ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.133 by root, Fri Nov 23 11:32:22 2007 UTC vs.
Revision 1.147 by root, Tue Nov 27 10:59:11 2007 UTC

111#include <time.h> 111#include <time.h>
112 112
113#include <signal.h> 113#include <signal.h>
114 114
115#ifndef _WIN32 115#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 116# include <sys/time.h>
118# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
119#else 119#else
120# define WIN32_LEAN_AND_MEAN 120# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 123# define EV_SELECT_IS_WINSOCKET 1
187# include "ev.h" 187# include "ev.h"
188#endif 188#endif
189 189
190#if __GNUC__ >= 3 190#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
192# define inline static inline 198# define inline_speed static inline
199# endif
193#else 200#else
194# define expect(expr,value) (expr) 201# define expect(expr,value) (expr)
202# define inline_speed static
195# define inline static 203# define inline_size static
204# define noinline
196#endif 205#endif
197 206
198#define expect_false(expr) expect ((expr) != 0, 0) 207#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 208#define expect_true(expr) expect ((expr) != 0, 1)
200 209
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 211#define ABSPRI(w) ((w)->priority - EV_MINPRI)
203 212
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 214#define EMPTY2(a,b) /* used to suppress some warnings */
206 215
207typedef struct ev_watcher *W; 216typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 217typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 218typedef ev_watcher_time *WT;
210 219
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
212 221
213#ifdef _WIN32 222#ifdef _WIN32
214# include "ev_win32.c" 223# include "ev_win32.c"
216 225
217/*****************************************************************************/ 226/*****************************************************************************/
218 227
219static void (*syserr_cb)(const char *msg); 228static void (*syserr_cb)(const char *msg);
220 229
230void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 231ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 232{
223 syserr_cb = cb; 233 syserr_cb = cb;
224} 234}
225 235
226static void 236static void noinline
227syserr (const char *msg) 237syserr (const char *msg)
228{ 238{
229 if (!msg) 239 if (!msg)
230 msg = "(libev) system error"; 240 msg = "(libev) system error";
231 241
238 } 248 }
239} 249}
240 250
241static void *(*alloc)(void *ptr, long size); 251static void *(*alloc)(void *ptr, long size);
242 252
253void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 254ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 255{
245 alloc = cb; 256 alloc = cb;
246} 257}
247 258
248static void * 259static void *
320 gettimeofday (&tv, 0); 331 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 332 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 333#endif
323} 334}
324 335
325inline ev_tstamp 336ev_tstamp inline_size
326get_clock (void) 337get_clock (void)
327{ 338{
328#if EV_USE_MONOTONIC 339#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 340 if (expect_true (have_monotonic))
330 { 341 {
373#define array_free(stem, idx) \ 384#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 386
376/*****************************************************************************/ 387/*****************************************************************************/
377 388
378static void 389void noinline
379anfds_init (ANFD *base, int count)
380{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389}
390
391void
392ev_feed_event (EV_P_ void *w, int revents) 390ev_feed_event (EV_P_ void *w, int revents)
393{ 391{
394 W w_ = (W)w; 392 W w_ = (W)w;
395 393
396 if (expect_false (w_->pending)) 394 if (expect_false (w_->pending))
403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2); 401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
406} 404}
407 405
408static void 406void inline_size
409queue_events (EV_P_ W *events, int eventcnt, int type) 407queue_events (EV_P_ W *events, int eventcnt, int type)
410{ 408{
411 int i; 409 int i;
412 410
413 for (i = 0; i < eventcnt; ++i) 411 for (i = 0; i < eventcnt; ++i)
414 ev_feed_event (EV_A_ events [i], type); 412 ev_feed_event (EV_A_ events [i], type);
415} 413}
416 414
417inline void 415/*****************************************************************************/
416
417void inline_size
418anfds_init (ANFD *base, int count)
419{
420 while (count--)
421 {
422 base->head = 0;
423 base->events = EV_NONE;
424 base->reify = 0;
425
426 ++base;
427 }
428}
429
430void inline_speed
418fd_event (EV_P_ int fd, int revents) 431fd_event (EV_P_ int fd, int revents)
419{ 432{
420 ANFD *anfd = anfds + fd; 433 ANFD *anfd = anfds + fd;
421 struct ev_io *w; 434 ev_io *w;
422 435
423 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 436 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
424 { 437 {
425 int ev = w->events & revents; 438 int ev = w->events & revents;
426 439
427 if (ev) 440 if (ev)
428 ev_feed_event (EV_A_ (W)w, ev); 441 ev_feed_event (EV_A_ (W)w, ev);
433ev_feed_fd_event (EV_P_ int fd, int revents) 446ev_feed_fd_event (EV_P_ int fd, int revents)
434{ 447{
435 fd_event (EV_A_ fd, revents); 448 fd_event (EV_A_ fd, revents);
436} 449}
437 450
438/*****************************************************************************/ 451void inline_size
439
440inline void
441fd_reify (EV_P) 452fd_reify (EV_P)
442{ 453{
443 int i; 454 int i;
444 455
445 for (i = 0; i < fdchangecnt; ++i) 456 for (i = 0; i < fdchangecnt; ++i)
446 { 457 {
447 int fd = fdchanges [i]; 458 int fd = fdchanges [i];
448 ANFD *anfd = anfds + fd; 459 ANFD *anfd = anfds + fd;
449 struct ev_io *w; 460 ev_io *w;
450 461
451 int events = 0; 462 int events = 0;
452 463
453 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
454 events |= w->events; 465 events |= w->events;
455 466
456#if EV_SELECT_IS_WINSOCKET 467#if EV_SELECT_IS_WINSOCKET
457 if (events) 468 if (events)
458 { 469 {
469 } 480 }
470 481
471 fdchangecnt = 0; 482 fdchangecnt = 0;
472} 483}
473 484
474static void 485void inline_size
475fd_change (EV_P_ int fd) 486fd_change (EV_P_ int fd)
476{ 487{
477 if (expect_false (anfds [fd].reify)) 488 if (expect_false (anfds [fd].reify))
478 return; 489 return;
479 490
482 ++fdchangecnt; 493 ++fdchangecnt;
483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
484 fdchanges [fdchangecnt - 1] = fd; 495 fdchanges [fdchangecnt - 1] = fd;
485} 496}
486 497
487static void 498void inline_speed
488fd_kill (EV_P_ int fd) 499fd_kill (EV_P_ int fd)
489{ 500{
490 struct ev_io *w; 501 ev_io *w;
491 502
492 while ((w = (struct ev_io *)anfds [fd].head)) 503 while ((w = (ev_io *)anfds [fd].head))
493 { 504 {
494 ev_io_stop (EV_A_ w); 505 ev_io_stop (EV_A_ w);
495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 506 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
496 } 507 }
497} 508}
498 509
499inline int 510int inline_size
500fd_valid (int fd) 511fd_valid (int fd)
501{ 512{
502#ifdef _WIN32 513#ifdef _WIN32
503 return _get_osfhandle (fd) != -1; 514 return _get_osfhandle (fd) != -1;
504#else 515#else
505 return fcntl (fd, F_GETFD) != -1; 516 return fcntl (fd, F_GETFD) != -1;
506#endif 517#endif
507} 518}
508 519
509/* called on EBADF to verify fds */ 520/* called on EBADF to verify fds */
510static void 521static void noinline
511fd_ebadf (EV_P) 522fd_ebadf (EV_P)
512{ 523{
513 int fd; 524 int fd;
514 525
515 for (fd = 0; fd < anfdmax; ++fd) 526 for (fd = 0; fd < anfdmax; ++fd)
517 if (!fd_valid (fd) == -1 && errno == EBADF) 528 if (!fd_valid (fd) == -1 && errno == EBADF)
518 fd_kill (EV_A_ fd); 529 fd_kill (EV_A_ fd);
519} 530}
520 531
521/* called on ENOMEM in select/poll to kill some fds and retry */ 532/* called on ENOMEM in select/poll to kill some fds and retry */
522static void 533static void noinline
523fd_enomem (EV_P) 534fd_enomem (EV_P)
524{ 535{
525 int fd; 536 int fd;
526 537
527 for (fd = anfdmax; fd--; ) 538 for (fd = anfdmax; fd--; )
531 return; 542 return;
532 } 543 }
533} 544}
534 545
535/* usually called after fork if backend needs to re-arm all fds from scratch */ 546/* usually called after fork if backend needs to re-arm all fds from scratch */
536static void 547static void noinline
537fd_rearm_all (EV_P) 548fd_rearm_all (EV_P)
538{ 549{
539 int fd; 550 int fd;
540 551
541 /* this should be highly optimised to not do anything but set a flag */ 552 /* this should be highly optimised to not do anything but set a flag */
547 } 558 }
548} 559}
549 560
550/*****************************************************************************/ 561/*****************************************************************************/
551 562
552static void 563void inline_speed
553upheap (WT *heap, int k) 564upheap (WT *heap, int k)
554{ 565{
555 WT w = heap [k]; 566 WT w = heap [k];
556 567
557 while (k && heap [k >> 1]->at > w->at) 568 while (k && heap [k >> 1]->at > w->at)
564 heap [k] = w; 575 heap [k] = w;
565 ((W)heap [k])->active = k + 1; 576 ((W)heap [k])->active = k + 1;
566 577
567} 578}
568 579
569static void 580void inline_speed
570downheap (WT *heap, int N, int k) 581downheap (WT *heap, int N, int k)
571{ 582{
572 WT w = heap [k]; 583 WT w = heap [k];
573 584
574 while (k < (N >> 1)) 585 while (k < (N >> 1))
588 599
589 heap [k] = w; 600 heap [k] = w;
590 ((W)heap [k])->active = k + 1; 601 ((W)heap [k])->active = k + 1;
591} 602}
592 603
593inline void 604void inline_size
594adjustheap (WT *heap, int N, int k) 605adjustheap (WT *heap, int N, int k)
595{ 606{
596 upheap (heap, k); 607 upheap (heap, k);
597 downheap (heap, N, k); 608 downheap (heap, N, k);
598} 609}
608static ANSIG *signals; 619static ANSIG *signals;
609static int signalmax; 620static int signalmax;
610 621
611static int sigpipe [2]; 622static int sigpipe [2];
612static sig_atomic_t volatile gotsig; 623static sig_atomic_t volatile gotsig;
613static struct ev_io sigev; 624static ev_io sigev;
614 625
615static void 626void inline_size
616signals_init (ANSIG *base, int count) 627signals_init (ANSIG *base, int count)
617{ 628{
618 while (count--) 629 while (count--)
619 { 630 {
620 base->head = 0; 631 base->head = 0;
640 write (sigpipe [1], &signum, 1); 651 write (sigpipe [1], &signum, 1);
641 errno = old_errno; 652 errno = old_errno;
642 } 653 }
643} 654}
644 655
645void 656void noinline
646ev_feed_signal_event (EV_P_ int signum) 657ev_feed_signal_event (EV_P_ int signum)
647{ 658{
648 WL w; 659 WL w;
649 660
650#if EV_MULTIPLICITY 661#if EV_MULTIPLICITY
661 for (w = signals [signum].head; w; w = w->next) 672 for (w = signals [signum].head; w; w = w->next)
662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
663} 674}
664 675
665static void 676static void
666sigcb (EV_P_ struct ev_io *iow, int revents) 677sigcb (EV_P_ ev_io *iow, int revents)
667{ 678{
668 int signum; 679 int signum;
669 680
670 read (sigpipe [0], &revents, 1); 681 read (sigpipe [0], &revents, 1);
671 gotsig = 0; 682 gotsig = 0;
673 for (signum = signalmax; signum--; ) 684 for (signum = signalmax; signum--; )
674 if (signals [signum].gotsig) 685 if (signals [signum].gotsig)
675 ev_feed_signal_event (EV_A_ signum + 1); 686 ev_feed_signal_event (EV_A_ signum + 1);
676} 687}
677 688
678static void 689void inline_size
679fd_intern (int fd) 690fd_intern (int fd)
680{ 691{
681#ifdef _WIN32 692#ifdef _WIN32
682 int arg = 1; 693 int arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
685 fcntl (fd, F_SETFD, FD_CLOEXEC); 696 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK); 697 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif 698#endif
688} 699}
689 700
690static void 701static void noinline
691siginit (EV_P) 702siginit (EV_P)
692{ 703{
693 fd_intern (sigpipe [0]); 704 fd_intern (sigpipe [0]);
694 fd_intern (sigpipe [1]); 705 fd_intern (sigpipe [1]);
695 706
698 ev_unref (EV_A); /* child watcher should not keep loop alive */ 709 ev_unref (EV_A); /* child watcher should not keep loop alive */
699} 710}
700 711
701/*****************************************************************************/ 712/*****************************************************************************/
702 713
703static struct ev_child *childs [PID_HASHSIZE]; 714static ev_child *childs [PID_HASHSIZE];
704 715
705#ifndef _WIN32 716#ifndef _WIN32
706 717
707static struct ev_signal childev; 718static ev_signal childev;
708 719
709#ifndef WCONTINUED 720void inline_speed
710# define WCONTINUED 0
711#endif
712
713static void
714child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
715{ 722{
716 struct ev_child *w; 723 ev_child *w;
717 724
718 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
719 if (w->pid == pid || !w->pid) 726 if (w->pid == pid || !w->pid)
720 { 727 {
721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
722 w->rpid = pid; 729 w->rpid = pid;
723 w->rstatus = status; 730 w->rstatus = status;
724 ev_feed_event (EV_A_ (W)w, EV_CHILD); 731 ev_feed_event (EV_A_ (W)w, EV_CHILD);
725 } 732 }
726} 733}
727 734
735#ifndef WCONTINUED
736# define WCONTINUED 0
737#endif
738
728static void 739static void
729childcb (EV_P_ struct ev_signal *sw, int revents) 740childcb (EV_P_ ev_signal *sw, int revents)
730{ 741{
731 int pid, status; 742 int pid, status;
732 743
744 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 745 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
734 { 746 if (!WCONTINUED
747 || errno != EINVAL
748 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
749 return;
750
735 /* make sure we are called again until all childs have been reaped */ 751 /* make sure we are called again until all childs have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */ 752 /* we need to do it this way so that the callback gets called before we continue */
737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
738 754
739 child_reap (EV_A_ sw, pid, pid, status); 755 child_reap (EV_A_ sw, pid, pid, status);
740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
741 }
742} 757}
743 758
744#endif 759#endif
745 760
746/*****************************************************************************/ 761/*****************************************************************************/
772{ 787{
773 return EV_VERSION_MINOR; 788 return EV_VERSION_MINOR;
774} 789}
775 790
776/* return true if we are running with elevated privileges and should ignore env variables */ 791/* return true if we are running with elevated privileges and should ignore env variables */
777static int 792int inline_size
778enable_secure (void) 793enable_secure (void)
779{ 794{
780#ifdef _WIN32 795#ifdef _WIN32
781 return 0; 796 return 0;
782#else 797#else
816 831
817 return flags; 832 return flags;
818} 833}
819 834
820unsigned int 835unsigned int
836ev_embeddable_backends (void)
837{
838 return EVBACKEND_EPOLL
839 | EVBACKEND_KQUEUE
840 | EVBACKEND_PORT;
841}
842
843unsigned int
821ev_backend (EV_P) 844ev_backend (EV_P)
822{ 845{
823 return backend; 846 return backend;
824} 847}
825 848
896 array_free (pending, [i]); 919 array_free (pending, [i]);
897 920
898 /* have to use the microsoft-never-gets-it-right macro */ 921 /* have to use the microsoft-never-gets-it-right macro */
899 array_free (fdchange, EMPTY0); 922 array_free (fdchange, EMPTY0);
900 array_free (timer, EMPTY0); 923 array_free (timer, EMPTY0);
901#if EV_PERIODICS 924#if EV_PERIODIC_ENABLE
902 array_free (periodic, EMPTY0); 925 array_free (periodic, EMPTY0);
903#endif 926#endif
904 array_free (idle, EMPTY0); 927 array_free (idle, EMPTY0);
905 array_free (prepare, EMPTY0); 928 array_free (prepare, EMPTY0);
906 array_free (check, EMPTY0); 929 array_free (check, EMPTY0);
1042 postfork = 1; 1065 postfork = 1;
1043} 1066}
1044 1067
1045/*****************************************************************************/ 1068/*****************************************************************************/
1046 1069
1047static int 1070int inline_size
1048any_pending (EV_P) 1071any_pending (EV_P)
1049{ 1072{
1050 int pri; 1073 int pri;
1051 1074
1052 for (pri = NUMPRI; pri--; ) 1075 for (pri = NUMPRI; pri--; )
1054 return 1; 1077 return 1;
1055 1078
1056 return 0; 1079 return 0;
1057} 1080}
1058 1081
1059inline void 1082void inline_speed
1060call_pending (EV_P) 1083call_pending (EV_P)
1061{ 1084{
1062 int pri; 1085 int pri;
1063 1086
1064 for (pri = NUMPRI; pri--; ) 1087 for (pri = NUMPRI; pri--; )
1066 { 1089 {
1067 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1068 1091
1069 if (expect_true (p->w)) 1092 if (expect_true (p->w))
1070 { 1093 {
1094 assert (("non-pending watcher on pending list", p->w->pending));
1095
1071 p->w->pending = 0; 1096 p->w->pending = 0;
1072 EV_CB_INVOKE (p->w, p->events); 1097 EV_CB_INVOKE (p->w, p->events);
1073 } 1098 }
1074 } 1099 }
1075} 1100}
1076 1101
1077inline void 1102void inline_size
1078timers_reify (EV_P) 1103timers_reify (EV_P)
1079{ 1104{
1080 while (timercnt && ((WT)timers [0])->at <= mn_now) 1105 while (timercnt && ((WT)timers [0])->at <= mn_now)
1081 { 1106 {
1082 struct ev_timer *w = timers [0]; 1107 ev_timer *w = timers [0];
1083 1108
1084 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1109 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1085 1110
1086 /* first reschedule or stop timer */ 1111 /* first reschedule or stop timer */
1087 if (w->repeat) 1112 if (w->repeat)
1099 1124
1100 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1125 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1101 } 1126 }
1102} 1127}
1103 1128
1104#if EV_PERIODICS 1129#if EV_PERIODIC_ENABLE
1105inline void 1130void inline_size
1106periodics_reify (EV_P) 1131periodics_reify (EV_P)
1107{ 1132{
1108 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1109 { 1134 {
1110 struct ev_periodic *w = periodics [0]; 1135 ev_periodic *w = periodics [0];
1111 1136
1112 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1137 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1113 1138
1114 /* first reschedule or stop timer */ 1139 /* first reschedule or stop timer */
1115 if (w->reschedule_cb) 1140 if (w->reschedule_cb)
1129 1154
1130 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1155 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1131 } 1156 }
1132} 1157}
1133 1158
1134static void 1159static void noinline
1135periodics_reschedule (EV_P) 1160periodics_reschedule (EV_P)
1136{ 1161{
1137 int i; 1162 int i;
1138 1163
1139 /* adjust periodics after time jump */ 1164 /* adjust periodics after time jump */
1140 for (i = 0; i < periodiccnt; ++i) 1165 for (i = 0; i < periodiccnt; ++i)
1141 { 1166 {
1142 struct ev_periodic *w = periodics [i]; 1167 ev_periodic *w = periodics [i];
1143 1168
1144 if (w->reschedule_cb) 1169 if (w->reschedule_cb)
1145 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1146 else if (w->interval) 1171 else if (w->interval)
1147 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1151 for (i = periodiccnt >> 1; i--; ) 1176 for (i = periodiccnt >> 1; i--; )
1152 downheap ((WT *)periodics, periodiccnt, i); 1177 downheap ((WT *)periodics, periodiccnt, i);
1153} 1178}
1154#endif 1179#endif
1155 1180
1156inline int 1181int inline_size
1157time_update_monotonic (EV_P) 1182time_update_monotonic (EV_P)
1158{ 1183{
1159 mn_now = get_clock (); 1184 mn_now = get_clock ();
1160 1185
1161 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1169 ev_rt_now = ev_time (); 1194 ev_rt_now = ev_time ();
1170 return 1; 1195 return 1;
1171 } 1196 }
1172} 1197}
1173 1198
1174inline void 1199void inline_size
1175time_update (EV_P) 1200time_update (EV_P)
1176{ 1201{
1177 int i; 1202 int i;
1178 1203
1179#if EV_USE_MONOTONIC 1204#if EV_USE_MONOTONIC
1181 { 1206 {
1182 if (time_update_monotonic (EV_A)) 1207 if (time_update_monotonic (EV_A))
1183 { 1208 {
1184 ev_tstamp odiff = rtmn_diff; 1209 ev_tstamp odiff = rtmn_diff;
1185 1210
1186 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
1187 { 1220 {
1188 rtmn_diff = ev_rt_now - mn_now; 1221 rtmn_diff = ev_rt_now - mn_now;
1189 1222
1190 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1191 return; /* all is well */ 1224 return; /* all is well */
1193 ev_rt_now = ev_time (); 1226 ev_rt_now = ev_time ();
1194 mn_now = get_clock (); 1227 mn_now = get_clock ();
1195 now_floor = mn_now; 1228 now_floor = mn_now;
1196 } 1229 }
1197 1230
1198# if EV_PERIODICS 1231# if EV_PERIODIC_ENABLE
1199 periodics_reschedule (EV_A); 1232 periodics_reschedule (EV_A);
1200# endif 1233# endif
1201 /* no timer adjustment, as the monotonic clock doesn't jump */ 1234 /* no timer adjustment, as the monotonic clock doesn't jump */
1202 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1203 } 1236 }
1207 { 1240 {
1208 ev_rt_now = ev_time (); 1241 ev_rt_now = ev_time ();
1209 1242
1210 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1211 { 1244 {
1212#if EV_PERIODICS 1245#if EV_PERIODIC_ENABLE
1213 periodics_reschedule (EV_A); 1246 periodics_reschedule (EV_A);
1214#endif 1247#endif
1215 1248
1216 /* adjust timers. this is easy, as the offset is the same for all */ 1249 /* adjust timers. this is easy, as the offset is the same for all */
1217 for (i = 0; i < timercnt; ++i) 1250 for (i = 0; i < timercnt; ++i)
1237static int loop_done; 1270static int loop_done;
1238 1271
1239void 1272void
1240ev_loop (EV_P_ int flags) 1273ev_loop (EV_P_ int flags)
1241{ 1274{
1242 double block;
1243 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1275 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1276 ? EVUNLOOP_ONE
1277 : EVUNLOOP_CANCEL;
1244 1278
1245 while (activecnt) 1279 while (activecnt)
1246 { 1280 {
1281 /* we might have forked, so reify kernel state if necessary */
1282 if (expect_false (postfork))
1283 if (forkcnt)
1284 {
1285 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1286 call_pending (EV_A);
1287 }
1288
1247 /* queue check watchers (and execute them) */ 1289 /* queue check watchers (and execute them) */
1248 if (expect_false (preparecnt)) 1290 if (expect_false (preparecnt))
1249 { 1291 {
1250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1292 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1251 call_pending (EV_A); 1293 call_pending (EV_A);
1257 1299
1258 /* update fd-related kernel structures */ 1300 /* update fd-related kernel structures */
1259 fd_reify (EV_A); 1301 fd_reify (EV_A);
1260 1302
1261 /* calculate blocking time */ 1303 /* calculate blocking time */
1304 {
1305 double block;
1262 1306
1263 /* we only need this for !monotonic clock or timers, but as we basically 1307 if (flags & EVLOOP_NONBLOCK || idlecnt)
1264 always have timers, we just calculate it always */ 1308 block = 0.; /* do not block at all */
1309 else
1310 {
1311 /* update time to cancel out callback processing overhead */
1265#if EV_USE_MONOTONIC 1312#if EV_USE_MONOTONIC
1266 if (expect_true (have_monotonic)) 1313 if (expect_true (have_monotonic))
1267 time_update_monotonic (EV_A); 1314 time_update_monotonic (EV_A);
1268 else 1315 else
1269#endif 1316#endif
1270 { 1317 {
1271 ev_rt_now = ev_time (); 1318 ev_rt_now = ev_time ();
1272 mn_now = ev_rt_now; 1319 mn_now = ev_rt_now;
1273 } 1320 }
1274 1321
1275 if (flags & EVLOOP_NONBLOCK || idlecnt)
1276 block = 0.;
1277 else
1278 {
1279 block = MAX_BLOCKTIME; 1322 block = MAX_BLOCKTIME;
1280 1323
1281 if (timercnt) 1324 if (timercnt)
1282 { 1325 {
1283 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1326 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1284 if (block > to) block = to; 1327 if (block > to) block = to;
1285 } 1328 }
1286 1329
1287#if EV_PERIODICS 1330#if EV_PERIODIC_ENABLE
1288 if (periodiccnt) 1331 if (periodiccnt)
1289 { 1332 {
1290 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1333 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1291 if (block > to) block = to; 1334 if (block > to) block = to;
1292 } 1335 }
1293#endif 1336#endif
1294 1337
1295 if (expect_false (block < 0.)) block = 0.; 1338 if (expect_false (block < 0.)) block = 0.;
1296 } 1339 }
1297 1340
1298 backend_poll (EV_A_ block); 1341 backend_poll (EV_A_ block);
1342 }
1299 1343
1300 /* update ev_rt_now, do magic */ 1344 /* update ev_rt_now, do magic */
1301 time_update (EV_A); 1345 time_update (EV_A);
1302 1346
1303 /* queue pending timers and reschedule them */ 1347 /* queue pending timers and reschedule them */
1304 timers_reify (EV_A); /* relative timers called last */ 1348 timers_reify (EV_A); /* relative timers called last */
1305#if EV_PERIODICS 1349#if EV_PERIODIC_ENABLE
1306 periodics_reify (EV_A); /* absolute timers called first */ 1350 periodics_reify (EV_A); /* absolute timers called first */
1307#endif 1351#endif
1308 1352
1309 /* queue idle watchers unless io or timers are pending */ 1353 /* queue idle watchers unless other events are pending */
1310 if (idlecnt && !any_pending (EV_A)) 1354 if (idlecnt && !any_pending (EV_A))
1311 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1355 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1312 1356
1313 /* queue check watchers, to be executed first */ 1357 /* queue check watchers, to be executed first */
1314 if (expect_false (checkcnt)) 1358 if (expect_false (checkcnt))
1318 1362
1319 if (expect_false (loop_done)) 1363 if (expect_false (loop_done))
1320 break; 1364 break;
1321 } 1365 }
1322 1366
1323 if (loop_done != 2) 1367 if (loop_done == EVUNLOOP_ONE)
1324 loop_done = 0; 1368 loop_done = EVUNLOOP_CANCEL;
1325} 1369}
1326 1370
1327void 1371void
1328ev_unloop (EV_P_ int how) 1372ev_unloop (EV_P_ int how)
1329{ 1373{
1330 loop_done = how; 1374 loop_done = how;
1331} 1375}
1332 1376
1333/*****************************************************************************/ 1377/*****************************************************************************/
1334 1378
1335inline void 1379void inline_size
1336wlist_add (WL *head, WL elem) 1380wlist_add (WL *head, WL elem)
1337{ 1381{
1338 elem->next = *head; 1382 elem->next = *head;
1339 *head = elem; 1383 *head = elem;
1340} 1384}
1341 1385
1342inline void 1386void inline_size
1343wlist_del (WL *head, WL elem) 1387wlist_del (WL *head, WL elem)
1344{ 1388{
1345 while (*head) 1389 while (*head)
1346 { 1390 {
1347 if (*head == elem) 1391 if (*head == elem)
1352 1396
1353 head = &(*head)->next; 1397 head = &(*head)->next;
1354 } 1398 }
1355} 1399}
1356 1400
1357inline void 1401void inline_speed
1358ev_clear_pending (EV_P_ W w) 1402ev_clear_pending (EV_P_ W w)
1359{ 1403{
1360 if (w->pending) 1404 if (w->pending)
1361 { 1405 {
1362 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1406 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1363 w->pending = 0; 1407 w->pending = 0;
1364 } 1408 }
1365} 1409}
1366 1410
1367inline void 1411void inline_speed
1368ev_start (EV_P_ W w, int active) 1412ev_start (EV_P_ W w, int active)
1369{ 1413{
1370 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1414 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1371 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1415 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1372 1416
1373 w->active = active; 1417 w->active = active;
1374 ev_ref (EV_A); 1418 ev_ref (EV_A);
1375} 1419}
1376 1420
1377inline void 1421void inline_size
1378ev_stop (EV_P_ W w) 1422ev_stop (EV_P_ W w)
1379{ 1423{
1380 ev_unref (EV_A); 1424 ev_unref (EV_A);
1381 w->active = 0; 1425 w->active = 0;
1382} 1426}
1383 1427
1384/*****************************************************************************/ 1428/*****************************************************************************/
1385 1429
1386void 1430void
1387ev_io_start (EV_P_ struct ev_io *w) 1431ev_io_start (EV_P_ ev_io *w)
1388{ 1432{
1389 int fd = w->fd; 1433 int fd = w->fd;
1390 1434
1391 if (expect_false (ev_is_active (w))) 1435 if (expect_false (ev_is_active (w)))
1392 return; 1436 return;
1399 1443
1400 fd_change (EV_A_ fd); 1444 fd_change (EV_A_ fd);
1401} 1445}
1402 1446
1403void 1447void
1404ev_io_stop (EV_P_ struct ev_io *w) 1448ev_io_stop (EV_P_ ev_io *w)
1405{ 1449{
1406 ev_clear_pending (EV_A_ (W)w); 1450 ev_clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 1451 if (expect_false (!ev_is_active (w)))
1408 return; 1452 return;
1409 1453
1414 1458
1415 fd_change (EV_A_ w->fd); 1459 fd_change (EV_A_ w->fd);
1416} 1460}
1417 1461
1418void 1462void
1419ev_timer_start (EV_P_ struct ev_timer *w) 1463ev_timer_start (EV_P_ ev_timer *w)
1420{ 1464{
1421 if (expect_false (ev_is_active (w))) 1465 if (expect_false (ev_is_active (w)))
1422 return; 1466 return;
1423 1467
1424 ((WT)w)->at += mn_now; 1468 ((WT)w)->at += mn_now;
1425 1469
1426 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1470 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1427 1471
1428 ev_start (EV_A_ (W)w, ++timercnt); 1472 ev_start (EV_A_ (W)w, ++timercnt);
1429 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1473 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1430 timers [timercnt - 1] = w; 1474 timers [timercnt - 1] = w;
1431 upheap ((WT *)timers, timercnt - 1); 1475 upheap ((WT *)timers, timercnt - 1);
1432 1476
1433 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1477 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1434} 1478}
1435 1479
1436void 1480void
1437ev_timer_stop (EV_P_ struct ev_timer *w) 1481ev_timer_stop (EV_P_ ev_timer *w)
1438{ 1482{
1439 ev_clear_pending (EV_A_ (W)w); 1483 ev_clear_pending (EV_A_ (W)w);
1440 if (expect_false (!ev_is_active (w))) 1484 if (expect_false (!ev_is_active (w)))
1441 return; 1485 return;
1442 1486
1452 1496
1453 ev_stop (EV_A_ (W)w); 1497 ev_stop (EV_A_ (W)w);
1454} 1498}
1455 1499
1456void 1500void
1457ev_timer_again (EV_P_ struct ev_timer *w) 1501ev_timer_again (EV_P_ ev_timer *w)
1458{ 1502{
1459 if (ev_is_active (w)) 1503 if (ev_is_active (w))
1460 { 1504 {
1461 if (w->repeat) 1505 if (w->repeat)
1462 { 1506 {
1471 w->at = w->repeat; 1515 w->at = w->repeat;
1472 ev_timer_start (EV_A_ w); 1516 ev_timer_start (EV_A_ w);
1473 } 1517 }
1474} 1518}
1475 1519
1476#if EV_PERIODICS 1520#if EV_PERIODIC_ENABLE
1477void 1521void
1478ev_periodic_start (EV_P_ struct ev_periodic *w) 1522ev_periodic_start (EV_P_ ev_periodic *w)
1479{ 1523{
1480 if (expect_false (ev_is_active (w))) 1524 if (expect_false (ev_is_active (w)))
1481 return; 1525 return;
1482 1526
1483 if (w->reschedule_cb) 1527 if (w->reschedule_cb)
1488 /* this formula differs from the one in periodic_reify because we do not always round up */ 1532 /* this formula differs from the one in periodic_reify because we do not always round up */
1489 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1533 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1490 } 1534 }
1491 1535
1492 ev_start (EV_A_ (W)w, ++periodiccnt); 1536 ev_start (EV_A_ (W)w, ++periodiccnt);
1493 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1537 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1494 periodics [periodiccnt - 1] = w; 1538 periodics [periodiccnt - 1] = w;
1495 upheap ((WT *)periodics, periodiccnt - 1); 1539 upheap ((WT *)periodics, periodiccnt - 1);
1496 1540
1497 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1541 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1498} 1542}
1499 1543
1500void 1544void
1501ev_periodic_stop (EV_P_ struct ev_periodic *w) 1545ev_periodic_stop (EV_P_ ev_periodic *w)
1502{ 1546{
1503 ev_clear_pending (EV_A_ (W)w); 1547 ev_clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w))) 1548 if (expect_false (!ev_is_active (w)))
1505 return; 1549 return;
1506 1550
1514 1558
1515 ev_stop (EV_A_ (W)w); 1559 ev_stop (EV_A_ (W)w);
1516} 1560}
1517 1561
1518void 1562void
1519ev_periodic_again (EV_P_ struct ev_periodic *w) 1563ev_periodic_again (EV_P_ ev_periodic *w)
1520{ 1564{
1521 /* TODO: use adjustheap and recalculation */ 1565 /* TODO: use adjustheap and recalculation */
1522 ev_periodic_stop (EV_A_ w); 1566 ev_periodic_stop (EV_A_ w);
1523 ev_periodic_start (EV_A_ w); 1567 ev_periodic_start (EV_A_ w);
1524} 1568}
1525#endif 1569#endif
1526 1570
1527void
1528ev_idle_start (EV_P_ struct ev_idle *w)
1529{
1530 if (expect_false (ev_is_active (w)))
1531 return;
1532
1533 ev_start (EV_A_ (W)w, ++idlecnt);
1534 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1535 idles [idlecnt - 1] = w;
1536}
1537
1538void
1539ev_idle_stop (EV_P_ struct ev_idle *w)
1540{
1541 ev_clear_pending (EV_A_ (W)w);
1542 if (expect_false (!ev_is_active (w)))
1543 return;
1544
1545 idles [((W)w)->active - 1] = idles [--idlecnt];
1546 ev_stop (EV_A_ (W)w);
1547}
1548
1549void
1550ev_prepare_start (EV_P_ struct ev_prepare *w)
1551{
1552 if (expect_false (ev_is_active (w)))
1553 return;
1554
1555 ev_start (EV_A_ (W)w, ++preparecnt);
1556 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1557 prepares [preparecnt - 1] = w;
1558}
1559
1560void
1561ev_prepare_stop (EV_P_ struct ev_prepare *w)
1562{
1563 ev_clear_pending (EV_A_ (W)w);
1564 if (expect_false (!ev_is_active (w)))
1565 return;
1566
1567 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1568 ev_stop (EV_A_ (W)w);
1569}
1570
1571void
1572ev_check_start (EV_P_ struct ev_check *w)
1573{
1574 if (expect_false (ev_is_active (w)))
1575 return;
1576
1577 ev_start (EV_A_ (W)w, ++checkcnt);
1578 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1579 checks [checkcnt - 1] = w;
1580}
1581
1582void
1583ev_check_stop (EV_P_ struct ev_check *w)
1584{
1585 ev_clear_pending (EV_A_ (W)w);
1586 if (expect_false (!ev_is_active (w)))
1587 return;
1588
1589 checks [((W)w)->active - 1] = checks [--checkcnt];
1590 ev_stop (EV_A_ (W)w);
1591}
1592
1593#ifndef SA_RESTART 1571#ifndef SA_RESTART
1594# define SA_RESTART 0 1572# define SA_RESTART 0
1595#endif 1573#endif
1596 1574
1597void 1575void
1598ev_signal_start (EV_P_ struct ev_signal *w) 1576ev_signal_start (EV_P_ ev_signal *w)
1599{ 1577{
1600#if EV_MULTIPLICITY 1578#if EV_MULTIPLICITY
1601 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1579 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif 1580#endif
1603 if (expect_false (ev_is_active (w))) 1581 if (expect_false (ev_is_active (w)))
1622#endif 1600#endif
1623 } 1601 }
1624} 1602}
1625 1603
1626void 1604void
1627ev_signal_stop (EV_P_ struct ev_signal *w) 1605ev_signal_stop (EV_P_ ev_signal *w)
1628{ 1606{
1629 ev_clear_pending (EV_A_ (W)w); 1607 ev_clear_pending (EV_A_ (W)w);
1630 if (expect_false (!ev_is_active (w))) 1608 if (expect_false (!ev_is_active (w)))
1631 return; 1609 return;
1632 1610
1636 if (!signals [w->signum - 1].head) 1614 if (!signals [w->signum - 1].head)
1637 signal (w->signum, SIG_DFL); 1615 signal (w->signum, SIG_DFL);
1638} 1616}
1639 1617
1640void 1618void
1641ev_child_start (EV_P_ struct ev_child *w) 1619ev_child_start (EV_P_ ev_child *w)
1642{ 1620{
1643#if EV_MULTIPLICITY 1621#if EV_MULTIPLICITY
1644 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1622 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1645#endif 1623#endif
1646 if (expect_false (ev_is_active (w))) 1624 if (expect_false (ev_is_active (w)))
1649 ev_start (EV_A_ (W)w, 1); 1627 ev_start (EV_A_ (W)w, 1);
1650 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1628 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1651} 1629}
1652 1630
1653void 1631void
1654ev_child_stop (EV_P_ struct ev_child *w) 1632ev_child_stop (EV_P_ ev_child *w)
1655{ 1633{
1656 ev_clear_pending (EV_A_ (W)w); 1634 ev_clear_pending (EV_A_ (W)w);
1657 if (expect_false (!ev_is_active (w))) 1635 if (expect_false (!ev_is_active (w)))
1658 return; 1636 return;
1659 1637
1660 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1638 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1661 ev_stop (EV_A_ (W)w); 1639 ev_stop (EV_A_ (W)w);
1662} 1640}
1663 1641
1642#if EV_STAT_ENABLE
1643
1644# ifdef _WIN32
1645# undef lstat
1646# define lstat(a,b) _stati64 (a,b)
1647# endif
1648
1649#define DEF_STAT_INTERVAL 5.0074891
1650#define MIN_STAT_INTERVAL 0.1074891
1651
1652void
1653ev_stat_stat (EV_P_ ev_stat *w)
1654{
1655 if (lstat (w->path, &w->attr) < 0)
1656 w->attr.st_nlink = 0;
1657 else if (!w->attr.st_nlink)
1658 w->attr.st_nlink = 1;
1659}
1660
1661static void
1662stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1663{
1664 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1665
1666 /* we copy this here each the time so that */
1667 /* prev has the old value when the callback gets invoked */
1668 w->prev = w->attr;
1669 ev_stat_stat (EV_A_ w);
1670
1671 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1672 ev_feed_event (EV_A_ w, EV_STAT);
1673}
1674
1675void
1676ev_stat_start (EV_P_ ev_stat *w)
1677{
1678 if (expect_false (ev_is_active (w)))
1679 return;
1680
1681 /* since we use memcmp, we need to clear any padding data etc. */
1682 memset (&w->prev, 0, sizeof (ev_statdata));
1683 memset (&w->attr, 0, sizeof (ev_statdata));
1684
1685 ev_stat_stat (EV_A_ w);
1686
1687 if (w->interval < MIN_STAT_INTERVAL)
1688 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1689
1690 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1691 ev_set_priority (&w->timer, ev_priority (w));
1692 ev_timer_start (EV_A_ &w->timer);
1693
1694 ev_start (EV_A_ (W)w, 1);
1695}
1696
1697void
1698ev_stat_stop (EV_P_ ev_stat *w)
1699{
1700 ev_clear_pending (EV_A_ (W)w);
1701 if (expect_false (!ev_is_active (w)))
1702 return;
1703
1704 ev_timer_stop (EV_A_ &w->timer);
1705
1706 ev_stop (EV_A_ (W)w);
1707}
1708#endif
1709
1710void
1711ev_idle_start (EV_P_ ev_idle *w)
1712{
1713 if (expect_false (ev_is_active (w)))
1714 return;
1715
1716 ev_start (EV_A_ (W)w, ++idlecnt);
1717 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1718 idles [idlecnt - 1] = w;
1719}
1720
1721void
1722ev_idle_stop (EV_P_ ev_idle *w)
1723{
1724 ev_clear_pending (EV_A_ (W)w);
1725 if (expect_false (!ev_is_active (w)))
1726 return;
1727
1728 {
1729 int active = ((W)w)->active;
1730 idles [active - 1] = idles [--idlecnt];
1731 ((W)idles [active - 1])->active = active;
1732 }
1733
1734 ev_stop (EV_A_ (W)w);
1735}
1736
1737void
1738ev_prepare_start (EV_P_ ev_prepare *w)
1739{
1740 if (expect_false (ev_is_active (w)))
1741 return;
1742
1743 ev_start (EV_A_ (W)w, ++preparecnt);
1744 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1745 prepares [preparecnt - 1] = w;
1746}
1747
1748void
1749ev_prepare_stop (EV_P_ ev_prepare *w)
1750{
1751 ev_clear_pending (EV_A_ (W)w);
1752 if (expect_false (!ev_is_active (w)))
1753 return;
1754
1755 {
1756 int active = ((W)w)->active;
1757 prepares [active - 1] = prepares [--preparecnt];
1758 ((W)prepares [active - 1])->active = active;
1759 }
1760
1761 ev_stop (EV_A_ (W)w);
1762}
1763
1764void
1765ev_check_start (EV_P_ ev_check *w)
1766{
1767 if (expect_false (ev_is_active (w)))
1768 return;
1769
1770 ev_start (EV_A_ (W)w, ++checkcnt);
1771 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1772 checks [checkcnt - 1] = w;
1773}
1774
1775void
1776ev_check_stop (EV_P_ ev_check *w)
1777{
1778 ev_clear_pending (EV_A_ (W)w);
1779 if (expect_false (!ev_is_active (w)))
1780 return;
1781
1782 {
1783 int active = ((W)w)->active;
1784 checks [active - 1] = checks [--checkcnt];
1785 ((W)checks [active - 1])->active = active;
1786 }
1787
1788 ev_stop (EV_A_ (W)w);
1789}
1790
1791#if EV_EMBED_ENABLE
1792void noinline
1793ev_embed_sweep (EV_P_ ev_embed *w)
1794{
1795 ev_loop (w->loop, EVLOOP_NONBLOCK);
1796}
1797
1798static void
1799embed_cb (EV_P_ ev_io *io, int revents)
1800{
1801 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1802
1803 if (ev_cb (w))
1804 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1805 else
1806 ev_embed_sweep (loop, w);
1807}
1808
1809void
1810ev_embed_start (EV_P_ ev_embed *w)
1811{
1812 if (expect_false (ev_is_active (w)))
1813 return;
1814
1815 {
1816 struct ev_loop *loop = w->loop;
1817 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1818 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1819 }
1820
1821 ev_set_priority (&w->io, ev_priority (w));
1822 ev_io_start (EV_A_ &w->io);
1823
1824 ev_start (EV_A_ (W)w, 1);
1825}
1826
1827void
1828ev_embed_stop (EV_P_ ev_embed *w)
1829{
1830 ev_clear_pending (EV_A_ (W)w);
1831 if (expect_false (!ev_is_active (w)))
1832 return;
1833
1834 ev_io_stop (EV_A_ &w->io);
1835
1836 ev_stop (EV_A_ (W)w);
1837}
1838#endif
1839
1840#if EV_FORK_ENABLE
1841void
1842ev_fork_start (EV_P_ ev_fork *w)
1843{
1844 if (expect_false (ev_is_active (w)))
1845 return;
1846
1847 ev_start (EV_A_ (W)w, ++forkcnt);
1848 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
1849 forks [forkcnt - 1] = w;
1850}
1851
1852void
1853ev_fork_stop (EV_P_ ev_fork *w)
1854{
1855 ev_clear_pending (EV_A_ (W)w);
1856 if (expect_false (!ev_is_active (w)))
1857 return;
1858
1859 {
1860 int active = ((W)w)->active;
1861 forks [active - 1] = forks [--forkcnt];
1862 ((W)forks [active - 1])->active = active;
1863 }
1864
1865 ev_stop (EV_A_ (W)w);
1866}
1867#endif
1868
1664/*****************************************************************************/ 1869/*****************************************************************************/
1665 1870
1666struct ev_once 1871struct ev_once
1667{ 1872{
1668 struct ev_io io; 1873 ev_io io;
1669 struct ev_timer to; 1874 ev_timer to;
1670 void (*cb)(int revents, void *arg); 1875 void (*cb)(int revents, void *arg);
1671 void *arg; 1876 void *arg;
1672}; 1877};
1673 1878
1674static void 1879static void
1683 1888
1684 cb (revents, arg); 1889 cb (revents, arg);
1685} 1890}
1686 1891
1687static void 1892static void
1688once_cb_io (EV_P_ struct ev_io *w, int revents) 1893once_cb_io (EV_P_ ev_io *w, int revents)
1689{ 1894{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1895 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1691} 1896}
1692 1897
1693static void 1898static void
1694once_cb_to (EV_P_ struct ev_timer *w, int revents) 1899once_cb_to (EV_P_ ev_timer *w, int revents)
1695{ 1900{
1696 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1901 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1697} 1902}
1698 1903
1699void 1904void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines