &w->io);
2649 ev_prepare_stop (EV_A_ &w->prepare);
1827 2650
1828 ev_stop (EV_A_ (W)w); 2651 ev_stop (EV_A_ (W)w);
2652}
2653#endif
2654
2655#if EV_FORK_ENABLE
2656void
2657ev_fork_start (EV_P_ ev_fork *w)
2658{
2659 if (expect_false (ev_is_active (w)))
2660 return;
2661
2662 ev_start (EV_A_ (W)w, ++forkcnt);
2663 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2664 forks [forkcnt - 1] = w;
2665}
2666
2667void
2668ev_fork_stop (EV_P_ ev_fork *w)
2669{
2670 clear_pending (EV_A_ (W)w);
2671 if (expect_false (!ev_is_active (w)))
2672 return;
2673
2674 {
2675 int active = ev_active (w);
2676
2677 forks [active - 1] = forks [--forkcnt];
2678 ev_active (forks [active - 1]) = active;
2679 }
2680
2681 ev_stop (EV_A_ (W)w);
2682}
2683#endif
2684
2685#if EV_ASYNC_ENABLE
2686void
2687ev_async_start (EV_P_ ev_async *w)
2688{
2689 if (expect_false (ev_is_active (w)))
2690 return;
2691
2692 evpipe_init (EV_A);
2693
2694 ev_start (EV_A_ (W)w, ++asynccnt);
2695 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2696 asyncs [asynccnt - 1] = w;
2697}
2698
2699void
2700ev_async_stop (EV_P_ ev_async *w)
2701{
2702 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w)))
2704 return;
2705
2706 {
2707 int active = ev_active (w);
2708
2709 asyncs [active - 1] = asyncs [--asynccnt];
2710 ev_active (asyncs [active - 1]) = active;
2711 }
2712
2713 ev_stop (EV_A_ (W)w);
2714}
2715
2716void
2717ev_async_send (EV_P_ ev_async *w)
2718{
2719 w->sent = 1;
2720 evpipe_write (EV_A_ &gotasync);
1829} 2721}
1830#endif 2722#endif
1831 2723
1832/*****************************************************************************/ 2724/*****************************************************************************/
1833 2725
1891 ev_timer_set (&once->to, timeout, 0.); 2783 ev_timer_set (&once->to, timeout, 0.);
1892 ev_timer_start (EV_A_ &once->to); 2784 ev_timer_start (EV_A_ &once->to);
1893 } 2785 }
1894} 2786}
1895 2787
2788#if EV_MULTIPLICITY
2789 #include "ev_wrap.h"
2790#endif
2791
1896#ifdef __cplusplus 2792#ifdef __cplusplus
1897} 2793}
1898#endif 2794#endif
1899 2795

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines