ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.147 by root, Tue Nov 27 10:59:11 2007 UTC vs.
Revision 1.178 by root, Tue Dec 11 18:36:11 2007 UTC

94# else 94# else
95# define EV_USE_PORT 0 95# define EV_USE_PORT 0
96# endif 96# endif
97# endif 97# endif
98 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
99#endif 107#endif
100 108
101#include <math.h> 109#include <math.h>
102#include <stdlib.h> 110#include <stdlib.h>
103#include <fcntl.h> 111#include <fcntl.h>
109#include <errno.h> 117#include <errno.h>
110#include <sys/types.h> 118#include <sys/types.h>
111#include <time.h> 119#include <time.h>
112 120
113#include <signal.h> 121#include <signal.h>
122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
114 128
115#ifndef _WIN32 129#ifndef _WIN32
116# include <sys/time.h> 130# include <sys/time.h>
117# include <sys/wait.h> 131# include <sys/wait.h>
118# include <unistd.h> 132# include <unistd.h>
156 170
157#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 172# define EV_USE_PORT 0
159#endif 173#endif
160 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
161/**/ 195/**/
162 196
163#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
172 206
173#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 208# include <winsock.h>
175#endif 209#endif
176 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
177/**/ 219/**/
220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 230
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189 234
190#if __GNUC__ >= 3 235#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline)) 237# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
200#else 238#else
201# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
202# define inline_speed static
203# define inline_size static
204# define noinline 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
205#endif 244#endif
206 245
207#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
208#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
209 255
210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
211#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
212 258
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
215 261
216typedef ev_watcher *W; 262typedef ev_watcher *W;
217typedef ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
218typedef ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
254ev_set_allocator (void *(*cb)(void *ptr, long size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
255{ 301{
256 alloc = cb; 302 alloc = cb;
257} 303}
258 304
259static void * 305inline_speed void *
260ev_realloc (void *ptr, long size) 306ev_realloc (void *ptr, long size)
261{ 307{
262 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
263 309
264 if (!ptr && size) 310 if (!ptr && size)
288typedef struct 334typedef struct
289{ 335{
290 W w; 336 W w;
291 int events; 337 int events;
292} ANPENDING; 338} ANPENDING;
339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
293 346
294#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
295 348
296 struct ev_loop 349 struct ev_loop
297 { 350 {
354{ 407{
355 return ev_rt_now; 408 return ev_rt_now;
356} 409}
357#endif 410#endif
358 411
359#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
360 439
361#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
362 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
363 { \ 442 { \
364 int newcnt = cur; \ 443 int ocur_ = (cur); \
365 do \ 444 (base) = (type *)array_realloc \
366 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
367 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
368 } \
369 while ((cnt) > newcnt); \
370 \
371 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
372 init (base + cur, newcnt - cur); \
373 cur = newcnt; \
374 } 447 }
375 448
449#if 0
376#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
377 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
378 { \ 452 { \
379 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
382 } 456 }
457#endif
383 458
384#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
386 461
387/*****************************************************************************/ 462/*****************************************************************************/
388 463
389void noinline 464void noinline
390ev_feed_event (EV_P_ void *w, int revents) 465ev_feed_event (EV_P_ void *w, int revents)
391{ 466{
392 W w_ = (W)w; 467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
393 469
394 if (expect_false (w_->pending)) 470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
395 { 473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 477 pendings [pri][w_->pending - 1].events = revents;
397 return;
398 } 478 }
399
400 w_->pending = ++pendingcnt [ABSPRI (w_)];
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404} 479}
405 480
406void inline_size 481void inline_size
407queue_events (EV_P_ W *events, int eventcnt, int type) 482queue_events (EV_P_ W *events, int eventcnt, int type)
408{ 483{
443} 518}
444 519
445void 520void
446ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
447{ 522{
523 if (fd >= 0 && fd < anfdmax)
448 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
449} 525}
450 526
451void inline_size 527void inline_size
452fd_reify (EV_P) 528fd_reify (EV_P)
453{ 529{
547static void noinline 623static void noinline
548fd_rearm_all (EV_P) 624fd_rearm_all (EV_P)
549{ 625{
550 int fd; 626 int fd;
551 627
552 /* this should be highly optimised to not do anything but set a flag */
553 for (fd = 0; fd < anfdmax; ++fd) 628 for (fd = 0; fd < anfdmax; ++fd)
554 if (anfds [fd].events) 629 if (anfds [fd].events)
555 { 630 {
556 anfds [fd].events = 0; 631 anfds [fd].events = 0;
557 fd_change (EV_A_ fd); 632 fd_change (EV_A_ fd);
684 for (signum = signalmax; signum--; ) 759 for (signum = signalmax; signum--; )
685 if (signals [signum].gotsig) 760 if (signals [signum].gotsig)
686 ev_feed_signal_event (EV_A_ signum + 1); 761 ev_feed_signal_event (EV_A_ signum + 1);
687} 762}
688 763
689void inline_size 764void inline_speed
690fd_intern (int fd) 765fd_intern (int fd)
691{ 766{
692#ifdef _WIN32 767#ifdef _WIN32
693 int arg = 1; 768 int arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 769 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
709 ev_unref (EV_A); /* child watcher should not keep loop alive */ 784 ev_unref (EV_A); /* child watcher should not keep loop alive */
710} 785}
711 786
712/*****************************************************************************/ 787/*****************************************************************************/
713 788
714static ev_child *childs [PID_HASHSIZE]; 789static ev_child *childs [EV_PID_HASHSIZE];
715 790
716#ifndef _WIN32 791#ifndef _WIN32
717 792
718static ev_signal childev; 793static ev_signal childev;
719 794
720void inline_speed 795void inline_speed
721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 796child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
722{ 797{
723 ev_child *w; 798 ev_child *w;
724 799
725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 800 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
726 if (w->pid == pid || !w->pid) 801 if (w->pid == pid || !w->pid)
727 { 802 {
728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 803 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
729 w->rpid = pid; 804 w->rpid = pid;
730 w->rstatus = status; 805 w->rstatus = status;
731 ev_feed_event (EV_A_ (W)w, EV_CHILD); 806 ev_feed_event (EV_A_ (W)w, EV_CHILD);
732 } 807 }
733} 808}
734 809
735#ifndef WCONTINUED 810#ifndef WCONTINUED
751 /* make sure we are called again until all childs have been reaped */ 826 /* make sure we are called again until all childs have been reaped */
752 /* we need to do it this way so that the callback gets called before we continue */ 827 /* we need to do it this way so that the callback gets called before we continue */
753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 828 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
754 829
755 child_reap (EV_A_ sw, pid, pid, status); 830 child_reap (EV_A_ sw, pid, pid, status);
831 if (EV_PID_HASHSIZE > 1)
756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 832 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
757} 833}
758 834
759#endif 835#endif
760 836
761/*****************************************************************************/ 837/*****************************************************************************/
844ev_backend (EV_P) 920ev_backend (EV_P)
845{ 921{
846 return backend; 922 return backend;
847} 923}
848 924
849static void 925unsigned int
926ev_loop_count (EV_P)
927{
928 return loop_count;
929}
930
931static void noinline
850loop_init (EV_P_ unsigned int flags) 932loop_init (EV_P_ unsigned int flags)
851{ 933{
852 if (!backend) 934 if (!backend)
853 { 935 {
854#if EV_USE_MONOTONIC 936#if EV_USE_MONOTONIC
862 ev_rt_now = ev_time (); 944 ev_rt_now = ev_time ();
863 mn_now = get_clock (); 945 mn_now = get_clock ();
864 now_floor = mn_now; 946 now_floor = mn_now;
865 rtmn_diff = ev_rt_now - mn_now; 947 rtmn_diff = ev_rt_now - mn_now;
866 948
949 /* pid check not overridable via env */
950#ifndef _WIN32
951 if (flags & EVFLAG_FORKCHECK)
952 curpid = getpid ();
953#endif
954
867 if (!(flags & EVFLAG_NOENV) 955 if (!(flags & EVFLAG_NOENV)
868 && !enable_secure () 956 && !enable_secure ()
869 && getenv ("LIBEV_FLAGS")) 957 && getenv ("LIBEV_FLAGS"))
870 flags = atoi (getenv ("LIBEV_FLAGS")); 958 flags = atoi (getenv ("LIBEV_FLAGS"));
871 959
872 if (!(flags & 0x0000ffffUL)) 960 if (!(flags & 0x0000ffffUL))
873 flags |= ev_recommended_backends (); 961 flags |= ev_recommended_backends ();
874 962
875 backend = 0; 963 backend = 0;
964 backend_fd = -1;
965#if EV_USE_INOTIFY
966 fs_fd = -2;
967#endif
968
876#if EV_USE_PORT 969#if EV_USE_PORT
877 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 970 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
878#endif 971#endif
879#if EV_USE_KQUEUE 972#if EV_USE_KQUEUE
880 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 973 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
892 ev_init (&sigev, sigcb); 985 ev_init (&sigev, sigcb);
893 ev_set_priority (&sigev, EV_MAXPRI); 986 ev_set_priority (&sigev, EV_MAXPRI);
894 } 987 }
895} 988}
896 989
897static void 990static void noinline
898loop_destroy (EV_P) 991loop_destroy (EV_P)
899{ 992{
900 int i; 993 int i;
994
995#if EV_USE_INOTIFY
996 if (fs_fd >= 0)
997 close (fs_fd);
998#endif
999
1000 if (backend_fd >= 0)
1001 close (backend_fd);
901 1002
902#if EV_USE_PORT 1003#if EV_USE_PORT
903 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1004 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
904#endif 1005#endif
905#if EV_USE_KQUEUE 1006#if EV_USE_KQUEUE
914#if EV_USE_SELECT 1015#if EV_USE_SELECT
915 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1016 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
916#endif 1017#endif
917 1018
918 for (i = NUMPRI; i--; ) 1019 for (i = NUMPRI; i--; )
1020 {
919 array_free (pending, [i]); 1021 array_free (pending, [i]);
1022#if EV_IDLE_ENABLE
1023 array_free (idle, [i]);
1024#endif
1025 }
920 1026
921 /* have to use the microsoft-never-gets-it-right macro */ 1027 /* have to use the microsoft-never-gets-it-right macro */
922 array_free (fdchange, EMPTY0); 1028 array_free (fdchange, EMPTY);
923 array_free (timer, EMPTY0); 1029 array_free (timer, EMPTY);
924#if EV_PERIODIC_ENABLE 1030#if EV_PERIODIC_ENABLE
925 array_free (periodic, EMPTY0); 1031 array_free (periodic, EMPTY);
926#endif 1032#endif
927 array_free (idle, EMPTY0);
928 array_free (prepare, EMPTY0); 1033 array_free (prepare, EMPTY);
929 array_free (check, EMPTY0); 1034 array_free (check, EMPTY);
930 1035
931 backend = 0; 1036 backend = 0;
932} 1037}
933 1038
934static void 1039void inline_size infy_fork (EV_P);
1040
1041void inline_size
935loop_fork (EV_P) 1042loop_fork (EV_P)
936{ 1043{
937#if EV_USE_PORT 1044#if EV_USE_PORT
938 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1045 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
939#endif 1046#endif
940#if EV_USE_KQUEUE 1047#if EV_USE_KQUEUE
941 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1048 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
942#endif 1049#endif
943#if EV_USE_EPOLL 1050#if EV_USE_EPOLL
944 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1051 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1052#endif
1053#if EV_USE_INOTIFY
1054 infy_fork (EV_A);
945#endif 1055#endif
946 1056
947 if (ev_is_active (&sigev)) 1057 if (ev_is_active (&sigev))
948 { 1058 {
949 /* default loop */ 1059 /* default loop */
1065 postfork = 1; 1175 postfork = 1;
1066} 1176}
1067 1177
1068/*****************************************************************************/ 1178/*****************************************************************************/
1069 1179
1070int inline_size 1180void
1071any_pending (EV_P) 1181ev_invoke (EV_P_ void *w, int revents)
1072{ 1182{
1073 int pri; 1183 EV_CB_INVOKE ((W)w, revents);
1074
1075 for (pri = NUMPRI; pri--; )
1076 if (pendingcnt [pri])
1077 return 1;
1078
1079 return 0;
1080} 1184}
1081 1185
1082void inline_speed 1186void inline_speed
1083call_pending (EV_P) 1187call_pending (EV_P)
1084{ 1188{
1089 { 1193 {
1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1194 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1091 1195
1092 if (expect_true (p->w)) 1196 if (expect_true (p->w))
1093 { 1197 {
1094 assert (("non-pending watcher on pending list", p->w->pending)); 1198 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1095 1199
1096 p->w->pending = 0; 1200 p->w->pending = 0;
1097 EV_CB_INVOKE (p->w, p->events); 1201 EV_CB_INVOKE (p->w, p->events);
1098 } 1202 }
1099 } 1203 }
1104{ 1208{
1105 while (timercnt && ((WT)timers [0])->at <= mn_now) 1209 while (timercnt && ((WT)timers [0])->at <= mn_now)
1106 { 1210 {
1107 ev_timer *w = timers [0]; 1211 ev_timer *w = timers [0];
1108 1212
1109 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1213 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1110 1214
1111 /* first reschedule or stop timer */ 1215 /* first reschedule or stop timer */
1112 if (w->repeat) 1216 if (w->repeat)
1113 { 1217 {
1114 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1218 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1132{ 1236{
1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1237 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1134 { 1238 {
1135 ev_periodic *w = periodics [0]; 1239 ev_periodic *w = periodics [0];
1136 1240
1137 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1241 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1138 1242
1139 /* first reschedule or stop timer */ 1243 /* first reschedule or stop timer */
1140 if (w->reschedule_cb) 1244 if (w->reschedule_cb)
1141 { 1245 {
1142 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1246 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1143 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1247 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1144 downheap ((WT *)periodics, periodiccnt, 0); 1248 downheap ((WT *)periodics, periodiccnt, 0);
1145 } 1249 }
1146 else if (w->interval) 1250 else if (w->interval)
1147 { 1251 {
1148 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1252 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1253 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1149 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1150 downheap ((WT *)periodics, periodiccnt, 0); 1255 downheap ((WT *)periodics, periodiccnt, 0);
1151 } 1256 }
1152 else 1257 else
1153 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1167 ev_periodic *w = periodics [i]; 1272 ev_periodic *w = periodics [i];
1168 1273
1169 if (w->reschedule_cb) 1274 if (w->reschedule_cb)
1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1171 else if (w->interval) 1276 else if (w->interval)
1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1173 } 1278 }
1174 1279
1175 /* now rebuild the heap */ 1280 /* now rebuild the heap */
1176 for (i = periodiccnt >> 1; i--; ) 1281 for (i = periodiccnt >> 1; i--; )
1177 downheap ((WT *)periodics, periodiccnt, i); 1282 downheap ((WT *)periodics, periodiccnt, i);
1178} 1283}
1179#endif 1284#endif
1180 1285
1286#if EV_IDLE_ENABLE
1181int inline_size 1287void inline_size
1182time_update_monotonic (EV_P) 1288idle_reify (EV_P)
1183{ 1289{
1290 if (expect_false (idleall))
1291 {
1292 int pri;
1293
1294 for (pri = NUMPRI; pri--; )
1295 {
1296 if (pendingcnt [pri])
1297 break;
1298
1299 if (idlecnt [pri])
1300 {
1301 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1302 break;
1303 }
1304 }
1305 }
1306}
1307#endif
1308
1309void inline_speed
1310time_update (EV_P_ ev_tstamp max_block)
1311{
1312 int i;
1313
1314#if EV_USE_MONOTONIC
1315 if (expect_true (have_monotonic))
1316 {
1317 ev_tstamp odiff = rtmn_diff;
1318
1184 mn_now = get_clock (); 1319 mn_now = get_clock ();
1185 1320
1321 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1322 /* interpolate in the meantime */
1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1323 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1187 { 1324 {
1188 ev_rt_now = rtmn_diff + mn_now; 1325 ev_rt_now = rtmn_diff + mn_now;
1189 return 0; 1326 return;
1190 } 1327 }
1191 else 1328
1192 {
1193 now_floor = mn_now; 1329 now_floor = mn_now;
1194 ev_rt_now = ev_time (); 1330 ev_rt_now = ev_time ();
1195 return 1;
1196 }
1197}
1198 1331
1199void inline_size 1332 /* loop a few times, before making important decisions.
1200time_update (EV_P) 1333 * on the choice of "4": one iteration isn't enough,
1201{ 1334 * in case we get preempted during the calls to
1202 int i; 1335 * ev_time and get_clock. a second call is almost guaranteed
1203 1336 * to succeed in that case, though. and looping a few more times
1204#if EV_USE_MONOTONIC 1337 * doesn't hurt either as we only do this on time-jumps or
1205 if (expect_true (have_monotonic)) 1338 * in the unlikely event of having been preempted here.
1206 { 1339 */
1207 if (time_update_monotonic (EV_A)) 1340 for (i = 4; --i; )
1208 { 1341 {
1209 ev_tstamp odiff = rtmn_diff;
1210
1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
1220 {
1221 rtmn_diff = ev_rt_now - mn_now; 1342 rtmn_diff = ev_rt_now - mn_now;
1222 1343
1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1344 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1224 return; /* all is well */ 1345 return; /* all is well */
1225 1346
1226 ev_rt_now = ev_time (); 1347 ev_rt_now = ev_time ();
1227 mn_now = get_clock (); 1348 mn_now = get_clock ();
1228 now_floor = mn_now; 1349 now_floor = mn_now;
1229 } 1350 }
1230 1351
1231# if EV_PERIODIC_ENABLE 1352# if EV_PERIODIC_ENABLE
1232 periodics_reschedule (EV_A); 1353 periodics_reschedule (EV_A);
1233# endif 1354# endif
1234 /* no timer adjustment, as the monotonic clock doesn't jump */ 1355 /* no timer adjustment, as the monotonic clock doesn't jump */
1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1356 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1236 }
1237 } 1357 }
1238 else 1358 else
1239#endif 1359#endif
1240 { 1360 {
1241 ev_rt_now = ev_time (); 1361 ev_rt_now = ev_time ();
1242 1362
1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1363 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1244 { 1364 {
1245#if EV_PERIODIC_ENABLE 1365#if EV_PERIODIC_ENABLE
1246 periodics_reschedule (EV_A); 1366 periodics_reschedule (EV_A);
1247#endif 1367#endif
1248
1249 /* adjust timers. this is easy, as the offset is the same for all */ 1368 /* adjust timers. this is easy, as the offset is the same for all of them */
1250 for (i = 0; i < timercnt; ++i) 1369 for (i = 0; i < timercnt; ++i)
1251 ((WT)timers [i])->at += ev_rt_now - mn_now; 1370 ((WT)timers [i])->at += ev_rt_now - mn_now;
1252 } 1371 }
1253 1372
1254 mn_now = ev_rt_now; 1373 mn_now = ev_rt_now;
1274{ 1393{
1275 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1394 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1276 ? EVUNLOOP_ONE 1395 ? EVUNLOOP_ONE
1277 : EVUNLOOP_CANCEL; 1396 : EVUNLOOP_CANCEL;
1278 1397
1279 while (activecnt) 1398 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1399
1400 do
1280 { 1401 {
1281 /* we might have forked, so reify kernel state if necessary */ 1402#ifndef _WIN32
1403 if (expect_false (curpid)) /* penalise the forking check even more */
1404 if (expect_false (getpid () != curpid))
1405 {
1406 curpid = getpid ();
1407 postfork = 1;
1408 }
1409#endif
1410
1411#if EV_FORK_ENABLE
1412 /* we might have forked, so queue fork handlers */
1282 if (expect_false (postfork)) 1413 if (expect_false (postfork))
1283 if (forkcnt) 1414 if (forkcnt)
1284 { 1415 {
1285 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1416 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1286 call_pending (EV_A); 1417 call_pending (EV_A);
1287 } 1418 }
1419#endif
1288 1420
1289 /* queue check watchers (and execute them) */ 1421 /* queue prepare watchers (and execute them) */
1290 if (expect_false (preparecnt)) 1422 if (expect_false (preparecnt))
1291 { 1423 {
1292 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1424 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1293 call_pending (EV_A); 1425 call_pending (EV_A);
1294 } 1426 }
1295 1427
1428 if (expect_false (!activecnt))
1429 break;
1430
1296 /* we might have forked, so reify kernel state if necessary */ 1431 /* we might have forked, so reify kernel state if necessary */
1297 if (expect_false (postfork)) 1432 if (expect_false (postfork))
1298 loop_fork (EV_A); 1433 loop_fork (EV_A);
1299 1434
1300 /* update fd-related kernel structures */ 1435 /* update fd-related kernel structures */
1301 fd_reify (EV_A); 1436 fd_reify (EV_A);
1302 1437
1303 /* calculate blocking time */ 1438 /* calculate blocking time */
1304 { 1439 {
1305 double block; 1440 ev_tstamp block;
1306 1441
1307 if (flags & EVLOOP_NONBLOCK || idlecnt) 1442 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1308 block = 0.; /* do not block at all */ 1443 block = 0.; /* do not block at all */
1309 else 1444 else
1310 { 1445 {
1311 /* update time to cancel out callback processing overhead */ 1446 /* update time to cancel out callback processing overhead */
1312#if EV_USE_MONOTONIC
1313 if (expect_true (have_monotonic))
1314 time_update_monotonic (EV_A); 1447 time_update (EV_A_ 1e100);
1315 else
1316#endif
1317 {
1318 ev_rt_now = ev_time ();
1319 mn_now = ev_rt_now;
1320 }
1321 1448
1322 block = MAX_BLOCKTIME; 1449 block = MAX_BLOCKTIME;
1323 1450
1324 if (timercnt) 1451 if (timercnt)
1325 { 1452 {
1336#endif 1463#endif
1337 1464
1338 if (expect_false (block < 0.)) block = 0.; 1465 if (expect_false (block < 0.)) block = 0.;
1339 } 1466 }
1340 1467
1468 ++loop_count;
1341 backend_poll (EV_A_ block); 1469 backend_poll (EV_A_ block);
1470
1471 /* update ev_rt_now, do magic */
1472 time_update (EV_A_ block);
1342 } 1473 }
1343
1344 /* update ev_rt_now, do magic */
1345 time_update (EV_A);
1346 1474
1347 /* queue pending timers and reschedule them */ 1475 /* queue pending timers and reschedule them */
1348 timers_reify (EV_A); /* relative timers called last */ 1476 timers_reify (EV_A); /* relative timers called last */
1349#if EV_PERIODIC_ENABLE 1477#if EV_PERIODIC_ENABLE
1350 periodics_reify (EV_A); /* absolute timers called first */ 1478 periodics_reify (EV_A); /* absolute timers called first */
1351#endif 1479#endif
1352 1480
1481#if EV_IDLE_ENABLE
1353 /* queue idle watchers unless other events are pending */ 1482 /* queue idle watchers unless other events are pending */
1354 if (idlecnt && !any_pending (EV_A)) 1483 idle_reify (EV_A);
1355 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1484#endif
1356 1485
1357 /* queue check watchers, to be executed first */ 1486 /* queue check watchers, to be executed first */
1358 if (expect_false (checkcnt)) 1487 if (expect_false (checkcnt))
1359 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1488 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1360 1489
1361 call_pending (EV_A); 1490 call_pending (EV_A);
1362 1491
1363 if (expect_false (loop_done))
1364 break;
1365 } 1492 }
1493 while (expect_true (activecnt && !loop_done));
1366 1494
1367 if (loop_done == EVUNLOOP_ONE) 1495 if (loop_done == EVUNLOOP_ONE)
1368 loop_done = EVUNLOOP_CANCEL; 1496 loop_done = EVUNLOOP_CANCEL;
1369} 1497}
1370 1498
1397 head = &(*head)->next; 1525 head = &(*head)->next;
1398 } 1526 }
1399} 1527}
1400 1528
1401void inline_speed 1529void inline_speed
1402ev_clear_pending (EV_P_ W w) 1530clear_pending (EV_P_ W w)
1403{ 1531{
1404 if (w->pending) 1532 if (w->pending)
1405 { 1533 {
1406 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1534 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1407 w->pending = 0; 1535 w->pending = 0;
1408 } 1536 }
1409} 1537}
1410 1538
1539int
1540ev_clear_pending (EV_P_ void *w)
1541{
1542 W w_ = (W)w;
1543 int pending = w_->pending;
1544
1545 if (expect_true (pending))
1546 {
1547 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1548 w_->pending = 0;
1549 p->w = 0;
1550 return p->events;
1551 }
1552 else
1553 return 0;
1554}
1555
1556void inline_size
1557pri_adjust (EV_P_ W w)
1558{
1559 int pri = w->priority;
1560 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1561 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1562 w->priority = pri;
1563}
1564
1411void inline_speed 1565void inline_speed
1412ev_start (EV_P_ W w, int active) 1566ev_start (EV_P_ W w, int active)
1413{ 1567{
1414 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1568 pri_adjust (EV_A_ w);
1415 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1416
1417 w->active = active; 1569 w->active = active;
1418 ev_ref (EV_A); 1570 ev_ref (EV_A);
1419} 1571}
1420 1572
1421void inline_size 1573void inline_size
1425 w->active = 0; 1577 w->active = 0;
1426} 1578}
1427 1579
1428/*****************************************************************************/ 1580/*****************************************************************************/
1429 1581
1430void 1582void noinline
1431ev_io_start (EV_P_ ev_io *w) 1583ev_io_start (EV_P_ ev_io *w)
1432{ 1584{
1433 int fd = w->fd; 1585 int fd = w->fd;
1434 1586
1435 if (expect_false (ev_is_active (w))) 1587 if (expect_false (ev_is_active (w)))
1442 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1594 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1443 1595
1444 fd_change (EV_A_ fd); 1596 fd_change (EV_A_ fd);
1445} 1597}
1446 1598
1447void 1599void noinline
1448ev_io_stop (EV_P_ ev_io *w) 1600ev_io_stop (EV_P_ ev_io *w)
1449{ 1601{
1450 ev_clear_pending (EV_A_ (W)w); 1602 clear_pending (EV_A_ (W)w);
1451 if (expect_false (!ev_is_active (w))) 1603 if (expect_false (!ev_is_active (w)))
1452 return; 1604 return;
1453 1605
1454 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1606 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1455 1607
1457 ev_stop (EV_A_ (W)w); 1609 ev_stop (EV_A_ (W)w);
1458 1610
1459 fd_change (EV_A_ w->fd); 1611 fd_change (EV_A_ w->fd);
1460} 1612}
1461 1613
1462void 1614void noinline
1463ev_timer_start (EV_P_ ev_timer *w) 1615ev_timer_start (EV_P_ ev_timer *w)
1464{ 1616{
1465 if (expect_false (ev_is_active (w))) 1617 if (expect_false (ev_is_active (w)))
1466 return; 1618 return;
1467 1619
1472 ev_start (EV_A_ (W)w, ++timercnt); 1624 ev_start (EV_A_ (W)w, ++timercnt);
1473 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1625 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1474 timers [timercnt - 1] = w; 1626 timers [timercnt - 1] = w;
1475 upheap ((WT *)timers, timercnt - 1); 1627 upheap ((WT *)timers, timercnt - 1);
1476 1628
1629 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1630}
1631
1632void noinline
1633ev_timer_stop (EV_P_ ev_timer *w)
1634{
1635 clear_pending (EV_A_ (W)w);
1636 if (expect_false (!ev_is_active (w)))
1637 return;
1638
1477 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1639 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1478}
1479 1640
1480void 1641 {
1481ev_timer_stop (EV_P_ ev_timer *w) 1642 int active = ((W)w)->active;
1482{
1483 ev_clear_pending (EV_A_ (W)w);
1484 if (expect_false (!ev_is_active (w)))
1485 return;
1486 1643
1487 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1488
1489 if (expect_true (((W)w)->active < timercnt--)) 1644 if (expect_true (--active < --timercnt))
1490 { 1645 {
1491 timers [((W)w)->active - 1] = timers [timercnt]; 1646 timers [active] = timers [timercnt];
1492 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1647 adjustheap ((WT *)timers, timercnt, active);
1493 } 1648 }
1649 }
1494 1650
1495 ((WT)w)->at -= mn_now; 1651 ((WT)w)->at -= mn_now;
1496 1652
1497 ev_stop (EV_A_ (W)w); 1653 ev_stop (EV_A_ (W)w);
1498} 1654}
1499 1655
1500void 1656void noinline
1501ev_timer_again (EV_P_ ev_timer *w) 1657ev_timer_again (EV_P_ ev_timer *w)
1502{ 1658{
1503 if (ev_is_active (w)) 1659 if (ev_is_active (w))
1504 { 1660 {
1505 if (w->repeat) 1661 if (w->repeat)
1516 ev_timer_start (EV_A_ w); 1672 ev_timer_start (EV_A_ w);
1517 } 1673 }
1518} 1674}
1519 1675
1520#if EV_PERIODIC_ENABLE 1676#if EV_PERIODIC_ENABLE
1521void 1677void noinline
1522ev_periodic_start (EV_P_ ev_periodic *w) 1678ev_periodic_start (EV_P_ ev_periodic *w)
1523{ 1679{
1524 if (expect_false (ev_is_active (w))) 1680 if (expect_false (ev_is_active (w)))
1525 return; 1681 return;
1526 1682
1528 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1684 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1529 else if (w->interval) 1685 else if (w->interval)
1530 { 1686 {
1531 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1687 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1532 /* this formula differs from the one in periodic_reify because we do not always round up */ 1688 /* this formula differs from the one in periodic_reify because we do not always round up */
1533 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1689 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1534 } 1690 }
1691 else
1692 ((WT)w)->at = w->offset;
1535 1693
1536 ev_start (EV_A_ (W)w, ++periodiccnt); 1694 ev_start (EV_A_ (W)w, ++periodiccnt);
1537 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1695 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1538 periodics [periodiccnt - 1] = w; 1696 periodics [periodiccnt - 1] = w;
1539 upheap ((WT *)periodics, periodiccnt - 1); 1697 upheap ((WT *)periodics, periodiccnt - 1);
1540 1698
1699 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1700}
1701
1702void noinline
1703ev_periodic_stop (EV_P_ ev_periodic *w)
1704{
1705 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w)))
1707 return;
1708
1541 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1709 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1542}
1543 1710
1544void 1711 {
1545ev_periodic_stop (EV_P_ ev_periodic *w) 1712 int active = ((W)w)->active;
1546{
1547 ev_clear_pending (EV_A_ (W)w);
1548 if (expect_false (!ev_is_active (w)))
1549 return;
1550 1713
1551 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1552
1553 if (expect_true (((W)w)->active < periodiccnt--)) 1714 if (expect_true (--active < --periodiccnt))
1554 { 1715 {
1555 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1716 periodics [active] = periodics [periodiccnt];
1556 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1717 adjustheap ((WT *)periodics, periodiccnt, active);
1557 } 1718 }
1719 }
1558 1720
1559 ev_stop (EV_A_ (W)w); 1721 ev_stop (EV_A_ (W)w);
1560} 1722}
1561 1723
1562void 1724void noinline
1563ev_periodic_again (EV_P_ ev_periodic *w) 1725ev_periodic_again (EV_P_ ev_periodic *w)
1564{ 1726{
1565 /* TODO: use adjustheap and recalculation */ 1727 /* TODO: use adjustheap and recalculation */
1566 ev_periodic_stop (EV_A_ w); 1728 ev_periodic_stop (EV_A_ w);
1567 ev_periodic_start (EV_A_ w); 1729 ev_periodic_start (EV_A_ w);
1570 1732
1571#ifndef SA_RESTART 1733#ifndef SA_RESTART
1572# define SA_RESTART 0 1734# define SA_RESTART 0
1573#endif 1735#endif
1574 1736
1575void 1737void noinline
1576ev_signal_start (EV_P_ ev_signal *w) 1738ev_signal_start (EV_P_ ev_signal *w)
1577{ 1739{
1578#if EV_MULTIPLICITY 1740#if EV_MULTIPLICITY
1579 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1741 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1580#endif 1742#endif
1599 sigaction (w->signum, &sa, 0); 1761 sigaction (w->signum, &sa, 0);
1600#endif 1762#endif
1601 } 1763 }
1602} 1764}
1603 1765
1604void 1766void noinline
1605ev_signal_stop (EV_P_ ev_signal *w) 1767ev_signal_stop (EV_P_ ev_signal *w)
1606{ 1768{
1607 ev_clear_pending (EV_A_ (W)w); 1769 clear_pending (EV_A_ (W)w);
1608 if (expect_false (!ev_is_active (w))) 1770 if (expect_false (!ev_is_active (w)))
1609 return; 1771 return;
1610 1772
1611 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1773 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1612 ev_stop (EV_A_ (W)w); 1774 ev_stop (EV_A_ (W)w);
1623#endif 1785#endif
1624 if (expect_false (ev_is_active (w))) 1786 if (expect_false (ev_is_active (w)))
1625 return; 1787 return;
1626 1788
1627 ev_start (EV_A_ (W)w, 1); 1789 ev_start (EV_A_ (W)w, 1);
1628 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1790 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1629} 1791}
1630 1792
1631void 1793void
1632ev_child_stop (EV_P_ ev_child *w) 1794ev_child_stop (EV_P_ ev_child *w)
1633{ 1795{
1634 ev_clear_pending (EV_A_ (W)w); 1796 clear_pending (EV_A_ (W)w);
1635 if (expect_false (!ev_is_active (w))) 1797 if (expect_false (!ev_is_active (w)))
1636 return; 1798 return;
1637 1799
1638 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1800 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1639 ev_stop (EV_A_ (W)w); 1801 ev_stop (EV_A_ (W)w);
1640} 1802}
1641 1803
1642#if EV_STAT_ENABLE 1804#if EV_STAT_ENABLE
1643 1805
1647# endif 1809# endif
1648 1810
1649#define DEF_STAT_INTERVAL 5.0074891 1811#define DEF_STAT_INTERVAL 5.0074891
1650#define MIN_STAT_INTERVAL 0.1074891 1812#define MIN_STAT_INTERVAL 0.1074891
1651 1813
1814static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1815
1816#if EV_USE_INOTIFY
1817# define EV_INOTIFY_BUFSIZE 8192
1818
1819static void noinline
1820infy_add (EV_P_ ev_stat *w)
1821{
1822 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1823
1824 if (w->wd < 0)
1825 {
1826 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1827
1828 /* monitor some parent directory for speedup hints */
1829 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1830 {
1831 char path [4096];
1832 strcpy (path, w->path);
1833
1834 do
1835 {
1836 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1837 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1838
1839 char *pend = strrchr (path, '/');
1840
1841 if (!pend)
1842 break; /* whoops, no '/', complain to your admin */
1843
1844 *pend = 0;
1845 w->wd = inotify_add_watch (fs_fd, path, mask);
1846 }
1847 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1848 }
1849 }
1850 else
1851 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1852
1853 if (w->wd >= 0)
1854 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1855}
1856
1857static void noinline
1858infy_del (EV_P_ ev_stat *w)
1859{
1860 int slot;
1861 int wd = w->wd;
1862
1863 if (wd < 0)
1864 return;
1865
1866 w->wd = -2;
1867 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1868 wlist_del (&fs_hash [slot].head, (WL)w);
1869
1870 /* remove this watcher, if others are watching it, they will rearm */
1871 inotify_rm_watch (fs_fd, wd);
1872}
1873
1874static void noinline
1875infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1876{
1877 if (slot < 0)
1878 /* overflow, need to check for all hahs slots */
1879 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1880 infy_wd (EV_A_ slot, wd, ev);
1881 else
1882 {
1883 WL w_;
1884
1885 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1886 {
1887 ev_stat *w = (ev_stat *)w_;
1888 w_ = w_->next; /* lets us remove this watcher and all before it */
1889
1890 if (w->wd == wd || wd == -1)
1891 {
1892 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1893 {
1894 w->wd = -1;
1895 infy_add (EV_A_ w); /* re-add, no matter what */
1896 }
1897
1898 stat_timer_cb (EV_A_ &w->timer, 0);
1899 }
1900 }
1901 }
1902}
1903
1904static void
1905infy_cb (EV_P_ ev_io *w, int revents)
1906{
1907 char buf [EV_INOTIFY_BUFSIZE];
1908 struct inotify_event *ev = (struct inotify_event *)buf;
1909 int ofs;
1910 int len = read (fs_fd, buf, sizeof (buf));
1911
1912 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1913 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1914}
1915
1916void inline_size
1917infy_init (EV_P)
1918{
1919 if (fs_fd != -2)
1920 return;
1921
1922 fs_fd = inotify_init ();
1923
1924 if (fs_fd >= 0)
1925 {
1926 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1927 ev_set_priority (&fs_w, EV_MAXPRI);
1928 ev_io_start (EV_A_ &fs_w);
1929 }
1930}
1931
1932void inline_size
1933infy_fork (EV_P)
1934{
1935 int slot;
1936
1937 if (fs_fd < 0)
1938 return;
1939
1940 close (fs_fd);
1941 fs_fd = inotify_init ();
1942
1943 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1944 {
1945 WL w_ = fs_hash [slot].head;
1946 fs_hash [slot].head = 0;
1947
1948 while (w_)
1949 {
1950 ev_stat *w = (ev_stat *)w_;
1951 w_ = w_->next; /* lets us add this watcher */
1952
1953 w->wd = -1;
1954
1955 if (fs_fd >= 0)
1956 infy_add (EV_A_ w); /* re-add, no matter what */
1957 else
1958 ev_timer_start (EV_A_ &w->timer);
1959 }
1960
1961 }
1962}
1963
1964#endif
1965
1652void 1966void
1653ev_stat_stat (EV_P_ ev_stat *w) 1967ev_stat_stat (EV_P_ ev_stat *w)
1654{ 1968{
1655 if (lstat (w->path, &w->attr) < 0) 1969 if (lstat (w->path, &w->attr) < 0)
1656 w->attr.st_nlink = 0; 1970 w->attr.st_nlink = 0;
1657 else if (!w->attr.st_nlink) 1971 else if (!w->attr.st_nlink)
1658 w->attr.st_nlink = 1; 1972 w->attr.st_nlink = 1;
1659} 1973}
1660 1974
1661static void 1975static void noinline
1662stat_timer_cb (EV_P_ ev_timer *w_, int revents) 1976stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1663{ 1977{
1664 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 1978 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1665 1979
1666 /* we copy this here each the time so that */ 1980 /* we copy this here each the time so that */
1667 /* prev has the old value when the callback gets invoked */ 1981 /* prev has the old value when the callback gets invoked */
1668 w->prev = w->attr; 1982 w->prev = w->attr;
1669 ev_stat_stat (EV_A_ w); 1983 ev_stat_stat (EV_A_ w);
1670 1984
1671 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 1985 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1986 if (
1987 w->prev.st_dev != w->attr.st_dev
1988 || w->prev.st_ino != w->attr.st_ino
1989 || w->prev.st_mode != w->attr.st_mode
1990 || w->prev.st_nlink != w->attr.st_nlink
1991 || w->prev.st_uid != w->attr.st_uid
1992 || w->prev.st_gid != w->attr.st_gid
1993 || w->prev.st_rdev != w->attr.st_rdev
1994 || w->prev.st_size != w->attr.st_size
1995 || w->prev.st_atime != w->attr.st_atime
1996 || w->prev.st_mtime != w->attr.st_mtime
1997 || w->prev.st_ctime != w->attr.st_ctime
1998 ) {
1999 #if EV_USE_INOTIFY
2000 infy_del (EV_A_ w);
2001 infy_add (EV_A_ w);
2002 ev_stat_stat (EV_A_ w); /* avoid race... */
2003 #endif
2004
1672 ev_feed_event (EV_A_ w, EV_STAT); 2005 ev_feed_event (EV_A_ w, EV_STAT);
2006 }
1673} 2007}
1674 2008
1675void 2009void
1676ev_stat_start (EV_P_ ev_stat *w) 2010ev_stat_start (EV_P_ ev_stat *w)
1677{ 2011{
1687 if (w->interval < MIN_STAT_INTERVAL) 2021 if (w->interval < MIN_STAT_INTERVAL)
1688 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL; 2022 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1689 2023
1690 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2024 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1691 ev_set_priority (&w->timer, ev_priority (w)); 2025 ev_set_priority (&w->timer, ev_priority (w));
2026
2027#if EV_USE_INOTIFY
2028 infy_init (EV_A);
2029
2030 if (fs_fd >= 0)
2031 infy_add (EV_A_ w);
2032 else
2033#endif
1692 ev_timer_start (EV_A_ &w->timer); 2034 ev_timer_start (EV_A_ &w->timer);
1693 2035
1694 ev_start (EV_A_ (W)w, 1); 2036 ev_start (EV_A_ (W)w, 1);
1695} 2037}
1696 2038
1697void 2039void
1698ev_stat_stop (EV_P_ ev_stat *w) 2040ev_stat_stop (EV_P_ ev_stat *w)
1699{ 2041{
1700 ev_clear_pending (EV_A_ (W)w); 2042 clear_pending (EV_A_ (W)w);
1701 if (expect_false (!ev_is_active (w))) 2043 if (expect_false (!ev_is_active (w)))
1702 return; 2044 return;
1703 2045
2046#if EV_USE_INOTIFY
2047 infy_del (EV_A_ w);
2048#endif
1704 ev_timer_stop (EV_A_ &w->timer); 2049 ev_timer_stop (EV_A_ &w->timer);
1705 2050
1706 ev_stop (EV_A_ (W)w); 2051 ev_stop (EV_A_ (W)w);
1707} 2052}
1708#endif 2053#endif
1709 2054
2055#if EV_IDLE_ENABLE
1710void 2056void
1711ev_idle_start (EV_P_ ev_idle *w) 2057ev_idle_start (EV_P_ ev_idle *w)
1712{ 2058{
1713 if (expect_false (ev_is_active (w))) 2059 if (expect_false (ev_is_active (w)))
1714 return; 2060 return;
1715 2061
2062 pri_adjust (EV_A_ (W)w);
2063
2064 {
2065 int active = ++idlecnt [ABSPRI (w)];
2066
2067 ++idleall;
1716 ev_start (EV_A_ (W)w, ++idlecnt); 2068 ev_start (EV_A_ (W)w, active);
2069
1717 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2070 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1718 idles [idlecnt - 1] = w; 2071 idles [ABSPRI (w)][active - 1] = w;
2072 }
1719} 2073}
1720 2074
1721void 2075void
1722ev_idle_stop (EV_P_ ev_idle *w) 2076ev_idle_stop (EV_P_ ev_idle *w)
1723{ 2077{
1724 ev_clear_pending (EV_A_ (W)w); 2078 clear_pending (EV_A_ (W)w);
1725 if (expect_false (!ev_is_active (w))) 2079 if (expect_false (!ev_is_active (w)))
1726 return; 2080 return;
1727 2081
1728 { 2082 {
1729 int active = ((W)w)->active; 2083 int active = ((W)w)->active;
1730 idles [active - 1] = idles [--idlecnt]; 2084
2085 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1731 ((W)idles [active - 1])->active = active; 2086 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2087
2088 ev_stop (EV_A_ (W)w);
2089 --idleall;
1732 } 2090 }
1733
1734 ev_stop (EV_A_ (W)w);
1735} 2091}
2092#endif
1736 2093
1737void 2094void
1738ev_prepare_start (EV_P_ ev_prepare *w) 2095ev_prepare_start (EV_P_ ev_prepare *w)
1739{ 2096{
1740 if (expect_false (ev_is_active (w))) 2097 if (expect_false (ev_is_active (w)))
1746} 2103}
1747 2104
1748void 2105void
1749ev_prepare_stop (EV_P_ ev_prepare *w) 2106ev_prepare_stop (EV_P_ ev_prepare *w)
1750{ 2107{
1751 ev_clear_pending (EV_A_ (W)w); 2108 clear_pending (EV_A_ (W)w);
1752 if (expect_false (!ev_is_active (w))) 2109 if (expect_false (!ev_is_active (w)))
1753 return; 2110 return;
1754 2111
1755 { 2112 {
1756 int active = ((W)w)->active; 2113 int active = ((W)w)->active;
1773} 2130}
1774 2131
1775void 2132void
1776ev_check_stop (EV_P_ ev_check *w) 2133ev_check_stop (EV_P_ ev_check *w)
1777{ 2134{
1778 ev_clear_pending (EV_A_ (W)w); 2135 clear_pending (EV_A_ (W)w);
1779 if (expect_false (!ev_is_active (w))) 2136 if (expect_false (!ev_is_active (w)))
1780 return; 2137 return;
1781 2138
1782 { 2139 {
1783 int active = ((W)w)->active; 2140 int active = ((W)w)->active;
1825} 2182}
1826 2183
1827void 2184void
1828ev_embed_stop (EV_P_ ev_embed *w) 2185ev_embed_stop (EV_P_ ev_embed *w)
1829{ 2186{
1830 ev_clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1831 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1832 return; 2189 return;
1833 2190
1834 ev_io_stop (EV_A_ &w->io); 2191 ev_io_stop (EV_A_ &w->io);
1835 2192
1850} 2207}
1851 2208
1852void 2209void
1853ev_fork_stop (EV_P_ ev_fork *w) 2210ev_fork_stop (EV_P_ ev_fork *w)
1854{ 2211{
1855 ev_clear_pending (EV_A_ (W)w); 2212 clear_pending (EV_A_ (W)w);
1856 if (expect_false (!ev_is_active (w))) 2213 if (expect_false (!ev_is_active (w)))
1857 return; 2214 return;
1858 2215
1859 { 2216 {
1860 int active = ((W)w)->active; 2217 int active = ((W)w)->active;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines