ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.148 by root, Tue Nov 27 11:11:13 2007 UTC vs.
Revision 1.180 by root, Tue Dec 11 22:04:55 2007 UTC

94# else 94# else
95# define EV_USE_PORT 0 95# define EV_USE_PORT 0
96# endif 96# endif
97# endif 97# endif
98 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
99#endif 107#endif
100 108
101#include <math.h> 109#include <math.h>
102#include <stdlib.h> 110#include <stdlib.h>
103#include <fcntl.h> 111#include <fcntl.h>
109#include <errno.h> 117#include <errno.h>
110#include <sys/types.h> 118#include <sys/types.h>
111#include <time.h> 119#include <time.h>
112 120
113#include <signal.h> 121#include <signal.h>
122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
114 128
115#ifndef _WIN32 129#ifndef _WIN32
116# include <sys/time.h> 130# include <sys/time.h>
117# include <sys/wait.h> 131# include <sys/wait.h>
118# include <unistd.h> 132# include <unistd.h>
156 170
157#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 172# define EV_USE_PORT 0
159#endif 173#endif
160 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
161/**/ 195/**/
162 196
163#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
172 206
173#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 208# include <winsock.h>
175#endif 209#endif
176 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
177/**/ 219/**/
220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 230
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189 234
190#if __GNUC__ >= 3 235#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline)) 237# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
200#else 238#else
201# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
202# define inline_speed static
203# define inline_size static
204# define noinline 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
205#endif 244#endif
206 245
207#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
208#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
209 255
210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
211#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
212 258
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
215 261
216typedef ev_watcher *W; 262typedef ev_watcher *W;
217typedef ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
218typedef ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
254ev_set_allocator (void *(*cb)(void *ptr, long size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
255{ 301{
256 alloc = cb; 302 alloc = cb;
257} 303}
258 304
259static void * 305inline_speed void *
260ev_realloc (void *ptr, long size) 306ev_realloc (void *ptr, long size)
261{ 307{
262 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
263 309
264 if (!ptr && size) 310 if (!ptr && size)
288typedef struct 334typedef struct
289{ 335{
290 W w; 336 W w;
291 int events; 337 int events;
292} ANPENDING; 338} ANPENDING;
339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
293 346
294#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
295 348
296 struct ev_loop 349 struct ev_loop
297 { 350 {
354{ 407{
355 return ev_rt_now; 408 return ev_rt_now;
356} 409}
357#endif 410#endif
358 411
359#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
360 439
361#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
362 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
363 { \ 442 { \
364 int newcnt = cur; \ 443 int ocur_ = (cur); \
365 do \ 444 (base) = (type *)array_realloc \
366 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
367 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
368 } \
369 while ((cnt) > newcnt); \
370 \
371 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
372 init (base + cur, newcnt - cur); \
373 cur = newcnt; \
374 } 447 }
375 448
449#if 0
376#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
377 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
378 { \ 452 { \
379 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
382 } 456 }
457#endif
383 458
384#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
386 461
387/*****************************************************************************/ 462/*****************************************************************************/
388 463
389void noinline 464void noinline
390ev_feed_event (EV_P_ void *w, int revents) 465ev_feed_event (EV_P_ void *w, int revents)
391{ 466{
392 W w_ = (W)w; 467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
393 469
394 if (expect_false (w_->pending)) 470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
395 { 473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 477 pendings [pri][w_->pending - 1].events = revents;
397 return;
398 } 478 }
399
400 w_->pending = ++pendingcnt [ABSPRI (w_)];
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404} 479}
405 480
406void inline_size 481void inline_speed
407queue_events (EV_P_ W *events, int eventcnt, int type) 482queue_events (EV_P_ W *events, int eventcnt, int type)
408{ 483{
409 int i; 484 int i;
410 485
411 for (i = 0; i < eventcnt; ++i) 486 for (i = 0; i < eventcnt; ++i)
443} 518}
444 519
445void 520void
446ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
447{ 522{
523 if (fd >= 0 && fd < anfdmax)
448 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
449} 525}
450 526
451void inline_size 527void inline_size
452fd_reify (EV_P) 528fd_reify (EV_P)
453{ 529{
547static void noinline 623static void noinline
548fd_rearm_all (EV_P) 624fd_rearm_all (EV_P)
549{ 625{
550 int fd; 626 int fd;
551 627
552 /* this should be highly optimised to not do anything but set a flag */
553 for (fd = 0; fd < anfdmax; ++fd) 628 for (fd = 0; fd < anfdmax; ++fd)
554 if (anfds [fd].events) 629 if (anfds [fd].events)
555 { 630 {
556 anfds [fd].events = 0; 631 anfds [fd].events = 0;
557 fd_change (EV_A_ fd); 632 fd_change (EV_A_ fd);
563void inline_speed 638void inline_speed
564upheap (WT *heap, int k) 639upheap (WT *heap, int k)
565{ 640{
566 WT w = heap [k]; 641 WT w = heap [k];
567 642
568 while (k && heap [k >> 1]->at > w->at) 643 while (k)
569 { 644 {
645 int p = (k - 1) >> 1;
646
647 if (heap [p]->at <= w->at)
648 break;
649
570 heap [k] = heap [k >> 1]; 650 heap [k] = heap [p];
571 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
572 k >>= 1; 652 k = p;
573 } 653 }
574 654
575 heap [k] = w; 655 heap [k] = w;
576 ((W)heap [k])->active = k + 1; 656 ((W)heap [k])->active = k + 1;
577 657
580void inline_speed 660void inline_speed
581downheap (WT *heap, int N, int k) 661downheap (WT *heap, int N, int k)
582{ 662{
583 WT w = heap [k]; 663 WT w = heap [k];
584 664
585 while (k < (N >> 1)) 665 for (;;)
586 { 666 {
587 int j = k << 1; 667 int c = (k << 1) + 1;
588 668
589 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 669 if (c >= N)
590 ++j;
591
592 if (w->at <= heap [j]->at)
593 break; 670 break;
594 671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
595 heap [k] = heap [j]; 678 heap [k] = heap [c];
596 ((W)heap [k])->active = k + 1; 679 ((W)heap [k])->active = k + 1;
680
597 k = j; 681 k = c;
598 } 682 }
599 683
600 heap [k] = w; 684 heap [k] = w;
601 ((W)heap [k])->active = k + 1; 685 ((W)heap [k])->active = k + 1;
602} 686}
684 for (signum = signalmax; signum--; ) 768 for (signum = signalmax; signum--; )
685 if (signals [signum].gotsig) 769 if (signals [signum].gotsig)
686 ev_feed_signal_event (EV_A_ signum + 1); 770 ev_feed_signal_event (EV_A_ signum + 1);
687} 771}
688 772
689void inline_size 773void inline_speed
690fd_intern (int fd) 774fd_intern (int fd)
691{ 775{
692#ifdef _WIN32 776#ifdef _WIN32
693 int arg = 1; 777 int arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
709 ev_unref (EV_A); /* child watcher should not keep loop alive */ 793 ev_unref (EV_A); /* child watcher should not keep loop alive */
710} 794}
711 795
712/*****************************************************************************/ 796/*****************************************************************************/
713 797
714static ev_child *childs [PID_HASHSIZE]; 798static ev_child *childs [EV_PID_HASHSIZE];
715 799
716#ifndef _WIN32 800#ifndef _WIN32
717 801
718static ev_signal childev; 802static ev_signal childev;
719 803
720void inline_speed 804void inline_speed
721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 805child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
722{ 806{
723 ev_child *w; 807 ev_child *w;
724 808
725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
726 if (w->pid == pid || !w->pid) 810 if (w->pid == pid || !w->pid)
727 { 811 {
728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
729 w->rpid = pid; 813 w->rpid = pid;
730 w->rstatus = status; 814 w->rstatus = status;
731 ev_feed_event (EV_A_ (W)w, EV_CHILD); 815 ev_feed_event (EV_A_ (W)w, EV_CHILD);
732 } 816 }
733} 817}
734 818
735#ifndef WCONTINUED 819#ifndef WCONTINUED
751 /* make sure we are called again until all childs have been reaped */ 835 /* make sure we are called again until all childs have been reaped */
752 /* we need to do it this way so that the callback gets called before we continue */ 836 /* we need to do it this way so that the callback gets called before we continue */
753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 837 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
754 838
755 child_reap (EV_A_ sw, pid, pid, status); 839 child_reap (EV_A_ sw, pid, pid, status);
840 if (EV_PID_HASHSIZE > 1)
756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 841 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
757} 842}
758 843
759#endif 844#endif
760 845
761/*****************************************************************************/ 846/*****************************************************************************/
844ev_backend (EV_P) 929ev_backend (EV_P)
845{ 930{
846 return backend; 931 return backend;
847} 932}
848 933
849static void 934unsigned int
935ev_loop_count (EV_P)
936{
937 return loop_count;
938}
939
940static void noinline
850loop_init (EV_P_ unsigned int flags) 941loop_init (EV_P_ unsigned int flags)
851{ 942{
852 if (!backend) 943 if (!backend)
853 { 944 {
854#if EV_USE_MONOTONIC 945#if EV_USE_MONOTONIC
862 ev_rt_now = ev_time (); 953 ev_rt_now = ev_time ();
863 mn_now = get_clock (); 954 mn_now = get_clock ();
864 now_floor = mn_now; 955 now_floor = mn_now;
865 rtmn_diff = ev_rt_now - mn_now; 956 rtmn_diff = ev_rt_now - mn_now;
866 957
958 /* pid check not overridable via env */
959#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid ();
962#endif
963
867 if (!(flags & EVFLAG_NOENV) 964 if (!(flags & EVFLAG_NOENV)
868 && !enable_secure () 965 && !enable_secure ()
869 && getenv ("LIBEV_FLAGS")) 966 && getenv ("LIBEV_FLAGS"))
870 flags = atoi (getenv ("LIBEV_FLAGS")); 967 flags = atoi (getenv ("LIBEV_FLAGS"));
871 968
872 if (!(flags & 0x0000ffffUL)) 969 if (!(flags & 0x0000ffffUL))
873 flags |= ev_recommended_backends (); 970 flags |= ev_recommended_backends ();
874 971
875 backend = 0; 972 backend = 0;
973 backend_fd = -1;
974#if EV_USE_INOTIFY
975 fs_fd = -2;
976#endif
977
876#if EV_USE_PORT 978#if EV_USE_PORT
877 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 979 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
878#endif 980#endif
879#if EV_USE_KQUEUE 981#if EV_USE_KQUEUE
880 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 982 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
892 ev_init (&sigev, sigcb); 994 ev_init (&sigev, sigcb);
893 ev_set_priority (&sigev, EV_MAXPRI); 995 ev_set_priority (&sigev, EV_MAXPRI);
894 } 996 }
895} 997}
896 998
897static void 999static void noinline
898loop_destroy (EV_P) 1000loop_destroy (EV_P)
899{ 1001{
900 int i; 1002 int i;
1003
1004#if EV_USE_INOTIFY
1005 if (fs_fd >= 0)
1006 close (fs_fd);
1007#endif
1008
1009 if (backend_fd >= 0)
1010 close (backend_fd);
901 1011
902#if EV_USE_PORT 1012#if EV_USE_PORT
903 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1013 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
904#endif 1014#endif
905#if EV_USE_KQUEUE 1015#if EV_USE_KQUEUE
914#if EV_USE_SELECT 1024#if EV_USE_SELECT
915 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1025 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
916#endif 1026#endif
917 1027
918 for (i = NUMPRI; i--; ) 1028 for (i = NUMPRI; i--; )
1029 {
919 array_free (pending, [i]); 1030 array_free (pending, [i]);
1031#if EV_IDLE_ENABLE
1032 array_free (idle, [i]);
1033#endif
1034 }
920 1035
921 /* have to use the microsoft-never-gets-it-right macro */ 1036 /* have to use the microsoft-never-gets-it-right macro */
922 array_free (fdchange, EMPTY0); 1037 array_free (fdchange, EMPTY);
923 array_free (timer, EMPTY0); 1038 array_free (timer, EMPTY);
924#if EV_PERIODIC_ENABLE 1039#if EV_PERIODIC_ENABLE
925 array_free (periodic, EMPTY0); 1040 array_free (periodic, EMPTY);
926#endif 1041#endif
927 array_free (idle, EMPTY0);
928 array_free (prepare, EMPTY0); 1042 array_free (prepare, EMPTY);
929 array_free (check, EMPTY0); 1043 array_free (check, EMPTY);
930 1044
931 backend = 0; 1045 backend = 0;
932} 1046}
933 1047
934static void 1048void inline_size infy_fork (EV_P);
1049
1050void inline_size
935loop_fork (EV_P) 1051loop_fork (EV_P)
936{ 1052{
937#if EV_USE_PORT 1053#if EV_USE_PORT
938 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1054 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
939#endif 1055#endif
940#if EV_USE_KQUEUE 1056#if EV_USE_KQUEUE
941 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1057 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
942#endif 1058#endif
943#if EV_USE_EPOLL 1059#if EV_USE_EPOLL
944 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1060 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1061#endif
1062#if EV_USE_INOTIFY
1063 infy_fork (EV_A);
945#endif 1064#endif
946 1065
947 if (ev_is_active (&sigev)) 1066 if (ev_is_active (&sigev))
948 { 1067 {
949 /* default loop */ 1068 /* default loop */
1065 postfork = 1; 1184 postfork = 1;
1066} 1185}
1067 1186
1068/*****************************************************************************/ 1187/*****************************************************************************/
1069 1188
1070int inline_size 1189void
1071any_pending (EV_P) 1190ev_invoke (EV_P_ void *w, int revents)
1072{ 1191{
1073 int pri; 1192 EV_CB_INVOKE ((W)w, revents);
1074
1075 for (pri = NUMPRI; pri--; )
1076 if (pendingcnt [pri])
1077 return 1;
1078
1079 return 0;
1080} 1193}
1081 1194
1082void inline_speed 1195void inline_speed
1083call_pending (EV_P) 1196call_pending (EV_P)
1084{ 1197{
1089 { 1202 {
1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1203 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1091 1204
1092 if (expect_true (p->w)) 1205 if (expect_true (p->w))
1093 { 1206 {
1094 assert (("non-pending watcher on pending list", p->w->pending)); 1207 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1095 1208
1096 p->w->pending = 0; 1209 p->w->pending = 0;
1097 EV_CB_INVOKE (p->w, p->events); 1210 EV_CB_INVOKE (p->w, p->events);
1098 } 1211 }
1099 } 1212 }
1104{ 1217{
1105 while (timercnt && ((WT)timers [0])->at <= mn_now) 1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
1106 { 1219 {
1107 ev_timer *w = timers [0]; 1220 ev_timer *w = timers [0];
1108 1221
1109 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1110 1223
1111 /* first reschedule or stop timer */ 1224 /* first reschedule or stop timer */
1112 if (w->repeat) 1225 if (w->repeat)
1113 { 1226 {
1114 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1227 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1132{ 1245{
1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1134 { 1247 {
1135 ev_periodic *w = periodics [0]; 1248 ev_periodic *w = periodics [0];
1136 1249
1137 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1138 1251
1139 /* first reschedule or stop timer */ 1252 /* first reschedule or stop timer */
1140 if (w->reschedule_cb) 1253 if (w->reschedule_cb)
1141 { 1254 {
1142 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1143 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1144 downheap ((WT *)periodics, periodiccnt, 0); 1257 downheap ((WT *)periodics, periodiccnt, 0);
1145 } 1258 }
1146 else if (w->interval) 1259 else if (w->interval)
1147 { 1260 {
1148 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1149 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1150 downheap ((WT *)periodics, periodiccnt, 0); 1264 downheap ((WT *)periodics, periodiccnt, 0);
1151 } 1265 }
1152 else 1266 else
1153 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1167 ev_periodic *w = periodics [i]; 1281 ev_periodic *w = periodics [i];
1168 1282
1169 if (w->reschedule_cb) 1283 if (w->reschedule_cb)
1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1171 else if (w->interval) 1285 else if (w->interval)
1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1173 } 1287 }
1174 1288
1175 /* now rebuild the heap */ 1289 /* now rebuild the heap */
1176 for (i = periodiccnt >> 1; i--; ) 1290 for (i = periodiccnt >> 1; i--; )
1177 downheap ((WT *)periodics, periodiccnt, i); 1291 downheap ((WT *)periodics, periodiccnt, i);
1178} 1292}
1179#endif 1293#endif
1180 1294
1295#if EV_IDLE_ENABLE
1181int inline_size 1296void inline_size
1182time_update_monotonic (EV_P) 1297idle_reify (EV_P)
1183{ 1298{
1299 if (expect_false (idleall))
1300 {
1301 int pri;
1302
1303 for (pri = NUMPRI; pri--; )
1304 {
1305 if (pendingcnt [pri])
1306 break;
1307
1308 if (idlecnt [pri])
1309 {
1310 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1311 break;
1312 }
1313 }
1314 }
1315}
1316#endif
1317
1318void inline_speed
1319time_update (EV_P_ ev_tstamp max_block)
1320{
1321 int i;
1322
1323#if EV_USE_MONOTONIC
1324 if (expect_true (have_monotonic))
1325 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1184 mn_now = get_clock (); 1328 mn_now = get_clock ();
1185 1329
1330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1331 /* interpolate in the meantime */
1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1332 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1187 { 1333 {
1188 ev_rt_now = rtmn_diff + mn_now; 1334 ev_rt_now = rtmn_diff + mn_now;
1189 return 0; 1335 return;
1190 } 1336 }
1191 else 1337
1192 {
1193 now_floor = mn_now; 1338 now_floor = mn_now;
1194 ev_rt_now = ev_time (); 1339 ev_rt_now = ev_time ();
1195 return 1;
1196 }
1197}
1198 1340
1199void inline_size 1341 /* loop a few times, before making important decisions.
1200time_update (EV_P) 1342 * on the choice of "4": one iteration isn't enough,
1201{ 1343 * in case we get preempted during the calls to
1202 int i; 1344 * ev_time and get_clock. a second call is almost guaranteed
1203 1345 * to succeed in that case, though. and looping a few more times
1204#if EV_USE_MONOTONIC 1346 * doesn't hurt either as we only do this on time-jumps or
1205 if (expect_true (have_monotonic)) 1347 * in the unlikely event of having been preempted here.
1206 { 1348 */
1207 if (time_update_monotonic (EV_A)) 1349 for (i = 4; --i; )
1208 { 1350 {
1209 ev_tstamp odiff = rtmn_diff;
1210
1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
1220 {
1221 rtmn_diff = ev_rt_now - mn_now; 1351 rtmn_diff = ev_rt_now - mn_now;
1222 1352
1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1224 return; /* all is well */ 1354 return; /* all is well */
1225 1355
1226 ev_rt_now = ev_time (); 1356 ev_rt_now = ev_time ();
1227 mn_now = get_clock (); 1357 mn_now = get_clock ();
1228 now_floor = mn_now; 1358 now_floor = mn_now;
1229 } 1359 }
1230 1360
1231# if EV_PERIODIC_ENABLE 1361# if EV_PERIODIC_ENABLE
1232 periodics_reschedule (EV_A); 1362 periodics_reschedule (EV_A);
1233# endif 1363# endif
1234 /* no timer adjustment, as the monotonic clock doesn't jump */ 1364 /* no timer adjustment, as the monotonic clock doesn't jump */
1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1365 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1236 }
1237 } 1366 }
1238 else 1367 else
1239#endif 1368#endif
1240 { 1369 {
1241 ev_rt_now = ev_time (); 1370 ev_rt_now = ev_time ();
1242 1371
1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1244 { 1373 {
1245#if EV_PERIODIC_ENABLE 1374#if EV_PERIODIC_ENABLE
1246 periodics_reschedule (EV_A); 1375 periodics_reschedule (EV_A);
1247#endif 1376#endif
1248
1249 /* adjust timers. this is easy, as the offset is the same for all */ 1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1250 for (i = 0; i < timercnt; ++i) 1378 for (i = 0; i < timercnt; ++i)
1251 ((WT)timers [i])->at += ev_rt_now - mn_now; 1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1252 } 1380 }
1253 1381
1254 mn_now = ev_rt_now; 1382 mn_now = ev_rt_now;
1274{ 1402{
1275 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1276 ? EVUNLOOP_ONE 1404 ? EVUNLOOP_ONE
1277 : EVUNLOOP_CANCEL; 1405 : EVUNLOOP_CANCEL;
1278 1406
1279 while (activecnt) 1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408
1409 do
1280 { 1410 {
1281 /* we might have forked, so reify kernel state if necessary */ 1411#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid))
1414 {
1415 curpid = getpid ();
1416 postfork = 1;
1417 }
1418#endif
1419
1282 #if EV_FORK_ENABLE 1420#if EV_FORK_ENABLE
1421 /* we might have forked, so queue fork handlers */
1283 if (expect_false (postfork)) 1422 if (expect_false (postfork))
1284 if (forkcnt) 1423 if (forkcnt)
1285 { 1424 {
1286 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1287 call_pending (EV_A); 1426 call_pending (EV_A);
1288 } 1427 }
1289 #endif 1428#endif
1290 1429
1291 /* queue check watchers (and execute them) */ 1430 /* queue prepare watchers (and execute them) */
1292 if (expect_false (preparecnt)) 1431 if (expect_false (preparecnt))
1293 { 1432 {
1294 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1295 call_pending (EV_A); 1434 call_pending (EV_A);
1296 } 1435 }
1297 1436
1437 if (expect_false (!activecnt))
1438 break;
1439
1298 /* we might have forked, so reify kernel state if necessary */ 1440 /* we might have forked, so reify kernel state if necessary */
1299 if (expect_false (postfork)) 1441 if (expect_false (postfork))
1300 loop_fork (EV_A); 1442 loop_fork (EV_A);
1301 1443
1302 /* update fd-related kernel structures */ 1444 /* update fd-related kernel structures */
1303 fd_reify (EV_A); 1445 fd_reify (EV_A);
1304 1446
1305 /* calculate blocking time */ 1447 /* calculate blocking time */
1306 { 1448 {
1307 double block; 1449 ev_tstamp block;
1308 1450
1309 if (flags & EVLOOP_NONBLOCK || idlecnt) 1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1310 block = 0.; /* do not block at all */ 1452 block = 0.; /* do not block at all */
1311 else 1453 else
1312 { 1454 {
1313 /* update time to cancel out callback processing overhead */ 1455 /* update time to cancel out callback processing overhead */
1314#if EV_USE_MONOTONIC
1315 if (expect_true (have_monotonic))
1316 time_update_monotonic (EV_A); 1456 time_update (EV_A_ 1e100);
1317 else
1318#endif
1319 {
1320 ev_rt_now = ev_time ();
1321 mn_now = ev_rt_now;
1322 }
1323 1457
1324 block = MAX_BLOCKTIME; 1458 block = MAX_BLOCKTIME;
1325 1459
1326 if (timercnt) 1460 if (timercnt)
1327 { 1461 {
1338#endif 1472#endif
1339 1473
1340 if (expect_false (block < 0.)) block = 0.; 1474 if (expect_false (block < 0.)) block = 0.;
1341 } 1475 }
1342 1476
1477 ++loop_count;
1343 backend_poll (EV_A_ block); 1478 backend_poll (EV_A_ block);
1479
1480 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block);
1344 } 1482 }
1345
1346 /* update ev_rt_now, do magic */
1347 time_update (EV_A);
1348 1483
1349 /* queue pending timers and reschedule them */ 1484 /* queue pending timers and reschedule them */
1350 timers_reify (EV_A); /* relative timers called last */ 1485 timers_reify (EV_A); /* relative timers called last */
1351#if EV_PERIODIC_ENABLE 1486#if EV_PERIODIC_ENABLE
1352 periodics_reify (EV_A); /* absolute timers called first */ 1487 periodics_reify (EV_A); /* absolute timers called first */
1353#endif 1488#endif
1354 1489
1490#if EV_IDLE_ENABLE
1355 /* queue idle watchers unless other events are pending */ 1491 /* queue idle watchers unless other events are pending */
1356 if (idlecnt && !any_pending (EV_A)) 1492 idle_reify (EV_A);
1357 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1493#endif
1358 1494
1359 /* queue check watchers, to be executed first */ 1495 /* queue check watchers, to be executed first */
1360 if (expect_false (checkcnt)) 1496 if (expect_false (checkcnt))
1361 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1362 1498
1363 call_pending (EV_A); 1499 call_pending (EV_A);
1364 1500
1365 if (expect_false (loop_done))
1366 break;
1367 } 1501 }
1502 while (expect_true (activecnt && !loop_done));
1368 1503
1369 if (loop_done == EVUNLOOP_ONE) 1504 if (loop_done == EVUNLOOP_ONE)
1370 loop_done = EVUNLOOP_CANCEL; 1505 loop_done = EVUNLOOP_CANCEL;
1371} 1506}
1372 1507
1399 head = &(*head)->next; 1534 head = &(*head)->next;
1400 } 1535 }
1401} 1536}
1402 1537
1403void inline_speed 1538void inline_speed
1404ev_clear_pending (EV_P_ W w) 1539clear_pending (EV_P_ W w)
1405{ 1540{
1406 if (w->pending) 1541 if (w->pending)
1407 { 1542 {
1408 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1543 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1409 w->pending = 0; 1544 w->pending = 0;
1410 } 1545 }
1411} 1546}
1412 1547
1548int
1549ev_clear_pending (EV_P_ void *w)
1550{
1551 W w_ = (W)w;
1552 int pending = w_->pending;
1553
1554 if (expect_true (pending))
1555 {
1556 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1557 w_->pending = 0;
1558 p->w = 0;
1559 return p->events;
1560 }
1561 else
1562 return 0;
1563}
1564
1565void inline_size
1566pri_adjust (EV_P_ W w)
1567{
1568 int pri = w->priority;
1569 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1570 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1571 w->priority = pri;
1572}
1573
1413void inline_speed 1574void inline_speed
1414ev_start (EV_P_ W w, int active) 1575ev_start (EV_P_ W w, int active)
1415{ 1576{
1416 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1577 pri_adjust (EV_A_ w);
1417 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1418
1419 w->active = active; 1578 w->active = active;
1420 ev_ref (EV_A); 1579 ev_ref (EV_A);
1421} 1580}
1422 1581
1423void inline_size 1582void inline_size
1427 w->active = 0; 1586 w->active = 0;
1428} 1587}
1429 1588
1430/*****************************************************************************/ 1589/*****************************************************************************/
1431 1590
1432void 1591void noinline
1433ev_io_start (EV_P_ ev_io *w) 1592ev_io_start (EV_P_ ev_io *w)
1434{ 1593{
1435 int fd = w->fd; 1594 int fd = w->fd;
1436 1595
1437 if (expect_false (ev_is_active (w))) 1596 if (expect_false (ev_is_active (w)))
1444 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1603 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1445 1604
1446 fd_change (EV_A_ fd); 1605 fd_change (EV_A_ fd);
1447} 1606}
1448 1607
1449void 1608void noinline
1450ev_io_stop (EV_P_ ev_io *w) 1609ev_io_stop (EV_P_ ev_io *w)
1451{ 1610{
1452 ev_clear_pending (EV_A_ (W)w); 1611 clear_pending (EV_A_ (W)w);
1453 if (expect_false (!ev_is_active (w))) 1612 if (expect_false (!ev_is_active (w)))
1454 return; 1613 return;
1455 1614
1456 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1615 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1457 1616
1459 ev_stop (EV_A_ (W)w); 1618 ev_stop (EV_A_ (W)w);
1460 1619
1461 fd_change (EV_A_ w->fd); 1620 fd_change (EV_A_ w->fd);
1462} 1621}
1463 1622
1464void 1623void noinline
1465ev_timer_start (EV_P_ ev_timer *w) 1624ev_timer_start (EV_P_ ev_timer *w)
1466{ 1625{
1467 if (expect_false (ev_is_active (w))) 1626 if (expect_false (ev_is_active (w)))
1468 return; 1627 return;
1469 1628
1474 ev_start (EV_A_ (W)w, ++timercnt); 1633 ev_start (EV_A_ (W)w, ++timercnt);
1475 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1634 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1476 timers [timercnt - 1] = w; 1635 timers [timercnt - 1] = w;
1477 upheap ((WT *)timers, timercnt - 1); 1636 upheap ((WT *)timers, timercnt - 1);
1478 1637
1638 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1639}
1640
1641void noinline
1642ev_timer_stop (EV_P_ ev_timer *w)
1643{
1644 clear_pending (EV_A_ (W)w);
1645 if (expect_false (!ev_is_active (w)))
1646 return;
1647
1479 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1648 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1480}
1481 1649
1482void 1650 {
1483ev_timer_stop (EV_P_ ev_timer *w) 1651 int active = ((W)w)->active;
1484{
1485 ev_clear_pending (EV_A_ (W)w);
1486 if (expect_false (!ev_is_active (w)))
1487 return;
1488 1652
1489 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1490
1491 if (expect_true (((W)w)->active < timercnt--)) 1653 if (expect_true (--active < --timercnt))
1492 { 1654 {
1493 timers [((W)w)->active - 1] = timers [timercnt]; 1655 timers [active] = timers [timercnt];
1494 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1656 adjustheap ((WT *)timers, timercnt, active);
1495 } 1657 }
1658 }
1496 1659
1497 ((WT)w)->at -= mn_now; 1660 ((WT)w)->at -= mn_now;
1498 1661
1499 ev_stop (EV_A_ (W)w); 1662 ev_stop (EV_A_ (W)w);
1500} 1663}
1501 1664
1502void 1665void noinline
1503ev_timer_again (EV_P_ ev_timer *w) 1666ev_timer_again (EV_P_ ev_timer *w)
1504{ 1667{
1505 if (ev_is_active (w)) 1668 if (ev_is_active (w))
1506 { 1669 {
1507 if (w->repeat) 1670 if (w->repeat)
1518 ev_timer_start (EV_A_ w); 1681 ev_timer_start (EV_A_ w);
1519 } 1682 }
1520} 1683}
1521 1684
1522#if EV_PERIODIC_ENABLE 1685#if EV_PERIODIC_ENABLE
1523void 1686void noinline
1524ev_periodic_start (EV_P_ ev_periodic *w) 1687ev_periodic_start (EV_P_ ev_periodic *w)
1525{ 1688{
1526 if (expect_false (ev_is_active (w))) 1689 if (expect_false (ev_is_active (w)))
1527 return; 1690 return;
1528 1691
1530 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1693 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1531 else if (w->interval) 1694 else if (w->interval)
1532 { 1695 {
1533 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1696 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1534 /* this formula differs from the one in periodic_reify because we do not always round up */ 1697 /* this formula differs from the one in periodic_reify because we do not always round up */
1535 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1698 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1536 } 1699 }
1700 else
1701 ((WT)w)->at = w->offset;
1537 1702
1538 ev_start (EV_A_ (W)w, ++periodiccnt); 1703 ev_start (EV_A_ (W)w, ++periodiccnt);
1539 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1704 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1540 periodics [periodiccnt - 1] = w; 1705 periodics [periodiccnt - 1] = w;
1541 upheap ((WT *)periodics, periodiccnt - 1); 1706 upheap ((WT *)periodics, periodiccnt - 1);
1542 1707
1708 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1709}
1710
1711void noinline
1712ev_periodic_stop (EV_P_ ev_periodic *w)
1713{
1714 clear_pending (EV_A_ (W)w);
1715 if (expect_false (!ev_is_active (w)))
1716 return;
1717
1543 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1718 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1544}
1545 1719
1546void 1720 {
1547ev_periodic_stop (EV_P_ ev_periodic *w) 1721 int active = ((W)w)->active;
1548{
1549 ev_clear_pending (EV_A_ (W)w);
1550 if (expect_false (!ev_is_active (w)))
1551 return;
1552 1722
1553 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1554
1555 if (expect_true (((W)w)->active < periodiccnt--)) 1723 if (expect_true (--active < --periodiccnt))
1556 { 1724 {
1557 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1725 periodics [active] = periodics [periodiccnt];
1558 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1726 adjustheap ((WT *)periodics, periodiccnt, active);
1559 } 1727 }
1728 }
1560 1729
1561 ev_stop (EV_A_ (W)w); 1730 ev_stop (EV_A_ (W)w);
1562} 1731}
1563 1732
1564void 1733void noinline
1565ev_periodic_again (EV_P_ ev_periodic *w) 1734ev_periodic_again (EV_P_ ev_periodic *w)
1566{ 1735{
1567 /* TODO: use adjustheap and recalculation */ 1736 /* TODO: use adjustheap and recalculation */
1568 ev_periodic_stop (EV_A_ w); 1737 ev_periodic_stop (EV_A_ w);
1569 ev_periodic_start (EV_A_ w); 1738 ev_periodic_start (EV_A_ w);
1572 1741
1573#ifndef SA_RESTART 1742#ifndef SA_RESTART
1574# define SA_RESTART 0 1743# define SA_RESTART 0
1575#endif 1744#endif
1576 1745
1577void 1746void noinline
1578ev_signal_start (EV_P_ ev_signal *w) 1747ev_signal_start (EV_P_ ev_signal *w)
1579{ 1748{
1580#if EV_MULTIPLICITY 1749#if EV_MULTIPLICITY
1581 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1750 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1582#endif 1751#endif
1583 if (expect_false (ev_is_active (w))) 1752 if (expect_false (ev_is_active (w)))
1584 return; 1753 return;
1585 1754
1586 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1755 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1587 1756
1757 {
1758#ifndef _WIN32
1759 sigset_t full, prev;
1760 sigfillset (&full);
1761 sigprocmask (SIG_SETMASK, &full, &prev);
1762#endif
1763
1764 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1765
1766#ifndef _WIN32
1767 sigprocmask (SIG_SETMASK, &prev, 0);
1768#endif
1769 }
1770
1588 ev_start (EV_A_ (W)w, 1); 1771 ev_start (EV_A_ (W)w, 1);
1589 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1590 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1772 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1591 1773
1592 if (!((WL)w)->next) 1774 if (!((WL)w)->next)
1593 { 1775 {
1594#if _WIN32 1776#if _WIN32
1601 sigaction (w->signum, &sa, 0); 1783 sigaction (w->signum, &sa, 0);
1602#endif 1784#endif
1603 } 1785 }
1604} 1786}
1605 1787
1606void 1788void noinline
1607ev_signal_stop (EV_P_ ev_signal *w) 1789ev_signal_stop (EV_P_ ev_signal *w)
1608{ 1790{
1609 ev_clear_pending (EV_A_ (W)w); 1791 clear_pending (EV_A_ (W)w);
1610 if (expect_false (!ev_is_active (w))) 1792 if (expect_false (!ev_is_active (w)))
1611 return; 1793 return;
1612 1794
1613 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1795 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1614 ev_stop (EV_A_ (W)w); 1796 ev_stop (EV_A_ (W)w);
1625#endif 1807#endif
1626 if (expect_false (ev_is_active (w))) 1808 if (expect_false (ev_is_active (w)))
1627 return; 1809 return;
1628 1810
1629 ev_start (EV_A_ (W)w, 1); 1811 ev_start (EV_A_ (W)w, 1);
1630 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1812 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1631} 1813}
1632 1814
1633void 1815void
1634ev_child_stop (EV_P_ ev_child *w) 1816ev_child_stop (EV_P_ ev_child *w)
1635{ 1817{
1636 ev_clear_pending (EV_A_ (W)w); 1818 clear_pending (EV_A_ (W)w);
1637 if (expect_false (!ev_is_active (w))) 1819 if (expect_false (!ev_is_active (w)))
1638 return; 1820 return;
1639 1821
1640 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1822 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1641 ev_stop (EV_A_ (W)w); 1823 ev_stop (EV_A_ (W)w);
1642} 1824}
1643 1825
1644#if EV_STAT_ENABLE 1826#if EV_STAT_ENABLE
1645 1827
1649# endif 1831# endif
1650 1832
1651#define DEF_STAT_INTERVAL 5.0074891 1833#define DEF_STAT_INTERVAL 5.0074891
1652#define MIN_STAT_INTERVAL 0.1074891 1834#define MIN_STAT_INTERVAL 0.1074891
1653 1835
1836static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1837
1838#if EV_USE_INOTIFY
1839# define EV_INOTIFY_BUFSIZE 8192
1840
1841static void noinline
1842infy_add (EV_P_ ev_stat *w)
1843{
1844 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1845
1846 if (w->wd < 0)
1847 {
1848 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1849
1850 /* monitor some parent directory for speedup hints */
1851 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1852 {
1853 char path [4096];
1854 strcpy (path, w->path);
1855
1856 do
1857 {
1858 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1859 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1860
1861 char *pend = strrchr (path, '/');
1862
1863 if (!pend)
1864 break; /* whoops, no '/', complain to your admin */
1865
1866 *pend = 0;
1867 w->wd = inotify_add_watch (fs_fd, path, mask);
1868 }
1869 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1870 }
1871 }
1872 else
1873 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1874
1875 if (w->wd >= 0)
1876 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1877}
1878
1879static void noinline
1880infy_del (EV_P_ ev_stat *w)
1881{
1882 int slot;
1883 int wd = w->wd;
1884
1885 if (wd < 0)
1886 return;
1887
1888 w->wd = -2;
1889 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1890 wlist_del (&fs_hash [slot].head, (WL)w);
1891
1892 /* remove this watcher, if others are watching it, they will rearm */
1893 inotify_rm_watch (fs_fd, wd);
1894}
1895
1896static void noinline
1897infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1898{
1899 if (slot < 0)
1900 /* overflow, need to check for all hahs slots */
1901 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1902 infy_wd (EV_A_ slot, wd, ev);
1903 else
1904 {
1905 WL w_;
1906
1907 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1908 {
1909 ev_stat *w = (ev_stat *)w_;
1910 w_ = w_->next; /* lets us remove this watcher and all before it */
1911
1912 if (w->wd == wd || wd == -1)
1913 {
1914 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1915 {
1916 w->wd = -1;
1917 infy_add (EV_A_ w); /* re-add, no matter what */
1918 }
1919
1920 stat_timer_cb (EV_A_ &w->timer, 0);
1921 }
1922 }
1923 }
1924}
1925
1926static void
1927infy_cb (EV_P_ ev_io *w, int revents)
1928{
1929 char buf [EV_INOTIFY_BUFSIZE];
1930 struct inotify_event *ev = (struct inotify_event *)buf;
1931 int ofs;
1932 int len = read (fs_fd, buf, sizeof (buf));
1933
1934 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1935 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1936}
1937
1938void inline_size
1939infy_init (EV_P)
1940{
1941 if (fs_fd != -2)
1942 return;
1943
1944 fs_fd = inotify_init ();
1945
1946 if (fs_fd >= 0)
1947 {
1948 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1949 ev_set_priority (&fs_w, EV_MAXPRI);
1950 ev_io_start (EV_A_ &fs_w);
1951 }
1952}
1953
1954void inline_size
1955infy_fork (EV_P)
1956{
1957 int slot;
1958
1959 if (fs_fd < 0)
1960 return;
1961
1962 close (fs_fd);
1963 fs_fd = inotify_init ();
1964
1965 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1966 {
1967 WL w_ = fs_hash [slot].head;
1968 fs_hash [slot].head = 0;
1969
1970 while (w_)
1971 {
1972 ev_stat *w = (ev_stat *)w_;
1973 w_ = w_->next; /* lets us add this watcher */
1974
1975 w->wd = -1;
1976
1977 if (fs_fd >= 0)
1978 infy_add (EV_A_ w); /* re-add, no matter what */
1979 else
1980 ev_timer_start (EV_A_ &w->timer);
1981 }
1982
1983 }
1984}
1985
1986#endif
1987
1654void 1988void
1655ev_stat_stat (EV_P_ ev_stat *w) 1989ev_stat_stat (EV_P_ ev_stat *w)
1656{ 1990{
1657 if (lstat (w->path, &w->attr) < 0) 1991 if (lstat (w->path, &w->attr) < 0)
1658 w->attr.st_nlink = 0; 1992 w->attr.st_nlink = 0;
1659 else if (!w->attr.st_nlink) 1993 else if (!w->attr.st_nlink)
1660 w->attr.st_nlink = 1; 1994 w->attr.st_nlink = 1;
1661} 1995}
1662 1996
1663static void 1997static void noinline
1664stat_timer_cb (EV_P_ ev_timer *w_, int revents) 1998stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1665{ 1999{
1666 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2000 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1667 2001
1668 /* we copy this here each the time so that */ 2002 /* we copy this here each the time so that */
1669 /* prev has the old value when the callback gets invoked */ 2003 /* prev has the old value when the callback gets invoked */
1670 w->prev = w->attr; 2004 w->prev = w->attr;
1671 ev_stat_stat (EV_A_ w); 2005 ev_stat_stat (EV_A_ w);
1672 2006
1673 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2007 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2008 if (
2009 w->prev.st_dev != w->attr.st_dev
2010 || w->prev.st_ino != w->attr.st_ino
2011 || w->prev.st_mode != w->attr.st_mode
2012 || w->prev.st_nlink != w->attr.st_nlink
2013 || w->prev.st_uid != w->attr.st_uid
2014 || w->prev.st_gid != w->attr.st_gid
2015 || w->prev.st_rdev != w->attr.st_rdev
2016 || w->prev.st_size != w->attr.st_size
2017 || w->prev.st_atime != w->attr.st_atime
2018 || w->prev.st_mtime != w->attr.st_mtime
2019 || w->prev.st_ctime != w->attr.st_ctime
2020 ) {
2021 #if EV_USE_INOTIFY
2022 infy_del (EV_A_ w);
2023 infy_add (EV_A_ w);
2024 ev_stat_stat (EV_A_ w); /* avoid race... */
2025 #endif
2026
1674 ev_feed_event (EV_A_ w, EV_STAT); 2027 ev_feed_event (EV_A_ w, EV_STAT);
2028 }
1675} 2029}
1676 2030
1677void 2031void
1678ev_stat_start (EV_P_ ev_stat *w) 2032ev_stat_start (EV_P_ ev_stat *w)
1679{ 2033{
1689 if (w->interval < MIN_STAT_INTERVAL) 2043 if (w->interval < MIN_STAT_INTERVAL)
1690 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL; 2044 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1691 2045
1692 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2046 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1693 ev_set_priority (&w->timer, ev_priority (w)); 2047 ev_set_priority (&w->timer, ev_priority (w));
2048
2049#if EV_USE_INOTIFY
2050 infy_init (EV_A);
2051
2052 if (fs_fd >= 0)
2053 infy_add (EV_A_ w);
2054 else
2055#endif
1694 ev_timer_start (EV_A_ &w->timer); 2056 ev_timer_start (EV_A_ &w->timer);
1695 2057
1696 ev_start (EV_A_ (W)w, 1); 2058 ev_start (EV_A_ (W)w, 1);
1697} 2059}
1698 2060
1699void 2061void
1700ev_stat_stop (EV_P_ ev_stat *w) 2062ev_stat_stop (EV_P_ ev_stat *w)
1701{ 2063{
1702 ev_clear_pending (EV_A_ (W)w); 2064 clear_pending (EV_A_ (W)w);
1703 if (expect_false (!ev_is_active (w))) 2065 if (expect_false (!ev_is_active (w)))
1704 return; 2066 return;
1705 2067
2068#if EV_USE_INOTIFY
2069 infy_del (EV_A_ w);
2070#endif
1706 ev_timer_stop (EV_A_ &w->timer); 2071 ev_timer_stop (EV_A_ &w->timer);
1707 2072
1708 ev_stop (EV_A_ (W)w); 2073 ev_stop (EV_A_ (W)w);
1709} 2074}
1710#endif 2075#endif
1711 2076
2077#if EV_IDLE_ENABLE
1712void 2078void
1713ev_idle_start (EV_P_ ev_idle *w) 2079ev_idle_start (EV_P_ ev_idle *w)
1714{ 2080{
1715 if (expect_false (ev_is_active (w))) 2081 if (expect_false (ev_is_active (w)))
1716 return; 2082 return;
1717 2083
2084 pri_adjust (EV_A_ (W)w);
2085
2086 {
2087 int active = ++idlecnt [ABSPRI (w)];
2088
2089 ++idleall;
1718 ev_start (EV_A_ (W)w, ++idlecnt); 2090 ev_start (EV_A_ (W)w, active);
2091
1719 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2092 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1720 idles [idlecnt - 1] = w; 2093 idles [ABSPRI (w)][active - 1] = w;
2094 }
1721} 2095}
1722 2096
1723void 2097void
1724ev_idle_stop (EV_P_ ev_idle *w) 2098ev_idle_stop (EV_P_ ev_idle *w)
1725{ 2099{
1726 ev_clear_pending (EV_A_ (W)w); 2100 clear_pending (EV_A_ (W)w);
1727 if (expect_false (!ev_is_active (w))) 2101 if (expect_false (!ev_is_active (w)))
1728 return; 2102 return;
1729 2103
1730 { 2104 {
1731 int active = ((W)w)->active; 2105 int active = ((W)w)->active;
1732 idles [active - 1] = idles [--idlecnt]; 2106
2107 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1733 ((W)idles [active - 1])->active = active; 2108 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2109
2110 ev_stop (EV_A_ (W)w);
2111 --idleall;
1734 } 2112 }
1735
1736 ev_stop (EV_A_ (W)w);
1737} 2113}
2114#endif
1738 2115
1739void 2116void
1740ev_prepare_start (EV_P_ ev_prepare *w) 2117ev_prepare_start (EV_P_ ev_prepare *w)
1741{ 2118{
1742 if (expect_false (ev_is_active (w))) 2119 if (expect_false (ev_is_active (w)))
1748} 2125}
1749 2126
1750void 2127void
1751ev_prepare_stop (EV_P_ ev_prepare *w) 2128ev_prepare_stop (EV_P_ ev_prepare *w)
1752{ 2129{
1753 ev_clear_pending (EV_A_ (W)w); 2130 clear_pending (EV_A_ (W)w);
1754 if (expect_false (!ev_is_active (w))) 2131 if (expect_false (!ev_is_active (w)))
1755 return; 2132 return;
1756 2133
1757 { 2134 {
1758 int active = ((W)w)->active; 2135 int active = ((W)w)->active;
1775} 2152}
1776 2153
1777void 2154void
1778ev_check_stop (EV_P_ ev_check *w) 2155ev_check_stop (EV_P_ ev_check *w)
1779{ 2156{
1780 ev_clear_pending (EV_A_ (W)w); 2157 clear_pending (EV_A_ (W)w);
1781 if (expect_false (!ev_is_active (w))) 2158 if (expect_false (!ev_is_active (w)))
1782 return; 2159 return;
1783 2160
1784 { 2161 {
1785 int active = ((W)w)->active; 2162 int active = ((W)w)->active;
1827} 2204}
1828 2205
1829void 2206void
1830ev_embed_stop (EV_P_ ev_embed *w) 2207ev_embed_stop (EV_P_ ev_embed *w)
1831{ 2208{
1832 ev_clear_pending (EV_A_ (W)w); 2209 clear_pending (EV_A_ (W)w);
1833 if (expect_false (!ev_is_active (w))) 2210 if (expect_false (!ev_is_active (w)))
1834 return; 2211 return;
1835 2212
1836 ev_io_stop (EV_A_ &w->io); 2213 ev_io_stop (EV_A_ &w->io);
1837 2214
1852} 2229}
1853 2230
1854void 2231void
1855ev_fork_stop (EV_P_ ev_fork *w) 2232ev_fork_stop (EV_P_ ev_fork *w)
1856{ 2233{
1857 ev_clear_pending (EV_A_ (W)w); 2234 clear_pending (EV_A_ (W)w);
1858 if (expect_false (!ev_is_active (w))) 2235 if (expect_false (!ev_is_active (w)))
1859 return; 2236 return;
1860 2237
1861 { 2238 {
1862 int active = ((W)w)->active; 2239 int active = ((W)w)->active;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines