ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.134 by root, Fri Nov 23 19:13:33 2007 UTC vs.
Revision 1.147 by root, Tue Nov 27 10:59:11 2007 UTC

111#include <time.h> 111#include <time.h>
112 112
113#include <signal.h> 113#include <signal.h>
114 114
115#ifndef _WIN32 115#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 116# include <sys/time.h>
118# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
119#else 119#else
120# define WIN32_LEAN_AND_MEAN 120# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 123# define EV_SELECT_IS_WINSOCKET 1
187# include "ev.h" 187# include "ev.h"
188#endif 188#endif
189 189
190#if __GNUC__ >= 3 190#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
192# define inline static inline 198# define inline_speed static inline
199# endif
193#else 200#else
194# define expect(expr,value) (expr) 201# define expect(expr,value) (expr)
202# define inline_speed static
195# define inline static 203# define inline_size static
204# define noinline
196#endif 205#endif
197 206
198#define expect_false(expr) expect ((expr) != 0, 0) 207#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 208#define expect_true(expr) expect ((expr) != 0, 1)
200 209
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 211#define ABSPRI(w) ((w)->priority - EV_MINPRI)
203 212
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 214#define EMPTY2(a,b) /* used to suppress some warnings */
206 215
207typedef struct ev_watcher *W; 216typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 217typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 218typedef ev_watcher_time *WT;
210 219
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
212 221
213#ifdef _WIN32 222#ifdef _WIN32
214# include "ev_win32.c" 223# include "ev_win32.c"
216 225
217/*****************************************************************************/ 226/*****************************************************************************/
218 227
219static void (*syserr_cb)(const char *msg); 228static void (*syserr_cb)(const char *msg);
220 229
230void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 231ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 232{
223 syserr_cb = cb; 233 syserr_cb = cb;
224} 234}
225 235
226static void 236static void noinline
227syserr (const char *msg) 237syserr (const char *msg)
228{ 238{
229 if (!msg) 239 if (!msg)
230 msg = "(libev) system error"; 240 msg = "(libev) system error";
231 241
238 } 248 }
239} 249}
240 250
241static void *(*alloc)(void *ptr, long size); 251static void *(*alloc)(void *ptr, long size);
242 252
253void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 254ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 255{
245 alloc = cb; 256 alloc = cb;
246} 257}
247 258
248static void * 259static void *
320 gettimeofday (&tv, 0); 331 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 332 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 333#endif
323} 334}
324 335
325inline ev_tstamp 336ev_tstamp inline_size
326get_clock (void) 337get_clock (void)
327{ 338{
328#if EV_USE_MONOTONIC 339#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 340 if (expect_true (have_monotonic))
330 { 341 {
373#define array_free(stem, idx) \ 384#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 386
376/*****************************************************************************/ 387/*****************************************************************************/
377 388
378static void 389void noinline
379anfds_init (ANFD *base, int count)
380{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389}
390
391void
392ev_feed_event (EV_P_ void *w, int revents) 390ev_feed_event (EV_P_ void *w, int revents)
393{ 391{
394 W w_ = (W)w; 392 W w_ = (W)w;
395 393
396 if (expect_false (w_->pending)) 394 if (expect_false (w_->pending))
397 { 395 {
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
399 return; 397 return;
400 } 398 }
401
402 if (expect_false (!w_->cb))
403 return;
404 399
405 w_->pending = ++pendingcnt [ABSPRI (w_)]; 400 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2); 401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409} 404}
410 405
411static void 406void inline_size
412queue_events (EV_P_ W *events, int eventcnt, int type) 407queue_events (EV_P_ W *events, int eventcnt, int type)
413{ 408{
414 int i; 409 int i;
415 410
416 for (i = 0; i < eventcnt; ++i) 411 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type); 412 ev_feed_event (EV_A_ events [i], type);
418} 413}
419 414
420inline void 415/*****************************************************************************/
416
417void inline_size
418anfds_init (ANFD *base, int count)
419{
420 while (count--)
421 {
422 base->head = 0;
423 base->events = EV_NONE;
424 base->reify = 0;
425
426 ++base;
427 }
428}
429
430void inline_speed
421fd_event (EV_P_ int fd, int revents) 431fd_event (EV_P_ int fd, int revents)
422{ 432{
423 ANFD *anfd = anfds + fd; 433 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 434 ev_io *w;
425 435
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 436 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 437 {
428 int ev = w->events & revents; 438 int ev = w->events & revents;
429 439
430 if (ev) 440 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 441 ev_feed_event (EV_A_ (W)w, ev);
436ev_feed_fd_event (EV_P_ int fd, int revents) 446ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 447{
438 fd_event (EV_A_ fd, revents); 448 fd_event (EV_A_ fd, revents);
439} 449}
440 450
441/*****************************************************************************/ 451void inline_size
442
443inline void
444fd_reify (EV_P) 452fd_reify (EV_P)
445{ 453{
446 int i; 454 int i;
447 455
448 for (i = 0; i < fdchangecnt; ++i) 456 for (i = 0; i < fdchangecnt; ++i)
449 { 457 {
450 int fd = fdchanges [i]; 458 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 459 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 460 ev_io *w;
453 461
454 int events = 0; 462 int events = 0;
455 463
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 465 events |= w->events;
458 466
459#if EV_SELECT_IS_WINSOCKET 467#if EV_SELECT_IS_WINSOCKET
460 if (events) 468 if (events)
461 { 469 {
472 } 480 }
473 481
474 fdchangecnt = 0; 482 fdchangecnt = 0;
475} 483}
476 484
477static void 485void inline_size
478fd_change (EV_P_ int fd) 486fd_change (EV_P_ int fd)
479{ 487{
480 if (expect_false (anfds [fd].reify)) 488 if (expect_false (anfds [fd].reify))
481 return; 489 return;
482 490
485 ++fdchangecnt; 493 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 495 fdchanges [fdchangecnt - 1] = fd;
488} 496}
489 497
490static void 498void inline_speed
491fd_kill (EV_P_ int fd) 499fd_kill (EV_P_ int fd)
492{ 500{
493 struct ev_io *w; 501 ev_io *w;
494 502
495 while ((w = (struct ev_io *)anfds [fd].head)) 503 while ((w = (ev_io *)anfds [fd].head))
496 { 504 {
497 ev_io_stop (EV_A_ w); 505 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 506 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 507 }
500} 508}
501 509
502inline int 510int inline_size
503fd_valid (int fd) 511fd_valid (int fd)
504{ 512{
505#ifdef _WIN32 513#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 514 return _get_osfhandle (fd) != -1;
507#else 515#else
508 return fcntl (fd, F_GETFD) != -1; 516 return fcntl (fd, F_GETFD) != -1;
509#endif 517#endif
510} 518}
511 519
512/* called on EBADF to verify fds */ 520/* called on EBADF to verify fds */
513static void 521static void noinline
514fd_ebadf (EV_P) 522fd_ebadf (EV_P)
515{ 523{
516 int fd; 524 int fd;
517 525
518 for (fd = 0; fd < anfdmax; ++fd) 526 for (fd = 0; fd < anfdmax; ++fd)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 528 if (!fd_valid (fd) == -1 && errno == EBADF)
521 fd_kill (EV_A_ fd); 529 fd_kill (EV_A_ fd);
522} 530}
523 531
524/* called on ENOMEM in select/poll to kill some fds and retry */ 532/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 533static void noinline
526fd_enomem (EV_P) 534fd_enomem (EV_P)
527{ 535{
528 int fd; 536 int fd;
529 537
530 for (fd = anfdmax; fd--; ) 538 for (fd = anfdmax; fd--; )
534 return; 542 return;
535 } 543 }
536} 544}
537 545
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 546/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 547static void noinline
540fd_rearm_all (EV_P) 548fd_rearm_all (EV_P)
541{ 549{
542 int fd; 550 int fd;
543 551
544 /* this should be highly optimised to not do anything but set a flag */ 552 /* this should be highly optimised to not do anything but set a flag */
550 } 558 }
551} 559}
552 560
553/*****************************************************************************/ 561/*****************************************************************************/
554 562
555static void 563void inline_speed
556upheap (WT *heap, int k) 564upheap (WT *heap, int k)
557{ 565{
558 WT w = heap [k]; 566 WT w = heap [k];
559 567
560 while (k && heap [k >> 1]->at > w->at) 568 while (k && heap [k >> 1]->at > w->at)
567 heap [k] = w; 575 heap [k] = w;
568 ((W)heap [k])->active = k + 1; 576 ((W)heap [k])->active = k + 1;
569 577
570} 578}
571 579
572static void 580void inline_speed
573downheap (WT *heap, int N, int k) 581downheap (WT *heap, int N, int k)
574{ 582{
575 WT w = heap [k]; 583 WT w = heap [k];
576 584
577 while (k < (N >> 1)) 585 while (k < (N >> 1))
591 599
592 heap [k] = w; 600 heap [k] = w;
593 ((W)heap [k])->active = k + 1; 601 ((W)heap [k])->active = k + 1;
594} 602}
595 603
596inline void 604void inline_size
597adjustheap (WT *heap, int N, int k) 605adjustheap (WT *heap, int N, int k)
598{ 606{
599 upheap (heap, k); 607 upheap (heap, k);
600 downheap (heap, N, k); 608 downheap (heap, N, k);
601} 609}
611static ANSIG *signals; 619static ANSIG *signals;
612static int signalmax; 620static int signalmax;
613 621
614static int sigpipe [2]; 622static int sigpipe [2];
615static sig_atomic_t volatile gotsig; 623static sig_atomic_t volatile gotsig;
616static struct ev_io sigev; 624static ev_io sigev;
617 625
618static void 626void inline_size
619signals_init (ANSIG *base, int count) 627signals_init (ANSIG *base, int count)
620{ 628{
621 while (count--) 629 while (count--)
622 { 630 {
623 base->head = 0; 631 base->head = 0;
643 write (sigpipe [1], &signum, 1); 651 write (sigpipe [1], &signum, 1);
644 errno = old_errno; 652 errno = old_errno;
645 } 653 }
646} 654}
647 655
648void 656void noinline
649ev_feed_signal_event (EV_P_ int signum) 657ev_feed_signal_event (EV_P_ int signum)
650{ 658{
651 WL w; 659 WL w;
652 660
653#if EV_MULTIPLICITY 661#if EV_MULTIPLICITY
664 for (w = signals [signum].head; w; w = w->next) 672 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666} 674}
667 675
668static void 676static void
669sigcb (EV_P_ struct ev_io *iow, int revents) 677sigcb (EV_P_ ev_io *iow, int revents)
670{ 678{
671 int signum; 679 int signum;
672 680
673 read (sigpipe [0], &revents, 1); 681 read (sigpipe [0], &revents, 1);
674 gotsig = 0; 682 gotsig = 0;
676 for (signum = signalmax; signum--; ) 684 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig) 685 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1); 686 ev_feed_signal_event (EV_A_ signum + 1);
679} 687}
680 688
681static void 689void inline_size
682fd_intern (int fd) 690fd_intern (int fd)
683{ 691{
684#ifdef _WIN32 692#ifdef _WIN32
685 int arg = 1; 693 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 696 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 697 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 698#endif
691} 699}
692 700
693static void 701static void noinline
694siginit (EV_P) 702siginit (EV_P)
695{ 703{
696 fd_intern (sigpipe [0]); 704 fd_intern (sigpipe [0]);
697 fd_intern (sigpipe [1]); 705 fd_intern (sigpipe [1]);
698 706
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 709 ev_unref (EV_A); /* child watcher should not keep loop alive */
702} 710}
703 711
704/*****************************************************************************/ 712/*****************************************************************************/
705 713
706static struct ev_child *childs [PID_HASHSIZE]; 714static ev_child *childs [PID_HASHSIZE];
707 715
708#ifndef _WIN32 716#ifndef _WIN32
709 717
710static struct ev_signal childev; 718static ev_signal childev;
711 719
712#ifndef WCONTINUED 720void inline_speed
713# define WCONTINUED 0
714#endif
715
716static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
718{ 722{
719 struct ev_child *w; 723 ev_child *w;
720 724
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid) 726 if (w->pid == pid || !w->pid)
723 { 727 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid; 729 w->rpid = pid;
726 w->rstatus = status; 730 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD); 731 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 } 732 }
729} 733}
730 734
735#ifndef WCONTINUED
736# define WCONTINUED 0
737#endif
738
731static void 739static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 740childcb (EV_P_ ev_signal *sw, int revents)
733{ 741{
734 int pid, status; 742 int pid, status;
735 743
744 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 745 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 746 if (!WCONTINUED
747 || errno != EINVAL
748 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
749 return;
750
738 /* make sure we are called again until all childs have been reaped */ 751 /* make sure we are called again until all childs have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 752 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 754
742 child_reap (EV_A_ sw, pid, pid, status); 755 child_reap (EV_A_ sw, pid, pid, status);
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 757}
746 758
747#endif 759#endif
748 760
749/*****************************************************************************/ 761/*****************************************************************************/
775{ 787{
776 return EV_VERSION_MINOR; 788 return EV_VERSION_MINOR;
777} 789}
778 790
779/* return true if we are running with elevated privileges and should ignore env variables */ 791/* return true if we are running with elevated privileges and should ignore env variables */
780static int 792int inline_size
781enable_secure (void) 793enable_secure (void)
782{ 794{
783#ifdef _WIN32 795#ifdef _WIN32
784 return 0; 796 return 0;
785#else 797#else
907 array_free (pending, [i]); 919 array_free (pending, [i]);
908 920
909 /* have to use the microsoft-never-gets-it-right macro */ 921 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0); 922 array_free (fdchange, EMPTY0);
911 array_free (timer, EMPTY0); 923 array_free (timer, EMPTY0);
912#if EV_PERIODICS 924#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 925 array_free (periodic, EMPTY0);
914#endif 926#endif
915 array_free (idle, EMPTY0); 927 array_free (idle, EMPTY0);
916 array_free (prepare, EMPTY0); 928 array_free (prepare, EMPTY0);
917 array_free (check, EMPTY0); 929 array_free (check, EMPTY0);
1053 postfork = 1; 1065 postfork = 1;
1054} 1066}
1055 1067
1056/*****************************************************************************/ 1068/*****************************************************************************/
1057 1069
1058static int 1070int inline_size
1059any_pending (EV_P) 1071any_pending (EV_P)
1060{ 1072{
1061 int pri; 1073 int pri;
1062 1074
1063 for (pri = NUMPRI; pri--; ) 1075 for (pri = NUMPRI; pri--; )
1065 return 1; 1077 return 1;
1066 1078
1067 return 0; 1079 return 0;
1068} 1080}
1069 1081
1070inline void 1082void inline_speed
1071call_pending (EV_P) 1083call_pending (EV_P)
1072{ 1084{
1073 int pri; 1085 int pri;
1074 1086
1075 for (pri = NUMPRI; pri--; ) 1087 for (pri = NUMPRI; pri--; )
1077 { 1089 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1091
1080 if (expect_true (p->w)) 1092 if (expect_true (p->w))
1081 { 1093 {
1094 assert (("non-pending watcher on pending list", p->w->pending));
1095
1082 p->w->pending = 0; 1096 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1097 EV_CB_INVOKE (p->w, p->events);
1084 } 1098 }
1085 } 1099 }
1086} 1100}
1087 1101
1088inline void 1102void inline_size
1089timers_reify (EV_P) 1103timers_reify (EV_P)
1090{ 1104{
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1105 while (timercnt && ((WT)timers [0])->at <= mn_now)
1092 { 1106 {
1093 struct ev_timer *w = timers [0]; 1107 ev_timer *w = timers [0];
1094 1108
1095 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1109 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1096 1110
1097 /* first reschedule or stop timer */ 1111 /* first reschedule or stop timer */
1098 if (w->repeat) 1112 if (w->repeat)
1110 1124
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1125 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1112 } 1126 }
1113} 1127}
1114 1128
1115#if EV_PERIODICS 1129#if EV_PERIODIC_ENABLE
1116inline void 1130void inline_size
1117periodics_reify (EV_P) 1131periodics_reify (EV_P)
1118{ 1132{
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1120 { 1134 {
1121 struct ev_periodic *w = periodics [0]; 1135 ev_periodic *w = periodics [0];
1122 1136
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1137 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1124 1138
1125 /* first reschedule or stop timer */ 1139 /* first reschedule or stop timer */
1126 if (w->reschedule_cb) 1140 if (w->reschedule_cb)
1140 1154
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1155 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 } 1156 }
1143} 1157}
1144 1158
1145static void 1159static void noinline
1146periodics_reschedule (EV_P) 1160periodics_reschedule (EV_P)
1147{ 1161{
1148 int i; 1162 int i;
1149 1163
1150 /* adjust periodics after time jump */ 1164 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i) 1165 for (i = 0; i < periodiccnt; ++i)
1152 { 1166 {
1153 struct ev_periodic *w = periodics [i]; 1167 ev_periodic *w = periodics [i];
1154 1168
1155 if (w->reschedule_cb) 1169 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval) 1171 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1162 for (i = periodiccnt >> 1; i--; ) 1176 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i); 1177 downheap ((WT *)periodics, periodiccnt, i);
1164} 1178}
1165#endif 1179#endif
1166 1180
1167inline int 1181int inline_size
1168time_update_monotonic (EV_P) 1182time_update_monotonic (EV_P)
1169{ 1183{
1170 mn_now = get_clock (); 1184 mn_now = get_clock ();
1171 1185
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1180 ev_rt_now = ev_time (); 1194 ev_rt_now = ev_time ();
1181 return 1; 1195 return 1;
1182 } 1196 }
1183} 1197}
1184 1198
1185inline void 1199void inline_size
1186time_update (EV_P) 1200time_update (EV_P)
1187{ 1201{
1188 int i; 1202 int i;
1189 1203
1190#if EV_USE_MONOTONIC 1204#if EV_USE_MONOTONIC
1192 { 1206 {
1193 if (time_update_monotonic (EV_A)) 1207 if (time_update_monotonic (EV_A))
1194 { 1208 {
1195 ev_tstamp odiff = rtmn_diff; 1209 ev_tstamp odiff = rtmn_diff;
1196 1210
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
1198 { 1220 {
1199 rtmn_diff = ev_rt_now - mn_now; 1221 rtmn_diff = ev_rt_now - mn_now;
1200 1222
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1202 return; /* all is well */ 1224 return; /* all is well */
1204 ev_rt_now = ev_time (); 1226 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 1227 mn_now = get_clock ();
1206 now_floor = mn_now; 1228 now_floor = mn_now;
1207 } 1229 }
1208 1230
1209# if EV_PERIODICS 1231# if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 1232 periodics_reschedule (EV_A);
1211# endif 1233# endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */ 1234 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 } 1236 }
1218 { 1240 {
1219 ev_rt_now = ev_time (); 1241 ev_rt_now = ev_time ();
1220 1242
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 { 1244 {
1223#if EV_PERIODICS 1245#if EV_PERIODIC_ENABLE
1224 periodics_reschedule (EV_A); 1246 periodics_reschedule (EV_A);
1225#endif 1247#endif
1226 1248
1227 /* adjust timers. this is easy, as the offset is the same for all */ 1249 /* adjust timers. this is easy, as the offset is the same for all */
1228 for (i = 0; i < timercnt; ++i) 1250 for (i = 0; i < timercnt; ++i)
1248static int loop_done; 1270static int loop_done;
1249 1271
1250void 1272void
1251ev_loop (EV_P_ int flags) 1273ev_loop (EV_P_ int flags)
1252{ 1274{
1253 double block;
1254 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1275 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1276 ? EVUNLOOP_ONE
1277 : EVUNLOOP_CANCEL;
1255 1278
1256 while (activecnt) 1279 while (activecnt)
1257 { 1280 {
1281 /* we might have forked, so reify kernel state if necessary */
1282 if (expect_false (postfork))
1283 if (forkcnt)
1284 {
1285 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1286 call_pending (EV_A);
1287 }
1288
1258 /* queue check watchers (and execute them) */ 1289 /* queue check watchers (and execute them) */
1259 if (expect_false (preparecnt)) 1290 if (expect_false (preparecnt))
1260 { 1291 {
1261 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1292 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1262 call_pending (EV_A); 1293 call_pending (EV_A);
1268 1299
1269 /* update fd-related kernel structures */ 1300 /* update fd-related kernel structures */
1270 fd_reify (EV_A); 1301 fd_reify (EV_A);
1271 1302
1272 /* calculate blocking time */ 1303 /* calculate blocking time */
1304 {
1305 double block;
1273 1306
1274 /* we only need this for !monotonic clock or timers, but as we basically 1307 if (flags & EVLOOP_NONBLOCK || idlecnt)
1275 always have timers, we just calculate it always */ 1308 block = 0.; /* do not block at all */
1309 else
1310 {
1311 /* update time to cancel out callback processing overhead */
1276#if EV_USE_MONOTONIC 1312#if EV_USE_MONOTONIC
1277 if (expect_true (have_monotonic)) 1313 if (expect_true (have_monotonic))
1278 time_update_monotonic (EV_A); 1314 time_update_monotonic (EV_A);
1279 else 1315 else
1280#endif 1316#endif
1281 { 1317 {
1282 ev_rt_now = ev_time (); 1318 ev_rt_now = ev_time ();
1283 mn_now = ev_rt_now; 1319 mn_now = ev_rt_now;
1284 } 1320 }
1285 1321
1286 if (flags & EVLOOP_NONBLOCK || idlecnt)
1287 block = 0.;
1288 else
1289 {
1290 block = MAX_BLOCKTIME; 1322 block = MAX_BLOCKTIME;
1291 1323
1292 if (timercnt) 1324 if (timercnt)
1293 { 1325 {
1294 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1326 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1295 if (block > to) block = to; 1327 if (block > to) block = to;
1296 } 1328 }
1297 1329
1298#if EV_PERIODICS 1330#if EV_PERIODIC_ENABLE
1299 if (periodiccnt) 1331 if (periodiccnt)
1300 { 1332 {
1301 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1333 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1302 if (block > to) block = to; 1334 if (block > to) block = to;
1303 } 1335 }
1304#endif 1336#endif
1305 1337
1306 if (expect_false (block < 0.)) block = 0.; 1338 if (expect_false (block < 0.)) block = 0.;
1307 } 1339 }
1308 1340
1309 backend_poll (EV_A_ block); 1341 backend_poll (EV_A_ block);
1342 }
1310 1343
1311 /* update ev_rt_now, do magic */ 1344 /* update ev_rt_now, do magic */
1312 time_update (EV_A); 1345 time_update (EV_A);
1313 1346
1314 /* queue pending timers and reschedule them */ 1347 /* queue pending timers and reschedule them */
1315 timers_reify (EV_A); /* relative timers called last */ 1348 timers_reify (EV_A); /* relative timers called last */
1316#if EV_PERIODICS 1349#if EV_PERIODIC_ENABLE
1317 periodics_reify (EV_A); /* absolute timers called first */ 1350 periodics_reify (EV_A); /* absolute timers called first */
1318#endif 1351#endif
1319 1352
1320 /* queue idle watchers unless io or timers are pending */ 1353 /* queue idle watchers unless other events are pending */
1321 if (idlecnt && !any_pending (EV_A)) 1354 if (idlecnt && !any_pending (EV_A))
1322 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1355 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1323 1356
1324 /* queue check watchers, to be executed first */ 1357 /* queue check watchers, to be executed first */
1325 if (expect_false (checkcnt)) 1358 if (expect_false (checkcnt))
1329 1362
1330 if (expect_false (loop_done)) 1363 if (expect_false (loop_done))
1331 break; 1364 break;
1332 } 1365 }
1333 1366
1334 if (loop_done != 2) 1367 if (loop_done == EVUNLOOP_ONE)
1335 loop_done = 0; 1368 loop_done = EVUNLOOP_CANCEL;
1336} 1369}
1337 1370
1338void 1371void
1339ev_unloop (EV_P_ int how) 1372ev_unloop (EV_P_ int how)
1340{ 1373{
1341 loop_done = how; 1374 loop_done = how;
1342} 1375}
1343 1376
1344/*****************************************************************************/ 1377/*****************************************************************************/
1345 1378
1346inline void 1379void inline_size
1347wlist_add (WL *head, WL elem) 1380wlist_add (WL *head, WL elem)
1348{ 1381{
1349 elem->next = *head; 1382 elem->next = *head;
1350 *head = elem; 1383 *head = elem;
1351} 1384}
1352 1385
1353inline void 1386void inline_size
1354wlist_del (WL *head, WL elem) 1387wlist_del (WL *head, WL elem)
1355{ 1388{
1356 while (*head) 1389 while (*head)
1357 { 1390 {
1358 if (*head == elem) 1391 if (*head == elem)
1363 1396
1364 head = &(*head)->next; 1397 head = &(*head)->next;
1365 } 1398 }
1366} 1399}
1367 1400
1368inline void 1401void inline_speed
1369ev_clear_pending (EV_P_ W w) 1402ev_clear_pending (EV_P_ W w)
1370{ 1403{
1371 if (w->pending) 1404 if (w->pending)
1372 { 1405 {
1373 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1406 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1374 w->pending = 0; 1407 w->pending = 0;
1375 } 1408 }
1376} 1409}
1377 1410
1378inline void 1411void inline_speed
1379ev_start (EV_P_ W w, int active) 1412ev_start (EV_P_ W w, int active)
1380{ 1413{
1381 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1414 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1382 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1415 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1383 1416
1384 w->active = active; 1417 w->active = active;
1385 ev_ref (EV_A); 1418 ev_ref (EV_A);
1386} 1419}
1387 1420
1388inline void 1421void inline_size
1389ev_stop (EV_P_ W w) 1422ev_stop (EV_P_ W w)
1390{ 1423{
1391 ev_unref (EV_A); 1424 ev_unref (EV_A);
1392 w->active = 0; 1425 w->active = 0;
1393} 1426}
1394 1427
1395/*****************************************************************************/ 1428/*****************************************************************************/
1396 1429
1397void 1430void
1398ev_io_start (EV_P_ struct ev_io *w) 1431ev_io_start (EV_P_ ev_io *w)
1399{ 1432{
1400 int fd = w->fd; 1433 int fd = w->fd;
1401 1434
1402 if (expect_false (ev_is_active (w))) 1435 if (expect_false (ev_is_active (w)))
1403 return; 1436 return;
1410 1443
1411 fd_change (EV_A_ fd); 1444 fd_change (EV_A_ fd);
1412} 1445}
1413 1446
1414void 1447void
1415ev_io_stop (EV_P_ struct ev_io *w) 1448ev_io_stop (EV_P_ ev_io *w)
1416{ 1449{
1417 ev_clear_pending (EV_A_ (W)w); 1450 ev_clear_pending (EV_A_ (W)w);
1418 if (expect_false (!ev_is_active (w))) 1451 if (expect_false (!ev_is_active (w)))
1419 return; 1452 return;
1420 1453
1425 1458
1426 fd_change (EV_A_ w->fd); 1459 fd_change (EV_A_ w->fd);
1427} 1460}
1428 1461
1429void 1462void
1430ev_timer_start (EV_P_ struct ev_timer *w) 1463ev_timer_start (EV_P_ ev_timer *w)
1431{ 1464{
1432 if (expect_false (ev_is_active (w))) 1465 if (expect_false (ev_is_active (w)))
1433 return; 1466 return;
1434 1467
1435 ((WT)w)->at += mn_now; 1468 ((WT)w)->at += mn_now;
1436 1469
1437 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1470 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1438 1471
1439 ev_start (EV_A_ (W)w, ++timercnt); 1472 ev_start (EV_A_ (W)w, ++timercnt);
1440 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1473 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1441 timers [timercnt - 1] = w; 1474 timers [timercnt - 1] = w;
1442 upheap ((WT *)timers, timercnt - 1); 1475 upheap ((WT *)timers, timercnt - 1);
1443 1476
1444 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1477 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1445} 1478}
1446 1479
1447void 1480void
1448ev_timer_stop (EV_P_ struct ev_timer *w) 1481ev_timer_stop (EV_P_ ev_timer *w)
1449{ 1482{
1450 ev_clear_pending (EV_A_ (W)w); 1483 ev_clear_pending (EV_A_ (W)w);
1451 if (expect_false (!ev_is_active (w))) 1484 if (expect_false (!ev_is_active (w)))
1452 return; 1485 return;
1453 1486
1463 1496
1464 ev_stop (EV_A_ (W)w); 1497 ev_stop (EV_A_ (W)w);
1465} 1498}
1466 1499
1467void 1500void
1468ev_timer_again (EV_P_ struct ev_timer *w) 1501ev_timer_again (EV_P_ ev_timer *w)
1469{ 1502{
1470 if (ev_is_active (w)) 1503 if (ev_is_active (w))
1471 { 1504 {
1472 if (w->repeat) 1505 if (w->repeat)
1473 { 1506 {
1482 w->at = w->repeat; 1515 w->at = w->repeat;
1483 ev_timer_start (EV_A_ w); 1516 ev_timer_start (EV_A_ w);
1484 } 1517 }
1485} 1518}
1486 1519
1487#if EV_PERIODICS 1520#if EV_PERIODIC_ENABLE
1488void 1521void
1489ev_periodic_start (EV_P_ struct ev_periodic *w) 1522ev_periodic_start (EV_P_ ev_periodic *w)
1490{ 1523{
1491 if (expect_false (ev_is_active (w))) 1524 if (expect_false (ev_is_active (w)))
1492 return; 1525 return;
1493 1526
1494 if (w->reschedule_cb) 1527 if (w->reschedule_cb)
1499 /* this formula differs from the one in periodic_reify because we do not always round up */ 1532 /* this formula differs from the one in periodic_reify because we do not always round up */
1500 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1533 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1501 } 1534 }
1502 1535
1503 ev_start (EV_A_ (W)w, ++periodiccnt); 1536 ev_start (EV_A_ (W)w, ++periodiccnt);
1504 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1537 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1505 periodics [periodiccnt - 1] = w; 1538 periodics [periodiccnt - 1] = w;
1506 upheap ((WT *)periodics, periodiccnt - 1); 1539 upheap ((WT *)periodics, periodiccnt - 1);
1507 1540
1508 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1541 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1509} 1542}
1510 1543
1511void 1544void
1512ev_periodic_stop (EV_P_ struct ev_periodic *w) 1545ev_periodic_stop (EV_P_ ev_periodic *w)
1513{ 1546{
1514 ev_clear_pending (EV_A_ (W)w); 1547 ev_clear_pending (EV_A_ (W)w);
1515 if (expect_false (!ev_is_active (w))) 1548 if (expect_false (!ev_is_active (w)))
1516 return; 1549 return;
1517 1550
1525 1558
1526 ev_stop (EV_A_ (W)w); 1559 ev_stop (EV_A_ (W)w);
1527} 1560}
1528 1561
1529void 1562void
1530ev_periodic_again (EV_P_ struct ev_periodic *w) 1563ev_periodic_again (EV_P_ ev_periodic *w)
1531{ 1564{
1532 /* TODO: use adjustheap and recalculation */ 1565 /* TODO: use adjustheap and recalculation */
1533 ev_periodic_stop (EV_A_ w); 1566 ev_periodic_stop (EV_A_ w);
1534 ev_periodic_start (EV_A_ w); 1567 ev_periodic_start (EV_A_ w);
1535} 1568}
1536#endif 1569#endif
1537 1570
1538void
1539ev_idle_start (EV_P_ struct ev_idle *w)
1540{
1541 if (expect_false (ev_is_active (w)))
1542 return;
1543
1544 ev_start (EV_A_ (W)w, ++idlecnt);
1545 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1546 idles [idlecnt - 1] = w;
1547}
1548
1549void
1550ev_idle_stop (EV_P_ struct ev_idle *w)
1551{
1552 ev_clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w)))
1554 return;
1555
1556 idles [((W)w)->active - 1] = idles [--idlecnt];
1557 ev_stop (EV_A_ (W)w);
1558}
1559
1560void
1561ev_prepare_start (EV_P_ struct ev_prepare *w)
1562{
1563 if (expect_false (ev_is_active (w)))
1564 return;
1565
1566 ev_start (EV_A_ (W)w, ++preparecnt);
1567 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1568 prepares [preparecnt - 1] = w;
1569}
1570
1571void
1572ev_prepare_stop (EV_P_ struct ev_prepare *w)
1573{
1574 ev_clear_pending (EV_A_ (W)w);
1575 if (expect_false (!ev_is_active (w)))
1576 return;
1577
1578 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1579 ev_stop (EV_A_ (W)w);
1580}
1581
1582void
1583ev_check_start (EV_P_ struct ev_check *w)
1584{
1585 if (expect_false (ev_is_active (w)))
1586 return;
1587
1588 ev_start (EV_A_ (W)w, ++checkcnt);
1589 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1590 checks [checkcnt - 1] = w;
1591}
1592
1593void
1594ev_check_stop (EV_P_ struct ev_check *w)
1595{
1596 ev_clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w)))
1598 return;
1599
1600 checks [((W)w)->active - 1] = checks [--checkcnt];
1601 ev_stop (EV_A_ (W)w);
1602}
1603
1604#ifndef SA_RESTART 1571#ifndef SA_RESTART
1605# define SA_RESTART 0 1572# define SA_RESTART 0
1606#endif 1573#endif
1607 1574
1608void 1575void
1609ev_signal_start (EV_P_ struct ev_signal *w) 1576ev_signal_start (EV_P_ ev_signal *w)
1610{ 1577{
1611#if EV_MULTIPLICITY 1578#if EV_MULTIPLICITY
1612 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1579 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1613#endif 1580#endif
1614 if (expect_false (ev_is_active (w))) 1581 if (expect_false (ev_is_active (w)))
1633#endif 1600#endif
1634 } 1601 }
1635} 1602}
1636 1603
1637void 1604void
1638ev_signal_stop (EV_P_ struct ev_signal *w) 1605ev_signal_stop (EV_P_ ev_signal *w)
1639{ 1606{
1640 ev_clear_pending (EV_A_ (W)w); 1607 ev_clear_pending (EV_A_ (W)w);
1641 if (expect_false (!ev_is_active (w))) 1608 if (expect_false (!ev_is_active (w)))
1642 return; 1609 return;
1643 1610
1647 if (!signals [w->signum - 1].head) 1614 if (!signals [w->signum - 1].head)
1648 signal (w->signum, SIG_DFL); 1615 signal (w->signum, SIG_DFL);
1649} 1616}
1650 1617
1651void 1618void
1652ev_child_start (EV_P_ struct ev_child *w) 1619ev_child_start (EV_P_ ev_child *w)
1653{ 1620{
1654#if EV_MULTIPLICITY 1621#if EV_MULTIPLICITY
1655 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1622 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1656#endif 1623#endif
1657 if (expect_false (ev_is_active (w))) 1624 if (expect_false (ev_is_active (w)))
1660 ev_start (EV_A_ (W)w, 1); 1627 ev_start (EV_A_ (W)w, 1);
1661 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1628 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1662} 1629}
1663 1630
1664void 1631void
1665ev_child_stop (EV_P_ struct ev_child *w) 1632ev_child_stop (EV_P_ ev_child *w)
1666{ 1633{
1667 ev_clear_pending (EV_A_ (W)w); 1634 ev_clear_pending (EV_A_ (W)w);
1668 if (expect_false (!ev_is_active (w))) 1635 if (expect_false (!ev_is_active (w)))
1669 return; 1636 return;
1670 1637
1671 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1638 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1672 ev_stop (EV_A_ (W)w); 1639 ev_stop (EV_A_ (W)w);
1673} 1640}
1674 1641
1675#if EV_MULTIPLICITY 1642#if EV_STAT_ENABLE
1643
1644# ifdef _WIN32
1645# undef lstat
1646# define lstat(a,b) _stati64 (a,b)
1647# endif
1648
1649#define DEF_STAT_INTERVAL 5.0074891
1650#define MIN_STAT_INTERVAL 0.1074891
1651
1652void
1653ev_stat_stat (EV_P_ ev_stat *w)
1654{
1655 if (lstat (w->path, &w->attr) < 0)
1656 w->attr.st_nlink = 0;
1657 else if (!w->attr.st_nlink)
1658 w->attr.st_nlink = 1;
1659}
1660
1676static void 1661static void
1677embed_cb (EV_P_ struct ev_io *io, int revents) 1662stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1678{ 1663{
1679 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 1664 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1680 1665
1666 /* we copy this here each the time so that */
1667 /* prev has the old value when the callback gets invoked */
1668 w->prev = w->attr;
1669 ev_stat_stat (EV_A_ w);
1670
1671 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1681 ev_feed_event (EV_A_ (W)w, EV_EMBED); 1672 ev_feed_event (EV_A_ w, EV_STAT);
1673}
1674
1675void
1676ev_stat_start (EV_P_ ev_stat *w)
1677{
1678 if (expect_false (ev_is_active (w)))
1679 return;
1680
1681 /* since we use memcmp, we need to clear any padding data etc. */
1682 memset (&w->prev, 0, sizeof (ev_statdata));
1683 memset (&w->attr, 0, sizeof (ev_statdata));
1684
1685 ev_stat_stat (EV_A_ w);
1686
1687 if (w->interval < MIN_STAT_INTERVAL)
1688 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1689
1690 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1691 ev_set_priority (&w->timer, ev_priority (w));
1692 ev_timer_start (EV_A_ &w->timer);
1693
1694 ev_start (EV_A_ (W)w, 1);
1695}
1696
1697void
1698ev_stat_stop (EV_P_ ev_stat *w)
1699{
1700 ev_clear_pending (EV_A_ (W)w);
1701 if (expect_false (!ev_is_active (w)))
1702 return;
1703
1704 ev_timer_stop (EV_A_ &w->timer);
1705
1706 ev_stop (EV_A_ (W)w);
1707}
1708#endif
1709
1710void
1711ev_idle_start (EV_P_ ev_idle *w)
1712{
1713 if (expect_false (ev_is_active (w)))
1714 return;
1715
1716 ev_start (EV_A_ (W)w, ++idlecnt);
1717 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1718 idles [idlecnt - 1] = w;
1719}
1720
1721void
1722ev_idle_stop (EV_P_ ev_idle *w)
1723{
1724 ev_clear_pending (EV_A_ (W)w);
1725 if (expect_false (!ev_is_active (w)))
1726 return;
1727
1728 {
1729 int active = ((W)w)->active;
1730 idles [active - 1] = idles [--idlecnt];
1731 ((W)idles [active - 1])->active = active;
1732 }
1733
1734 ev_stop (EV_A_ (W)w);
1735}
1736
1737void
1738ev_prepare_start (EV_P_ ev_prepare *w)
1739{
1740 if (expect_false (ev_is_active (w)))
1741 return;
1742
1743 ev_start (EV_A_ (W)w, ++preparecnt);
1744 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1745 prepares [preparecnt - 1] = w;
1746}
1747
1748void
1749ev_prepare_stop (EV_P_ ev_prepare *w)
1750{
1751 ev_clear_pending (EV_A_ (W)w);
1752 if (expect_false (!ev_is_active (w)))
1753 return;
1754
1755 {
1756 int active = ((W)w)->active;
1757 prepares [active - 1] = prepares [--preparecnt];
1758 ((W)prepares [active - 1])->active = active;
1759 }
1760
1761 ev_stop (EV_A_ (W)w);
1762}
1763
1764void
1765ev_check_start (EV_P_ ev_check *w)
1766{
1767 if (expect_false (ev_is_active (w)))
1768 return;
1769
1770 ev_start (EV_A_ (W)w, ++checkcnt);
1771 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1772 checks [checkcnt - 1] = w;
1773}
1774
1775void
1776ev_check_stop (EV_P_ ev_check *w)
1777{
1778 ev_clear_pending (EV_A_ (W)w);
1779 if (expect_false (!ev_is_active (w)))
1780 return;
1781
1782 {
1783 int active = ((W)w)->active;
1784 checks [active - 1] = checks [--checkcnt];
1785 ((W)checks [active - 1])->active = active;
1786 }
1787
1788 ev_stop (EV_A_ (W)w);
1789}
1790
1791#if EV_EMBED_ENABLE
1792void noinline
1793ev_embed_sweep (EV_P_ ev_embed *w)
1794{
1682 ev_loop (w->loop, EVLOOP_NONBLOCK); 1795 ev_loop (w->loop, EVLOOP_NONBLOCK);
1683} 1796}
1684 1797
1798static void
1799embed_cb (EV_P_ ev_io *io, int revents)
1800{
1801 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1802
1803 if (ev_cb (w))
1804 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1805 else
1806 ev_embed_sweep (loop, w);
1807}
1808
1685void 1809void
1686ev_embed_start (EV_P_ struct ev_embed *w) 1810ev_embed_start (EV_P_ ev_embed *w)
1687{ 1811{
1688 if (expect_false (ev_is_active (w))) 1812 if (expect_false (ev_is_active (w)))
1689 return; 1813 return;
1690 1814
1691 { 1815 {
1692 struct ev_loop *loop = w->loop; 1816 struct ev_loop *loop = w->loop;
1693 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 1817 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1694 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 1818 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1695 } 1819 }
1696 1820
1821 ev_set_priority (&w->io, ev_priority (w));
1697 ev_io_start (EV_A_ &w->io); 1822 ev_io_start (EV_A_ &w->io);
1823
1698 ev_start (EV_A_ (W)w, 1); 1824 ev_start (EV_A_ (W)w, 1);
1699} 1825}
1700 1826
1701void 1827void
1702ev_embed_stop (EV_P_ struct ev_embed *w) 1828ev_embed_stop (EV_P_ ev_embed *w)
1703{ 1829{
1704 ev_clear_pending (EV_A_ (W)w); 1830 ev_clear_pending (EV_A_ (W)w);
1705 if (expect_false (!ev_is_active (w))) 1831 if (expect_false (!ev_is_active (w)))
1706 return; 1832 return;
1707 1833
1708 ev_io_stop (EV_A_ &w->io); 1834 ev_io_stop (EV_A_ &w->io);
1835
1709 ev_stop (EV_A_ (W)w); 1836 ev_stop (EV_A_ (W)w);
1710} 1837}
1711#endif 1838#endif
1712 1839
1840#if EV_FORK_ENABLE
1841void
1842ev_fork_start (EV_P_ ev_fork *w)
1843{
1844 if (expect_false (ev_is_active (w)))
1845 return;
1846
1847 ev_start (EV_A_ (W)w, ++forkcnt);
1848 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
1849 forks [forkcnt - 1] = w;
1850}
1851
1852void
1853ev_fork_stop (EV_P_ ev_fork *w)
1854{
1855 ev_clear_pending (EV_A_ (W)w);
1856 if (expect_false (!ev_is_active (w)))
1857 return;
1858
1859 {
1860 int active = ((W)w)->active;
1861 forks [active - 1] = forks [--forkcnt];
1862 ((W)forks [active - 1])->active = active;
1863 }
1864
1865 ev_stop (EV_A_ (W)w);
1866}
1867#endif
1868
1713/*****************************************************************************/ 1869/*****************************************************************************/
1714 1870
1715struct ev_once 1871struct ev_once
1716{ 1872{
1717 struct ev_io io; 1873 ev_io io;
1718 struct ev_timer to; 1874 ev_timer to;
1719 void (*cb)(int revents, void *arg); 1875 void (*cb)(int revents, void *arg);
1720 void *arg; 1876 void *arg;
1721}; 1877};
1722 1878
1723static void 1879static void
1732 1888
1733 cb (revents, arg); 1889 cb (revents, arg);
1734} 1890}
1735 1891
1736static void 1892static void
1737once_cb_io (EV_P_ struct ev_io *w, int revents) 1893once_cb_io (EV_P_ ev_io *w, int revents)
1738{ 1894{
1739 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1895 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1740} 1896}
1741 1897
1742static void 1898static void
1743once_cb_to (EV_P_ struct ev_timer *w, int revents) 1899once_cb_to (EV_P_ ev_timer *w, int revents)
1744{ 1900{
1745 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1901 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1746} 1902}
1747 1903
1748void 1904void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines