ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.133 by root, Fri Nov 23 11:32:22 2007 UTC vs.
Revision 1.148 by root, Tue Nov 27 11:11:13 2007 UTC

111#include <time.h> 111#include <time.h>
112 112
113#include <signal.h> 113#include <signal.h>
114 114
115#ifndef _WIN32 115#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 116# include <sys/time.h>
118# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
119#else 119#else
120# define WIN32_LEAN_AND_MEAN 120# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 123# define EV_SELECT_IS_WINSOCKET 1
187# include "ev.h" 187# include "ev.h"
188#endif 188#endif
189 189
190#if __GNUC__ >= 3 190#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
192# define inline static inline 198# define inline_speed static inline
199# endif
193#else 200#else
194# define expect(expr,value) (expr) 201# define expect(expr,value) (expr)
202# define inline_speed static
195# define inline static 203# define inline_size static
204# define noinline
196#endif 205#endif
197 206
198#define expect_false(expr) expect ((expr) != 0, 0) 207#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 208#define expect_true(expr) expect ((expr) != 0, 1)
200 209
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 211#define ABSPRI(w) ((w)->priority - EV_MINPRI)
203 212
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 214#define EMPTY2(a,b) /* used to suppress some warnings */
206 215
207typedef struct ev_watcher *W; 216typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 217typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 218typedef ev_watcher_time *WT;
210 219
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
212 221
213#ifdef _WIN32 222#ifdef _WIN32
214# include "ev_win32.c" 223# include "ev_win32.c"
216 225
217/*****************************************************************************/ 226/*****************************************************************************/
218 227
219static void (*syserr_cb)(const char *msg); 228static void (*syserr_cb)(const char *msg);
220 229
230void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 231ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 232{
223 syserr_cb = cb; 233 syserr_cb = cb;
224} 234}
225 235
226static void 236static void noinline
227syserr (const char *msg) 237syserr (const char *msg)
228{ 238{
229 if (!msg) 239 if (!msg)
230 msg = "(libev) system error"; 240 msg = "(libev) system error";
231 241
238 } 248 }
239} 249}
240 250
241static void *(*alloc)(void *ptr, long size); 251static void *(*alloc)(void *ptr, long size);
242 252
253void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 254ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 255{
245 alloc = cb; 256 alloc = cb;
246} 257}
247 258
248static void * 259static void *
320 gettimeofday (&tv, 0); 331 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 332 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 333#endif
323} 334}
324 335
325inline ev_tstamp 336ev_tstamp inline_size
326get_clock (void) 337get_clock (void)
327{ 338{
328#if EV_USE_MONOTONIC 339#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 340 if (expect_true (have_monotonic))
330 { 341 {
373#define array_free(stem, idx) \ 384#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 386
376/*****************************************************************************/ 387/*****************************************************************************/
377 388
378static void 389void noinline
379anfds_init (ANFD *base, int count)
380{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389}
390
391void
392ev_feed_event (EV_P_ void *w, int revents) 390ev_feed_event (EV_P_ void *w, int revents)
393{ 391{
394 W w_ = (W)w; 392 W w_ = (W)w;
395 393
396 if (expect_false (w_->pending)) 394 if (expect_false (w_->pending))
403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2); 401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
406} 404}
407 405
408static void 406void inline_size
409queue_events (EV_P_ W *events, int eventcnt, int type) 407queue_events (EV_P_ W *events, int eventcnt, int type)
410{ 408{
411 int i; 409 int i;
412 410
413 for (i = 0; i < eventcnt; ++i) 411 for (i = 0; i < eventcnt; ++i)
414 ev_feed_event (EV_A_ events [i], type); 412 ev_feed_event (EV_A_ events [i], type);
415} 413}
416 414
417inline void 415/*****************************************************************************/
416
417void inline_size
418anfds_init (ANFD *base, int count)
419{
420 while (count--)
421 {
422 base->head = 0;
423 base->events = EV_NONE;
424 base->reify = 0;
425
426 ++base;
427 }
428}
429
430void inline_speed
418fd_event (EV_P_ int fd, int revents) 431fd_event (EV_P_ int fd, int revents)
419{ 432{
420 ANFD *anfd = anfds + fd; 433 ANFD *anfd = anfds + fd;
421 struct ev_io *w; 434 ev_io *w;
422 435
423 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 436 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
424 { 437 {
425 int ev = w->events & revents; 438 int ev = w->events & revents;
426 439
427 if (ev) 440 if (ev)
428 ev_feed_event (EV_A_ (W)w, ev); 441 ev_feed_event (EV_A_ (W)w, ev);
433ev_feed_fd_event (EV_P_ int fd, int revents) 446ev_feed_fd_event (EV_P_ int fd, int revents)
434{ 447{
435 fd_event (EV_A_ fd, revents); 448 fd_event (EV_A_ fd, revents);
436} 449}
437 450
438/*****************************************************************************/ 451void inline_size
439
440inline void
441fd_reify (EV_P) 452fd_reify (EV_P)
442{ 453{
443 int i; 454 int i;
444 455
445 for (i = 0; i < fdchangecnt; ++i) 456 for (i = 0; i < fdchangecnt; ++i)
446 { 457 {
447 int fd = fdchanges [i]; 458 int fd = fdchanges [i];
448 ANFD *anfd = anfds + fd; 459 ANFD *anfd = anfds + fd;
449 struct ev_io *w; 460 ev_io *w;
450 461
451 int events = 0; 462 int events = 0;
452 463
453 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
454 events |= w->events; 465 events |= w->events;
455 466
456#if EV_SELECT_IS_WINSOCKET 467#if EV_SELECT_IS_WINSOCKET
457 if (events) 468 if (events)
458 { 469 {
469 } 480 }
470 481
471 fdchangecnt = 0; 482 fdchangecnt = 0;
472} 483}
473 484
474static void 485void inline_size
475fd_change (EV_P_ int fd) 486fd_change (EV_P_ int fd)
476{ 487{
477 if (expect_false (anfds [fd].reify)) 488 if (expect_false (anfds [fd].reify))
478 return; 489 return;
479 490
482 ++fdchangecnt; 493 ++fdchangecnt;
483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
484 fdchanges [fdchangecnt - 1] = fd; 495 fdchanges [fdchangecnt - 1] = fd;
485} 496}
486 497
487static void 498void inline_speed
488fd_kill (EV_P_ int fd) 499fd_kill (EV_P_ int fd)
489{ 500{
490 struct ev_io *w; 501 ev_io *w;
491 502
492 while ((w = (struct ev_io *)anfds [fd].head)) 503 while ((w = (ev_io *)anfds [fd].head))
493 { 504 {
494 ev_io_stop (EV_A_ w); 505 ev_io_stop (EV_A_ w);
495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 506 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
496 } 507 }
497} 508}
498 509
499inline int 510int inline_size
500fd_valid (int fd) 511fd_valid (int fd)
501{ 512{
502#ifdef _WIN32 513#ifdef _WIN32
503 return _get_osfhandle (fd) != -1; 514 return _get_osfhandle (fd) != -1;
504#else 515#else
505 return fcntl (fd, F_GETFD) != -1; 516 return fcntl (fd, F_GETFD) != -1;
506#endif 517#endif
507} 518}
508 519
509/* called on EBADF to verify fds */ 520/* called on EBADF to verify fds */
510static void 521static void noinline
511fd_ebadf (EV_P) 522fd_ebadf (EV_P)
512{ 523{
513 int fd; 524 int fd;
514 525
515 for (fd = 0; fd < anfdmax; ++fd) 526 for (fd = 0; fd < anfdmax; ++fd)
517 if (!fd_valid (fd) == -1 && errno == EBADF) 528 if (!fd_valid (fd) == -1 && errno == EBADF)
518 fd_kill (EV_A_ fd); 529 fd_kill (EV_A_ fd);
519} 530}
520 531
521/* called on ENOMEM in select/poll to kill some fds and retry */ 532/* called on ENOMEM in select/poll to kill some fds and retry */
522static void 533static void noinline
523fd_enomem (EV_P) 534fd_enomem (EV_P)
524{ 535{
525 int fd; 536 int fd;
526 537
527 for (fd = anfdmax; fd--; ) 538 for (fd = anfdmax; fd--; )
531 return; 542 return;
532 } 543 }
533} 544}
534 545
535/* usually called after fork if backend needs to re-arm all fds from scratch */ 546/* usually called after fork if backend needs to re-arm all fds from scratch */
536static void 547static void noinline
537fd_rearm_all (EV_P) 548fd_rearm_all (EV_P)
538{ 549{
539 int fd; 550 int fd;
540 551
541 /* this should be highly optimised to not do anything but set a flag */ 552 /* this should be highly optimised to not do anything but set a flag */
547 } 558 }
548} 559}
549 560
550/*****************************************************************************/ 561/*****************************************************************************/
551 562
552static void 563void inline_speed
553upheap (WT *heap, int k) 564upheap (WT *heap, int k)
554{ 565{
555 WT w = heap [k]; 566 WT w = heap [k];
556 567
557 while (k && heap [k >> 1]->at > w->at) 568 while (k && heap [k >> 1]->at > w->at)
564 heap [k] = w; 575 heap [k] = w;
565 ((W)heap [k])->active = k + 1; 576 ((W)heap [k])->active = k + 1;
566 577
567} 578}
568 579
569static void 580void inline_speed
570downheap (WT *heap, int N, int k) 581downheap (WT *heap, int N, int k)
571{ 582{
572 WT w = heap [k]; 583 WT w = heap [k];
573 584
574 while (k < (N >> 1)) 585 while (k < (N >> 1))
588 599
589 heap [k] = w; 600 heap [k] = w;
590 ((W)heap [k])->active = k + 1; 601 ((W)heap [k])->active = k + 1;
591} 602}
592 603
593inline void 604void inline_size
594adjustheap (WT *heap, int N, int k) 605adjustheap (WT *heap, int N, int k)
595{ 606{
596 upheap (heap, k); 607 upheap (heap, k);
597 downheap (heap, N, k); 608 downheap (heap, N, k);
598} 609}
608static ANSIG *signals; 619static ANSIG *signals;
609static int signalmax; 620static int signalmax;
610 621
611static int sigpipe [2]; 622static int sigpipe [2];
612static sig_atomic_t volatile gotsig; 623static sig_atomic_t volatile gotsig;
613static struct ev_io sigev; 624static ev_io sigev;
614 625
615static void 626void inline_size
616signals_init (ANSIG *base, int count) 627signals_init (ANSIG *base, int count)
617{ 628{
618 while (count--) 629 while (count--)
619 { 630 {
620 base->head = 0; 631 base->head = 0;
640 write (sigpipe [1], &signum, 1); 651 write (sigpipe [1], &signum, 1);
641 errno = old_errno; 652 errno = old_errno;
642 } 653 }
643} 654}
644 655
645void 656void noinline
646ev_feed_signal_event (EV_P_ int signum) 657ev_feed_signal_event (EV_P_ int signum)
647{ 658{
648 WL w; 659 WL w;
649 660
650#if EV_MULTIPLICITY 661#if EV_MULTIPLICITY
661 for (w = signals [signum].head; w; w = w->next) 672 for (w = signals [signum].head; w; w = w->next)
662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
663} 674}
664 675
665static void 676static void
666sigcb (EV_P_ struct ev_io *iow, int revents) 677sigcb (EV_P_ ev_io *iow, int revents)
667{ 678{
668 int signum; 679 int signum;
669 680
670 read (sigpipe [0], &revents, 1); 681 read (sigpipe [0], &revents, 1);
671 gotsig = 0; 682 gotsig = 0;
673 for (signum = signalmax; signum--; ) 684 for (signum = signalmax; signum--; )
674 if (signals [signum].gotsig) 685 if (signals [signum].gotsig)
675 ev_feed_signal_event (EV_A_ signum + 1); 686 ev_feed_signal_event (EV_A_ signum + 1);
676} 687}
677 688
678static void 689void inline_size
679fd_intern (int fd) 690fd_intern (int fd)
680{ 691{
681#ifdef _WIN32 692#ifdef _WIN32
682 int arg = 1; 693 int arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
685 fcntl (fd, F_SETFD, FD_CLOEXEC); 696 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK); 697 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif 698#endif
688} 699}
689 700
690static void 701static void noinline
691siginit (EV_P) 702siginit (EV_P)
692{ 703{
693 fd_intern (sigpipe [0]); 704 fd_intern (sigpipe [0]);
694 fd_intern (sigpipe [1]); 705 fd_intern (sigpipe [1]);
695 706
698 ev_unref (EV_A); /* child watcher should not keep loop alive */ 709 ev_unref (EV_A); /* child watcher should not keep loop alive */
699} 710}
700 711
701/*****************************************************************************/ 712/*****************************************************************************/
702 713
703static struct ev_child *childs [PID_HASHSIZE]; 714static ev_child *childs [PID_HASHSIZE];
704 715
705#ifndef _WIN32 716#ifndef _WIN32
706 717
707static struct ev_signal childev; 718static ev_signal childev;
708 719
709#ifndef WCONTINUED 720void inline_speed
710# define WCONTINUED 0
711#endif
712
713static void
714child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
715{ 722{
716 struct ev_child *w; 723 ev_child *w;
717 724
718 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
719 if (w->pid == pid || !w->pid) 726 if (w->pid == pid || !w->pid)
720 { 727 {
721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
722 w->rpid = pid; 729 w->rpid = pid;
723 w->rstatus = status; 730 w->rstatus = status;
724 ev_feed_event (EV_A_ (W)w, EV_CHILD); 731 ev_feed_event (EV_A_ (W)w, EV_CHILD);
725 } 732 }
726} 733}
727 734
735#ifndef WCONTINUED
736# define WCONTINUED 0
737#endif
738
728static void 739static void
729childcb (EV_P_ struct ev_signal *sw, int revents) 740childcb (EV_P_ ev_signal *sw, int revents)
730{ 741{
731 int pid, status; 742 int pid, status;
732 743
744 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 745 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
734 { 746 if (!WCONTINUED
747 || errno != EINVAL
748 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
749 return;
750
735 /* make sure we are called again until all childs have been reaped */ 751 /* make sure we are called again until all childs have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */ 752 /* we need to do it this way so that the callback gets called before we continue */
737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
738 754
739 child_reap (EV_A_ sw, pid, pid, status); 755 child_reap (EV_A_ sw, pid, pid, status);
740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
741 }
742} 757}
743 758
744#endif 759#endif
745 760
746/*****************************************************************************/ 761/*****************************************************************************/
772{ 787{
773 return EV_VERSION_MINOR; 788 return EV_VERSION_MINOR;
774} 789}
775 790
776/* return true if we are running with elevated privileges and should ignore env variables */ 791/* return true if we are running with elevated privileges and should ignore env variables */
777static int 792int inline_size
778enable_secure (void) 793enable_secure (void)
779{ 794{
780#ifdef _WIN32 795#ifdef _WIN32
781 return 0; 796 return 0;
782#else 797#else
816 831
817 return flags; 832 return flags;
818} 833}
819 834
820unsigned int 835unsigned int
836ev_embeddable_backends (void)
837{
838 return EVBACKEND_EPOLL
839 | EVBACKEND_KQUEUE
840 | EVBACKEND_PORT;
841}
842
843unsigned int
821ev_backend (EV_P) 844ev_backend (EV_P)
822{ 845{
823 return backend; 846 return backend;
824} 847}
825 848
896 array_free (pending, [i]); 919 array_free (pending, [i]);
897 920
898 /* have to use the microsoft-never-gets-it-right macro */ 921 /* have to use the microsoft-never-gets-it-right macro */
899 array_free (fdchange, EMPTY0); 922 array_free (fdchange, EMPTY0);
900 array_free (timer, EMPTY0); 923 array_free (timer, EMPTY0);
901#if EV_PERIODICS 924#if EV_PERIODIC_ENABLE
902 array_free (periodic, EMPTY0); 925 array_free (periodic, EMPTY0);
903#endif 926#endif
904 array_free (idle, EMPTY0); 927 array_free (idle, EMPTY0);
905 array_free (prepare, EMPTY0); 928 array_free (prepare, EMPTY0);
906 array_free (check, EMPTY0); 929 array_free (check, EMPTY0);
1042 postfork = 1; 1065 postfork = 1;
1043} 1066}
1044 1067
1045/*****************************************************************************/ 1068/*****************************************************************************/
1046 1069
1047static int 1070int inline_size
1048any_pending (EV_P) 1071any_pending (EV_P)
1049{ 1072{
1050 int pri; 1073 int pri;
1051 1074
1052 for (pri = NUMPRI; pri--; ) 1075 for (pri = NUMPRI; pri--; )
1054 return 1; 1077 return 1;
1055 1078
1056 return 0; 1079 return 0;
1057} 1080}
1058 1081
1059inline void 1082void inline_speed
1060call_pending (EV_P) 1083call_pending (EV_P)
1061{ 1084{
1062 int pri; 1085 int pri;
1063 1086
1064 for (pri = NUMPRI; pri--; ) 1087 for (pri = NUMPRI; pri--; )
1066 { 1089 {
1067 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1068 1091
1069 if (expect_true (p->w)) 1092 if (expect_true (p->w))
1070 { 1093 {
1094 assert (("non-pending watcher on pending list", p->w->pending));
1095
1071 p->w->pending = 0; 1096 p->w->pending = 0;
1072 EV_CB_INVOKE (p->w, p->events); 1097 EV_CB_INVOKE (p->w, p->events);
1073 } 1098 }
1074 } 1099 }
1075} 1100}
1076 1101
1077inline void 1102void inline_size
1078timers_reify (EV_P) 1103timers_reify (EV_P)
1079{ 1104{
1080 while (timercnt && ((WT)timers [0])->at <= mn_now) 1105 while (timercnt && ((WT)timers [0])->at <= mn_now)
1081 { 1106 {
1082 struct ev_timer *w = timers [0]; 1107 ev_timer *w = timers [0];
1083 1108
1084 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1109 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1085 1110
1086 /* first reschedule or stop timer */ 1111 /* first reschedule or stop timer */
1087 if (w->repeat) 1112 if (w->repeat)
1099 1124
1100 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1125 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1101 } 1126 }
1102} 1127}
1103 1128
1104#if EV_PERIODICS 1129#if EV_PERIODIC_ENABLE
1105inline void 1130void inline_size
1106periodics_reify (EV_P) 1131periodics_reify (EV_P)
1107{ 1132{
1108 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1109 { 1134 {
1110 struct ev_periodic *w = periodics [0]; 1135 ev_periodic *w = periodics [0];
1111 1136
1112 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1137 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1113 1138
1114 /* first reschedule or stop timer */ 1139 /* first reschedule or stop timer */
1115 if (w->reschedule_cb) 1140 if (w->reschedule_cb)
1129 1154
1130 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1155 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1131 } 1156 }
1132} 1157}
1133 1158
1134static void 1159static void noinline
1135periodics_reschedule (EV_P) 1160periodics_reschedule (EV_P)
1136{ 1161{
1137 int i; 1162 int i;
1138 1163
1139 /* adjust periodics after time jump */ 1164 /* adjust periodics after time jump */
1140 for (i = 0; i < periodiccnt; ++i) 1165 for (i = 0; i < periodiccnt; ++i)
1141 { 1166 {
1142 struct ev_periodic *w = periodics [i]; 1167 ev_periodic *w = periodics [i];
1143 1168
1144 if (w->reschedule_cb) 1169 if (w->reschedule_cb)
1145 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1146 else if (w->interval) 1171 else if (w->interval)
1147 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1151 for (i = periodiccnt >> 1; i--; ) 1176 for (i = periodiccnt >> 1; i--; )
1152 downheap ((WT *)periodics, periodiccnt, i); 1177 downheap ((WT *)periodics, periodiccnt, i);
1153} 1178}
1154#endif 1179#endif
1155 1180
1156inline int 1181int inline_size
1157time_update_monotonic (EV_P) 1182time_update_monotonic (EV_P)
1158{ 1183{
1159 mn_now = get_clock (); 1184 mn_now = get_clock ();
1160 1185
1161 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1169 ev_rt_now = ev_time (); 1194 ev_rt_now = ev_time ();
1170 return 1; 1195 return 1;
1171 } 1196 }
1172} 1197}
1173 1198
1174inline void 1199void inline_size
1175time_update (EV_P) 1200time_update (EV_P)
1176{ 1201{
1177 int i; 1202 int i;
1178 1203
1179#if EV_USE_MONOTONIC 1204#if EV_USE_MONOTONIC
1181 { 1206 {
1182 if (time_update_monotonic (EV_A)) 1207 if (time_update_monotonic (EV_A))
1183 { 1208 {
1184 ev_tstamp odiff = rtmn_diff; 1209 ev_tstamp odiff = rtmn_diff;
1185 1210
1186 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
1187 { 1220 {
1188 rtmn_diff = ev_rt_now - mn_now; 1221 rtmn_diff = ev_rt_now - mn_now;
1189 1222
1190 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1191 return; /* all is well */ 1224 return; /* all is well */
1193 ev_rt_now = ev_time (); 1226 ev_rt_now = ev_time ();
1194 mn_now = get_clock (); 1227 mn_now = get_clock ();
1195 now_floor = mn_now; 1228 now_floor = mn_now;
1196 } 1229 }
1197 1230
1198# if EV_PERIODICS 1231# if EV_PERIODIC_ENABLE
1199 periodics_reschedule (EV_A); 1232 periodics_reschedule (EV_A);
1200# endif 1233# endif
1201 /* no timer adjustment, as the monotonic clock doesn't jump */ 1234 /* no timer adjustment, as the monotonic clock doesn't jump */
1202 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1203 } 1236 }
1207 { 1240 {
1208 ev_rt_now = ev_time (); 1241 ev_rt_now = ev_time ();
1209 1242
1210 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1211 { 1244 {
1212#if EV_PERIODICS 1245#if EV_PERIODIC_ENABLE
1213 periodics_reschedule (EV_A); 1246 periodics_reschedule (EV_A);
1214#endif 1247#endif
1215 1248
1216 /* adjust timers. this is easy, as the offset is the same for all */ 1249 /* adjust timers. this is easy, as the offset is the same for all */
1217 for (i = 0; i < timercnt; ++i) 1250 for (i = 0; i < timercnt; ++i)
1237static int loop_done; 1270static int loop_done;
1238 1271
1239void 1272void
1240ev_loop (EV_P_ int flags) 1273ev_loop (EV_P_ int flags)
1241{ 1274{
1242 double block;
1243 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1275 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1276 ? EVUNLOOP_ONE
1277 : EVUNLOOP_CANCEL;
1244 1278
1245 while (activecnt) 1279 while (activecnt)
1246 { 1280 {
1281 /* we might have forked, so reify kernel state if necessary */
1282 #if EV_FORK_ENABLE
1283 if (expect_false (postfork))
1284 if (forkcnt)
1285 {
1286 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1287 call_pending (EV_A);
1288 }
1289 #endif
1290
1247 /* queue check watchers (and execute them) */ 1291 /* queue check watchers (and execute them) */
1248 if (expect_false (preparecnt)) 1292 if (expect_false (preparecnt))
1249 { 1293 {
1250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1294 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1251 call_pending (EV_A); 1295 call_pending (EV_A);
1257 1301
1258 /* update fd-related kernel structures */ 1302 /* update fd-related kernel structures */
1259 fd_reify (EV_A); 1303 fd_reify (EV_A);
1260 1304
1261 /* calculate blocking time */ 1305 /* calculate blocking time */
1306 {
1307 double block;
1262 1308
1263 /* we only need this for !monotonic clock or timers, but as we basically 1309 if (flags & EVLOOP_NONBLOCK || idlecnt)
1264 always have timers, we just calculate it always */ 1310 block = 0.; /* do not block at all */
1311 else
1312 {
1313 /* update time to cancel out callback processing overhead */
1265#if EV_USE_MONOTONIC 1314#if EV_USE_MONOTONIC
1266 if (expect_true (have_monotonic)) 1315 if (expect_true (have_monotonic))
1267 time_update_monotonic (EV_A); 1316 time_update_monotonic (EV_A);
1268 else 1317 else
1269#endif 1318#endif
1270 { 1319 {
1271 ev_rt_now = ev_time (); 1320 ev_rt_now = ev_time ();
1272 mn_now = ev_rt_now; 1321 mn_now = ev_rt_now;
1273 } 1322 }
1274 1323
1275 if (flags & EVLOOP_NONBLOCK || idlecnt)
1276 block = 0.;
1277 else
1278 {
1279 block = MAX_BLOCKTIME; 1324 block = MAX_BLOCKTIME;
1280 1325
1281 if (timercnt) 1326 if (timercnt)
1282 { 1327 {
1283 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1328 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1284 if (block > to) block = to; 1329 if (block > to) block = to;
1285 } 1330 }
1286 1331
1287#if EV_PERIODICS 1332#if EV_PERIODIC_ENABLE
1288 if (periodiccnt) 1333 if (periodiccnt)
1289 { 1334 {
1290 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1335 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1291 if (block > to) block = to; 1336 if (block > to) block = to;
1292 } 1337 }
1293#endif 1338#endif
1294 1339
1295 if (expect_false (block < 0.)) block = 0.; 1340 if (expect_false (block < 0.)) block = 0.;
1296 } 1341 }
1297 1342
1298 backend_poll (EV_A_ block); 1343 backend_poll (EV_A_ block);
1344 }
1299 1345
1300 /* update ev_rt_now, do magic */ 1346 /* update ev_rt_now, do magic */
1301 time_update (EV_A); 1347 time_update (EV_A);
1302 1348
1303 /* queue pending timers and reschedule them */ 1349 /* queue pending timers and reschedule them */
1304 timers_reify (EV_A); /* relative timers called last */ 1350 timers_reify (EV_A); /* relative timers called last */
1305#if EV_PERIODICS 1351#if EV_PERIODIC_ENABLE
1306 periodics_reify (EV_A); /* absolute timers called first */ 1352 periodics_reify (EV_A); /* absolute timers called first */
1307#endif 1353#endif
1308 1354
1309 /* queue idle watchers unless io or timers are pending */ 1355 /* queue idle watchers unless other events are pending */
1310 if (idlecnt && !any_pending (EV_A)) 1356 if (idlecnt && !any_pending (EV_A))
1311 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1357 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1312 1358
1313 /* queue check watchers, to be executed first */ 1359 /* queue check watchers, to be executed first */
1314 if (expect_false (checkcnt)) 1360 if (expect_false (checkcnt))
1318 1364
1319 if (expect_false (loop_done)) 1365 if (expect_false (loop_done))
1320 break; 1366 break;
1321 } 1367 }
1322 1368
1323 if (loop_done != 2) 1369 if (loop_done == EVUNLOOP_ONE)
1324 loop_done = 0; 1370 loop_done = EVUNLOOP_CANCEL;
1325} 1371}
1326 1372
1327void 1373void
1328ev_unloop (EV_P_ int how) 1374ev_unloop (EV_P_ int how)
1329{ 1375{
1330 loop_done = how; 1376 loop_done = how;
1331} 1377}
1332 1378
1333/*****************************************************************************/ 1379/*****************************************************************************/
1334 1380
1335inline void 1381void inline_size
1336wlist_add (WL *head, WL elem) 1382wlist_add (WL *head, WL elem)
1337{ 1383{
1338 elem->next = *head; 1384 elem->next = *head;
1339 *head = elem; 1385 *head = elem;
1340} 1386}
1341 1387
1342inline void 1388void inline_size
1343wlist_del (WL *head, WL elem) 1389wlist_del (WL *head, WL elem)
1344{ 1390{
1345 while (*head) 1391 while (*head)
1346 { 1392 {
1347 if (*head == elem) 1393 if (*head == elem)
1352 1398
1353 head = &(*head)->next; 1399 head = &(*head)->next;
1354 } 1400 }
1355} 1401}
1356 1402
1357inline void 1403void inline_speed
1358ev_clear_pending (EV_P_ W w) 1404ev_clear_pending (EV_P_ W w)
1359{ 1405{
1360 if (w->pending) 1406 if (w->pending)
1361 { 1407 {
1362 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1408 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1363 w->pending = 0; 1409 w->pending = 0;
1364 } 1410 }
1365} 1411}
1366 1412
1367inline void 1413void inline_speed
1368ev_start (EV_P_ W w, int active) 1414ev_start (EV_P_ W w, int active)
1369{ 1415{
1370 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1416 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1371 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1417 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1372 1418
1373 w->active = active; 1419 w->active = active;
1374 ev_ref (EV_A); 1420 ev_ref (EV_A);
1375} 1421}
1376 1422
1377inline void 1423void inline_size
1378ev_stop (EV_P_ W w) 1424ev_stop (EV_P_ W w)
1379{ 1425{
1380 ev_unref (EV_A); 1426 ev_unref (EV_A);
1381 w->active = 0; 1427 w->active = 0;
1382} 1428}
1383 1429
1384/*****************************************************************************/ 1430/*****************************************************************************/
1385 1431
1386void 1432void
1387ev_io_start (EV_P_ struct ev_io *w) 1433ev_io_start (EV_P_ ev_io *w)
1388{ 1434{
1389 int fd = w->fd; 1435 int fd = w->fd;
1390 1436
1391 if (expect_false (ev_is_active (w))) 1437 if (expect_false (ev_is_active (w)))
1392 return; 1438 return;
1399 1445
1400 fd_change (EV_A_ fd); 1446 fd_change (EV_A_ fd);
1401} 1447}
1402 1448
1403void 1449void
1404ev_io_stop (EV_P_ struct ev_io *w) 1450ev_io_stop (EV_P_ ev_io *w)
1405{ 1451{
1406 ev_clear_pending (EV_A_ (W)w); 1452 ev_clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 1453 if (expect_false (!ev_is_active (w)))
1408 return; 1454 return;
1409 1455
1414 1460
1415 fd_change (EV_A_ w->fd); 1461 fd_change (EV_A_ w->fd);
1416} 1462}
1417 1463
1418void 1464void
1419ev_timer_start (EV_P_ struct ev_timer *w) 1465ev_timer_start (EV_P_ ev_timer *w)
1420{ 1466{
1421 if (expect_false (ev_is_active (w))) 1467 if (expect_false (ev_is_active (w)))
1422 return; 1468 return;
1423 1469
1424 ((WT)w)->at += mn_now; 1470 ((WT)w)->at += mn_now;
1425 1471
1426 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1472 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1427 1473
1428 ev_start (EV_A_ (W)w, ++timercnt); 1474 ev_start (EV_A_ (W)w, ++timercnt);
1429 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1475 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1430 timers [timercnt - 1] = w; 1476 timers [timercnt - 1] = w;
1431 upheap ((WT *)timers, timercnt - 1); 1477 upheap ((WT *)timers, timercnt - 1);
1432 1478
1433 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1479 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1434} 1480}
1435 1481
1436void 1482void
1437ev_timer_stop (EV_P_ struct ev_timer *w) 1483ev_timer_stop (EV_P_ ev_timer *w)
1438{ 1484{
1439 ev_clear_pending (EV_A_ (W)w); 1485 ev_clear_pending (EV_A_ (W)w);
1440 if (expect_false (!ev_is_active (w))) 1486 if (expect_false (!ev_is_active (w)))
1441 return; 1487 return;
1442 1488
1452 1498
1453 ev_stop (EV_A_ (W)w); 1499 ev_stop (EV_A_ (W)w);
1454} 1500}
1455 1501
1456void 1502void
1457ev_timer_again (EV_P_ struct ev_timer *w) 1503ev_timer_again (EV_P_ ev_timer *w)
1458{ 1504{
1459 if (ev_is_active (w)) 1505 if (ev_is_active (w))
1460 { 1506 {
1461 if (w->repeat) 1507 if (w->repeat)
1462 { 1508 {
1471 w->at = w->repeat; 1517 w->at = w->repeat;
1472 ev_timer_start (EV_A_ w); 1518 ev_timer_start (EV_A_ w);
1473 } 1519 }
1474} 1520}
1475 1521
1476#if EV_PERIODICS 1522#if EV_PERIODIC_ENABLE
1477void 1523void
1478ev_periodic_start (EV_P_ struct ev_periodic *w) 1524ev_periodic_start (EV_P_ ev_periodic *w)
1479{ 1525{
1480 if (expect_false (ev_is_active (w))) 1526 if (expect_false (ev_is_active (w)))
1481 return; 1527 return;
1482 1528
1483 if (w->reschedule_cb) 1529 if (w->reschedule_cb)
1488 /* this formula differs from the one in periodic_reify because we do not always round up */ 1534 /* this formula differs from the one in periodic_reify because we do not always round up */
1489 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1535 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1490 } 1536 }
1491 1537
1492 ev_start (EV_A_ (W)w, ++periodiccnt); 1538 ev_start (EV_A_ (W)w, ++periodiccnt);
1493 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1539 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1494 periodics [periodiccnt - 1] = w; 1540 periodics [periodiccnt - 1] = w;
1495 upheap ((WT *)periodics, periodiccnt - 1); 1541 upheap ((WT *)periodics, periodiccnt - 1);
1496 1542
1497 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1543 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1498} 1544}
1499 1545
1500void 1546void
1501ev_periodic_stop (EV_P_ struct ev_periodic *w) 1547ev_periodic_stop (EV_P_ ev_periodic *w)
1502{ 1548{
1503 ev_clear_pending (EV_A_ (W)w); 1549 ev_clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w))) 1550 if (expect_false (!ev_is_active (w)))
1505 return; 1551 return;
1506 1552
1514 1560
1515 ev_stop (EV_A_ (W)w); 1561 ev_stop (EV_A_ (W)w);
1516} 1562}
1517 1563
1518void 1564void
1519ev_periodic_again (EV_P_ struct ev_periodic *w) 1565ev_periodic_again (EV_P_ ev_periodic *w)
1520{ 1566{
1521 /* TODO: use adjustheap and recalculation */ 1567 /* TODO: use adjustheap and recalculation */
1522 ev_periodic_stop (EV_A_ w); 1568 ev_periodic_stop (EV_A_ w);
1523 ev_periodic_start (EV_A_ w); 1569 ev_periodic_start (EV_A_ w);
1524} 1570}
1525#endif 1571#endif
1526 1572
1527void
1528ev_idle_start (EV_P_ struct ev_idle *w)
1529{
1530 if (expect_false (ev_is_active (w)))
1531 return;
1532
1533 ev_start (EV_A_ (W)w, ++idlecnt);
1534 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1535 idles [idlecnt - 1] = w;
1536}
1537
1538void
1539ev_idle_stop (EV_P_ struct ev_idle *w)
1540{
1541 ev_clear_pending (EV_A_ (W)w);
1542 if (expect_false (!ev_is_active (w)))
1543 return;
1544
1545 idles [((W)w)->active - 1] = idles [--idlecnt];
1546 ev_stop (EV_A_ (W)w);
1547}
1548
1549void
1550ev_prepare_start (EV_P_ struct ev_prepare *w)
1551{
1552 if (expect_false (ev_is_active (w)))
1553 return;
1554
1555 ev_start (EV_A_ (W)w, ++preparecnt);
1556 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1557 prepares [preparecnt - 1] = w;
1558}
1559
1560void
1561ev_prepare_stop (EV_P_ struct ev_prepare *w)
1562{
1563 ev_clear_pending (EV_A_ (W)w);
1564 if (expect_false (!ev_is_active (w)))
1565 return;
1566
1567 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1568 ev_stop (EV_A_ (W)w);
1569}
1570
1571void
1572ev_check_start (EV_P_ struct ev_check *w)
1573{
1574 if (expect_false (ev_is_active (w)))
1575 return;
1576
1577 ev_start (EV_A_ (W)w, ++checkcnt);
1578 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1579 checks [checkcnt - 1] = w;
1580}
1581
1582void
1583ev_check_stop (EV_P_ struct ev_check *w)
1584{
1585 ev_clear_pending (EV_A_ (W)w);
1586 if (expect_false (!ev_is_active (w)))
1587 return;
1588
1589 checks [((W)w)->active - 1] = checks [--checkcnt];
1590 ev_stop (EV_A_ (W)w);
1591}
1592
1593#ifndef SA_RESTART 1573#ifndef SA_RESTART
1594# define SA_RESTART 0 1574# define SA_RESTART 0
1595#endif 1575#endif
1596 1576
1597void 1577void
1598ev_signal_start (EV_P_ struct ev_signal *w) 1578ev_signal_start (EV_P_ ev_signal *w)
1599{ 1579{
1600#if EV_MULTIPLICITY 1580#if EV_MULTIPLICITY
1601 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1581 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif 1582#endif
1603 if (expect_false (ev_is_active (w))) 1583 if (expect_false (ev_is_active (w)))
1622#endif 1602#endif
1623 } 1603 }
1624} 1604}
1625 1605
1626void 1606void
1627ev_signal_stop (EV_P_ struct ev_signal *w) 1607ev_signal_stop (EV_P_ ev_signal *w)
1628{ 1608{
1629 ev_clear_pending (EV_A_ (W)w); 1609 ev_clear_pending (EV_A_ (W)w);
1630 if (expect_false (!ev_is_active (w))) 1610 if (expect_false (!ev_is_active (w)))
1631 return; 1611 return;
1632 1612
1636 if (!signals [w->signum - 1].head) 1616 if (!signals [w->signum - 1].head)
1637 signal (w->signum, SIG_DFL); 1617 signal (w->signum, SIG_DFL);
1638} 1618}
1639 1619
1640void 1620void
1641ev_child_start (EV_P_ struct ev_child *w) 1621ev_child_start (EV_P_ ev_child *w)
1642{ 1622{
1643#if EV_MULTIPLICITY 1623#if EV_MULTIPLICITY
1644 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1624 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1645#endif 1625#endif
1646 if (expect_false (ev_is_active (w))) 1626 if (expect_false (ev_is_active (w)))
1649 ev_start (EV_A_ (W)w, 1); 1629 ev_start (EV_A_ (W)w, 1);
1650 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1630 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1651} 1631}
1652 1632
1653void 1633void
1654ev_child_stop (EV_P_ struct ev_child *w) 1634ev_child_stop (EV_P_ ev_child *w)
1655{ 1635{
1656 ev_clear_pending (EV_A_ (W)w); 1636 ev_clear_pending (EV_A_ (W)w);
1657 if (expect_false (!ev_is_active (w))) 1637 if (expect_false (!ev_is_active (w)))
1658 return; 1638 return;
1659 1639
1660 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1640 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1661 ev_stop (EV_A_ (W)w); 1641 ev_stop (EV_A_ (W)w);
1662} 1642}
1663 1643
1644#if EV_STAT_ENABLE
1645
1646# ifdef _WIN32
1647# undef lstat
1648# define lstat(a,b) _stati64 (a,b)
1649# endif
1650
1651#define DEF_STAT_INTERVAL 5.0074891
1652#define MIN_STAT_INTERVAL 0.1074891
1653
1654void
1655ev_stat_stat (EV_P_ ev_stat *w)
1656{
1657 if (lstat (w->path, &w->attr) < 0)
1658 w->attr.st_nlink = 0;
1659 else if (!w->attr.st_nlink)
1660 w->attr.st_nlink = 1;
1661}
1662
1663static void
1664stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1665{
1666 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1667
1668 /* we copy this here each the time so that */
1669 /* prev has the old value when the callback gets invoked */
1670 w->prev = w->attr;
1671 ev_stat_stat (EV_A_ w);
1672
1673 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1674 ev_feed_event (EV_A_ w, EV_STAT);
1675}
1676
1677void
1678ev_stat_start (EV_P_ ev_stat *w)
1679{
1680 if (expect_false (ev_is_active (w)))
1681 return;
1682
1683 /* since we use memcmp, we need to clear any padding data etc. */
1684 memset (&w->prev, 0, sizeof (ev_statdata));
1685 memset (&w->attr, 0, sizeof (ev_statdata));
1686
1687 ev_stat_stat (EV_A_ w);
1688
1689 if (w->interval < MIN_STAT_INTERVAL)
1690 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1691
1692 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1693 ev_set_priority (&w->timer, ev_priority (w));
1694 ev_timer_start (EV_A_ &w->timer);
1695
1696 ev_start (EV_A_ (W)w, 1);
1697}
1698
1699void
1700ev_stat_stop (EV_P_ ev_stat *w)
1701{
1702 ev_clear_pending (EV_A_ (W)w);
1703 if (expect_false (!ev_is_active (w)))
1704 return;
1705
1706 ev_timer_stop (EV_A_ &w->timer);
1707
1708 ev_stop (EV_A_ (W)w);
1709}
1710#endif
1711
1712void
1713ev_idle_start (EV_P_ ev_idle *w)
1714{
1715 if (expect_false (ev_is_active (w)))
1716 return;
1717
1718 ev_start (EV_A_ (W)w, ++idlecnt);
1719 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1720 idles [idlecnt - 1] = w;
1721}
1722
1723void
1724ev_idle_stop (EV_P_ ev_idle *w)
1725{
1726 ev_clear_pending (EV_A_ (W)w);
1727 if (expect_false (!ev_is_active (w)))
1728 return;
1729
1730 {
1731 int active = ((W)w)->active;
1732 idles [active - 1] = idles [--idlecnt];
1733 ((W)idles [active - 1])->active = active;
1734 }
1735
1736 ev_stop (EV_A_ (W)w);
1737}
1738
1739void
1740ev_prepare_start (EV_P_ ev_prepare *w)
1741{
1742 if (expect_false (ev_is_active (w)))
1743 return;
1744
1745 ev_start (EV_A_ (W)w, ++preparecnt);
1746 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1747 prepares [preparecnt - 1] = w;
1748}
1749
1750void
1751ev_prepare_stop (EV_P_ ev_prepare *w)
1752{
1753 ev_clear_pending (EV_A_ (W)w);
1754 if (expect_false (!ev_is_active (w)))
1755 return;
1756
1757 {
1758 int active = ((W)w)->active;
1759 prepares [active - 1] = prepares [--preparecnt];
1760 ((W)prepares [active - 1])->active = active;
1761 }
1762
1763 ev_stop (EV_A_ (W)w);
1764}
1765
1766void
1767ev_check_start (EV_P_ ev_check *w)
1768{
1769 if (expect_false (ev_is_active (w)))
1770 return;
1771
1772 ev_start (EV_A_ (W)w, ++checkcnt);
1773 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1774 checks [checkcnt - 1] = w;
1775}
1776
1777void
1778ev_check_stop (EV_P_ ev_check *w)
1779{
1780 ev_clear_pending (EV_A_ (W)w);
1781 if (expect_false (!ev_is_active (w)))
1782 return;
1783
1784 {
1785 int active = ((W)w)->active;
1786 checks [active - 1] = checks [--checkcnt];
1787 ((W)checks [active - 1])->active = active;
1788 }
1789
1790 ev_stop (EV_A_ (W)w);
1791}
1792
1793#if EV_EMBED_ENABLE
1794void noinline
1795ev_embed_sweep (EV_P_ ev_embed *w)
1796{
1797 ev_loop (w->loop, EVLOOP_NONBLOCK);
1798}
1799
1800static void
1801embed_cb (EV_P_ ev_io *io, int revents)
1802{
1803 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1804
1805 if (ev_cb (w))
1806 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1807 else
1808 ev_embed_sweep (loop, w);
1809}
1810
1811void
1812ev_embed_start (EV_P_ ev_embed *w)
1813{
1814 if (expect_false (ev_is_active (w)))
1815 return;
1816
1817 {
1818 struct ev_loop *loop = w->loop;
1819 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1820 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1821 }
1822
1823 ev_set_priority (&w->io, ev_priority (w));
1824 ev_io_start (EV_A_ &w->io);
1825
1826 ev_start (EV_A_ (W)w, 1);
1827}
1828
1829void
1830ev_embed_stop (EV_P_ ev_embed *w)
1831{
1832 ev_clear_pending (EV_A_ (W)w);
1833 if (expect_false (!ev_is_active (w)))
1834 return;
1835
1836 ev_io_stop (EV_A_ &w->io);
1837
1838 ev_stop (EV_A_ (W)w);
1839}
1840#endif
1841
1842#if EV_FORK_ENABLE
1843void
1844ev_fork_start (EV_P_ ev_fork *w)
1845{
1846 if (expect_false (ev_is_active (w)))
1847 return;
1848
1849 ev_start (EV_A_ (W)w, ++forkcnt);
1850 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
1851 forks [forkcnt - 1] = w;
1852}
1853
1854void
1855ev_fork_stop (EV_P_ ev_fork *w)
1856{
1857 ev_clear_pending (EV_A_ (W)w);
1858 if (expect_false (!ev_is_active (w)))
1859 return;
1860
1861 {
1862 int active = ((W)w)->active;
1863 forks [active - 1] = forks [--forkcnt];
1864 ((W)forks [active - 1])->active = active;
1865 }
1866
1867 ev_stop (EV_A_ (W)w);
1868}
1869#endif
1870
1664/*****************************************************************************/ 1871/*****************************************************************************/
1665 1872
1666struct ev_once 1873struct ev_once
1667{ 1874{
1668 struct ev_io io; 1875 ev_io io;
1669 struct ev_timer to; 1876 ev_timer to;
1670 void (*cb)(int revents, void *arg); 1877 void (*cb)(int revents, void *arg);
1671 void *arg; 1878 void *arg;
1672}; 1879};
1673 1880
1674static void 1881static void
1683 1890
1684 cb (revents, arg); 1891 cb (revents, arg);
1685} 1892}
1686 1893
1687static void 1894static void
1688once_cb_io (EV_P_ struct ev_io *w, int revents) 1895once_cb_io (EV_P_ ev_io *w, int revents)
1689{ 1896{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1897 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1691} 1898}
1692 1899
1693static void 1900static void
1694once_cb_to (EV_P_ struct ev_timer *w, int revents) 1901once_cb_to (EV_P_ ev_timer *w, int revents)
1695{ 1902{
1696 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1903 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1697} 1904}
1698 1905
1699void 1906void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines