ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.146 by root, Tue Nov 27 09:17:51 2007 UTC vs.
Revision 1.365 by root, Sun Oct 31 22:01:20 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
65# endif 85# endif
66 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
73# endif 103# endif
74 104
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
78# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
81# endif 112# endif
82 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
89# endif 121# endif
90 122
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
94# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
97# endif 130# endif
98 131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
99#endif 159#endif
100 160
101#include <math.h> 161#include <math.h>
102#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
103#include <fcntl.h> 164#include <fcntl.h>
104#include <stddef.h> 165#include <stddef.h>
105 166
106#include <stdio.h> 167#include <stdio.h>
107 168
108#include <assert.h> 169#include <assert.h>
109#include <errno.h> 170#include <errno.h>
110#include <sys/types.h> 171#include <sys/types.h>
111#include <time.h> 172#include <time.h>
173#include <limits.h>
112 174
113#include <signal.h> 175#include <signal.h>
176
177#ifdef EV_H
178# include EV_H
179#else
180# include "ev.h"
181#endif
182
183EV_CPP(extern "C" {)
114 184
115#ifndef _WIN32 185#ifndef _WIN32
116# include <sys/time.h> 186# include <sys/time.h>
117# include <sys/wait.h> 187# include <sys/wait.h>
118# include <unistd.h> 188# include <unistd.h>
119#else 189#else
190# include <io.h>
120# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 192# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
124# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
125#endif 242# endif
126 243#endif
127/**/
128 244
129#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
130# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
131#endif 251#endif
132 252
133#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
135#endif 263#endif
136 264
137#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
139#endif 267#endif
140 268
141#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
142# ifdef _WIN32 270# ifdef _WIN32
143# define EV_USE_POLL 0 271# define EV_USE_POLL 0
144# else 272# else
145# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
146# endif 274# endif
147#endif 275#endif
148 276
149#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
150# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
151#endif 283#endif
152 284
153#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
155#endif 287#endif
156 288
157#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 290# define EV_USE_PORT 0
159#endif 291#endif
160 292
161/**/ 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
297# define EV_USE_INOTIFY 0
298# endif
299#endif
300
301#ifndef EV_PID_HASHSIZE
302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
162 364
163#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
166#endif 368#endif
168#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
171#endif 373#endif
172 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
173#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 397# include <winsock.h>
175#endif 398#endif
176 399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
177/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 455
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
183 458
184#ifdef EV_H 459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
185# include EV_H 460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
186#else
187# include "ev.h"
188#endif
189 461
190#if __GNUC__ >= 3 462#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
200#else 465#else
201# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
202# define inline_speed static
203# define inline_size static
204# define noinline 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
205#endif 471#endif
206 472
207#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
208#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
209 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
211#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
212 490
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
215 493
216typedef ev_watcher *W; 494typedef ev_watcher *W;
217typedef ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
218typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
219 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
221 520
222#ifdef _WIN32 521#ifdef _WIN32
223# include "ev_win32.c" 522# include "ev_win32.c"
224#endif 523#endif
225 524
226/*****************************************************************************/ 525/*****************************************************************************/
227 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
228static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
229 578
230void 579void
231ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
232{ 581{
233 syserr_cb = cb; 582 syserr_cb = cb;
234} 583}
235 584
236static void noinline 585static void noinline
237syserr (const char *msg) 586ev_syserr (const char *msg)
238{ 587{
239 if (!msg) 588 if (!msg)
240 msg = "(libev) system error"; 589 msg = "(libev) system error";
241 590
242 if (syserr_cb) 591 if (syserr_cb)
243 syserr_cb (msg); 592 syserr_cb (msg);
244 else 593 else
245 { 594 {
595#if EV_AVOID_STDIO
596 ev_printerr (msg);
597 ev_printerr (": ");
598 ev_printerr (strerror (errno));
599 ev_printerr ("\n");
600#else
246 perror (msg); 601 perror (msg);
602#endif
247 abort (); 603 abort ();
248 } 604 }
249} 605}
250 606
607static void *
608ev_realloc_emul (void *ptr, long size)
609{
610#if __GLIBC__
611 return realloc (ptr, size);
612#else
613 /* some systems, notably openbsd and darwin, fail to properly
614 * implement realloc (x, 0) (as required by both ansi c-89 and
615 * the single unix specification, so work around them here.
616 */
617
618 if (size)
619 return realloc (ptr, size);
620
621 free (ptr);
622 return 0;
623#endif
624}
625
251static void *(*alloc)(void *ptr, long size); 626static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
252 627
253void 628void
254ev_set_allocator (void *(*cb)(void *ptr, long size)) 629ev_set_allocator (void *(*cb)(void *ptr, long size))
255{ 630{
256 alloc = cb; 631 alloc = cb;
257} 632}
258 633
259static void * 634inline_speed void *
260ev_realloc (void *ptr, long size) 635ev_realloc (void *ptr, long size)
261{ 636{
262 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 637 ptr = alloc (ptr, size);
263 638
264 if (!ptr && size) 639 if (!ptr && size)
265 { 640 {
641#if EV_AVOID_STDIO
642 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643#else
266 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 644 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645#endif
267 abort (); 646 abort ();
268 } 647 }
269 648
270 return ptr; 649 return ptr;
271} 650}
273#define ev_malloc(size) ev_realloc (0, (size)) 652#define ev_malloc(size) ev_realloc (0, (size))
274#define ev_free(ptr) ev_realloc ((ptr), 0) 653#define ev_free(ptr) ev_realloc ((ptr), 0)
275 654
276/*****************************************************************************/ 655/*****************************************************************************/
277 656
657/* set in reify when reification needed */
658#define EV_ANFD_REIFY 1
659
660/* file descriptor info structure */
278typedef struct 661typedef struct
279{ 662{
280 WL head; 663 WL head;
281 unsigned char events; 664 unsigned char events; /* the events watched for */
665 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
666 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
282 unsigned char reify; 667 unsigned char unused;
668#if EV_USE_EPOLL
669 unsigned int egen; /* generation counter to counter epoll bugs */
670#endif
283#if EV_SELECT_IS_WINSOCKET 671#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
284 SOCKET handle; 672 SOCKET handle;
285#endif 673#endif
674#if EV_USE_IOCP
675 OVERLAPPED or, ow;
676#endif
286} ANFD; 677} ANFD;
287 678
679/* stores the pending event set for a given watcher */
288typedef struct 680typedef struct
289{ 681{
290 W w; 682 W w;
291 int events; 683 int events; /* the pending event set for the given watcher */
292} ANPENDING; 684} ANPENDING;
685
686#if EV_USE_INOTIFY
687/* hash table entry per inotify-id */
688typedef struct
689{
690 WL head;
691} ANFS;
692#endif
693
694/* Heap Entry */
695#if EV_HEAP_CACHE_AT
696 /* a heap element */
697 typedef struct {
698 ev_tstamp at;
699 WT w;
700 } ANHE;
701
702 #define ANHE_w(he) (he).w /* access watcher, read-write */
703 #define ANHE_at(he) (he).at /* access cached at, read-only */
704 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
705#else
706 /* a heap element */
707 typedef WT ANHE;
708
709 #define ANHE_w(he) (he)
710 #define ANHE_at(he) (he)->at
711 #define ANHE_at_cache(he)
712#endif
293 713
294#if EV_MULTIPLICITY 714#if EV_MULTIPLICITY
295 715
296 struct ev_loop 716 struct ev_loop
297 { 717 {
315 735
316 static int ev_default_loop_ptr; 736 static int ev_default_loop_ptr;
317 737
318#endif 738#endif
319 739
740#if EV_FEATURE_API
741# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743# define EV_INVOKE_PENDING invoke_cb (EV_A)
744#else
745# define EV_RELEASE_CB (void)0
746# define EV_ACQUIRE_CB (void)0
747# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748#endif
749
750#define EVBREAK_RECURSE 0x80
751
320/*****************************************************************************/ 752/*****************************************************************************/
321 753
754#ifndef EV_HAVE_EV_TIME
322ev_tstamp 755ev_tstamp
323ev_time (void) 756ev_time (void)
324{ 757{
325#if EV_USE_REALTIME 758#if EV_USE_REALTIME
759 if (expect_true (have_realtime))
760 {
326 struct timespec ts; 761 struct timespec ts;
327 clock_gettime (CLOCK_REALTIME, &ts); 762 clock_gettime (CLOCK_REALTIME, &ts);
328 return ts.tv_sec + ts.tv_nsec * 1e-9; 763 return ts.tv_sec + ts.tv_nsec * 1e-9;
329#else 764 }
765#endif
766
330 struct timeval tv; 767 struct timeval tv;
331 gettimeofday (&tv, 0); 768 gettimeofday (&tv, 0);
332 return tv.tv_sec + tv.tv_usec * 1e-6; 769 return tv.tv_sec + tv.tv_usec * 1e-6;
333#endif
334} 770}
771#endif
335 772
336ev_tstamp inline_size 773inline_size ev_tstamp
337get_clock (void) 774get_clock (void)
338{ 775{
339#if EV_USE_MONOTONIC 776#if EV_USE_MONOTONIC
340 if (expect_true (have_monotonic)) 777 if (expect_true (have_monotonic))
341 { 778 {
354{ 791{
355 return ev_rt_now; 792 return ev_rt_now;
356} 793}
357#endif 794#endif
358 795
359#define array_roundsize(type,n) (((n) | 4) & ~3) 796void
797ev_sleep (ev_tstamp delay)
798{
799 if (delay > 0.)
800 {
801#if EV_USE_NANOSLEEP
802 struct timespec ts;
803
804 EV_TS_SET (ts, delay);
805 nanosleep (&ts, 0);
806#elif defined(_WIN32)
807 Sleep ((unsigned long)(delay * 1e3));
808#else
809 struct timeval tv;
810
811 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
812 /* something not guaranteed by newer posix versions, but guaranteed */
813 /* by older ones */
814 EV_TV_SET (tv, delay);
815 select (0, 0, 0, 0, &tv);
816#endif
817 }
818}
819
820/*****************************************************************************/
821
822#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
823
824/* find a suitable new size for the given array, */
825/* hopefully by rounding to a nice-to-malloc size */
826inline_size int
827array_nextsize (int elem, int cur, int cnt)
828{
829 int ncur = cur + 1;
830
831 do
832 ncur <<= 1;
833 while (cnt > ncur);
834
835 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
836 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
837 {
838 ncur *= elem;
839 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
840 ncur = ncur - sizeof (void *) * 4;
841 ncur /= elem;
842 }
843
844 return ncur;
845}
846
847static noinline void *
848array_realloc (int elem, void *base, int *cur, int cnt)
849{
850 *cur = array_nextsize (elem, *cur, cnt);
851 return ev_realloc (base, elem * *cur);
852}
853
854#define array_init_zero(base,count) \
855 memset ((void *)(base), 0, sizeof (*(base)) * (count))
360 856
361#define array_needsize(type,base,cur,cnt,init) \ 857#define array_needsize(type,base,cur,cnt,init) \
362 if (expect_false ((cnt) > cur)) \ 858 if (expect_false ((cnt) > (cur))) \
363 { \ 859 { \
364 int newcnt = cur; \ 860 int ocur_ = (cur); \
365 do \ 861 (base) = (type *)array_realloc \
366 { \ 862 (sizeof (type), (base), &(cur), (cnt)); \
367 newcnt = array_roundsize (type, newcnt << 1); \ 863 init ((base) + (ocur_), (cur) - ocur_); \
368 } \
369 while ((cnt) > newcnt); \
370 \
371 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
372 init (base + cur, newcnt - cur); \
373 cur = newcnt; \
374 } 864 }
375 865
866#if 0
376#define array_slim(type,stem) \ 867#define array_slim(type,stem) \
377 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 868 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
378 { \ 869 { \
379 stem ## max = array_roundsize (stem ## cnt >> 1); \ 870 stem ## max = array_roundsize (stem ## cnt >> 1); \
380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 871 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 872 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
382 } 873 }
874#endif
383 875
384#define array_free(stem, idx) \ 876#define array_free(stem, idx) \
385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 877 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
386 878
387/*****************************************************************************/ 879/*****************************************************************************/
880
881/* dummy callback for pending events */
882static void noinline
883pendingcb (EV_P_ ev_prepare *w, int revents)
884{
885}
388 886
389void noinline 887void noinline
390ev_feed_event (EV_P_ void *w, int revents) 888ev_feed_event (EV_P_ void *w, int revents)
391{ 889{
392 W w_ = (W)w; 890 W w_ = (W)w;
891 int pri = ABSPRI (w_);
393 892
394 if (expect_false (w_->pending)) 893 if (expect_false (w_->pending))
894 pendings [pri][w_->pending - 1].events |= revents;
895 else
395 { 896 {
897 w_->pending = ++pendingcnt [pri];
898 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
899 pendings [pri][w_->pending - 1].w = w_;
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 900 pendings [pri][w_->pending - 1].events = revents;
397 return;
398 } 901 }
399
400 w_->pending = ++pendingcnt [ABSPRI (w_)];
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404} 902}
405 903
406void inline_size 904inline_speed void
905feed_reverse (EV_P_ W w)
906{
907 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
908 rfeeds [rfeedcnt++] = w;
909}
910
911inline_size void
912feed_reverse_done (EV_P_ int revents)
913{
914 do
915 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
916 while (rfeedcnt);
917}
918
919inline_speed void
407queue_events (EV_P_ W *events, int eventcnt, int type) 920queue_events (EV_P_ W *events, int eventcnt, int type)
408{ 921{
409 int i; 922 int i;
410 923
411 for (i = 0; i < eventcnt; ++i) 924 for (i = 0; i < eventcnt; ++i)
412 ev_feed_event (EV_A_ events [i], type); 925 ev_feed_event (EV_A_ events [i], type);
413} 926}
414 927
415/*****************************************************************************/ 928/*****************************************************************************/
416 929
417void inline_size 930inline_speed void
418anfds_init (ANFD *base, int count)
419{
420 while (count--)
421 {
422 base->head = 0;
423 base->events = EV_NONE;
424 base->reify = 0;
425
426 ++base;
427 }
428}
429
430void inline_speed
431fd_event (EV_P_ int fd, int revents) 931fd_event_nocheck (EV_P_ int fd, int revents)
432{ 932{
433 ANFD *anfd = anfds + fd; 933 ANFD *anfd = anfds + fd;
434 ev_io *w; 934 ev_io *w;
435 935
436 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 936 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
440 if (ev) 940 if (ev)
441 ev_feed_event (EV_A_ (W)w, ev); 941 ev_feed_event (EV_A_ (W)w, ev);
442 } 942 }
443} 943}
444 944
945/* do not submit kernel events for fds that have reify set */
946/* because that means they changed while we were polling for new events */
947inline_speed void
948fd_event (EV_P_ int fd, int revents)
949{
950 ANFD *anfd = anfds + fd;
951
952 if (expect_true (!anfd->reify))
953 fd_event_nocheck (EV_A_ fd, revents);
954}
955
445void 956void
446ev_feed_fd_event (EV_P_ int fd, int revents) 957ev_feed_fd_event (EV_P_ int fd, int revents)
447{ 958{
959 if (fd >= 0 && fd < anfdmax)
448 fd_event (EV_A_ fd, revents); 960 fd_event_nocheck (EV_A_ fd, revents);
449} 961}
450 962
451void inline_size 963/* make sure the external fd watch events are in-sync */
964/* with the kernel/libev internal state */
965inline_size void
452fd_reify (EV_P) 966fd_reify (EV_P)
453{ 967{
454 int i; 968 int i;
455 969
456 for (i = 0; i < fdchangecnt; ++i) 970 for (i = 0; i < fdchangecnt; ++i)
457 { 971 {
458 int fd = fdchanges [i]; 972 int fd = fdchanges [i];
459 ANFD *anfd = anfds + fd; 973 ANFD *anfd = anfds + fd;
460 ev_io *w; 974 ev_io *w;
461 975
462 int events = 0; 976 unsigned char o_events = anfd->events;
977 unsigned char o_reify = anfd->reify;
463 978
464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 979 anfd->reify = 0;
465 events |= w->events;
466 980
467#if EV_SELECT_IS_WINSOCKET 981#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
468 if (events) 982 if (o_reify & EV__IOFDSET)
469 { 983 {
470 unsigned long argp; 984 unsigned long arg;
471 anfd->handle = _get_osfhandle (fd); 985 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
472 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 986 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
987 printf ("oi %d %x\n", fd, anfd->handle);//D
473 } 988 }
474#endif 989#endif
475 990
476 anfd->reify = 0; 991 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
992 {
993 anfd->events = 0;
477 994
995 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
996 anfd->events |= (unsigned char)w->events;
997
998 if (o_events != anfd->events)
999 o_reify = EV__IOFDSET; /* actually |= */
1000 }
1001
1002 if (o_reify & EV__IOFDSET)
478 backend_modify (EV_A_ fd, anfd->events, events); 1003 backend_modify (EV_A_ fd, o_events, anfd->events);
479 anfd->events = events;
480 } 1004 }
481 1005
482 fdchangecnt = 0; 1006 fdchangecnt = 0;
483} 1007}
484 1008
485void inline_size 1009/* something about the given fd changed */
1010inline_size void
486fd_change (EV_P_ int fd) 1011fd_change (EV_P_ int fd, int flags)
487{ 1012{
488 if (expect_false (anfds [fd].reify)) 1013 unsigned char reify = anfds [fd].reify;
489 return;
490
491 anfds [fd].reify = 1; 1014 anfds [fd].reify |= flags;
492 1015
1016 if (expect_true (!reify))
1017 {
493 ++fdchangecnt; 1018 ++fdchangecnt;
494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1019 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
495 fdchanges [fdchangecnt - 1] = fd; 1020 fdchanges [fdchangecnt - 1] = fd;
1021 }
496} 1022}
497 1023
498void inline_speed 1024/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1025inline_speed void
499fd_kill (EV_P_ int fd) 1026fd_kill (EV_P_ int fd)
500{ 1027{
501 ev_io *w; 1028 ev_io *w;
502 1029
503 while ((w = (ev_io *)anfds [fd].head)) 1030 while ((w = (ev_io *)anfds [fd].head))
505 ev_io_stop (EV_A_ w); 1032 ev_io_stop (EV_A_ w);
506 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1033 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
507 } 1034 }
508} 1035}
509 1036
510int inline_size 1037/* check whether the given fd is actually valid, for error recovery */
1038inline_size int
511fd_valid (int fd) 1039fd_valid (int fd)
512{ 1040{
513#ifdef _WIN32 1041#ifdef _WIN32
514 return _get_osfhandle (fd) != -1; 1042 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
515#else 1043#else
516 return fcntl (fd, F_GETFD) != -1; 1044 return fcntl (fd, F_GETFD) != -1;
517#endif 1045#endif
518} 1046}
519 1047
523{ 1051{
524 int fd; 1052 int fd;
525 1053
526 for (fd = 0; fd < anfdmax; ++fd) 1054 for (fd = 0; fd < anfdmax; ++fd)
527 if (anfds [fd].events) 1055 if (anfds [fd].events)
528 if (!fd_valid (fd) == -1 && errno == EBADF) 1056 if (!fd_valid (fd) && errno == EBADF)
529 fd_kill (EV_A_ fd); 1057 fd_kill (EV_A_ fd);
530} 1058}
531 1059
532/* called on ENOMEM in select/poll to kill some fds and retry */ 1060/* called on ENOMEM in select/poll to kill some fds and retry */
533static void noinline 1061static void noinline
537 1065
538 for (fd = anfdmax; fd--; ) 1066 for (fd = anfdmax; fd--; )
539 if (anfds [fd].events) 1067 if (anfds [fd].events)
540 { 1068 {
541 fd_kill (EV_A_ fd); 1069 fd_kill (EV_A_ fd);
542 return; 1070 break;
543 } 1071 }
544} 1072}
545 1073
546/* usually called after fork if backend needs to re-arm all fds from scratch */ 1074/* usually called after fork if backend needs to re-arm all fds from scratch */
547static void noinline 1075static void noinline
548fd_rearm_all (EV_P) 1076fd_rearm_all (EV_P)
549{ 1077{
550 int fd; 1078 int fd;
551 1079
552 /* this should be highly optimised to not do anything but set a flag */
553 for (fd = 0; fd < anfdmax; ++fd) 1080 for (fd = 0; fd < anfdmax; ++fd)
554 if (anfds [fd].events) 1081 if (anfds [fd].events)
555 { 1082 {
556 anfds [fd].events = 0; 1083 anfds [fd].events = 0;
557 fd_change (EV_A_ fd); 1084 anfds [fd].emask = 0;
1085 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
558 } 1086 }
559} 1087}
560 1088
561/*****************************************************************************/ 1089/* used to prepare libev internal fd's */
562 1090/* this is not fork-safe */
563void inline_speed 1091inline_speed void
564upheap (WT *heap, int k)
565{
566 WT w = heap [k];
567
568 while (k && heap [k >> 1]->at > w->at)
569 {
570 heap [k] = heap [k >> 1];
571 ((W)heap [k])->active = k + 1;
572 k >>= 1;
573 }
574
575 heap [k] = w;
576 ((W)heap [k])->active = k + 1;
577
578}
579
580void inline_speed
581downheap (WT *heap, int N, int k)
582{
583 WT w = heap [k];
584
585 while (k < (N >> 1))
586 {
587 int j = k << 1;
588
589 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
590 ++j;
591
592 if (w->at <= heap [j]->at)
593 break;
594
595 heap [k] = heap [j];
596 ((W)heap [k])->active = k + 1;
597 k = j;
598 }
599
600 heap [k] = w;
601 ((W)heap [k])->active = k + 1;
602}
603
604void inline_size
605adjustheap (WT *heap, int N, int k)
606{
607 upheap (heap, k);
608 downheap (heap, N, k);
609}
610
611/*****************************************************************************/
612
613typedef struct
614{
615 WL head;
616 sig_atomic_t volatile gotsig;
617} ANSIG;
618
619static ANSIG *signals;
620static int signalmax;
621
622static int sigpipe [2];
623static sig_atomic_t volatile gotsig;
624static ev_io sigev;
625
626void inline_size
627signals_init (ANSIG *base, int count)
628{
629 while (count--)
630 {
631 base->head = 0;
632 base->gotsig = 0;
633
634 ++base;
635 }
636}
637
638static void
639sighandler (int signum)
640{
641#if _WIN32
642 signal (signum, sighandler);
643#endif
644
645 signals [signum - 1].gotsig = 1;
646
647 if (!gotsig)
648 {
649 int old_errno = errno;
650 gotsig = 1;
651 write (sigpipe [1], &signum, 1);
652 errno = old_errno;
653 }
654}
655
656void noinline
657ev_feed_signal_event (EV_P_ int signum)
658{
659 WL w;
660
661#if EV_MULTIPLICITY
662 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
663#endif
664
665 --signum;
666
667 if (signum < 0 || signum >= signalmax)
668 return;
669
670 signals [signum].gotsig = 0;
671
672 for (w = signals [signum].head; w; w = w->next)
673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
674}
675
676static void
677sigcb (EV_P_ ev_io *iow, int revents)
678{
679 int signum;
680
681 read (sigpipe [0], &revents, 1);
682 gotsig = 0;
683
684 for (signum = signalmax; signum--; )
685 if (signals [signum].gotsig)
686 ev_feed_signal_event (EV_A_ signum + 1);
687}
688
689void inline_size
690fd_intern (int fd) 1092fd_intern (int fd)
691{ 1093{
692#ifdef _WIN32 1094#ifdef _WIN32
693 int arg = 1; 1095 unsigned long arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
695#else 1097#else
696 fcntl (fd, F_SETFD, FD_CLOEXEC); 1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
697 fcntl (fd, F_SETFL, O_NONBLOCK); 1099 fcntl (fd, F_SETFL, O_NONBLOCK);
698#endif 1100#endif
699} 1101}
700 1102
1103/*****************************************************************************/
1104
1105/*
1106 * the heap functions want a real array index. array index 0 is guaranteed to not
1107 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1108 * the branching factor of the d-tree.
1109 */
1110
1111/*
1112 * at the moment we allow libev the luxury of two heaps,
1113 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1114 * which is more cache-efficient.
1115 * the difference is about 5% with 50000+ watchers.
1116 */
1117#if EV_USE_4HEAP
1118
1119#define DHEAP 4
1120#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1121#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1122#define UPHEAP_DONE(p,k) ((p) == (k))
1123
1124/* away from the root */
1125inline_speed void
1126downheap (ANHE *heap, int N, int k)
1127{
1128 ANHE he = heap [k];
1129 ANHE *E = heap + N + HEAP0;
1130
1131 for (;;)
1132 {
1133 ev_tstamp minat;
1134 ANHE *minpos;
1135 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1136
1137 /* find minimum child */
1138 if (expect_true (pos + DHEAP - 1 < E))
1139 {
1140 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1141 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1142 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1144 }
1145 else if (pos < E)
1146 {
1147 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1148 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1149 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1150 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1151 }
1152 else
1153 break;
1154
1155 if (ANHE_at (he) <= minat)
1156 break;
1157
1158 heap [k] = *minpos;
1159 ev_active (ANHE_w (*minpos)) = k;
1160
1161 k = minpos - heap;
1162 }
1163
1164 heap [k] = he;
1165 ev_active (ANHE_w (he)) = k;
1166}
1167
1168#else /* 4HEAP */
1169
1170#define HEAP0 1
1171#define HPARENT(k) ((k) >> 1)
1172#define UPHEAP_DONE(p,k) (!(p))
1173
1174/* away from the root */
1175inline_speed void
1176downheap (ANHE *heap, int N, int k)
1177{
1178 ANHE he = heap [k];
1179
1180 for (;;)
1181 {
1182 int c = k << 1;
1183
1184 if (c >= N + HEAP0)
1185 break;
1186
1187 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1188 ? 1 : 0;
1189
1190 if (ANHE_at (he) <= ANHE_at (heap [c]))
1191 break;
1192
1193 heap [k] = heap [c];
1194 ev_active (ANHE_w (heap [k])) = k;
1195
1196 k = c;
1197 }
1198
1199 heap [k] = he;
1200 ev_active (ANHE_w (he)) = k;
1201}
1202#endif
1203
1204/* towards the root */
1205inline_speed void
1206upheap (ANHE *heap, int k)
1207{
1208 ANHE he = heap [k];
1209
1210 for (;;)
1211 {
1212 int p = HPARENT (k);
1213
1214 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1215 break;
1216
1217 heap [k] = heap [p];
1218 ev_active (ANHE_w (heap [k])) = k;
1219 k = p;
1220 }
1221
1222 heap [k] = he;
1223 ev_active (ANHE_w (he)) = k;
1224}
1225
1226/* move an element suitably so it is in a correct place */
1227inline_size void
1228adjustheap (ANHE *heap, int N, int k)
1229{
1230 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1231 upheap (heap, k);
1232 else
1233 downheap (heap, N, k);
1234}
1235
1236/* rebuild the heap: this function is used only once and executed rarely */
1237inline_size void
1238reheap (ANHE *heap, int N)
1239{
1240 int i;
1241
1242 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1243 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1244 for (i = 0; i < N; ++i)
1245 upheap (heap, i + HEAP0);
1246}
1247
1248/*****************************************************************************/
1249
1250/* associate signal watchers to a signal signal */
1251typedef struct
1252{
1253 EV_ATOMIC_T pending;
1254#if EV_MULTIPLICITY
1255 EV_P;
1256#endif
1257 WL head;
1258} ANSIG;
1259
1260static ANSIG signals [EV_NSIG - 1];
1261
1262/*****************************************************************************/
1263
1264#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1265
701static void noinline 1266static void noinline
702siginit (EV_P) 1267evpipe_init (EV_P)
703{ 1268{
1269 if (!ev_is_active (&pipe_w))
1270 {
1271# if EV_USE_EVENTFD
1272 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1273 if (evfd < 0 && errno == EINVAL)
1274 evfd = eventfd (0, 0);
1275
1276 if (evfd >= 0)
1277 {
1278 evpipe [0] = -1;
1279 fd_intern (evfd); /* doing it twice doesn't hurt */
1280 ev_io_set (&pipe_w, evfd, EV_READ);
1281 }
1282 else
1283# endif
1284 {
1285 while (pipe (evpipe))
1286 ev_syserr ("(libev) error creating signal/async pipe");
1287
704 fd_intern (sigpipe [0]); 1288 fd_intern (evpipe [0]);
705 fd_intern (sigpipe [1]); 1289 fd_intern (evpipe [1]);
1290 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1291 }
706 1292
707 ev_io_set (&sigev, sigpipe [0], EV_READ);
708 ev_io_start (EV_A_ &sigev); 1293 ev_io_start (EV_A_ &pipe_w);
709 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1294 ev_unref (EV_A); /* watcher should not keep loop alive */
1295 }
1296}
1297
1298inline_size void
1299evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1300{
1301 if (!*flag)
1302 {
1303 int old_errno = errno; /* save errno because write might clobber it */
1304 char dummy;
1305
1306 *flag = 1;
1307
1308#if EV_USE_EVENTFD
1309 if (evfd >= 0)
1310 {
1311 uint64_t counter = 1;
1312 write (evfd, &counter, sizeof (uint64_t));
1313 }
1314 else
1315#endif
1316 /* win32 people keep sending patches that change this write() to send() */
1317 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1318 /* so when you think this write should be a send instead, please find out */
1319 /* where your send() is from - it's definitely not the microsoft send, and */
1320 /* tell me. thank you. */
1321 write (evpipe [1], &dummy, 1);
1322
1323 errno = old_errno;
1324 }
1325}
1326
1327/* called whenever the libev signal pipe */
1328/* got some events (signal, async) */
1329static void
1330pipecb (EV_P_ ev_io *iow, int revents)
1331{
1332 int i;
1333
1334#if EV_USE_EVENTFD
1335 if (evfd >= 0)
1336 {
1337 uint64_t counter;
1338 read (evfd, &counter, sizeof (uint64_t));
1339 }
1340 else
1341#endif
1342 {
1343 char dummy;
1344 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1345 read (evpipe [0], &dummy, 1);
1346 }
1347
1348 if (sig_pending)
1349 {
1350 sig_pending = 0;
1351
1352 for (i = EV_NSIG - 1; i--; )
1353 if (expect_false (signals [i].pending))
1354 ev_feed_signal_event (EV_A_ i + 1);
1355 }
1356
1357#if EV_ASYNC_ENABLE
1358 if (async_pending)
1359 {
1360 async_pending = 0;
1361
1362 for (i = asynccnt; i--; )
1363 if (asyncs [i]->sent)
1364 {
1365 asyncs [i]->sent = 0;
1366 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1367 }
1368 }
1369#endif
710} 1370}
711 1371
712/*****************************************************************************/ 1372/*****************************************************************************/
713 1373
714static ev_child *childs [PID_HASHSIZE]; 1374static void
1375ev_sighandler (int signum)
1376{
1377#if EV_MULTIPLICITY
1378 EV_P = signals [signum - 1].loop;
1379#endif
715 1380
716#ifndef _WIN32 1381#ifdef _WIN32
1382 signal (signum, ev_sighandler);
1383#endif
1384
1385 signals [signum - 1].pending = 1;
1386 evpipe_write (EV_A_ &sig_pending);
1387}
1388
1389void noinline
1390ev_feed_signal_event (EV_P_ int signum)
1391{
1392 WL w;
1393
1394 if (expect_false (signum <= 0 || signum > EV_NSIG))
1395 return;
1396
1397 --signum;
1398
1399#if EV_MULTIPLICITY
1400 /* it is permissible to try to feed a signal to the wrong loop */
1401 /* or, likely more useful, feeding a signal nobody is waiting for */
1402
1403 if (expect_false (signals [signum].loop != EV_A))
1404 return;
1405#endif
1406
1407 signals [signum].pending = 0;
1408
1409 for (w = signals [signum].head; w; w = w->next)
1410 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1411}
1412
1413#if EV_USE_SIGNALFD
1414static void
1415sigfdcb (EV_P_ ev_io *iow, int revents)
1416{
1417 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1418
1419 for (;;)
1420 {
1421 ssize_t res = read (sigfd, si, sizeof (si));
1422
1423 /* not ISO-C, as res might be -1, but works with SuS */
1424 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1425 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1426
1427 if (res < (ssize_t)sizeof (si))
1428 break;
1429 }
1430}
1431#endif
1432
1433#endif
1434
1435/*****************************************************************************/
1436
1437#if EV_CHILD_ENABLE
1438static WL childs [EV_PID_HASHSIZE];
717 1439
718static ev_signal childev; 1440static ev_signal childev;
719 1441
720void inline_speed 1442#ifndef WIFCONTINUED
1443# define WIFCONTINUED(status) 0
1444#endif
1445
1446/* handle a single child status event */
1447inline_speed void
721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1448child_reap (EV_P_ int chain, int pid, int status)
722{ 1449{
723 ev_child *w; 1450 ev_child *w;
1451 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
724 1452
725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1453 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1454 {
726 if (w->pid == pid || !w->pid) 1455 if ((w->pid == pid || !w->pid)
1456 && (!traced || (w->flags & 1)))
727 { 1457 {
728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1458 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
729 w->rpid = pid; 1459 w->rpid = pid;
730 w->rstatus = status; 1460 w->rstatus = status;
731 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1461 ev_feed_event (EV_A_ (W)w, EV_CHILD);
732 } 1462 }
1463 }
733} 1464}
734 1465
735#ifndef WCONTINUED 1466#ifndef WCONTINUED
736# define WCONTINUED 0 1467# define WCONTINUED 0
737#endif 1468#endif
738 1469
1470/* called on sigchld etc., calls waitpid */
739static void 1471static void
740childcb (EV_P_ ev_signal *sw, int revents) 1472childcb (EV_P_ ev_signal *sw, int revents)
741{ 1473{
742 int pid, status; 1474 int pid, status;
743 1475
746 if (!WCONTINUED 1478 if (!WCONTINUED
747 || errno != EINVAL 1479 || errno != EINVAL
748 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1480 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
749 return; 1481 return;
750 1482
751 /* make sure we are called again until all childs have been reaped */ 1483 /* make sure we are called again until all children have been reaped */
752 /* we need to do it this way so that the callback gets called before we continue */ 1484 /* we need to do it this way so that the callback gets called before we continue */
753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1485 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
754 1486
755 child_reap (EV_A_ sw, pid, pid, status); 1487 child_reap (EV_A_ pid, pid, status);
1488 if ((EV_PID_HASHSIZE) > 1)
756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1489 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
757} 1490}
758 1491
759#endif 1492#endif
760 1493
761/*****************************************************************************/ 1494/*****************************************************************************/
762 1495
1496#if EV_USE_IOCP
1497# include "ev_iocp.c"
1498#endif
763#if EV_USE_PORT 1499#if EV_USE_PORT
764# include "ev_port.c" 1500# include "ev_port.c"
765#endif 1501#endif
766#if EV_USE_KQUEUE 1502#if EV_USE_KQUEUE
767# include "ev_kqueue.c" 1503# include "ev_kqueue.c"
823 /* kqueue is borked on everything but netbsd apparently */ 1559 /* kqueue is borked on everything but netbsd apparently */
824 /* it usually doesn't work correctly on anything but sockets and pipes */ 1560 /* it usually doesn't work correctly on anything but sockets and pipes */
825 flags &= ~EVBACKEND_KQUEUE; 1561 flags &= ~EVBACKEND_KQUEUE;
826#endif 1562#endif
827#ifdef __APPLE__ 1563#ifdef __APPLE__
828 // flags &= ~EVBACKEND_KQUEUE; for documentation 1564 /* only select works correctly on that "unix-certified" platform */
829 flags &= ~EVBACKEND_POLL; 1565 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1566 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1567#endif
1568#ifdef __FreeBSD__
1569 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
830#endif 1570#endif
831 1571
832 return flags; 1572 return flags;
833} 1573}
834 1574
835unsigned int 1575unsigned int
836ev_embeddable_backends (void) 1576ev_embeddable_backends (void)
837{ 1577{
838 return EVBACKEND_EPOLL 1578 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
839 | EVBACKEND_KQUEUE 1579
840 | EVBACKEND_PORT; 1580 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1581 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1582 flags &= ~EVBACKEND_EPOLL;
1583
1584 return flags;
841} 1585}
842 1586
843unsigned int 1587unsigned int
844ev_backend (EV_P) 1588ev_backend (EV_P)
845{ 1589{
846 return backend; 1590 return backend;
847} 1591}
848 1592
849static void 1593#if EV_FEATURE_API
1594unsigned int
1595ev_iteration (EV_P)
1596{
1597 return loop_count;
1598}
1599
1600unsigned int
1601ev_depth (EV_P)
1602{
1603 return loop_depth;
1604}
1605
1606void
1607ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1608{
1609 io_blocktime = interval;
1610}
1611
1612void
1613ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1614{
1615 timeout_blocktime = interval;
1616}
1617
1618void
1619ev_set_userdata (EV_P_ void *data)
1620{
1621 userdata = data;
1622}
1623
1624void *
1625ev_userdata (EV_P)
1626{
1627 return userdata;
1628}
1629
1630void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1631{
1632 invoke_cb = invoke_pending_cb;
1633}
1634
1635void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1636{
1637 release_cb = release;
1638 acquire_cb = acquire;
1639}
1640#endif
1641
1642/* initialise a loop structure, must be zero-initialised */
1643static void noinline
850loop_init (EV_P_ unsigned int flags) 1644loop_init (EV_P_ unsigned int flags)
851{ 1645{
852 if (!backend) 1646 if (!backend)
853 { 1647 {
1648#if EV_USE_REALTIME
1649 if (!have_realtime)
1650 {
1651 struct timespec ts;
1652
1653 if (!clock_gettime (CLOCK_REALTIME, &ts))
1654 have_realtime = 1;
1655 }
1656#endif
1657
854#if EV_USE_MONOTONIC 1658#if EV_USE_MONOTONIC
1659 if (!have_monotonic)
855 { 1660 {
856 struct timespec ts; 1661 struct timespec ts;
1662
857 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1663 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
858 have_monotonic = 1; 1664 have_monotonic = 1;
859 } 1665 }
860#endif 1666#endif
861 1667
862 ev_rt_now = ev_time (); 1668 /* pid check not overridable via env */
863 mn_now = get_clock (); 1669#ifndef _WIN32
864 now_floor = mn_now; 1670 if (flags & EVFLAG_FORKCHECK)
865 rtmn_diff = ev_rt_now - mn_now; 1671 curpid = getpid ();
1672#endif
866 1673
867 if (!(flags & EVFLAG_NOENV) 1674 if (!(flags & EVFLAG_NOENV)
868 && !enable_secure () 1675 && !enable_secure ()
869 && getenv ("LIBEV_FLAGS")) 1676 && getenv ("LIBEV_FLAGS"))
870 flags = atoi (getenv ("LIBEV_FLAGS")); 1677 flags = atoi (getenv ("LIBEV_FLAGS"));
871 1678
1679 ev_rt_now = ev_time ();
1680 mn_now = get_clock ();
1681 now_floor = mn_now;
1682 rtmn_diff = ev_rt_now - mn_now;
1683#if EV_FEATURE_API
1684 invoke_cb = ev_invoke_pending;
1685#endif
1686
1687 io_blocktime = 0.;
1688 timeout_blocktime = 0.;
1689 backend = 0;
1690 backend_fd = -1;
1691 sig_pending = 0;
1692#if EV_ASYNC_ENABLE
1693 async_pending = 0;
1694#endif
1695#if EV_USE_INOTIFY
1696 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1697#endif
1698#if EV_USE_SIGNALFD
1699 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1700#endif
1701
872 if (!(flags & 0x0000ffffUL)) 1702 if (!(flags & 0x0000ffffU))
873 flags |= ev_recommended_backends (); 1703 flags |= ev_recommended_backends ();
874 1704
875 backend = 0; 1705#if EV_USE_IOCP
1706 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1707#endif
876#if EV_USE_PORT 1708#if EV_USE_PORT
877 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1709 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
878#endif 1710#endif
879#if EV_USE_KQUEUE 1711#if EV_USE_KQUEUE
880 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1712 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
887#endif 1719#endif
888#if EV_USE_SELECT 1720#if EV_USE_SELECT
889 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1721 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
890#endif 1722#endif
891 1723
1724 ev_prepare_init (&pending_w, pendingcb);
1725
1726#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
892 ev_init (&sigev, sigcb); 1727 ev_init (&pipe_w, pipecb);
893 ev_set_priority (&sigev, EV_MAXPRI); 1728 ev_set_priority (&pipe_w, EV_MAXPRI);
1729#endif
894 } 1730 }
895} 1731}
896 1732
897static void 1733/* free up a loop structure */
1734void
898loop_destroy (EV_P) 1735ev_loop_destroy (EV_P)
899{ 1736{
900 int i; 1737 int i;
901 1738
1739#if EV_MULTIPLICITY
1740 /* mimic free (0) */
1741 if (!EV_A)
1742 return;
1743#endif
1744
1745#if EV_CLEANUP_ENABLE
1746 /* queue cleanup watchers (and execute them) */
1747 if (expect_false (cleanupcnt))
1748 {
1749 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1750 EV_INVOKE_PENDING;
1751 }
1752#endif
1753
1754#if EV_CHILD_ENABLE
1755 if (ev_is_active (&childev))
1756 {
1757 ev_ref (EV_A); /* child watcher */
1758 ev_signal_stop (EV_A_ &childev);
1759 }
1760#endif
1761
1762 if (ev_is_active (&pipe_w))
1763 {
1764 /*ev_ref (EV_A);*/
1765 /*ev_io_stop (EV_A_ &pipe_w);*/
1766
1767#if EV_USE_EVENTFD
1768 if (evfd >= 0)
1769 close (evfd);
1770#endif
1771
1772 if (evpipe [0] >= 0)
1773 {
1774 EV_WIN32_CLOSE_FD (evpipe [0]);
1775 EV_WIN32_CLOSE_FD (evpipe [1]);
1776 }
1777 }
1778
1779#if EV_USE_SIGNALFD
1780 if (ev_is_active (&sigfd_w))
1781 close (sigfd);
1782#endif
1783
1784#if EV_USE_INOTIFY
1785 if (fs_fd >= 0)
1786 close (fs_fd);
1787#endif
1788
1789 if (backend_fd >= 0)
1790 close (backend_fd);
1791
1792#if EV_USE_IOCP
1793 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1794#endif
902#if EV_USE_PORT 1795#if EV_USE_PORT
903 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1796 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
904#endif 1797#endif
905#if EV_USE_KQUEUE 1798#if EV_USE_KQUEUE
906 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1799 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
914#if EV_USE_SELECT 1807#if EV_USE_SELECT
915 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1808 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
916#endif 1809#endif
917 1810
918 for (i = NUMPRI; i--; ) 1811 for (i = NUMPRI; i--; )
1812 {
919 array_free (pending, [i]); 1813 array_free (pending, [i]);
1814#if EV_IDLE_ENABLE
1815 array_free (idle, [i]);
1816#endif
1817 }
1818
1819 ev_free (anfds); anfds = 0; anfdmax = 0;
920 1820
921 /* have to use the microsoft-never-gets-it-right macro */ 1821 /* have to use the microsoft-never-gets-it-right macro */
1822 array_free (rfeed, EMPTY);
922 array_free (fdchange, EMPTY0); 1823 array_free (fdchange, EMPTY);
923 array_free (timer, EMPTY0); 1824 array_free (timer, EMPTY);
924#if EV_PERIODIC_ENABLE 1825#if EV_PERIODIC_ENABLE
925 array_free (periodic, EMPTY0); 1826 array_free (periodic, EMPTY);
926#endif 1827#endif
1828#if EV_FORK_ENABLE
1829 array_free (fork, EMPTY);
1830#endif
1831#if EV_CLEANUP_ENABLE
927 array_free (idle, EMPTY0); 1832 array_free (cleanup, EMPTY);
1833#endif
928 array_free (prepare, EMPTY0); 1834 array_free (prepare, EMPTY);
929 array_free (check, EMPTY0); 1835 array_free (check, EMPTY);
1836#if EV_ASYNC_ENABLE
1837 array_free (async, EMPTY);
1838#endif
930 1839
931 backend = 0; 1840 backend = 0;
932}
933 1841
934static void 1842#if EV_MULTIPLICITY
1843 if (ev_is_default_loop (EV_A))
1844#endif
1845 ev_default_loop_ptr = 0;
1846#if EV_MULTIPLICITY
1847 else
1848 ev_free (EV_A);
1849#endif
1850}
1851
1852#if EV_USE_INOTIFY
1853inline_size void infy_fork (EV_P);
1854#endif
1855
1856inline_size void
935loop_fork (EV_P) 1857loop_fork (EV_P)
936{ 1858{
937#if EV_USE_PORT 1859#if EV_USE_PORT
938 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1860 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
939#endif 1861#endif
941 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1863 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
942#endif 1864#endif
943#if EV_USE_EPOLL 1865#if EV_USE_EPOLL
944 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1866 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
945#endif 1867#endif
1868#if EV_USE_INOTIFY
1869 infy_fork (EV_A);
1870#endif
946 1871
947 if (ev_is_active (&sigev)) 1872 if (ev_is_active (&pipe_w))
948 { 1873 {
949 /* default loop */ 1874 /* this "locks" the handlers against writing to the pipe */
1875 /* while we modify the fd vars */
1876 sig_pending = 1;
1877#if EV_ASYNC_ENABLE
1878 async_pending = 1;
1879#endif
950 1880
951 ev_ref (EV_A); 1881 ev_ref (EV_A);
952 ev_io_stop (EV_A_ &sigev); 1882 ev_io_stop (EV_A_ &pipe_w);
953 close (sigpipe [0]);
954 close (sigpipe [1]);
955 1883
956 while (pipe (sigpipe)) 1884#if EV_USE_EVENTFD
957 syserr ("(libev) error creating pipe"); 1885 if (evfd >= 0)
1886 close (evfd);
1887#endif
958 1888
1889 if (evpipe [0] >= 0)
1890 {
1891 EV_WIN32_CLOSE_FD (evpipe [0]);
1892 EV_WIN32_CLOSE_FD (evpipe [1]);
1893 }
1894
1895#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
959 siginit (EV_A); 1896 evpipe_init (EV_A);
1897 /* now iterate over everything, in case we missed something */
1898 pipecb (EV_A_ &pipe_w, EV_READ);
1899#endif
960 } 1900 }
961 1901
962 postfork = 0; 1902 postfork = 0;
963} 1903}
1904
1905#if EV_MULTIPLICITY
1906
1907struct ev_loop *
1908ev_loop_new (unsigned int flags)
1909{
1910 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1911
1912 memset (EV_A, 0, sizeof (struct ev_loop));
1913 loop_init (EV_A_ flags);
1914
1915 if (ev_backend (EV_A))
1916 return EV_A;
1917
1918 ev_free (EV_A);
1919 return 0;
1920}
1921
1922#endif /* multiplicity */
1923
1924#if EV_VERIFY
1925static void noinline
1926verify_watcher (EV_P_ W w)
1927{
1928 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1929
1930 if (w->pending)
1931 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1932}
1933
1934static void noinline
1935verify_heap (EV_P_ ANHE *heap, int N)
1936{
1937 int i;
1938
1939 for (i = HEAP0; i < N + HEAP0; ++i)
1940 {
1941 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1942 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1943 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1944
1945 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1946 }
1947}
1948
1949static void noinline
1950array_verify (EV_P_ W *ws, int cnt)
1951{
1952 while (cnt--)
1953 {
1954 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1955 verify_watcher (EV_A_ ws [cnt]);
1956 }
1957}
1958#endif
1959
1960#if EV_FEATURE_API
1961void
1962ev_verify (EV_P)
1963{
1964#if EV_VERIFY
1965 int i;
1966 WL w;
1967
1968 assert (activecnt >= -1);
1969
1970 assert (fdchangemax >= fdchangecnt);
1971 for (i = 0; i < fdchangecnt; ++i)
1972 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1973
1974 assert (anfdmax >= 0);
1975 for (i = 0; i < anfdmax; ++i)
1976 for (w = anfds [i].head; w; w = w->next)
1977 {
1978 verify_watcher (EV_A_ (W)w);
1979 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1980 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1981 }
1982
1983 assert (timermax >= timercnt);
1984 verify_heap (EV_A_ timers, timercnt);
1985
1986#if EV_PERIODIC_ENABLE
1987 assert (periodicmax >= periodiccnt);
1988 verify_heap (EV_A_ periodics, periodiccnt);
1989#endif
1990
1991 for (i = NUMPRI; i--; )
1992 {
1993 assert (pendingmax [i] >= pendingcnt [i]);
1994#if EV_IDLE_ENABLE
1995 assert (idleall >= 0);
1996 assert (idlemax [i] >= idlecnt [i]);
1997 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1998#endif
1999 }
2000
2001#if EV_FORK_ENABLE
2002 assert (forkmax >= forkcnt);
2003 array_verify (EV_A_ (W *)forks, forkcnt);
2004#endif
2005
2006#if EV_CLEANUP_ENABLE
2007 assert (cleanupmax >= cleanupcnt);
2008 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2009#endif
2010
2011#if EV_ASYNC_ENABLE
2012 assert (asyncmax >= asynccnt);
2013 array_verify (EV_A_ (W *)asyncs, asynccnt);
2014#endif
2015
2016#if EV_PREPARE_ENABLE
2017 assert (preparemax >= preparecnt);
2018 array_verify (EV_A_ (W *)prepares, preparecnt);
2019#endif
2020
2021#if EV_CHECK_ENABLE
2022 assert (checkmax >= checkcnt);
2023 array_verify (EV_A_ (W *)checks, checkcnt);
2024#endif
2025
2026# if 0
2027#if EV_CHILD_ENABLE
2028 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2029 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2030#endif
2031# endif
2032#endif
2033}
2034#endif
964 2035
965#if EV_MULTIPLICITY 2036#if EV_MULTIPLICITY
966struct ev_loop * 2037struct ev_loop *
967ev_loop_new (unsigned int flags)
968{
969 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
970
971 memset (loop, 0, sizeof (struct ev_loop));
972
973 loop_init (EV_A_ flags);
974
975 if (ev_backend (EV_A))
976 return loop;
977
978 return 0;
979}
980
981void
982ev_loop_destroy (EV_P)
983{
984 loop_destroy (EV_A);
985 ev_free (loop);
986}
987
988void
989ev_loop_fork (EV_P)
990{
991 postfork = 1;
992}
993
994#endif
995
996#if EV_MULTIPLICITY
997struct ev_loop *
998ev_default_loop_init (unsigned int flags)
999#else 2038#else
1000int 2039int
2040#endif
1001ev_default_loop (unsigned int flags) 2041ev_default_loop (unsigned int flags)
1002#endif
1003{ 2042{
1004 if (sigpipe [0] == sigpipe [1])
1005 if (pipe (sigpipe))
1006 return 0;
1007
1008 if (!ev_default_loop_ptr) 2043 if (!ev_default_loop_ptr)
1009 { 2044 {
1010#if EV_MULTIPLICITY 2045#if EV_MULTIPLICITY
1011 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2046 EV_P = ev_default_loop_ptr = &default_loop_struct;
1012#else 2047#else
1013 ev_default_loop_ptr = 1; 2048 ev_default_loop_ptr = 1;
1014#endif 2049#endif
1015 2050
1016 loop_init (EV_A_ flags); 2051 loop_init (EV_A_ flags);
1017 2052
1018 if (ev_backend (EV_A)) 2053 if (ev_backend (EV_A))
1019 { 2054 {
1020 siginit (EV_A); 2055#if EV_CHILD_ENABLE
1021
1022#ifndef _WIN32
1023 ev_signal_init (&childev, childcb, SIGCHLD); 2056 ev_signal_init (&childev, childcb, SIGCHLD);
1024 ev_set_priority (&childev, EV_MAXPRI); 2057 ev_set_priority (&childev, EV_MAXPRI);
1025 ev_signal_start (EV_A_ &childev); 2058 ev_signal_start (EV_A_ &childev);
1026 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2059 ev_unref (EV_A); /* child watcher should not keep loop alive */
1027#endif 2060#endif
1032 2065
1033 return ev_default_loop_ptr; 2066 return ev_default_loop_ptr;
1034} 2067}
1035 2068
1036void 2069void
1037ev_default_destroy (void) 2070ev_loop_fork (EV_P)
1038{ 2071{
1039#if EV_MULTIPLICITY 2072 postfork = 1; /* must be in line with ev_default_fork */
1040 struct ev_loop *loop = ev_default_loop_ptr;
1041#endif
1042
1043#ifndef _WIN32
1044 ev_ref (EV_A); /* child watcher */
1045 ev_signal_stop (EV_A_ &childev);
1046#endif
1047
1048 ev_ref (EV_A); /* signal watcher */
1049 ev_io_stop (EV_A_ &sigev);
1050
1051 close (sigpipe [0]); sigpipe [0] = 0;
1052 close (sigpipe [1]); sigpipe [1] = 0;
1053
1054 loop_destroy (EV_A);
1055}
1056
1057void
1058ev_default_fork (void)
1059{
1060#if EV_MULTIPLICITY
1061 struct ev_loop *loop = ev_default_loop_ptr;
1062#endif
1063
1064 if (backend)
1065 postfork = 1;
1066} 2073}
1067 2074
1068/*****************************************************************************/ 2075/*****************************************************************************/
1069 2076
1070int inline_size 2077void
1071any_pending (EV_P) 2078ev_invoke (EV_P_ void *w, int revents)
2079{
2080 EV_CB_INVOKE ((W)w, revents);
2081}
2082
2083unsigned int
2084ev_pending_count (EV_P)
1072{ 2085{
1073 int pri; 2086 int pri;
2087 unsigned int count = 0;
1074 2088
1075 for (pri = NUMPRI; pri--; ) 2089 for (pri = NUMPRI; pri--; )
1076 if (pendingcnt [pri]) 2090 count += pendingcnt [pri];
1077 return 1;
1078 2091
1079 return 0; 2092 return count;
1080} 2093}
1081 2094
1082void inline_speed 2095void noinline
1083call_pending (EV_P) 2096ev_invoke_pending (EV_P)
1084{ 2097{
1085 int pri; 2098 int pri;
1086 2099
1087 for (pri = NUMPRI; pri--; ) 2100 for (pri = NUMPRI; pri--; )
1088 while (pendingcnt [pri]) 2101 while (pendingcnt [pri])
1089 { 2102 {
1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2103 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1091 2104
1092 if (expect_true (p->w))
1093 {
1094 assert (("non-pending watcher on pending list", p->w->pending)); 2105 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2106 /* ^ this is no longer true, as pending_w could be here */
1095 2107
1096 p->w->pending = 0; 2108 p->w->pending = 0;
1097 EV_CB_INVOKE (p->w, p->events); 2109 EV_CB_INVOKE (p->w, p->events);
1098 } 2110 EV_FREQUENT_CHECK;
1099 } 2111 }
1100} 2112}
1101 2113
1102void inline_size 2114#if EV_IDLE_ENABLE
2115/* make idle watchers pending. this handles the "call-idle */
2116/* only when higher priorities are idle" logic */
2117inline_size void
2118idle_reify (EV_P)
2119{
2120 if (expect_false (idleall))
2121 {
2122 int pri;
2123
2124 for (pri = NUMPRI; pri--; )
2125 {
2126 if (pendingcnt [pri])
2127 break;
2128
2129 if (idlecnt [pri])
2130 {
2131 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2132 break;
2133 }
2134 }
2135 }
2136}
2137#endif
2138
2139/* make timers pending */
2140inline_size void
1103timers_reify (EV_P) 2141timers_reify (EV_P)
1104{ 2142{
2143 EV_FREQUENT_CHECK;
2144
1105 while (timercnt && ((WT)timers [0])->at <= mn_now) 2145 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1106 { 2146 {
1107 ev_timer *w = timers [0]; 2147 do
1108
1109 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1110
1111 /* first reschedule or stop timer */
1112 if (w->repeat)
1113 { 2148 {
2149 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2150
2151 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2152
2153 /* first reschedule or stop timer */
2154 if (w->repeat)
2155 {
2156 ev_at (w) += w->repeat;
2157 if (ev_at (w) < mn_now)
2158 ev_at (w) = mn_now;
2159
1114 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2160 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1115 2161
1116 ((WT)w)->at += w->repeat; 2162 ANHE_at_cache (timers [HEAP0]);
1117 if (((WT)w)->at < mn_now)
1118 ((WT)w)->at = mn_now;
1119
1120 downheap ((WT *)timers, timercnt, 0); 2163 downheap (timers, timercnt, HEAP0);
2164 }
2165 else
2166 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2167
2168 EV_FREQUENT_CHECK;
2169 feed_reverse (EV_A_ (W)w);
1121 } 2170 }
1122 else 2171 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1123 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 2172
1125 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2173 feed_reverse_done (EV_A_ EV_TIMER);
1126 } 2174 }
1127} 2175}
1128 2176
1129#if EV_PERIODIC_ENABLE 2177#if EV_PERIODIC_ENABLE
1130void inline_size 2178/* make periodics pending */
2179inline_size void
1131periodics_reify (EV_P) 2180periodics_reify (EV_P)
1132{ 2181{
2182 EV_FREQUENT_CHECK;
2183
1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2184 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1134 { 2185 {
1135 ev_periodic *w = periodics [0]; 2186 int feed_count = 0;
1136 2187
1137 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2188 do
1138
1139 /* first reschedule or stop timer */
1140 if (w->reschedule_cb)
1141 { 2189 {
2190 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2191
2192 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2193
2194 /* first reschedule or stop timer */
2195 if (w->reschedule_cb)
2196 {
1142 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2197 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2198
1143 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2199 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2200
2201 ANHE_at_cache (periodics [HEAP0]);
1144 downheap ((WT *)periodics, periodiccnt, 0); 2202 downheap (periodics, periodiccnt, HEAP0);
2203 }
2204 else if (w->interval)
2205 {
2206 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2207 /* if next trigger time is not sufficiently in the future, put it there */
2208 /* this might happen because of floating point inexactness */
2209 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2210 {
2211 ev_at (w) += w->interval;
2212
2213 /* if interval is unreasonably low we might still have a time in the past */
2214 /* so correct this. this will make the periodic very inexact, but the user */
2215 /* has effectively asked to get triggered more often than possible */
2216 if (ev_at (w) < ev_rt_now)
2217 ev_at (w) = ev_rt_now;
2218 }
2219
2220 ANHE_at_cache (periodics [HEAP0]);
2221 downheap (periodics, periodiccnt, HEAP0);
2222 }
2223 else
2224 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2225
2226 EV_FREQUENT_CHECK;
2227 feed_reverse (EV_A_ (W)w);
1145 } 2228 }
1146 else if (w->interval) 2229 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1147 {
1148 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1149 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1150 downheap ((WT *)periodics, periodiccnt, 0);
1151 }
1152 else
1153 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1154 2230
1155 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2231 feed_reverse_done (EV_A_ EV_PERIODIC);
1156 } 2232 }
1157} 2233}
1158 2234
2235/* simply recalculate all periodics */
2236/* TODO: maybe ensure that at least one event happens when jumping forward? */
1159static void noinline 2237static void noinline
1160periodics_reschedule (EV_P) 2238periodics_reschedule (EV_P)
1161{ 2239{
1162 int i; 2240 int i;
1163 2241
1164 /* adjust periodics after time jump */ 2242 /* adjust periodics after time jump */
1165 for (i = 0; i < periodiccnt; ++i) 2243 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1166 { 2244 {
1167 ev_periodic *w = periodics [i]; 2245 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1168 2246
1169 if (w->reschedule_cb) 2247 if (w->reschedule_cb)
1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2248 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1171 else if (w->interval) 2249 else if (w->interval)
1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2250 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2251
2252 ANHE_at_cache (periodics [i]);
2253 }
2254
2255 reheap (periodics, periodiccnt);
2256}
2257#endif
2258
2259/* adjust all timers by a given offset */
2260static void noinline
2261timers_reschedule (EV_P_ ev_tstamp adjust)
2262{
2263 int i;
2264
2265 for (i = 0; i < timercnt; ++i)
1173 } 2266 {
1174 2267 ANHE *he = timers + i + HEAP0;
1175 /* now rebuild the heap */ 2268 ANHE_w (*he)->at += adjust;
1176 for (i = periodiccnt >> 1; i--; ) 2269 ANHE_at_cache (*he);
1177 downheap ((WT *)periodics, periodiccnt, i); 2270 }
1178} 2271}
1179#endif
1180 2272
1181int inline_size 2273/* fetch new monotonic and realtime times from the kernel */
1182time_update_monotonic (EV_P) 2274/* also detect if there was a timejump, and act accordingly */
2275inline_speed void
2276time_update (EV_P_ ev_tstamp max_block)
1183{ 2277{
2278#if EV_USE_MONOTONIC
2279 if (expect_true (have_monotonic))
2280 {
2281 int i;
2282 ev_tstamp odiff = rtmn_diff;
2283
1184 mn_now = get_clock (); 2284 mn_now = get_clock ();
1185 2285
2286 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2287 /* interpolate in the meantime */
1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2288 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1187 { 2289 {
1188 ev_rt_now = rtmn_diff + mn_now; 2290 ev_rt_now = rtmn_diff + mn_now;
1189 return 0; 2291 return;
1190 } 2292 }
1191 else 2293
1192 {
1193 now_floor = mn_now; 2294 now_floor = mn_now;
1194 ev_rt_now = ev_time (); 2295 ev_rt_now = ev_time ();
1195 return 1;
1196 }
1197}
1198 2296
1199void inline_size 2297 /* loop a few times, before making important decisions.
1200time_update (EV_P) 2298 * on the choice of "4": one iteration isn't enough,
1201{ 2299 * in case we get preempted during the calls to
1202 int i; 2300 * ev_time and get_clock. a second call is almost guaranteed
1203 2301 * to succeed in that case, though. and looping a few more times
1204#if EV_USE_MONOTONIC 2302 * doesn't hurt either as we only do this on time-jumps or
1205 if (expect_true (have_monotonic)) 2303 * in the unlikely event of having been preempted here.
1206 { 2304 */
1207 if (time_update_monotonic (EV_A)) 2305 for (i = 4; --i; )
1208 { 2306 {
1209 ev_tstamp odiff = rtmn_diff;
1210
1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
1220 {
1221 rtmn_diff = ev_rt_now - mn_now; 2307 rtmn_diff = ev_rt_now - mn_now;
1222 2308
1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2309 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1224 return; /* all is well */ 2310 return; /* all is well */
1225 2311
1226 ev_rt_now = ev_time (); 2312 ev_rt_now = ev_time ();
1227 mn_now = get_clock (); 2313 mn_now = get_clock ();
1228 now_floor = mn_now; 2314 now_floor = mn_now;
1229 } 2315 }
1230 2316
2317 /* no timer adjustment, as the monotonic clock doesn't jump */
2318 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1231# if EV_PERIODIC_ENABLE 2319# if EV_PERIODIC_ENABLE
1232 periodics_reschedule (EV_A); 2320 periodics_reschedule (EV_A);
1233# endif 2321# endif
1234 /* no timer adjustment, as the monotonic clock doesn't jump */
1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1236 }
1237 } 2322 }
1238 else 2323 else
1239#endif 2324#endif
1240 { 2325 {
1241 ev_rt_now = ev_time (); 2326 ev_rt_now = ev_time ();
1242 2327
1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2328 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1244 { 2329 {
2330 /* adjust timers. this is easy, as the offset is the same for all of them */
2331 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1245#if EV_PERIODIC_ENABLE 2332#if EV_PERIODIC_ENABLE
1246 periodics_reschedule (EV_A); 2333 periodics_reschedule (EV_A);
1247#endif 2334#endif
1248
1249 /* adjust timers. this is easy, as the offset is the same for all */
1250 for (i = 0; i < timercnt; ++i)
1251 ((WT)timers [i])->at += ev_rt_now - mn_now;
1252 } 2335 }
1253 2336
1254 mn_now = ev_rt_now; 2337 mn_now = ev_rt_now;
1255 } 2338 }
1256} 2339}
1257 2340
1258void 2341void
1259ev_ref (EV_P)
1260{
1261 ++activecnt;
1262}
1263
1264void
1265ev_unref (EV_P)
1266{
1267 --activecnt;
1268}
1269
1270static int loop_done;
1271
1272void
1273ev_loop (EV_P_ int flags) 2342ev_run (EV_P_ int flags)
1274{ 2343{
1275 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2344#if EV_FEATURE_API
1276 ? EVUNLOOP_ONE 2345 ++loop_depth;
1277 : EVUNLOOP_CANCEL; 2346#endif
1278 2347
1279 while (activecnt) 2348 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2349
2350 loop_done = EVBREAK_CANCEL;
2351
2352 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2353
2354 do
1280 { 2355 {
2356#if EV_VERIFY >= 2
2357 ev_verify (EV_A);
2358#endif
2359
2360#ifndef _WIN32
2361 if (expect_false (curpid)) /* penalise the forking check even more */
2362 if (expect_false (getpid () != curpid))
2363 {
2364 curpid = getpid ();
2365 postfork = 1;
2366 }
2367#endif
2368
2369#if EV_FORK_ENABLE
2370 /* we might have forked, so queue fork handlers */
2371 if (expect_false (postfork))
2372 if (forkcnt)
2373 {
2374 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2375 EV_INVOKE_PENDING;
2376 }
2377#endif
2378
2379#if EV_PREPARE_ENABLE
1281 /* queue check watchers (and execute them) */ 2380 /* queue prepare watchers (and execute them) */
1282 if (expect_false (preparecnt)) 2381 if (expect_false (preparecnt))
1283 { 2382 {
1284 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2383 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1285 call_pending (EV_A); 2384 EV_INVOKE_PENDING;
1286 } 2385 }
2386#endif
2387
2388 if (expect_false (loop_done))
2389 break;
1287 2390
1288 /* we might have forked, so reify kernel state if necessary */ 2391 /* we might have forked, so reify kernel state if necessary */
1289 if (expect_false (postfork)) 2392 if (expect_false (postfork))
1290 loop_fork (EV_A); 2393 loop_fork (EV_A);
1291 2394
1292 /* update fd-related kernel structures */ 2395 /* update fd-related kernel structures */
1293 fd_reify (EV_A); 2396 fd_reify (EV_A);
1294 2397
1295 /* calculate blocking time */ 2398 /* calculate blocking time */
1296 { 2399 {
1297 double block; 2400 ev_tstamp waittime = 0.;
2401 ev_tstamp sleeptime = 0.;
1298 2402
1299 if (flags & EVLOOP_NONBLOCK || idlecnt) 2403 /* remember old timestamp for io_blocktime calculation */
1300 block = 0.; /* do not block at all */ 2404 ev_tstamp prev_mn_now = mn_now;
1301 else 2405
2406 /* update time to cancel out callback processing overhead */
2407 time_update (EV_A_ 1e100);
2408
2409 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1302 { 2410 {
1303 /* update time to cancel out callback processing overhead */
1304#if EV_USE_MONOTONIC
1305 if (expect_true (have_monotonic))
1306 time_update_monotonic (EV_A);
1307 else
1308#endif
1309 {
1310 ev_rt_now = ev_time ();
1311 mn_now = ev_rt_now;
1312 }
1313
1314 block = MAX_BLOCKTIME; 2411 waittime = MAX_BLOCKTIME;
1315 2412
1316 if (timercnt) 2413 if (timercnt)
1317 { 2414 {
1318 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2415 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1319 if (block > to) block = to; 2416 if (waittime > to) waittime = to;
1320 } 2417 }
1321 2418
1322#if EV_PERIODIC_ENABLE 2419#if EV_PERIODIC_ENABLE
1323 if (periodiccnt) 2420 if (periodiccnt)
1324 { 2421 {
1325 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2422 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1326 if (block > to) block = to; 2423 if (waittime > to) waittime = to;
1327 } 2424 }
1328#endif 2425#endif
1329 2426
2427 /* don't let timeouts decrease the waittime below timeout_blocktime */
2428 if (expect_false (waittime < timeout_blocktime))
2429 waittime = timeout_blocktime;
2430
2431 /* extra check because io_blocktime is commonly 0 */
1330 if (expect_false (block < 0.)) block = 0.; 2432 if (expect_false (io_blocktime))
2433 {
2434 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2435
2436 if (sleeptime > waittime - backend_fudge)
2437 sleeptime = waittime - backend_fudge;
2438
2439 if (expect_true (sleeptime > 0.))
2440 {
2441 ev_sleep (sleeptime);
2442 waittime -= sleeptime;
2443 }
2444 }
1331 } 2445 }
1332 2446
2447#if EV_FEATURE_API
2448 ++loop_count;
2449#endif
2450 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1333 backend_poll (EV_A_ block); 2451 backend_poll (EV_A_ waittime);
2452 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2453
2454 /* update ev_rt_now, do magic */
2455 time_update (EV_A_ waittime + sleeptime);
1334 } 2456 }
1335
1336 /* update ev_rt_now, do magic */
1337 time_update (EV_A);
1338 2457
1339 /* queue pending timers and reschedule them */ 2458 /* queue pending timers and reschedule them */
1340 timers_reify (EV_A); /* relative timers called last */ 2459 timers_reify (EV_A); /* relative timers called last */
1341#if EV_PERIODIC_ENABLE 2460#if EV_PERIODIC_ENABLE
1342 periodics_reify (EV_A); /* absolute timers called first */ 2461 periodics_reify (EV_A); /* absolute timers called first */
1343#endif 2462#endif
1344 2463
2464#if EV_IDLE_ENABLE
1345 /* queue idle watchers unless other events are pending */ 2465 /* queue idle watchers unless other events are pending */
1346 if (idlecnt && !any_pending (EV_A)) 2466 idle_reify (EV_A);
1347 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2467#endif
1348 2468
2469#if EV_CHECK_ENABLE
1349 /* queue check watchers, to be executed first */ 2470 /* queue check watchers, to be executed first */
1350 if (expect_false (checkcnt)) 2471 if (expect_false (checkcnt))
1351 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2472 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2473#endif
1352 2474
1353 call_pending (EV_A); 2475 EV_INVOKE_PENDING;
1354
1355 if (expect_false (loop_done))
1356 break;
1357 } 2476 }
2477 while (expect_true (
2478 activecnt
2479 && !loop_done
2480 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2481 ));
1358 2482
1359 if (loop_done == EVUNLOOP_ONE) 2483 if (loop_done == EVBREAK_ONE)
1360 loop_done = EVUNLOOP_CANCEL; 2484 loop_done = EVBREAK_CANCEL;
1361}
1362 2485
2486#if EV_FEATURE_API
2487 --loop_depth;
2488#endif
2489}
2490
1363void 2491void
1364ev_unloop (EV_P_ int how) 2492ev_break (EV_P_ int how)
1365{ 2493{
1366 loop_done = how; 2494 loop_done = how;
1367} 2495}
1368 2496
2497void
2498ev_ref (EV_P)
2499{
2500 ++activecnt;
2501}
2502
2503void
2504ev_unref (EV_P)
2505{
2506 --activecnt;
2507}
2508
2509void
2510ev_now_update (EV_P)
2511{
2512 time_update (EV_A_ 1e100);
2513}
2514
2515void
2516ev_suspend (EV_P)
2517{
2518 ev_now_update (EV_A);
2519}
2520
2521void
2522ev_resume (EV_P)
2523{
2524 ev_tstamp mn_prev = mn_now;
2525
2526 ev_now_update (EV_A);
2527 timers_reschedule (EV_A_ mn_now - mn_prev);
2528#if EV_PERIODIC_ENABLE
2529 /* TODO: really do this? */
2530 periodics_reschedule (EV_A);
2531#endif
2532}
2533
1369/*****************************************************************************/ 2534/*****************************************************************************/
2535/* singly-linked list management, used when the expected list length is short */
1370 2536
1371void inline_size 2537inline_size void
1372wlist_add (WL *head, WL elem) 2538wlist_add (WL *head, WL elem)
1373{ 2539{
1374 elem->next = *head; 2540 elem->next = *head;
1375 *head = elem; 2541 *head = elem;
1376} 2542}
1377 2543
1378void inline_size 2544inline_size void
1379wlist_del (WL *head, WL elem) 2545wlist_del (WL *head, WL elem)
1380{ 2546{
1381 while (*head) 2547 while (*head)
1382 { 2548 {
1383 if (*head == elem) 2549 if (expect_true (*head == elem))
1384 { 2550 {
1385 *head = elem->next; 2551 *head = elem->next;
1386 return; 2552 break;
1387 } 2553 }
1388 2554
1389 head = &(*head)->next; 2555 head = &(*head)->next;
1390 } 2556 }
1391} 2557}
1392 2558
1393void inline_speed 2559/* internal, faster, version of ev_clear_pending */
2560inline_speed void
1394ev_clear_pending (EV_P_ W w) 2561clear_pending (EV_P_ W w)
1395{ 2562{
1396 if (w->pending) 2563 if (w->pending)
1397 { 2564 {
1398 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2565 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1399 w->pending = 0; 2566 w->pending = 0;
1400 } 2567 }
1401} 2568}
1402 2569
1403void inline_speed 2570int
2571ev_clear_pending (EV_P_ void *w)
2572{
2573 W w_ = (W)w;
2574 int pending = w_->pending;
2575
2576 if (expect_true (pending))
2577 {
2578 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2579 p->w = (W)&pending_w;
2580 w_->pending = 0;
2581 return p->events;
2582 }
2583 else
2584 return 0;
2585}
2586
2587inline_size void
2588pri_adjust (EV_P_ W w)
2589{
2590 int pri = ev_priority (w);
2591 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2592 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2593 ev_set_priority (w, pri);
2594}
2595
2596inline_speed void
1404ev_start (EV_P_ W w, int active) 2597ev_start (EV_P_ W w, int active)
1405{ 2598{
1406 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2599 pri_adjust (EV_A_ w);
1407 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1408
1409 w->active = active; 2600 w->active = active;
1410 ev_ref (EV_A); 2601 ev_ref (EV_A);
1411} 2602}
1412 2603
1413void inline_size 2604inline_size void
1414ev_stop (EV_P_ W w) 2605ev_stop (EV_P_ W w)
1415{ 2606{
1416 ev_unref (EV_A); 2607 ev_unref (EV_A);
1417 w->active = 0; 2608 w->active = 0;
1418} 2609}
1419 2610
1420/*****************************************************************************/ 2611/*****************************************************************************/
1421 2612
1422void 2613void noinline
1423ev_io_start (EV_P_ ev_io *w) 2614ev_io_start (EV_P_ ev_io *w)
1424{ 2615{
1425 int fd = w->fd; 2616 int fd = w->fd;
1426 2617
1427 if (expect_false (ev_is_active (w))) 2618 if (expect_false (ev_is_active (w)))
1428 return; 2619 return;
1429 2620
1430 assert (("ev_io_start called with negative fd", fd >= 0)); 2621 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2622 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2623
2624 EV_FREQUENT_CHECK;
1431 2625
1432 ev_start (EV_A_ (W)w, 1); 2626 ev_start (EV_A_ (W)w, 1);
1433 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2627 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1434 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2628 wlist_add (&anfds[fd].head, (WL)w);
1435 2629
1436 fd_change (EV_A_ fd); 2630 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1437} 2631 w->events &= ~EV__IOFDSET;
1438 2632
1439void 2633 EV_FREQUENT_CHECK;
2634}
2635
2636void noinline
1440ev_io_stop (EV_P_ ev_io *w) 2637ev_io_stop (EV_P_ ev_io *w)
1441{ 2638{
1442 ev_clear_pending (EV_A_ (W)w); 2639 clear_pending (EV_A_ (W)w);
1443 if (expect_false (!ev_is_active (w))) 2640 if (expect_false (!ev_is_active (w)))
1444 return; 2641 return;
1445 2642
1446 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2643 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1447 2644
2645 EV_FREQUENT_CHECK;
2646
1448 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2647 wlist_del (&anfds[w->fd].head, (WL)w);
1449 ev_stop (EV_A_ (W)w); 2648 ev_stop (EV_A_ (W)w);
1450 2649
1451 fd_change (EV_A_ w->fd); 2650 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1452}
1453 2651
1454void 2652 EV_FREQUENT_CHECK;
2653}
2654
2655void noinline
1455ev_timer_start (EV_P_ ev_timer *w) 2656ev_timer_start (EV_P_ ev_timer *w)
1456{ 2657{
1457 if (expect_false (ev_is_active (w))) 2658 if (expect_false (ev_is_active (w)))
1458 return; 2659 return;
1459 2660
1460 ((WT)w)->at += mn_now; 2661 ev_at (w) += mn_now;
1461 2662
1462 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2663 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1463 2664
2665 EV_FREQUENT_CHECK;
2666
2667 ++timercnt;
1464 ev_start (EV_A_ (W)w, ++timercnt); 2668 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1465 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2669 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1466 timers [timercnt - 1] = w; 2670 ANHE_w (timers [ev_active (w)]) = (WT)w;
1467 upheap ((WT *)timers, timercnt - 1); 2671 ANHE_at_cache (timers [ev_active (w)]);
2672 upheap (timers, ev_active (w));
1468 2673
2674 EV_FREQUENT_CHECK;
2675
1469 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2676 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1470} 2677}
1471 2678
1472void 2679void noinline
1473ev_timer_stop (EV_P_ ev_timer *w) 2680ev_timer_stop (EV_P_ ev_timer *w)
1474{ 2681{
1475 ev_clear_pending (EV_A_ (W)w); 2682 clear_pending (EV_A_ (W)w);
1476 if (expect_false (!ev_is_active (w))) 2683 if (expect_false (!ev_is_active (w)))
1477 return; 2684 return;
1478 2685
2686 EV_FREQUENT_CHECK;
2687
2688 {
2689 int active = ev_active (w);
2690
1479 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2691 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1480 2692
2693 --timercnt;
2694
1481 if (expect_true (((W)w)->active < timercnt--)) 2695 if (expect_true (active < timercnt + HEAP0))
1482 { 2696 {
1483 timers [((W)w)->active - 1] = timers [timercnt]; 2697 timers [active] = timers [timercnt + HEAP0];
1484 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2698 adjustheap (timers, timercnt, active);
1485 } 2699 }
2700 }
1486 2701
1487 ((WT)w)->at -= mn_now; 2702 ev_at (w) -= mn_now;
1488 2703
1489 ev_stop (EV_A_ (W)w); 2704 ev_stop (EV_A_ (W)w);
1490}
1491 2705
1492void 2706 EV_FREQUENT_CHECK;
2707}
2708
2709void noinline
1493ev_timer_again (EV_P_ ev_timer *w) 2710ev_timer_again (EV_P_ ev_timer *w)
1494{ 2711{
2712 EV_FREQUENT_CHECK;
2713
1495 if (ev_is_active (w)) 2714 if (ev_is_active (w))
1496 { 2715 {
1497 if (w->repeat) 2716 if (w->repeat)
1498 { 2717 {
1499 ((WT)w)->at = mn_now + w->repeat; 2718 ev_at (w) = mn_now + w->repeat;
2719 ANHE_at_cache (timers [ev_active (w)]);
1500 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2720 adjustheap (timers, timercnt, ev_active (w));
1501 } 2721 }
1502 else 2722 else
1503 ev_timer_stop (EV_A_ w); 2723 ev_timer_stop (EV_A_ w);
1504 } 2724 }
1505 else if (w->repeat) 2725 else if (w->repeat)
1506 { 2726 {
1507 w->at = w->repeat; 2727 ev_at (w) = w->repeat;
1508 ev_timer_start (EV_A_ w); 2728 ev_timer_start (EV_A_ w);
1509 } 2729 }
2730
2731 EV_FREQUENT_CHECK;
2732}
2733
2734ev_tstamp
2735ev_timer_remaining (EV_P_ ev_timer *w)
2736{
2737 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1510} 2738}
1511 2739
1512#if EV_PERIODIC_ENABLE 2740#if EV_PERIODIC_ENABLE
1513void 2741void noinline
1514ev_periodic_start (EV_P_ ev_periodic *w) 2742ev_periodic_start (EV_P_ ev_periodic *w)
1515{ 2743{
1516 if (expect_false (ev_is_active (w))) 2744 if (expect_false (ev_is_active (w)))
1517 return; 2745 return;
1518 2746
1519 if (w->reschedule_cb) 2747 if (w->reschedule_cb)
1520 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2748 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1521 else if (w->interval) 2749 else if (w->interval)
1522 { 2750 {
1523 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2751 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1524 /* this formula differs from the one in periodic_reify because we do not always round up */ 2752 /* this formula differs from the one in periodic_reify because we do not always round up */
1525 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2753 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1526 } 2754 }
2755 else
2756 ev_at (w) = w->offset;
1527 2757
2758 EV_FREQUENT_CHECK;
2759
2760 ++periodiccnt;
1528 ev_start (EV_A_ (W)w, ++periodiccnt); 2761 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1529 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2762 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1530 periodics [periodiccnt - 1] = w; 2763 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1531 upheap ((WT *)periodics, periodiccnt - 1); 2764 ANHE_at_cache (periodics [ev_active (w)]);
2765 upheap (periodics, ev_active (w));
1532 2766
2767 EV_FREQUENT_CHECK;
2768
1533 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2769 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1534} 2770}
1535 2771
1536void 2772void noinline
1537ev_periodic_stop (EV_P_ ev_periodic *w) 2773ev_periodic_stop (EV_P_ ev_periodic *w)
1538{ 2774{
1539 ev_clear_pending (EV_A_ (W)w); 2775 clear_pending (EV_A_ (W)w);
1540 if (expect_false (!ev_is_active (w))) 2776 if (expect_false (!ev_is_active (w)))
1541 return; 2777 return;
1542 2778
2779 EV_FREQUENT_CHECK;
2780
2781 {
2782 int active = ev_active (w);
2783
1543 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2784 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1544 2785
2786 --periodiccnt;
2787
1545 if (expect_true (((W)w)->active < periodiccnt--)) 2788 if (expect_true (active < periodiccnt + HEAP0))
1546 { 2789 {
1547 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2790 periodics [active] = periodics [periodiccnt + HEAP0];
1548 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2791 adjustheap (periodics, periodiccnt, active);
1549 } 2792 }
2793 }
1550 2794
1551 ev_stop (EV_A_ (W)w); 2795 ev_stop (EV_A_ (W)w);
1552}
1553 2796
1554void 2797 EV_FREQUENT_CHECK;
2798}
2799
2800void noinline
1555ev_periodic_again (EV_P_ ev_periodic *w) 2801ev_periodic_again (EV_P_ ev_periodic *w)
1556{ 2802{
1557 /* TODO: use adjustheap and recalculation */ 2803 /* TODO: use adjustheap and recalculation */
1558 ev_periodic_stop (EV_A_ w); 2804 ev_periodic_stop (EV_A_ w);
1559 ev_periodic_start (EV_A_ w); 2805 ev_periodic_start (EV_A_ w);
1562 2808
1563#ifndef SA_RESTART 2809#ifndef SA_RESTART
1564# define SA_RESTART 0 2810# define SA_RESTART 0
1565#endif 2811#endif
1566 2812
1567void 2813#if EV_SIGNAL_ENABLE
2814
2815void noinline
1568ev_signal_start (EV_P_ ev_signal *w) 2816ev_signal_start (EV_P_ ev_signal *w)
1569{ 2817{
1570#if EV_MULTIPLICITY
1571 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1572#endif
1573 if (expect_false (ev_is_active (w))) 2818 if (expect_false (ev_is_active (w)))
1574 return; 2819 return;
1575 2820
1576 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2821 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2822
2823#if EV_MULTIPLICITY
2824 assert (("libev: a signal must not be attached to two different loops",
2825 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2826
2827 signals [w->signum - 1].loop = EV_A;
2828#endif
2829
2830 EV_FREQUENT_CHECK;
2831
2832#if EV_USE_SIGNALFD
2833 if (sigfd == -2)
2834 {
2835 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2836 if (sigfd < 0 && errno == EINVAL)
2837 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2838
2839 if (sigfd >= 0)
2840 {
2841 fd_intern (sigfd); /* doing it twice will not hurt */
2842
2843 sigemptyset (&sigfd_set);
2844
2845 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2846 ev_set_priority (&sigfd_w, EV_MAXPRI);
2847 ev_io_start (EV_A_ &sigfd_w);
2848 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2849 }
2850 }
2851
2852 if (sigfd >= 0)
2853 {
2854 /* TODO: check .head */
2855 sigaddset (&sigfd_set, w->signum);
2856 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2857
2858 signalfd (sigfd, &sigfd_set, 0);
2859 }
2860#endif
1577 2861
1578 ev_start (EV_A_ (W)w, 1); 2862 ev_start (EV_A_ (W)w, 1);
1579 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1580 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2863 wlist_add (&signals [w->signum - 1].head, (WL)w);
1581 2864
1582 if (!((WL)w)->next) 2865 if (!((WL)w)->next)
2866# if EV_USE_SIGNALFD
2867 if (sigfd < 0) /*TODO*/
2868# endif
1583 { 2869 {
1584#if _WIN32 2870# ifdef _WIN32
2871 evpipe_init (EV_A);
2872
1585 signal (w->signum, sighandler); 2873 signal (w->signum, ev_sighandler);
1586#else 2874# else
1587 struct sigaction sa; 2875 struct sigaction sa;
2876
2877 evpipe_init (EV_A);
2878
1588 sa.sa_handler = sighandler; 2879 sa.sa_handler = ev_sighandler;
1589 sigfillset (&sa.sa_mask); 2880 sigfillset (&sa.sa_mask);
1590 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2881 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1591 sigaction (w->signum, &sa, 0); 2882 sigaction (w->signum, &sa, 0);
2883
2884 sigemptyset (&sa.sa_mask);
2885 sigaddset (&sa.sa_mask, w->signum);
2886 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1592#endif 2887#endif
1593 } 2888 }
1594}
1595 2889
1596void 2890 EV_FREQUENT_CHECK;
2891}
2892
2893void noinline
1597ev_signal_stop (EV_P_ ev_signal *w) 2894ev_signal_stop (EV_P_ ev_signal *w)
1598{ 2895{
1599 ev_clear_pending (EV_A_ (W)w); 2896 clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w))) 2897 if (expect_false (!ev_is_active (w)))
1601 return; 2898 return;
1602 2899
2900 EV_FREQUENT_CHECK;
2901
1603 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2902 wlist_del (&signals [w->signum - 1].head, (WL)w);
1604 ev_stop (EV_A_ (W)w); 2903 ev_stop (EV_A_ (W)w);
1605 2904
1606 if (!signals [w->signum - 1].head) 2905 if (!signals [w->signum - 1].head)
2906 {
2907#if EV_MULTIPLICITY
2908 signals [w->signum - 1].loop = 0; /* unattach from signal */
2909#endif
2910#if EV_USE_SIGNALFD
2911 if (sigfd >= 0)
2912 {
2913 sigset_t ss;
2914
2915 sigemptyset (&ss);
2916 sigaddset (&ss, w->signum);
2917 sigdelset (&sigfd_set, w->signum);
2918
2919 signalfd (sigfd, &sigfd_set, 0);
2920 sigprocmask (SIG_UNBLOCK, &ss, 0);
2921 }
2922 else
2923#endif
1607 signal (w->signum, SIG_DFL); 2924 signal (w->signum, SIG_DFL);
2925 }
2926
2927 EV_FREQUENT_CHECK;
1608} 2928}
2929
2930#endif
2931
2932#if EV_CHILD_ENABLE
1609 2933
1610void 2934void
1611ev_child_start (EV_P_ ev_child *w) 2935ev_child_start (EV_P_ ev_child *w)
1612{ 2936{
1613#if EV_MULTIPLICITY 2937#if EV_MULTIPLICITY
1614 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2938 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1615#endif 2939#endif
1616 if (expect_false (ev_is_active (w))) 2940 if (expect_false (ev_is_active (w)))
1617 return; 2941 return;
1618 2942
2943 EV_FREQUENT_CHECK;
2944
1619 ev_start (EV_A_ (W)w, 1); 2945 ev_start (EV_A_ (W)w, 1);
1620 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2946 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2947
2948 EV_FREQUENT_CHECK;
1621} 2949}
1622 2950
1623void 2951void
1624ev_child_stop (EV_P_ ev_child *w) 2952ev_child_stop (EV_P_ ev_child *w)
1625{ 2953{
1626 ev_clear_pending (EV_A_ (W)w); 2954 clear_pending (EV_A_ (W)w);
1627 if (expect_false (!ev_is_active (w))) 2955 if (expect_false (!ev_is_active (w)))
1628 return; 2956 return;
1629 2957
2958 EV_FREQUENT_CHECK;
2959
1630 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2960 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1631 ev_stop (EV_A_ (W)w); 2961 ev_stop (EV_A_ (W)w);
2962
2963 EV_FREQUENT_CHECK;
1632} 2964}
2965
2966#endif
1633 2967
1634#if EV_STAT_ENABLE 2968#if EV_STAT_ENABLE
1635 2969
1636# ifdef _WIN32 2970# ifdef _WIN32
1637# undef lstat 2971# undef lstat
1638# define lstat(a,b) _stati64 (a,b) 2972# define lstat(a,b) _stati64 (a,b)
1639# endif 2973# endif
1640 2974
1641#define DEF_STAT_INTERVAL 5.0074891 2975#define DEF_STAT_INTERVAL 5.0074891
2976#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1642#define MIN_STAT_INTERVAL 0.1074891 2977#define MIN_STAT_INTERVAL 0.1074891
2978
2979static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2980
2981#if EV_USE_INOTIFY
2982
2983/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2984# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2985
2986static void noinline
2987infy_add (EV_P_ ev_stat *w)
2988{
2989 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2990
2991 if (w->wd >= 0)
2992 {
2993 struct statfs sfs;
2994
2995 /* now local changes will be tracked by inotify, but remote changes won't */
2996 /* unless the filesystem is known to be local, we therefore still poll */
2997 /* also do poll on <2.6.25, but with normal frequency */
2998
2999 if (!fs_2625)
3000 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3001 else if (!statfs (w->path, &sfs)
3002 && (sfs.f_type == 0x1373 /* devfs */
3003 || sfs.f_type == 0xEF53 /* ext2/3 */
3004 || sfs.f_type == 0x3153464a /* jfs */
3005 || sfs.f_type == 0x52654973 /* reiser3 */
3006 || sfs.f_type == 0x01021994 /* tempfs */
3007 || sfs.f_type == 0x58465342 /* xfs */))
3008 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3009 else
3010 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3011 }
3012 else
3013 {
3014 /* can't use inotify, continue to stat */
3015 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3016
3017 /* if path is not there, monitor some parent directory for speedup hints */
3018 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3019 /* but an efficiency issue only */
3020 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3021 {
3022 char path [4096];
3023 strcpy (path, w->path);
3024
3025 do
3026 {
3027 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3028 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3029
3030 char *pend = strrchr (path, '/');
3031
3032 if (!pend || pend == path)
3033 break;
3034
3035 *pend = 0;
3036 w->wd = inotify_add_watch (fs_fd, path, mask);
3037 }
3038 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3039 }
3040 }
3041
3042 if (w->wd >= 0)
3043 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3044
3045 /* now re-arm timer, if required */
3046 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3047 ev_timer_again (EV_A_ &w->timer);
3048 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3049}
3050
3051static void noinline
3052infy_del (EV_P_ ev_stat *w)
3053{
3054 int slot;
3055 int wd = w->wd;
3056
3057 if (wd < 0)
3058 return;
3059
3060 w->wd = -2;
3061 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3062 wlist_del (&fs_hash [slot].head, (WL)w);
3063
3064 /* remove this watcher, if others are watching it, they will rearm */
3065 inotify_rm_watch (fs_fd, wd);
3066}
3067
3068static void noinline
3069infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3070{
3071 if (slot < 0)
3072 /* overflow, need to check for all hash slots */
3073 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3074 infy_wd (EV_A_ slot, wd, ev);
3075 else
3076 {
3077 WL w_;
3078
3079 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3080 {
3081 ev_stat *w = (ev_stat *)w_;
3082 w_ = w_->next; /* lets us remove this watcher and all before it */
3083
3084 if (w->wd == wd || wd == -1)
3085 {
3086 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3087 {
3088 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3089 w->wd = -1;
3090 infy_add (EV_A_ w); /* re-add, no matter what */
3091 }
3092
3093 stat_timer_cb (EV_A_ &w->timer, 0);
3094 }
3095 }
3096 }
3097}
3098
3099static void
3100infy_cb (EV_P_ ev_io *w, int revents)
3101{
3102 char buf [EV_INOTIFY_BUFSIZE];
3103 int ofs;
3104 int len = read (fs_fd, buf, sizeof (buf));
3105
3106 for (ofs = 0; ofs < len; )
3107 {
3108 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3109 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3110 ofs += sizeof (struct inotify_event) + ev->len;
3111 }
3112}
3113
3114inline_size void
3115ev_check_2625 (EV_P)
3116{
3117 /* kernels < 2.6.25 are borked
3118 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3119 */
3120 if (ev_linux_version () < 0x020619)
3121 return;
3122
3123 fs_2625 = 1;
3124}
3125
3126inline_size int
3127infy_newfd (void)
3128{
3129#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3130 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3131 if (fd >= 0)
3132 return fd;
3133#endif
3134 return inotify_init ();
3135}
3136
3137inline_size void
3138infy_init (EV_P)
3139{
3140 if (fs_fd != -2)
3141 return;
3142
3143 fs_fd = -1;
3144
3145 ev_check_2625 (EV_A);
3146
3147 fs_fd = infy_newfd ();
3148
3149 if (fs_fd >= 0)
3150 {
3151 fd_intern (fs_fd);
3152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3153 ev_set_priority (&fs_w, EV_MAXPRI);
3154 ev_io_start (EV_A_ &fs_w);
3155 ev_unref (EV_A);
3156 }
3157}
3158
3159inline_size void
3160infy_fork (EV_P)
3161{
3162 int slot;
3163
3164 if (fs_fd < 0)
3165 return;
3166
3167 ev_ref (EV_A);
3168 ev_io_stop (EV_A_ &fs_w);
3169 close (fs_fd);
3170 fs_fd = infy_newfd ();
3171
3172 if (fs_fd >= 0)
3173 {
3174 fd_intern (fs_fd);
3175 ev_io_set (&fs_w, fs_fd, EV_READ);
3176 ev_io_start (EV_A_ &fs_w);
3177 ev_unref (EV_A);
3178 }
3179
3180 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3181 {
3182 WL w_ = fs_hash [slot].head;
3183 fs_hash [slot].head = 0;
3184
3185 while (w_)
3186 {
3187 ev_stat *w = (ev_stat *)w_;
3188 w_ = w_->next; /* lets us add this watcher */
3189
3190 w->wd = -1;
3191
3192 if (fs_fd >= 0)
3193 infy_add (EV_A_ w); /* re-add, no matter what */
3194 else
3195 {
3196 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3197 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3198 ev_timer_again (EV_A_ &w->timer);
3199 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3200 }
3201 }
3202 }
3203}
3204
3205#endif
3206
3207#ifdef _WIN32
3208# define EV_LSTAT(p,b) _stati64 (p, b)
3209#else
3210# define EV_LSTAT(p,b) lstat (p, b)
3211#endif
1643 3212
1644void 3213void
1645ev_stat_stat (EV_P_ ev_stat *w) 3214ev_stat_stat (EV_P_ ev_stat *w)
1646{ 3215{
1647 if (lstat (w->path, &w->attr) < 0) 3216 if (lstat (w->path, &w->attr) < 0)
1648 w->attr.st_nlink = 0; 3217 w->attr.st_nlink = 0;
1649 else if (!w->attr.st_nlink) 3218 else if (!w->attr.st_nlink)
1650 w->attr.st_nlink = 1; 3219 w->attr.st_nlink = 1;
1651} 3220}
1652 3221
1653static void 3222static void noinline
1654stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3223stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1655{ 3224{
1656 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3225 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1657 3226
1658 /* we copy this here each the time so that */ 3227 ev_statdata prev = w->attr;
1659 /* prev has the old value when the callback gets invoked */
1660 w->prev = w->attr;
1661 ev_stat_stat (EV_A_ w); 3228 ev_stat_stat (EV_A_ w);
1662 3229
1663 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 3230 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3231 if (
3232 prev.st_dev != w->attr.st_dev
3233 || prev.st_ino != w->attr.st_ino
3234 || prev.st_mode != w->attr.st_mode
3235 || prev.st_nlink != w->attr.st_nlink
3236 || prev.st_uid != w->attr.st_uid
3237 || prev.st_gid != w->attr.st_gid
3238 || prev.st_rdev != w->attr.st_rdev
3239 || prev.st_size != w->attr.st_size
3240 || prev.st_atime != w->attr.st_atime
3241 || prev.st_mtime != w->attr.st_mtime
3242 || prev.st_ctime != w->attr.st_ctime
3243 ) {
3244 /* we only update w->prev on actual differences */
3245 /* in case we test more often than invoke the callback, */
3246 /* to ensure that prev is always different to attr */
3247 w->prev = prev;
3248
3249 #if EV_USE_INOTIFY
3250 if (fs_fd >= 0)
3251 {
3252 infy_del (EV_A_ w);
3253 infy_add (EV_A_ w);
3254 ev_stat_stat (EV_A_ w); /* avoid race... */
3255 }
3256 #endif
3257
1664 ev_feed_event (EV_A_ w, EV_STAT); 3258 ev_feed_event (EV_A_ w, EV_STAT);
3259 }
1665} 3260}
1666 3261
1667void 3262void
1668ev_stat_start (EV_P_ ev_stat *w) 3263ev_stat_start (EV_P_ ev_stat *w)
1669{ 3264{
1670 if (expect_false (ev_is_active (w))) 3265 if (expect_false (ev_is_active (w)))
1671 return; 3266 return;
1672 3267
1673 /* since we use memcmp, we need to clear any padding data etc. */
1674 memset (&w->prev, 0, sizeof (ev_statdata));
1675 memset (&w->attr, 0, sizeof (ev_statdata));
1676
1677 ev_stat_stat (EV_A_ w); 3268 ev_stat_stat (EV_A_ w);
1678 3269
3270 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1679 if (w->interval < MIN_STAT_INTERVAL) 3271 w->interval = MIN_STAT_INTERVAL;
1680 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1681 3272
1682 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1683 ev_set_priority (&w->timer, ev_priority (w)); 3274 ev_set_priority (&w->timer, ev_priority (w));
3275
3276#if EV_USE_INOTIFY
3277 infy_init (EV_A);
3278
3279 if (fs_fd >= 0)
3280 infy_add (EV_A_ w);
3281 else
3282#endif
3283 {
1684 ev_timer_start (EV_A_ &w->timer); 3284 ev_timer_again (EV_A_ &w->timer);
3285 ev_unref (EV_A);
3286 }
1685 3287
1686 ev_start (EV_A_ (W)w, 1); 3288 ev_start (EV_A_ (W)w, 1);
3289
3290 EV_FREQUENT_CHECK;
1687} 3291}
1688 3292
1689void 3293void
1690ev_stat_stop (EV_P_ ev_stat *w) 3294ev_stat_stop (EV_P_ ev_stat *w)
1691{ 3295{
1692 ev_clear_pending (EV_A_ (W)w); 3296 clear_pending (EV_A_ (W)w);
1693 if (expect_false (!ev_is_active (w))) 3297 if (expect_false (!ev_is_active (w)))
1694 return; 3298 return;
1695 3299
3300 EV_FREQUENT_CHECK;
3301
3302#if EV_USE_INOTIFY
3303 infy_del (EV_A_ w);
3304#endif
3305
3306 if (ev_is_active (&w->timer))
3307 {
3308 ev_ref (EV_A);
1696 ev_timer_stop (EV_A_ &w->timer); 3309 ev_timer_stop (EV_A_ &w->timer);
3310 }
1697 3311
1698 ev_stop (EV_A_ (W)w); 3312 ev_stop (EV_A_ (W)w);
1699}
1700#endif
1701 3313
3314 EV_FREQUENT_CHECK;
3315}
3316#endif
3317
3318#if EV_IDLE_ENABLE
1702void 3319void
1703ev_idle_start (EV_P_ ev_idle *w) 3320ev_idle_start (EV_P_ ev_idle *w)
1704{ 3321{
1705 if (expect_false (ev_is_active (w))) 3322 if (expect_false (ev_is_active (w)))
1706 return; 3323 return;
1707 3324
3325 pri_adjust (EV_A_ (W)w);
3326
3327 EV_FREQUENT_CHECK;
3328
3329 {
3330 int active = ++idlecnt [ABSPRI (w)];
3331
3332 ++idleall;
1708 ev_start (EV_A_ (W)w, ++idlecnt); 3333 ev_start (EV_A_ (W)w, active);
3334
1709 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3335 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1710 idles [idlecnt - 1] = w; 3336 idles [ABSPRI (w)][active - 1] = w;
3337 }
3338
3339 EV_FREQUENT_CHECK;
1711} 3340}
1712 3341
1713void 3342void
1714ev_idle_stop (EV_P_ ev_idle *w) 3343ev_idle_stop (EV_P_ ev_idle *w)
1715{ 3344{
1716 ev_clear_pending (EV_A_ (W)w); 3345 clear_pending (EV_A_ (W)w);
1717 if (expect_false (!ev_is_active (w))) 3346 if (expect_false (!ev_is_active (w)))
1718 return; 3347 return;
1719 3348
3349 EV_FREQUENT_CHECK;
3350
1720 { 3351 {
1721 int active = ((W)w)->active; 3352 int active = ev_active (w);
1722 idles [active - 1] = idles [--idlecnt]; 3353
1723 ((W)idles [active - 1])->active = active; 3354 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3355 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3356
3357 ev_stop (EV_A_ (W)w);
3358 --idleall;
1724 } 3359 }
1725 3360
1726 ev_stop (EV_A_ (W)w); 3361 EV_FREQUENT_CHECK;
1727} 3362}
3363#endif
1728 3364
3365#if EV_PREPARE_ENABLE
1729void 3366void
1730ev_prepare_start (EV_P_ ev_prepare *w) 3367ev_prepare_start (EV_P_ ev_prepare *w)
1731{ 3368{
1732 if (expect_false (ev_is_active (w))) 3369 if (expect_false (ev_is_active (w)))
1733 return; 3370 return;
3371
3372 EV_FREQUENT_CHECK;
1734 3373
1735 ev_start (EV_A_ (W)w, ++preparecnt); 3374 ev_start (EV_A_ (W)w, ++preparecnt);
1736 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3375 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1737 prepares [preparecnt - 1] = w; 3376 prepares [preparecnt - 1] = w;
3377
3378 EV_FREQUENT_CHECK;
1738} 3379}
1739 3380
1740void 3381void
1741ev_prepare_stop (EV_P_ ev_prepare *w) 3382ev_prepare_stop (EV_P_ ev_prepare *w)
1742{ 3383{
1743 ev_clear_pending (EV_A_ (W)w); 3384 clear_pending (EV_A_ (W)w);
1744 if (expect_false (!ev_is_active (w))) 3385 if (expect_false (!ev_is_active (w)))
1745 return; 3386 return;
1746 3387
3388 EV_FREQUENT_CHECK;
3389
1747 { 3390 {
1748 int active = ((W)w)->active; 3391 int active = ev_active (w);
3392
1749 prepares [active - 1] = prepares [--preparecnt]; 3393 prepares [active - 1] = prepares [--preparecnt];
1750 ((W)prepares [active - 1])->active = active; 3394 ev_active (prepares [active - 1]) = active;
1751 } 3395 }
1752 3396
1753 ev_stop (EV_A_ (W)w); 3397 ev_stop (EV_A_ (W)w);
1754}
1755 3398
3399 EV_FREQUENT_CHECK;
3400}
3401#endif
3402
3403#if EV_CHECK_ENABLE
1756void 3404void
1757ev_check_start (EV_P_ ev_check *w) 3405ev_check_start (EV_P_ ev_check *w)
1758{ 3406{
1759 if (expect_false (ev_is_active (w))) 3407 if (expect_false (ev_is_active (w)))
1760 return; 3408 return;
3409
3410 EV_FREQUENT_CHECK;
1761 3411
1762 ev_start (EV_A_ (W)w, ++checkcnt); 3412 ev_start (EV_A_ (W)w, ++checkcnt);
1763 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3413 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1764 checks [checkcnt - 1] = w; 3414 checks [checkcnt - 1] = w;
3415
3416 EV_FREQUENT_CHECK;
1765} 3417}
1766 3418
1767void 3419void
1768ev_check_stop (EV_P_ ev_check *w) 3420ev_check_stop (EV_P_ ev_check *w)
1769{ 3421{
1770 ev_clear_pending (EV_A_ (W)w); 3422 clear_pending (EV_A_ (W)w);
1771 if (expect_false (!ev_is_active (w))) 3423 if (expect_false (!ev_is_active (w)))
1772 return; 3424 return;
1773 3425
3426 EV_FREQUENT_CHECK;
3427
1774 { 3428 {
1775 int active = ((W)w)->active; 3429 int active = ev_active (w);
3430
1776 checks [active - 1] = checks [--checkcnt]; 3431 checks [active - 1] = checks [--checkcnt];
1777 ((W)checks [active - 1])->active = active; 3432 ev_active (checks [active - 1]) = active;
1778 } 3433 }
1779 3434
1780 ev_stop (EV_A_ (W)w); 3435 ev_stop (EV_A_ (W)w);
3436
3437 EV_FREQUENT_CHECK;
1781} 3438}
3439#endif
1782 3440
1783#if EV_EMBED_ENABLE 3441#if EV_EMBED_ENABLE
1784void noinline 3442void noinline
1785ev_embed_sweep (EV_P_ ev_embed *w) 3443ev_embed_sweep (EV_P_ ev_embed *w)
1786{ 3444{
1787 ev_loop (w->loop, EVLOOP_NONBLOCK); 3445 ev_run (w->other, EVRUN_NOWAIT);
1788} 3446}
1789 3447
1790static void 3448static void
1791embed_cb (EV_P_ ev_io *io, int revents) 3449embed_io_cb (EV_P_ ev_io *io, int revents)
1792{ 3450{
1793 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3451 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1794 3452
1795 if (ev_cb (w)) 3453 if (ev_cb (w))
1796 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3454 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1797 else 3455 else
1798 ev_embed_sweep (loop, w); 3456 ev_run (w->other, EVRUN_NOWAIT);
1799} 3457}
3458
3459static void
3460embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3461{
3462 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3463
3464 {
3465 EV_P = w->other;
3466
3467 while (fdchangecnt)
3468 {
3469 fd_reify (EV_A);
3470 ev_run (EV_A_ EVRUN_NOWAIT);
3471 }
3472 }
3473}
3474
3475static void
3476embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3477{
3478 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3479
3480 ev_embed_stop (EV_A_ w);
3481
3482 {
3483 EV_P = w->other;
3484
3485 ev_loop_fork (EV_A);
3486 ev_run (EV_A_ EVRUN_NOWAIT);
3487 }
3488
3489 ev_embed_start (EV_A_ w);
3490}
3491
3492#if 0
3493static void
3494embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3495{
3496 ev_idle_stop (EV_A_ idle);
3497}
3498#endif
1800 3499
1801void 3500void
1802ev_embed_start (EV_P_ ev_embed *w) 3501ev_embed_start (EV_P_ ev_embed *w)
1803{ 3502{
1804 if (expect_false (ev_is_active (w))) 3503 if (expect_false (ev_is_active (w)))
1805 return; 3504 return;
1806 3505
1807 { 3506 {
1808 struct ev_loop *loop = w->loop; 3507 EV_P = w->other;
1809 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3508 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1810 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3509 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1811 } 3510 }
3511
3512 EV_FREQUENT_CHECK;
1812 3513
1813 ev_set_priority (&w->io, ev_priority (w)); 3514 ev_set_priority (&w->io, ev_priority (w));
1814 ev_io_start (EV_A_ &w->io); 3515 ev_io_start (EV_A_ &w->io);
1815 3516
3517 ev_prepare_init (&w->prepare, embed_prepare_cb);
3518 ev_set_priority (&w->prepare, EV_MINPRI);
3519 ev_prepare_start (EV_A_ &w->prepare);
3520
3521 ev_fork_init (&w->fork, embed_fork_cb);
3522 ev_fork_start (EV_A_ &w->fork);
3523
3524 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3525
1816 ev_start (EV_A_ (W)w, 1); 3526 ev_start (EV_A_ (W)w, 1);
3527
3528 EV_FREQUENT_CHECK;
1817} 3529}
1818 3530
1819void 3531void
1820ev_embed_stop (EV_P_ ev_embed *w) 3532ev_embed_stop (EV_P_ ev_embed *w)
1821{ 3533{
1822 ev_clear_pending (EV_A_ (W)w); 3534 clear_pending (EV_A_ (W)w);
1823 if (expect_false (!ev_is_active (w))) 3535 if (expect_false (!ev_is_active (w)))
1824 return; 3536 return;
1825 3537
3538 EV_FREQUENT_CHECK;
3539
1826 ev_io_stop (EV_A_ &w->io); 3540 ev_io_stop (EV_A_ &w->io);
3541 ev_prepare_stop (EV_A_ &w->prepare);
3542 ev_fork_stop (EV_A_ &w->fork);
1827 3543
1828 ev_stop (EV_A_ (W)w); 3544 ev_stop (EV_A_ (W)w);
3545
3546 EV_FREQUENT_CHECK;
3547}
3548#endif
3549
3550#if EV_FORK_ENABLE
3551void
3552ev_fork_start (EV_P_ ev_fork *w)
3553{
3554 if (expect_false (ev_is_active (w)))
3555 return;
3556
3557 EV_FREQUENT_CHECK;
3558
3559 ev_start (EV_A_ (W)w, ++forkcnt);
3560 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3561 forks [forkcnt - 1] = w;
3562
3563 EV_FREQUENT_CHECK;
3564}
3565
3566void
3567ev_fork_stop (EV_P_ ev_fork *w)
3568{
3569 clear_pending (EV_A_ (W)w);
3570 if (expect_false (!ev_is_active (w)))
3571 return;
3572
3573 EV_FREQUENT_CHECK;
3574
3575 {
3576 int active = ev_active (w);
3577
3578 forks [active - 1] = forks [--forkcnt];
3579 ev_active (forks [active - 1]) = active;
3580 }
3581
3582 ev_stop (EV_A_ (W)w);
3583
3584 EV_FREQUENT_CHECK;
3585}
3586#endif
3587
3588#if EV_CLEANUP_ENABLE
3589void
3590ev_cleanup_start (EV_P_ ev_cleanup *w)
3591{
3592 if (expect_false (ev_is_active (w)))
3593 return;
3594
3595 EV_FREQUENT_CHECK;
3596
3597 ev_start (EV_A_ (W)w, ++cleanupcnt);
3598 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3599 cleanups [cleanupcnt - 1] = w;
3600
3601 /* cleanup watchers should never keep a refcount on the loop */
3602 ev_unref (EV_A);
3603 EV_FREQUENT_CHECK;
3604}
3605
3606void
3607ev_cleanup_stop (EV_P_ ev_cleanup *w)
3608{
3609 clear_pending (EV_A_ (W)w);
3610 if (expect_false (!ev_is_active (w)))
3611 return;
3612
3613 EV_FREQUENT_CHECK;
3614 ev_ref (EV_A);
3615
3616 {
3617 int active = ev_active (w);
3618
3619 cleanups [active - 1] = cleanups [--cleanupcnt];
3620 ev_active (cleanups [active - 1]) = active;
3621 }
3622
3623 ev_stop (EV_A_ (W)w);
3624
3625 EV_FREQUENT_CHECK;
3626}
3627#endif
3628
3629#if EV_ASYNC_ENABLE
3630void
3631ev_async_start (EV_P_ ev_async *w)
3632{
3633 if (expect_false (ev_is_active (w)))
3634 return;
3635
3636 w->sent = 0;
3637
3638 evpipe_init (EV_A);
3639
3640 EV_FREQUENT_CHECK;
3641
3642 ev_start (EV_A_ (W)w, ++asynccnt);
3643 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3644 asyncs [asynccnt - 1] = w;
3645
3646 EV_FREQUENT_CHECK;
3647}
3648
3649void
3650ev_async_stop (EV_P_ ev_async *w)
3651{
3652 clear_pending (EV_A_ (W)w);
3653 if (expect_false (!ev_is_active (w)))
3654 return;
3655
3656 EV_FREQUENT_CHECK;
3657
3658 {
3659 int active = ev_active (w);
3660
3661 asyncs [active - 1] = asyncs [--asynccnt];
3662 ev_active (asyncs [active - 1]) = active;
3663 }
3664
3665 ev_stop (EV_A_ (W)w);
3666
3667 EV_FREQUENT_CHECK;
3668}
3669
3670void
3671ev_async_send (EV_P_ ev_async *w)
3672{
3673 w->sent = 1;
3674 evpipe_write (EV_A_ &async_pending);
1829} 3675}
1830#endif 3676#endif
1831 3677
1832/*****************************************************************************/ 3678/*****************************************************************************/
1833 3679
1843once_cb (EV_P_ struct ev_once *once, int revents) 3689once_cb (EV_P_ struct ev_once *once, int revents)
1844{ 3690{
1845 void (*cb)(int revents, void *arg) = once->cb; 3691 void (*cb)(int revents, void *arg) = once->cb;
1846 void *arg = once->arg; 3692 void *arg = once->arg;
1847 3693
1848 ev_io_stop (EV_A_ &once->io); 3694 ev_io_stop (EV_A_ &once->io);
1849 ev_timer_stop (EV_A_ &once->to); 3695 ev_timer_stop (EV_A_ &once->to);
1850 ev_free (once); 3696 ev_free (once);
1851 3697
1852 cb (revents, arg); 3698 cb (revents, arg);
1853} 3699}
1854 3700
1855static void 3701static void
1856once_cb_io (EV_P_ ev_io *w, int revents) 3702once_cb_io (EV_P_ ev_io *w, int revents)
1857{ 3703{
1858 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3704 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3705
3706 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1859} 3707}
1860 3708
1861static void 3709static void
1862once_cb_to (EV_P_ ev_timer *w, int revents) 3710once_cb_to (EV_P_ ev_timer *w, int revents)
1863{ 3711{
1864 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3712 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3713
3714 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1865} 3715}
1866 3716
1867void 3717void
1868ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3718ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1869{ 3719{
1870 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3720 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1871 3721
1872 if (expect_false (!once)) 3722 if (expect_false (!once))
1873 { 3723 {
1874 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3724 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1875 return; 3725 return;
1876 } 3726 }
1877 3727
1878 once->cb = cb; 3728 once->cb = cb;
1879 once->arg = arg; 3729 once->arg = arg;
1891 ev_timer_set (&once->to, timeout, 0.); 3741 ev_timer_set (&once->to, timeout, 0.);
1892 ev_timer_start (EV_A_ &once->to); 3742 ev_timer_start (EV_A_ &once->to);
1893 } 3743 }
1894} 3744}
1895 3745
1896#ifdef __cplusplus 3746/*****************************************************************************/
1897} 3747
3748#if EV_WALK_ENABLE
3749void
3750ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3751{
3752 int i, j;
3753 ev_watcher_list *wl, *wn;
3754
3755 if (types & (EV_IO | EV_EMBED))
3756 for (i = 0; i < anfdmax; ++i)
3757 for (wl = anfds [i].head; wl; )
3758 {
3759 wn = wl->next;
3760
3761#if EV_EMBED_ENABLE
3762 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3763 {
3764 if (types & EV_EMBED)
3765 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3766 }
3767 else
3768#endif
3769#if EV_USE_INOTIFY
3770 if (ev_cb ((ev_io *)wl) == infy_cb)
3771 ;
3772 else
3773#endif
3774 if ((ev_io *)wl != &pipe_w)
3775 if (types & EV_IO)
3776 cb (EV_A_ EV_IO, wl);
3777
3778 wl = wn;
3779 }
3780
3781 if (types & (EV_TIMER | EV_STAT))
3782 for (i = timercnt + HEAP0; i-- > HEAP0; )
3783#if EV_STAT_ENABLE
3784 /*TODO: timer is not always active*/
3785 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3786 {
3787 if (types & EV_STAT)
3788 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3789 }
3790 else
3791#endif
3792 if (types & EV_TIMER)
3793 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3794
3795#if EV_PERIODIC_ENABLE
3796 if (types & EV_PERIODIC)
3797 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3798 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3799#endif
3800
3801#if EV_IDLE_ENABLE
3802 if (types & EV_IDLE)
3803 for (j = NUMPRI; i--; )
3804 for (i = idlecnt [j]; i--; )
3805 cb (EV_A_ EV_IDLE, idles [j][i]);
3806#endif
3807
3808#if EV_FORK_ENABLE
3809 if (types & EV_FORK)
3810 for (i = forkcnt; i--; )
3811 if (ev_cb (forks [i]) != embed_fork_cb)
3812 cb (EV_A_ EV_FORK, forks [i]);
3813#endif
3814
3815#if EV_ASYNC_ENABLE
3816 if (types & EV_ASYNC)
3817 for (i = asynccnt; i--; )
3818 cb (EV_A_ EV_ASYNC, asyncs [i]);
3819#endif
3820
3821#if EV_PREPARE_ENABLE
3822 if (types & EV_PREPARE)
3823 for (i = preparecnt; i--; )
3824# if EV_EMBED_ENABLE
3825 if (ev_cb (prepares [i]) != embed_prepare_cb)
1898#endif 3826# endif
3827 cb (EV_A_ EV_PREPARE, prepares [i]);
3828#endif
1899 3829
3830#if EV_CHECK_ENABLE
3831 if (types & EV_CHECK)
3832 for (i = checkcnt; i--; )
3833 cb (EV_A_ EV_CHECK, checks [i]);
3834#endif
3835
3836#if EV_SIGNAL_ENABLE
3837 if (types & EV_SIGNAL)
3838 for (i = 0; i < EV_NSIG - 1; ++i)
3839 for (wl = signals [i].head; wl; )
3840 {
3841 wn = wl->next;
3842 cb (EV_A_ EV_SIGNAL, wl);
3843 wl = wn;
3844 }
3845#endif
3846
3847#if EV_CHILD_ENABLE
3848 if (types & EV_CHILD)
3849 for (i = (EV_PID_HASHSIZE); i--; )
3850 for (wl = childs [i]; wl; )
3851 {
3852 wn = wl->next;
3853 cb (EV_A_ EV_CHILD, wl);
3854 wl = wn;
3855 }
3856#endif
3857/* EV_STAT 0x00001000 /* stat data changed */
3858/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3859}
3860#endif
3861
3862#if EV_MULTIPLICITY
3863 #include "ev_wrap.h"
3864#endif
3865
3866EV_CPP(})
3867

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines