ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.148 by root, Tue Nov 27 11:11:13 2007 UTC vs.
Revision 1.529 by root, Wed Mar 18 12:30:21 2020 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2020 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
83# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
85# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
89# endif 127# endif
90 128
129# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
91# ifndef EV_USE_PORT 130# ifndef EV_USE_IOURING
92# if HAVE_PORT_H && HAVE_PORT_CREATE 131# define EV_USE_IOURING EV_FEATURE_BACKENDS
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_IOURING
135# define EV_USE_IOURING 0
97# endif 136# endif
98 137
138# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
139# ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_KQUEUE
144# define EV_USE_KQUEUE 0
99#endif 145# endif
146
147# if HAVE_PORT_H && HAVE_PORT_CREATE
148# ifndef EV_USE_PORT
149# define EV_USE_PORT EV_FEATURE_BACKENDS
150# endif
151# else
152# undef EV_USE_PORT
153# define EV_USE_PORT 0
154# endif
100 155
101#include <math.h> 156# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157# ifndef EV_USE_INOTIFY
158# define EV_USE_INOTIFY EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_INOTIFY
162# define EV_USE_INOTIFY 0
163# endif
164
165# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166# ifndef EV_USE_SIGNALFD
167# define EV_USE_SIGNALFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD 0
172# endif
173
174# if HAVE_EVENTFD
175# ifndef EV_USE_EVENTFD
176# define EV_USE_EVENTFD EV_FEATURE_OS
177# endif
178# else
179# undef EV_USE_EVENTFD
180# define EV_USE_EVENTFD 0
181# endif
182
183# if HAVE_SYS_TIMERFD_H
184# ifndef EV_USE_TIMERFD
185# define EV_USE_TIMERFD EV_FEATURE_OS
186# endif
187# else
188# undef EV_USE_TIMERFD
189# define EV_USE_TIMERFD 0
190# endif
191
192#endif
193
194/* OS X, in its infinite idiocy, actually HARDCODES
195 * a limit of 1024 into their select. Where people have brains,
196 * OS X engineers apparently have a vacuum. Or maybe they were
197 * ordered to have a vacuum, or they do anything for money.
198 * This might help. Or not.
199 * Note that this must be defined early, as other include files
200 * will rely on this define as well.
201 */
202#define _DARWIN_UNLIMITED_SELECT 1
203
102#include <stdlib.h> 204#include <stdlib.h>
205#include <string.h>
103#include <fcntl.h> 206#include <fcntl.h>
104#include <stddef.h> 207#include <stddef.h>
105 208
106#include <stdio.h> 209#include <stdio.h>
107 210
108#include <assert.h> 211#include <assert.h>
109#include <errno.h> 212#include <errno.h>
110#include <sys/types.h> 213#include <sys/types.h>
111#include <time.h> 214#include <time.h>
215#include <limits.h>
112 216
113#include <signal.h> 217#include <signal.h>
218
219#ifdef EV_H
220# include EV_H
221#else
222# include "ev.h"
223#endif
224
225#if EV_NO_THREADS
226# undef EV_NO_SMP
227# define EV_NO_SMP 1
228# undef ECB_NO_THREADS
229# define ECB_NO_THREADS 1
230#endif
231#if EV_NO_SMP
232# undef EV_NO_SMP
233# define ECB_NO_SMP 1
234#endif
114 235
115#ifndef _WIN32 236#ifndef _WIN32
116# include <sys/time.h> 237# include <sys/time.h>
117# include <sys/wait.h> 238# include <sys/wait.h>
118# include <unistd.h> 239# include <unistd.h>
119#else 240#else
241# include <io.h>
120# define WIN32_LEAN_AND_MEAN 242# define WIN32_LEAN_AND_MEAN
243# include <winsock2.h>
121# include <windows.h> 244# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 245# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 246# define EV_SELECT_IS_WINSOCKET 1
124# endif 247# endif
248# undef EV_AVOID_STDIO
249#endif
250
251/* this block tries to deduce configuration from header-defined symbols and defaults */
252
253/* try to deduce the maximum number of signals on this platform */
254#if defined EV_NSIG
255/* use what's provided */
256#elif defined NSIG
257# define EV_NSIG (NSIG)
258#elif defined _NSIG
259# define EV_NSIG (_NSIG)
260#elif defined SIGMAX
261# define EV_NSIG (SIGMAX+1)
262#elif defined SIG_MAX
263# define EV_NSIG (SIG_MAX+1)
264#elif defined _SIG_MAX
265# define EV_NSIG (_SIG_MAX+1)
266#elif defined MAXSIG
267# define EV_NSIG (MAXSIG+1)
268#elif defined MAX_SIG
269# define EV_NSIG (MAX_SIG+1)
270#elif defined SIGARRAYSIZE
271# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
272#elif defined _sys_nsig
273# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
274#else
275# define EV_NSIG (8 * sizeof (sigset_t) + 1)
276#endif
277
278#ifndef EV_USE_FLOOR
279# define EV_USE_FLOOR 0
280#endif
281
282#ifndef EV_USE_CLOCK_SYSCALL
283# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
284# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
285# else
286# define EV_USE_CLOCK_SYSCALL 0
125#endif 287# endif
288#endif
126 289
127/**/ 290#if !(_POSIX_TIMERS > 0)
291# ifndef EV_USE_MONOTONIC
292# define EV_USE_MONOTONIC 0
293# endif
294# ifndef EV_USE_REALTIME
295# define EV_USE_REALTIME 0
296# endif
297#endif
128 298
129#ifndef EV_USE_MONOTONIC 299#ifndef EV_USE_MONOTONIC
300# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
301# define EV_USE_MONOTONIC EV_FEATURE_OS
302# else
130# define EV_USE_MONOTONIC 0 303# define EV_USE_MONOTONIC 0
304# endif
131#endif 305#endif
132 306
133#ifndef EV_USE_REALTIME 307#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 308# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
309#endif
310
311#ifndef EV_USE_NANOSLEEP
312# if _POSIX_C_SOURCE >= 199309L
313# define EV_USE_NANOSLEEP EV_FEATURE_OS
314# else
315# define EV_USE_NANOSLEEP 0
316# endif
135#endif 317#endif
136 318
137#ifndef EV_USE_SELECT 319#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 320# define EV_USE_SELECT EV_FEATURE_BACKENDS
139#endif 321#endif
140 322
141#ifndef EV_USE_POLL 323#ifndef EV_USE_POLL
142# ifdef _WIN32 324# ifdef _WIN32
143# define EV_USE_POLL 0 325# define EV_USE_POLL 0
144# else 326# else
145# define EV_USE_POLL 1 327# define EV_USE_POLL EV_FEATURE_BACKENDS
146# endif 328# endif
147#endif 329#endif
148 330
149#ifndef EV_USE_EPOLL 331#ifndef EV_USE_EPOLL
332# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
333# define EV_USE_EPOLL EV_FEATURE_BACKENDS
334# else
150# define EV_USE_EPOLL 0 335# define EV_USE_EPOLL 0
336# endif
151#endif 337#endif
152 338
153#ifndef EV_USE_KQUEUE 339#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 340# define EV_USE_KQUEUE 0
155#endif 341#endif
156 342
157#ifndef EV_USE_PORT 343#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 344# define EV_USE_PORT 0
159#endif 345#endif
160 346
161/**/ 347#ifndef EV_USE_LINUXAIO
348# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
349# define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
350# else
351# define EV_USE_LINUXAIO 0
352# endif
353#endif
354
355#ifndef EV_USE_IOURING
356# if __linux /* later checks might disable again */
357# define EV_USE_IOURING 1
358# else
359# define EV_USE_IOURING 0
360# endif
361#endif
362
363#ifndef EV_USE_INOTIFY
364# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
365# define EV_USE_INOTIFY EV_FEATURE_OS
366# else
367# define EV_USE_INOTIFY 0
368# endif
369#endif
370
371#ifndef EV_PID_HASHSIZE
372# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
373#endif
374
375#ifndef EV_INOTIFY_HASHSIZE
376# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
377#endif
378
379#ifndef EV_USE_EVENTFD
380# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
381# define EV_USE_EVENTFD EV_FEATURE_OS
382# else
383# define EV_USE_EVENTFD 0
384# endif
385#endif
386
387#ifndef EV_USE_SIGNALFD
388# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
389# define EV_USE_SIGNALFD EV_FEATURE_OS
390# else
391# define EV_USE_SIGNALFD 0
392# endif
393#endif
394
395#ifndef EV_USE_TIMERFD
396# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
397# define EV_USE_TIMERFD EV_FEATURE_OS
398# else
399# define EV_USE_TIMERFD 0
400# endif
401#endif
402
403#if 0 /* debugging */
404# define EV_VERIFY 3
405# define EV_USE_4HEAP 1
406# define EV_HEAP_CACHE_AT 1
407#endif
408
409#ifndef EV_VERIFY
410# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
411#endif
412
413#ifndef EV_USE_4HEAP
414# define EV_USE_4HEAP EV_FEATURE_DATA
415#endif
416
417#ifndef EV_HEAP_CACHE_AT
418# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
419#endif
420
421#ifdef __ANDROID__
422/* supposedly, android doesn't typedef fd_mask */
423# undef EV_USE_SELECT
424# define EV_USE_SELECT 0
425/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
426# undef EV_USE_CLOCK_SYSCALL
427# define EV_USE_CLOCK_SYSCALL 0
428#endif
429
430/* aix's poll.h seems to cause lots of trouble */
431#ifdef _AIX
432/* AIX has a completely broken poll.h header */
433# undef EV_USE_POLL
434# define EV_USE_POLL 0
435#endif
436
437/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
438/* which makes programs even slower. might work on other unices, too. */
439#if EV_USE_CLOCK_SYSCALL
440# include <sys/syscall.h>
441# ifdef SYS_clock_gettime
442# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
443# undef EV_USE_MONOTONIC
444# define EV_USE_MONOTONIC 1
445# define EV_NEED_SYSCALL 1
446# else
447# undef EV_USE_CLOCK_SYSCALL
448# define EV_USE_CLOCK_SYSCALL 0
449# endif
450#endif
451
452/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 453
163#ifndef CLOCK_MONOTONIC 454#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 455# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 456# define EV_USE_MONOTONIC 0
166#endif 457#endif
168#ifndef CLOCK_REALTIME 459#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 460# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 461# define EV_USE_REALTIME 0
171#endif 462#endif
172 463
173#if EV_SELECT_IS_WINSOCKET 464#if !EV_STAT_ENABLE
465# undef EV_USE_INOTIFY
466# define EV_USE_INOTIFY 0
467#endif
468
469#if __linux && EV_USE_IOURING
174# include <winsock.h> 470# include <linux/version.h>
471# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
472# undef EV_USE_IOURING
473# define EV_USE_IOURING 0
175#endif 474# endif
475#endif
176 476
177/**/ 477#if !EV_USE_NANOSLEEP
478/* hp-ux has it in sys/time.h, which we unconditionally include above */
479# if !defined _WIN32 && !defined __hpux
480# include <sys/select.h>
481# endif
482#endif
178 483
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 484#if EV_USE_LINUXAIO
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 485# include <sys/syscall.h>
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 486# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 487# define EV_NEED_SYSCALL 1
488# else
489# undef EV_USE_LINUXAIO
490# define EV_USE_LINUXAIO 0
491# endif
492#endif
183 493
184#ifdef EV_H 494#if EV_USE_IOURING
185# include EV_H 495# include <sys/syscall.h>
496# if !SYS_io_uring_setup && __linux && !__alpha
497# define SYS_io_uring_setup 425
498# define SYS_io_uring_enter 426
499# define SYS_io_uring_wregister 427
500# endif
501# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
502# define EV_NEED_SYSCALL 1
503# else
504# undef EV_USE_IOURING
505# define EV_USE_IOURING 0
506# endif
507#endif
508
509#if EV_USE_INOTIFY
510# include <sys/statfs.h>
511# include <sys/inotify.h>
512/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
513# ifndef IN_DONT_FOLLOW
514# undef EV_USE_INOTIFY
515# define EV_USE_INOTIFY 0
516# endif
517#endif
518
519#if EV_USE_EVENTFD
520/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
521# include <stdint.h>
522# ifndef EFD_NONBLOCK
523# define EFD_NONBLOCK O_NONBLOCK
524# endif
525# ifndef EFD_CLOEXEC
526# ifdef O_CLOEXEC
527# define EFD_CLOEXEC O_CLOEXEC
528# else
529# define EFD_CLOEXEC 02000000
530# endif
531# endif
532EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
533#endif
534
535#if EV_USE_SIGNALFD
536/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
537# include <stdint.h>
538# ifndef SFD_NONBLOCK
539# define SFD_NONBLOCK O_NONBLOCK
540# endif
541# ifndef SFD_CLOEXEC
542# ifdef O_CLOEXEC
543# define SFD_CLOEXEC O_CLOEXEC
544# else
545# define SFD_CLOEXEC 02000000
546# endif
547# endif
548EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
549
550struct signalfd_siginfo
551{
552 uint32_t ssi_signo;
553 char pad[128 - sizeof (uint32_t)];
554};
555#endif
556
557/* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
558#if EV_USE_TIMERFD
559# include <sys/timerfd.h>
560/* timerfd is only used for periodics */
561# if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
562# undef EV_USE_TIMERFD
563# define EV_USE_TIMERFD 0
564# endif
565#endif
566
567/*****************************************************************************/
568
569#if EV_VERIFY >= 3
570# define EV_FREQUENT_CHECK ev_verify (EV_A)
186#else 571#else
187# include "ev.h" 572# define EV_FREQUENT_CHECK do { } while (0)
188#endif
189
190#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif 573#endif
574
575/*
576 * This is used to work around floating point rounding problems.
577 * This value is good at least till the year 4000.
578 */
579#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
580/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
581
582#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
583#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
584#define MAX_BLOCKTIME2 1500001.07 /* same, but when timerfd is used to detect jumps, also safe delay to not overflow */
585
586/* find a portable timestamp that is "always" in the future but fits into time_t.
587 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
588 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
589#define EV_TSTAMP_HUGE \
590 (sizeof (time_t) >= 8 ? 10000000000000. \
591 : 0 < (time_t)4294967295 ? 4294967295. \
592 : 2147483647.) \
593
594#ifndef EV_TS_CONST
595# define EV_TS_CONST(nv) nv
596# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
597# define EV_TS_FROM_USEC(us) us * 1e-6
598# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
599# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
600# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
601# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
602#endif
603
604/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
605/* ECB.H BEGIN */
606/*
607 * libecb - http://software.schmorp.de/pkg/libecb
608 *
609 * Copyright (©) 2009-2015,2018-2020 Marc Alexander Lehmann <libecb@schmorp.de>
610 * Copyright (©) 2011 Emanuele Giaquinta
611 * All rights reserved.
612 *
613 * Redistribution and use in source and binary forms, with or without modifica-
614 * tion, are permitted provided that the following conditions are met:
615 *
616 * 1. Redistributions of source code must retain the above copyright notice,
617 * this list of conditions and the following disclaimer.
618 *
619 * 2. Redistributions in binary form must reproduce the above copyright
620 * notice, this list of conditions and the following disclaimer in the
621 * documentation and/or other materials provided with the distribution.
622 *
623 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
624 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
625 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
626 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
627 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
628 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
629 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
630 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
631 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
632 * OF THE POSSIBILITY OF SUCH DAMAGE.
633 *
634 * Alternatively, the contents of this file may be used under the terms of
635 * the GNU General Public License ("GPL") version 2 or any later version,
636 * in which case the provisions of the GPL are applicable instead of
637 * the above. If you wish to allow the use of your version of this file
638 * only under the terms of the GPL and not to allow others to use your
639 * version of this file under the BSD license, indicate your decision
640 * by deleting the provisions above and replace them with the notice
641 * and other provisions required by the GPL. If you do not delete the
642 * provisions above, a recipient may use your version of this file under
643 * either the BSD or the GPL.
644 */
645
646#ifndef ECB_H
647#define ECB_H
648
649/* 16 bits major, 16 bits minor */
650#define ECB_VERSION 0x00010008
651
652#include <string.h> /* for memcpy */
653
654#if defined (_WIN32) && !defined (__MINGW32__)
655 typedef signed char int8_t;
656 typedef unsigned char uint8_t;
657 typedef signed char int_fast8_t;
658 typedef unsigned char uint_fast8_t;
659 typedef signed short int16_t;
660 typedef unsigned short uint16_t;
661 typedef signed int int_fast16_t;
662 typedef unsigned int uint_fast16_t;
663 typedef signed int int32_t;
664 typedef unsigned int uint32_t;
665 typedef signed int int_fast32_t;
666 typedef unsigned int uint_fast32_t;
667 #if __GNUC__
668 typedef signed long long int64_t;
669 typedef unsigned long long uint64_t;
670 #else /* _MSC_VER || __BORLANDC__ */
671 typedef signed __int64 int64_t;
672 typedef unsigned __int64 uint64_t;
673 #endif
674 typedef int64_t int_fast64_t;
675 typedef uint64_t uint_fast64_t;
676 #ifdef _WIN64
677 #define ECB_PTRSIZE 8
678 typedef uint64_t uintptr_t;
679 typedef int64_t intptr_t;
680 #else
681 #define ECB_PTRSIZE 4
682 typedef uint32_t uintptr_t;
683 typedef int32_t intptr_t;
684 #endif
200#else 685#else
686 #include <inttypes.h>
687 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
688 #define ECB_PTRSIZE 8
689 #else
690 #define ECB_PTRSIZE 4
691 #endif
692#endif
693
694#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
695#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
696
697#ifndef ECB_OPTIMIZE_SIZE
698 #if __OPTIMIZE_SIZE__
699 #define ECB_OPTIMIZE_SIZE 1
700 #else
701 #define ECB_OPTIMIZE_SIZE 0
702 #endif
703#endif
704
705/* work around x32 idiocy by defining proper macros */
706#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
707 #if _ILP32
708 #define ECB_AMD64_X32 1
709 #else
710 #define ECB_AMD64 1
711 #endif
712#endif
713
714/* many compilers define _GNUC_ to some versions but then only implement
715 * what their idiot authors think are the "more important" extensions,
716 * causing enormous grief in return for some better fake benchmark numbers.
717 * or so.
718 * we try to detect these and simply assume they are not gcc - if they have
719 * an issue with that they should have done it right in the first place.
720 */
721#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
722 #define ECB_GCC_VERSION(major,minor) 0
723#else
724 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
725#endif
726
727#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
728
729#if __clang__ && defined __has_builtin
730 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
731#else
732 #define ECB_CLANG_BUILTIN(x) 0
733#endif
734
735#if __clang__ && defined __has_extension
736 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
737#else
738 #define ECB_CLANG_EXTENSION(x) 0
739#endif
740
741#define ECB_CPP (__cplusplus+0)
742#define ECB_CPP11 (__cplusplus >= 201103L)
743#define ECB_CPP14 (__cplusplus >= 201402L)
744#define ECB_CPP17 (__cplusplus >= 201703L)
745
746#if ECB_CPP
747 #define ECB_C 0
748 #define ECB_STDC_VERSION 0
749#else
750 #define ECB_C 1
751 #define ECB_STDC_VERSION __STDC_VERSION__
752#endif
753
754#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
755#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
756#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
757
758#if ECB_CPP
759 #define ECB_EXTERN_C extern "C"
760 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
761 #define ECB_EXTERN_C_END }
762#else
763 #define ECB_EXTERN_C extern
764 #define ECB_EXTERN_C_BEG
765 #define ECB_EXTERN_C_END
766#endif
767
768/*****************************************************************************/
769
770/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
771/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
772
773#if ECB_NO_THREADS
774 #define ECB_NO_SMP 1
775#endif
776
777#if ECB_NO_SMP
778 #define ECB_MEMORY_FENCE do { } while (0)
779#endif
780
781/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
782#if __xlC__ && ECB_CPP
783 #include <builtins.h>
784#endif
785
786#if 1400 <= _MSC_VER
787 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
788#endif
789
790#ifndef ECB_MEMORY_FENCE
791 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
792 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
793 #if __i386 || __i386__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
795 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
796 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
797 #elif ECB_GCC_AMD64
798 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
799 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
800 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
801 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
802 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
803 #elif defined __ARM_ARCH_2__ \
804 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
805 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
806 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
807 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
808 || defined __ARM_ARCH_5TEJ__
809 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
810 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
811 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
812 || defined __ARM_ARCH_6T2__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
814 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
815 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
817 #elif __aarch64__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
819 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
821 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
822 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
823 #elif defined __s390__ || defined __s390x__
824 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
825 #elif defined __mips__
826 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
827 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
828 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
829 #elif defined __alpha__
830 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
831 #elif defined __hppa__
832 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
833 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
834 #elif defined __ia64__
835 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
836 #elif defined __m68k__
837 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
838 #elif defined __m88k__
839 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
840 #elif defined __sh__
841 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
842 #endif
843 #endif
844#endif
845
846#ifndef ECB_MEMORY_FENCE
847 #if ECB_GCC_VERSION(4,7)
848 /* see comment below (stdatomic.h) about the C11 memory model. */
849 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
850 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
851 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
852 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
853
854 #elif ECB_CLANG_EXTENSION(c_atomic)
855 /* see comment below (stdatomic.h) about the C11 memory model. */
856 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
857 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
858 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
859 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
860
861 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
862 #define ECB_MEMORY_FENCE __sync_synchronize ()
863 #elif _MSC_VER >= 1500 /* VC++ 2008 */
864 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
865 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
866 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
867 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
868 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
869 #elif _MSC_VER >= 1400 /* VC++ 2005 */
870 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
871 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
872 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
873 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
874 #elif defined _WIN32
875 #include <WinNT.h>
876 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
877 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
878 #include <mbarrier.h>
879 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
880 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
881 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
882 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
883 #elif __xlC__
884 #define ECB_MEMORY_FENCE __sync ()
885 #endif
886#endif
887
888#ifndef ECB_MEMORY_FENCE
889 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
890 /* we assume that these memory fences work on all variables/all memory accesses, */
891 /* not just C11 atomics and atomic accesses */
892 #include <stdatomic.h>
893 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
894 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
895 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
896 #endif
897#endif
898
899#ifndef ECB_MEMORY_FENCE
900 #if !ECB_AVOID_PTHREADS
901 /*
902 * if you get undefined symbol references to pthread_mutex_lock,
903 * or failure to find pthread.h, then you should implement
904 * the ECB_MEMORY_FENCE operations for your cpu/compiler
905 * OR provide pthread.h and link against the posix thread library
906 * of your system.
907 */
908 #include <pthread.h>
909 #define ECB_NEEDS_PTHREADS 1
910 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
911
912 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
913 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
914 #endif
915#endif
916
917#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
918 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
919#endif
920
921#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
922 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
923#endif
924
925#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
926 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
927#endif
928
929/*****************************************************************************/
930
931#if ECB_CPP
932 #define ecb_inline static inline
933#elif ECB_GCC_VERSION(2,5)
934 #define ecb_inline static __inline__
935#elif ECB_C99
936 #define ecb_inline static inline
937#else
938 #define ecb_inline static
939#endif
940
941#if ECB_GCC_VERSION(3,3)
942 #define ecb_restrict __restrict__
943#elif ECB_C99
944 #define ecb_restrict restrict
945#else
946 #define ecb_restrict
947#endif
948
949typedef int ecb_bool;
950
951#define ECB_CONCAT_(a, b) a ## b
952#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
953#define ECB_STRINGIFY_(a) # a
954#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
955#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
956
957#define ecb_function_ ecb_inline
958
959#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
960 #define ecb_attribute(attrlist) __attribute__ (attrlist)
961#else
962 #define ecb_attribute(attrlist)
963#endif
964
965#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
966 #define ecb_is_constant(expr) __builtin_constant_p (expr)
967#else
968 /* possible C11 impl for integral types
969 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
970 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
971
972 #define ecb_is_constant(expr) 0
973#endif
974
975#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
976 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
977#else
201# define expect(expr,value) (expr) 978 #define ecb_expect(expr,value) (expr)
202# define inline_speed static
203# define inline_size static
204# define noinline
205#endif 979#endif
206 980
981#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
982 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
983#else
984 #define ecb_prefetch(addr,rw,locality)
985#endif
986
987/* no emulation for ecb_decltype */
988#if ECB_CPP11
989 // older implementations might have problems with decltype(x)::type, work around it
990 template<class T> struct ecb_decltype_t { typedef T type; };
991 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
992#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
993 #define ecb_decltype(x) __typeof__ (x)
994#endif
995
996#if _MSC_VER >= 1300
997 #define ecb_deprecated __declspec (deprecated)
998#else
999 #define ecb_deprecated ecb_attribute ((__deprecated__))
1000#endif
1001
1002#if _MSC_VER >= 1500
1003 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
1004#elif ECB_GCC_VERSION(4,5)
1005 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
1006#else
1007 #define ecb_deprecated_message(msg) ecb_deprecated
1008#endif
1009
1010#if _MSC_VER >= 1400
1011 #define ecb_noinline __declspec (noinline)
1012#else
1013 #define ecb_noinline ecb_attribute ((__noinline__))
1014#endif
1015
1016#define ecb_unused ecb_attribute ((__unused__))
1017#define ecb_const ecb_attribute ((__const__))
1018#define ecb_pure ecb_attribute ((__pure__))
1019
1020#if ECB_C11 || __IBMC_NORETURN
1021 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1022 #define ecb_noreturn _Noreturn
1023#elif ECB_CPP11
1024 #define ecb_noreturn [[noreturn]]
1025#elif _MSC_VER >= 1200
1026 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1027 #define ecb_noreturn __declspec (noreturn)
1028#else
1029 #define ecb_noreturn ecb_attribute ((__noreturn__))
1030#endif
1031
1032#if ECB_GCC_VERSION(4,3)
1033 #define ecb_artificial ecb_attribute ((__artificial__))
1034 #define ecb_hot ecb_attribute ((__hot__))
1035 #define ecb_cold ecb_attribute ((__cold__))
1036#else
1037 #define ecb_artificial
1038 #define ecb_hot
1039 #define ecb_cold
1040#endif
1041
1042/* put around conditional expressions if you are very sure that the */
1043/* expression is mostly true or mostly false. note that these return */
1044/* booleans, not the expression. */
207#define expect_false(expr) expect ((expr) != 0, 0) 1045#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
208#define expect_true(expr) expect ((expr) != 0, 1) 1046#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1047/* for compatibility to the rest of the world */
1048#define ecb_likely(expr) ecb_expect_true (expr)
1049#define ecb_unlikely(expr) ecb_expect_false (expr)
209 1050
1051/* count trailing zero bits and count # of one bits */
1052#if ECB_GCC_VERSION(3,4) \
1053 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1054 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1055 && ECB_CLANG_BUILTIN(__builtin_popcount))
1056 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1057 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1058 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1059 #define ecb_ctz32(x) __builtin_ctz (x)
1060 #define ecb_ctz64(x) __builtin_ctzll (x)
1061 #define ecb_popcount32(x) __builtin_popcount (x)
1062 /* no popcountll */
1063#else
1064 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1065 ecb_function_ ecb_const int
1066 ecb_ctz32 (uint32_t x)
1067 {
1068#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1069 unsigned long r;
1070 _BitScanForward (&r, x);
1071 return (int)r;
1072#else
1073 int r = 0;
1074
1075 x &= ~x + 1; /* this isolates the lowest bit */
1076
1077#if ECB_branchless_on_i386
1078 r += !!(x & 0xaaaaaaaa) << 0;
1079 r += !!(x & 0xcccccccc) << 1;
1080 r += !!(x & 0xf0f0f0f0) << 2;
1081 r += !!(x & 0xff00ff00) << 3;
1082 r += !!(x & 0xffff0000) << 4;
1083#else
1084 if (x & 0xaaaaaaaa) r += 1;
1085 if (x & 0xcccccccc) r += 2;
1086 if (x & 0xf0f0f0f0) r += 4;
1087 if (x & 0xff00ff00) r += 8;
1088 if (x & 0xffff0000) r += 16;
1089#endif
1090
1091 return r;
1092#endif
1093 }
1094
1095 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1096 ecb_function_ ecb_const int
1097 ecb_ctz64 (uint64_t x)
1098 {
1099#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1100 unsigned long r;
1101 _BitScanForward64 (&r, x);
1102 return (int)r;
1103#else
1104 int shift = x & 0xffffffff ? 0 : 32;
1105 return ecb_ctz32 (x >> shift) + shift;
1106#endif
1107 }
1108
1109 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1110 ecb_function_ ecb_const int
1111 ecb_popcount32 (uint32_t x)
1112 {
1113 x -= (x >> 1) & 0x55555555;
1114 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1115 x = ((x >> 4) + x) & 0x0f0f0f0f;
1116 x *= 0x01010101;
1117
1118 return x >> 24;
1119 }
1120
1121 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1122 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1123 {
1124#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1125 unsigned long r;
1126 _BitScanReverse (&r, x);
1127 return (int)r;
1128#else
1129 int r = 0;
1130
1131 if (x >> 16) { x >>= 16; r += 16; }
1132 if (x >> 8) { x >>= 8; r += 8; }
1133 if (x >> 4) { x >>= 4; r += 4; }
1134 if (x >> 2) { x >>= 2; r += 2; }
1135 if (x >> 1) { r += 1; }
1136
1137 return r;
1138#endif
1139 }
1140
1141 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1142 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1143 {
1144#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1145 unsigned long r;
1146 _BitScanReverse64 (&r, x);
1147 return (int)r;
1148#else
1149 int r = 0;
1150
1151 if (x >> 32) { x >>= 32; r += 32; }
1152
1153 return r + ecb_ld32 (x);
1154#endif
1155 }
1156#endif
1157
1158ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1159ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1160ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1161ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1162
1163ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1164ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1165{
1166 return ( (x * 0x0802U & 0x22110U)
1167 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1168}
1169
1170ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1171ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1172{
1173 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1174 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1175 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1176 x = ( x >> 8 ) | ( x << 8);
1177
1178 return x;
1179}
1180
1181ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1182ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1183{
1184 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1185 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1186 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1187 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1188 x = ( x >> 16 ) | ( x << 16);
1189
1190 return x;
1191}
1192
1193/* popcount64 is only available on 64 bit cpus as gcc builtin */
1194/* so for this version we are lazy */
1195ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1196ecb_function_ ecb_const int
1197ecb_popcount64 (uint64_t x)
1198{
1199 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1200}
1201
1202ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1203ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1204ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1205ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1206ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1207ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1208ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1209ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1210
1211ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1212ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1213ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1214ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1215ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1216ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1217ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1218ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1219
1220#if ECB_CPP
1221
1222inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
1223inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
1224inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
1225inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
1226
1227inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
1228inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
1229inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
1230inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
1231
1232inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
1233inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
1234inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
1235inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
1236
1237inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
1238inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
1239inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
1240inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
1241
1242inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
1243inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
1244inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
1245
1246inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
1247inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
1248inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
1249inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
1250
1251inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
1252inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
1253inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
1254inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
1255
1256#endif
1257
1258#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1259 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1260 #define ecb_bswap16(x) __builtin_bswap16 (x)
1261 #else
1262 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1263 #endif
1264 #define ecb_bswap32(x) __builtin_bswap32 (x)
1265 #define ecb_bswap64(x) __builtin_bswap64 (x)
1266#elif _MSC_VER
1267 #include <stdlib.h>
1268 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1269 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1270 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1271#else
1272 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1273 ecb_function_ ecb_const uint16_t
1274 ecb_bswap16 (uint16_t x)
1275 {
1276 return ecb_rotl16 (x, 8);
1277 }
1278
1279 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1280 ecb_function_ ecb_const uint32_t
1281 ecb_bswap32 (uint32_t x)
1282 {
1283 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1284 }
1285
1286 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1287 ecb_function_ ecb_const uint64_t
1288 ecb_bswap64 (uint64_t x)
1289 {
1290 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1291 }
1292#endif
1293
1294#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1295 #define ecb_unreachable() __builtin_unreachable ()
1296#else
1297 /* this seems to work fine, but gcc always emits a warning for it :/ */
1298 ecb_inline ecb_noreturn void ecb_unreachable (void);
1299 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1300#endif
1301
1302/* try to tell the compiler that some condition is definitely true */
1303#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1304
1305ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1306ecb_inline ecb_const uint32_t
1307ecb_byteorder_helper (void)
1308{
1309 /* the union code still generates code under pressure in gcc, */
1310 /* but less than using pointers, and always seems to */
1311 /* successfully return a constant. */
1312 /* the reason why we have this horrible preprocessor mess */
1313 /* is to avoid it in all cases, at least on common architectures */
1314 /* or when using a recent enough gcc version (>= 4.6) */
1315#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1316 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1317 #define ECB_LITTLE_ENDIAN 1
1318 return 0x44332211;
1319#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1320 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1321 #define ECB_BIG_ENDIAN 1
1322 return 0x11223344;
1323#else
1324 union
1325 {
1326 uint8_t c[4];
1327 uint32_t u;
1328 } u = { 0x11, 0x22, 0x33, 0x44 };
1329 return u.u;
1330#endif
1331}
1332
1333ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1334ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1335ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1336ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1337
1338/*****************************************************************************/
1339/* unaligned load/store */
1340
1341ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1342ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1343ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1344
1345ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1346ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1347ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1348
1349ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1350ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1351ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1352
1353ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
1354ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
1355ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
1356
1357ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
1358ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
1359ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
1360
1361ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1362ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1363ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1364
1365ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1366ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1367ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1368
1369ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
1370ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
1371ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
1372
1373ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
1374ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
1375ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
1376
1377ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
1378ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
1379ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
1380
1381#if ECB_CPP
1382
1383inline uint8_t ecb_bswap (uint8_t v) { return v; }
1384inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
1385inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
1386inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
1387
1388template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1389template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1390template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
1391template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
1392template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
1393template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
1394template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
1395template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
1396
1397template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1398template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1399template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
1400template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
1401template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
1402template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
1403template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
1404template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
1405
1406#endif
1407
1408/*****************************************************************************/
1409
1410#if ECB_GCC_VERSION(3,0) || ECB_C99
1411 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1412#else
1413 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1414#endif
1415
1416#if ECB_CPP
1417 template<typename T>
1418 static inline T ecb_div_rd (T val, T div)
1419 {
1420 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1421 }
1422 template<typename T>
1423 static inline T ecb_div_ru (T val, T div)
1424 {
1425 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1426 }
1427#else
1428 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1429 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1430#endif
1431
1432#if ecb_cplusplus_does_not_suck
1433 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1434 template<typename T, int N>
1435 static inline int ecb_array_length (const T (&arr)[N])
1436 {
1437 return N;
1438 }
1439#else
1440 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1441#endif
1442
1443/*****************************************************************************/
1444
1445ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1446ecb_function_ ecb_const uint32_t
1447ecb_binary16_to_binary32 (uint32_t x)
1448{
1449 unsigned int s = (x & 0x8000) << (31 - 15);
1450 int e = (x >> 10) & 0x001f;
1451 unsigned int m = x & 0x03ff;
1452
1453 if (ecb_expect_false (e == 31))
1454 /* infinity or NaN */
1455 e = 255 - (127 - 15);
1456 else if (ecb_expect_false (!e))
1457 {
1458 if (ecb_expect_true (!m))
1459 /* zero, handled by code below by forcing e to 0 */
1460 e = 0 - (127 - 15);
1461 else
1462 {
1463 /* subnormal, renormalise */
1464 unsigned int s = 10 - ecb_ld32 (m);
1465
1466 m = (m << s) & 0x3ff; /* mask implicit bit */
1467 e -= s - 1;
1468 }
1469 }
1470
1471 /* e and m now are normalised, or zero, (or inf or nan) */
1472 e += 127 - 15;
1473
1474 return s | (e << 23) | (m << (23 - 10));
1475}
1476
1477ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1478ecb_function_ ecb_const uint16_t
1479ecb_binary32_to_binary16 (uint32_t x)
1480{
1481 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1482 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1483 unsigned int m = x & 0x007fffff;
1484
1485 x &= 0x7fffffff;
1486
1487 /* if it's within range of binary16 normals, use fast path */
1488 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1489 {
1490 /* mantissa round-to-even */
1491 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1492
1493 /* handle overflow */
1494 if (ecb_expect_false (m >= 0x00800000))
1495 {
1496 m >>= 1;
1497 e += 1;
1498 }
1499
1500 return s | (e << 10) | (m >> (23 - 10));
1501 }
1502
1503 /* handle large numbers and infinity */
1504 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1505 return s | 0x7c00;
1506
1507 /* handle zero, subnormals and small numbers */
1508 if (ecb_expect_true (x < 0x38800000))
1509 {
1510 /* zero */
1511 if (ecb_expect_true (!x))
1512 return s;
1513
1514 /* handle subnormals */
1515
1516 /* too small, will be zero */
1517 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1518 return s;
1519
1520 m |= 0x00800000; /* make implicit bit explicit */
1521
1522 /* very tricky - we need to round to the nearest e (+10) bit value */
1523 {
1524 unsigned int bits = 14 - e;
1525 unsigned int half = (1 << (bits - 1)) - 1;
1526 unsigned int even = (m >> bits) & 1;
1527
1528 /* if this overflows, we will end up with a normalised number */
1529 m = (m + half + even) >> bits;
1530 }
1531
1532 return s | m;
1533 }
1534
1535 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1536 m >>= 13;
1537
1538 return s | 0x7c00 | m | !m;
1539}
1540
1541/*******************************************************************************/
1542/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1543
1544/* basically, everything uses "ieee pure-endian" floating point numbers */
1545/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1546#if 0 \
1547 || __i386 || __i386__ \
1548 || ECB_GCC_AMD64 \
1549 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1550 || defined __s390__ || defined __s390x__ \
1551 || defined __mips__ \
1552 || defined __alpha__ \
1553 || defined __hppa__ \
1554 || defined __ia64__ \
1555 || defined __m68k__ \
1556 || defined __m88k__ \
1557 || defined __sh__ \
1558 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1559 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1560 || defined __aarch64__
1561 #define ECB_STDFP 1
1562#else
1563 #define ECB_STDFP 0
1564#endif
1565
1566#ifndef ECB_NO_LIBM
1567
1568 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1569
1570 /* only the oldest of old doesn't have this one. solaris. */
1571 #ifdef INFINITY
1572 #define ECB_INFINITY INFINITY
1573 #else
1574 #define ECB_INFINITY HUGE_VAL
1575 #endif
1576
1577 #ifdef NAN
1578 #define ECB_NAN NAN
1579 #else
1580 #define ECB_NAN ECB_INFINITY
1581 #endif
1582
1583 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1584 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1585 #define ecb_frexpf(x,e) frexpf ((x), (e))
1586 #else
1587 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1588 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1589 #endif
1590
1591 /* convert a float to ieee single/binary32 */
1592 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1593 ecb_function_ ecb_const uint32_t
1594 ecb_float_to_binary32 (float x)
1595 {
1596 uint32_t r;
1597
1598 #if ECB_STDFP
1599 memcpy (&r, &x, 4);
1600 #else
1601 /* slow emulation, works for anything but -0 */
1602 uint32_t m;
1603 int e;
1604
1605 if (x == 0e0f ) return 0x00000000U;
1606 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1607 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1608 if (x != x ) return 0x7fbfffffU;
1609
1610 m = ecb_frexpf (x, &e) * 0x1000000U;
1611
1612 r = m & 0x80000000U;
1613
1614 if (r)
1615 m = -m;
1616
1617 if (e <= -126)
1618 {
1619 m &= 0xffffffU;
1620 m >>= (-125 - e);
1621 e = -126;
1622 }
1623
1624 r |= (e + 126) << 23;
1625 r |= m & 0x7fffffU;
1626 #endif
1627
1628 return r;
1629 }
1630
1631 /* converts an ieee single/binary32 to a float */
1632 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1633 ecb_function_ ecb_const float
1634 ecb_binary32_to_float (uint32_t x)
1635 {
1636 float r;
1637
1638 #if ECB_STDFP
1639 memcpy (&r, &x, 4);
1640 #else
1641 /* emulation, only works for normals and subnormals and +0 */
1642 int neg = x >> 31;
1643 int e = (x >> 23) & 0xffU;
1644
1645 x &= 0x7fffffU;
1646
1647 if (e)
1648 x |= 0x800000U;
1649 else
1650 e = 1;
1651
1652 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1653 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1654
1655 r = neg ? -r : r;
1656 #endif
1657
1658 return r;
1659 }
1660
1661 /* convert a double to ieee double/binary64 */
1662 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1663 ecb_function_ ecb_const uint64_t
1664 ecb_double_to_binary64 (double x)
1665 {
1666 uint64_t r;
1667
1668 #if ECB_STDFP
1669 memcpy (&r, &x, 8);
1670 #else
1671 /* slow emulation, works for anything but -0 */
1672 uint64_t m;
1673 int e;
1674
1675 if (x == 0e0 ) return 0x0000000000000000U;
1676 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1677 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1678 if (x != x ) return 0X7ff7ffffffffffffU;
1679
1680 m = frexp (x, &e) * 0x20000000000000U;
1681
1682 r = m & 0x8000000000000000;;
1683
1684 if (r)
1685 m = -m;
1686
1687 if (e <= -1022)
1688 {
1689 m &= 0x1fffffffffffffU;
1690 m >>= (-1021 - e);
1691 e = -1022;
1692 }
1693
1694 r |= ((uint64_t)(e + 1022)) << 52;
1695 r |= m & 0xfffffffffffffU;
1696 #endif
1697
1698 return r;
1699 }
1700
1701 /* converts an ieee double/binary64 to a double */
1702 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1703 ecb_function_ ecb_const double
1704 ecb_binary64_to_double (uint64_t x)
1705 {
1706 double r;
1707
1708 #if ECB_STDFP
1709 memcpy (&r, &x, 8);
1710 #else
1711 /* emulation, only works for normals and subnormals and +0 */
1712 int neg = x >> 63;
1713 int e = (x >> 52) & 0x7ffU;
1714
1715 x &= 0xfffffffffffffU;
1716
1717 if (e)
1718 x |= 0x10000000000000U;
1719 else
1720 e = 1;
1721
1722 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1723 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1724
1725 r = neg ? -r : r;
1726 #endif
1727
1728 return r;
1729 }
1730
1731 /* convert a float to ieee half/binary16 */
1732 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1733 ecb_function_ ecb_const uint16_t
1734 ecb_float_to_binary16 (float x)
1735 {
1736 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1737 }
1738
1739 /* convert an ieee half/binary16 to float */
1740 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1741 ecb_function_ ecb_const float
1742 ecb_binary16_to_float (uint16_t x)
1743 {
1744 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1745 }
1746
1747#endif
1748
1749#endif
1750
1751/* ECB.H END */
1752
1753#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1754/* if your architecture doesn't need memory fences, e.g. because it is
1755 * single-cpu/core, or if you use libev in a project that doesn't use libev
1756 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1757 * libev, in which cases the memory fences become nops.
1758 * alternatively, you can remove this #error and link against libpthread,
1759 * which will then provide the memory fences.
1760 */
1761# error "memory fences not defined for your architecture, please report"
1762#endif
1763
1764#ifndef ECB_MEMORY_FENCE
1765# define ECB_MEMORY_FENCE do { } while (0)
1766# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1767# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1768#endif
1769
1770#define inline_size ecb_inline
1771
1772#if EV_FEATURE_CODE
1773# define inline_speed ecb_inline
1774#else
1775# define inline_speed ecb_noinline static
1776#endif
1777
1778/*****************************************************************************/
1779/* raw syscall wrappers */
1780
1781#if EV_NEED_SYSCALL
1782
1783#include <sys/syscall.h>
1784
1785/*
1786 * define some syscall wrappers for common architectures
1787 * this is mostly for nice looks during debugging, not performance.
1788 * our syscalls return < 0, not == -1, on error. which is good
1789 * enough for linux aio.
1790 * TODO: arm is also common nowadays, maybe even mips and x86
1791 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1792 */
1793#if __GNUC__ && __linux && ECB_AMD64 && !EV_FEATURE_CODE
1794 /* the costly errno access probably kills this for size optimisation */
1795
1796 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1797 ({ \
1798 long res; \
1799 register unsigned long r6 __asm__ ("r9" ); \
1800 register unsigned long r5 __asm__ ("r8" ); \
1801 register unsigned long r4 __asm__ ("r10"); \
1802 register unsigned long r3 __asm__ ("rdx"); \
1803 register unsigned long r2 __asm__ ("rsi"); \
1804 register unsigned long r1 __asm__ ("rdi"); \
1805 if (narg >= 6) r6 = (unsigned long)(arg6); \
1806 if (narg >= 5) r5 = (unsigned long)(arg5); \
1807 if (narg >= 4) r4 = (unsigned long)(arg4); \
1808 if (narg >= 3) r3 = (unsigned long)(arg3); \
1809 if (narg >= 2) r2 = (unsigned long)(arg2); \
1810 if (narg >= 1) r1 = (unsigned long)(arg1); \
1811 __asm__ __volatile__ ( \
1812 "syscall\n\t" \
1813 : "=a" (res) \
1814 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1815 : "cc", "r11", "cx", "memory"); \
1816 errno = -res; \
1817 res; \
1818 })
1819
1820#endif
1821
1822#ifdef ev_syscall
1823 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1824 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1825 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1826 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1827 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1828 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1829 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1830#else
1831 #define ev_syscall0(nr) syscall (nr)
1832 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1833 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1834 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1835 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1836 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1837 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1838#endif
1839
1840#endif
1841
1842/*****************************************************************************/
1843
210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1844#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1845
1846#if EV_MINPRI == EV_MAXPRI
1847# define ABSPRI(w) (((W)w), 0)
1848#else
211#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1849# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1850#endif
212 1851
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 1852#define EMPTY /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */
215 1853
216typedef ev_watcher *W; 1854typedef ev_watcher *W;
217typedef ev_watcher_list *WL; 1855typedef ev_watcher_list *WL;
218typedef ev_watcher_time *WT; 1856typedef ev_watcher_time *WT;
219 1857
1858#define ev_active(w) ((W)(w))->active
1859#define ev_at(w) ((WT)(w))->at
1860
1861#if EV_USE_REALTIME
1862/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1863/* giving it a reasonably high chance of working on typical architectures */
1864static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1865#endif
1866
1867#if EV_USE_MONOTONIC
220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1868static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1869#endif
1870
1871#ifndef EV_FD_TO_WIN32_HANDLE
1872# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1873#endif
1874#ifndef EV_WIN32_HANDLE_TO_FD
1875# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1876#endif
1877#ifndef EV_WIN32_CLOSE_FD
1878# define EV_WIN32_CLOSE_FD(fd) close (fd)
1879#endif
221 1880
222#ifdef _WIN32 1881#ifdef _WIN32
223# include "ev_win32.c" 1882# include "ev_win32.c"
224#endif 1883#endif
225 1884
226/*****************************************************************************/ 1885/*****************************************************************************/
227 1886
1887#if EV_USE_LINUXAIO
1888# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1889#endif
1890
1891/* define a suitable floor function (only used by periodics atm) */
1892
1893#if EV_USE_FLOOR
1894# include <math.h>
1895# define ev_floor(v) floor (v)
1896#else
1897
1898#include <float.h>
1899
1900/* a floor() replacement function, should be independent of ev_tstamp type */
1901ecb_noinline
1902static ev_tstamp
1903ev_floor (ev_tstamp v)
1904{
1905 /* the choice of shift factor is not terribly important */
1906#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1907 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1908#else
1909 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1910#endif
1911
1912 /* special treatment for negative arguments */
1913 if (ecb_expect_false (v < 0.))
1914 {
1915 ev_tstamp f = -ev_floor (-v);
1916
1917 return f - (f == v ? 0 : 1);
1918 }
1919
1920 /* argument too large for an unsigned long? then reduce it */
1921 if (ecb_expect_false (v >= shift))
1922 {
1923 ev_tstamp f;
1924
1925 if (v == v - 1.)
1926 return v; /* very large numbers are assumed to be integer */
1927
1928 f = shift * ev_floor (v * (1. / shift));
1929 return f + ev_floor (v - f);
1930 }
1931
1932 /* fits into an unsigned long */
1933 return (unsigned long)v;
1934}
1935
1936#endif
1937
1938/*****************************************************************************/
1939
1940#ifdef __linux
1941# include <sys/utsname.h>
1942#endif
1943
1944ecb_noinline ecb_cold
1945static unsigned int
1946ev_linux_version (void)
1947{
1948#ifdef __linux
1949 unsigned int v = 0;
1950 struct utsname buf;
1951 int i;
1952 char *p = buf.release;
1953
1954 if (uname (&buf))
1955 return 0;
1956
1957 for (i = 3+1; --i; )
1958 {
1959 unsigned int c = 0;
1960
1961 for (;;)
1962 {
1963 if (*p >= '0' && *p <= '9')
1964 c = c * 10 + *p++ - '0';
1965 else
1966 {
1967 p += *p == '.';
1968 break;
1969 }
1970 }
1971
1972 v = (v << 8) | c;
1973 }
1974
1975 return v;
1976#else
1977 return 0;
1978#endif
1979}
1980
1981/*****************************************************************************/
1982
1983#if EV_AVOID_STDIO
1984ecb_noinline ecb_cold
1985static void
1986ev_printerr (const char *msg)
1987{
1988 write (STDERR_FILENO, msg, strlen (msg));
1989}
1990#endif
1991
228static void (*syserr_cb)(const char *msg); 1992static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
229 1993
1994ecb_cold
230void 1995void
231ev_set_syserr_cb (void (*cb)(const char *msg)) 1996ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
232{ 1997{
233 syserr_cb = cb; 1998 syserr_cb = cb;
234} 1999}
235 2000
236static void noinline 2001ecb_noinline ecb_cold
2002static void
237syserr (const char *msg) 2003ev_syserr (const char *msg)
238{ 2004{
239 if (!msg) 2005 if (!msg)
240 msg = "(libev) system error"; 2006 msg = "(libev) system error";
241 2007
242 if (syserr_cb) 2008 if (syserr_cb)
243 syserr_cb (msg); 2009 syserr_cb (msg);
244 else 2010 else
245 { 2011 {
2012#if EV_AVOID_STDIO
2013 ev_printerr (msg);
2014 ev_printerr (": ");
2015 ev_printerr (strerror (errno));
2016 ev_printerr ("\n");
2017#else
246 perror (msg); 2018 perror (msg);
2019#endif
247 abort (); 2020 abort ();
248 } 2021 }
249} 2022}
250 2023
251static void *(*alloc)(void *ptr, long size); 2024static void *
2025ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
2026{
2027 /* some systems, notably openbsd and darwin, fail to properly
2028 * implement realloc (x, 0) (as required by both ansi c-89 and
2029 * the single unix specification, so work around them here.
2030 * recently, also (at least) fedora and debian started breaking it,
2031 * despite documenting it otherwise.
2032 */
252 2033
2034 if (size)
2035 return realloc (ptr, size);
2036
2037 free (ptr);
2038 return 0;
2039}
2040
2041static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
2042
2043ecb_cold
253void 2044void
254ev_set_allocator (void *(*cb)(void *ptr, long size)) 2045ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
255{ 2046{
256 alloc = cb; 2047 alloc = cb;
257} 2048}
258 2049
259static void * 2050inline_speed void *
260ev_realloc (void *ptr, long size) 2051ev_realloc (void *ptr, long size)
261{ 2052{
262 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 2053 ptr = alloc (ptr, size);
263 2054
264 if (!ptr && size) 2055 if (!ptr && size)
265 { 2056 {
2057#if EV_AVOID_STDIO
2058 ev_printerr ("(libev) memory allocation failed, aborting.\n");
2059#else
266 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 2060 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
2061#endif
267 abort (); 2062 abort ();
268 } 2063 }
269 2064
270 return ptr; 2065 return ptr;
271} 2066}
273#define ev_malloc(size) ev_realloc (0, (size)) 2068#define ev_malloc(size) ev_realloc (0, (size))
274#define ev_free(ptr) ev_realloc ((ptr), 0) 2069#define ev_free(ptr) ev_realloc ((ptr), 0)
275 2070
276/*****************************************************************************/ 2071/*****************************************************************************/
277 2072
2073/* set in reify when reification needed */
2074#define EV_ANFD_REIFY 1
2075
2076/* file descriptor info structure */
278typedef struct 2077typedef struct
279{ 2078{
280 WL head; 2079 WL head;
281 unsigned char events; 2080 unsigned char events; /* the events watched for */
282 unsigned char reify; 2081 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
2082 unsigned char emask; /* some backends store the actual kernel mask in here */
2083 unsigned char eflags; /* flags field for use by backends */
2084#if EV_USE_EPOLL
2085 unsigned int egen; /* generation counter to counter epoll bugs */
2086#endif
283#if EV_SELECT_IS_WINSOCKET 2087#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
284 SOCKET handle; 2088 SOCKET handle;
285#endif 2089#endif
2090#if EV_USE_IOCP
2091 OVERLAPPED or, ow;
2092#endif
286} ANFD; 2093} ANFD;
287 2094
2095/* stores the pending event set for a given watcher */
288typedef struct 2096typedef struct
289{ 2097{
290 W w; 2098 W w;
291 int events; 2099 int events; /* the pending event set for the given watcher */
292} ANPENDING; 2100} ANPENDING;
2101
2102#if EV_USE_INOTIFY
2103/* hash table entry per inotify-id */
2104typedef struct
2105{
2106 WL head;
2107} ANFS;
2108#endif
2109
2110/* Heap Entry */
2111#if EV_HEAP_CACHE_AT
2112 /* a heap element */
2113 typedef struct {
2114 ev_tstamp at;
2115 WT w;
2116 } ANHE;
2117
2118 #define ANHE_w(he) (he).w /* access watcher, read-write */
2119 #define ANHE_at(he) (he).at /* access cached at, read-only */
2120 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
2121#else
2122 /* a heap element */
2123 typedef WT ANHE;
2124
2125 #define ANHE_w(he) (he)
2126 #define ANHE_at(he) (he)->at
2127 #define ANHE_at_cache(he)
2128#endif
293 2129
294#if EV_MULTIPLICITY 2130#if EV_MULTIPLICITY
295 2131
296 struct ev_loop 2132 struct ev_loop
297 { 2133 {
302 #undef VAR 2138 #undef VAR
303 }; 2139 };
304 #include "ev_wrap.h" 2140 #include "ev_wrap.h"
305 2141
306 static struct ev_loop default_loop_struct; 2142 static struct ev_loop default_loop_struct;
307 struct ev_loop *ev_default_loop_ptr; 2143 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
308 2144
309#else 2145#else
310 2146
311 ev_tstamp ev_rt_now; 2147 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
312 #define VAR(name,decl) static decl; 2148 #define VAR(name,decl) static decl;
313 #include "ev_vars.h" 2149 #include "ev_vars.h"
314 #undef VAR 2150 #undef VAR
315 2151
316 static int ev_default_loop_ptr; 2152 static int ev_default_loop_ptr;
317 2153
318#endif 2154#endif
319 2155
2156#if EV_FEATURE_API
2157# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2158# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2159# define EV_INVOKE_PENDING invoke_cb (EV_A)
2160#else
2161# define EV_RELEASE_CB (void)0
2162# define EV_ACQUIRE_CB (void)0
2163# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2164#endif
2165
2166#define EVBREAK_RECURSE 0x80
2167
320/*****************************************************************************/ 2168/*****************************************************************************/
321 2169
2170#ifndef EV_HAVE_EV_TIME
322ev_tstamp 2171ev_tstamp
323ev_time (void) 2172ev_time (void) EV_NOEXCEPT
324{ 2173{
325#if EV_USE_REALTIME 2174#if EV_USE_REALTIME
2175 if (ecb_expect_true (have_realtime))
2176 {
326 struct timespec ts; 2177 struct timespec ts;
327 clock_gettime (CLOCK_REALTIME, &ts); 2178 clock_gettime (CLOCK_REALTIME, &ts);
328 return ts.tv_sec + ts.tv_nsec * 1e-9; 2179 return EV_TS_GET (ts);
329#else 2180 }
2181#endif
2182
2183 {
330 struct timeval tv; 2184 struct timeval tv;
331 gettimeofday (&tv, 0); 2185 gettimeofday (&tv, 0);
332 return tv.tv_sec + tv.tv_usec * 1e-6; 2186 return EV_TV_GET (tv);
333#endif 2187 }
334} 2188}
2189#endif
335 2190
336ev_tstamp inline_size 2191inline_size ev_tstamp
337get_clock (void) 2192get_clock (void)
338{ 2193{
339#if EV_USE_MONOTONIC 2194#if EV_USE_MONOTONIC
340 if (expect_true (have_monotonic)) 2195 if (ecb_expect_true (have_monotonic))
341 { 2196 {
342 struct timespec ts; 2197 struct timespec ts;
343 clock_gettime (CLOCK_MONOTONIC, &ts); 2198 clock_gettime (CLOCK_MONOTONIC, &ts);
344 return ts.tv_sec + ts.tv_nsec * 1e-9; 2199 return EV_TS_GET (ts);
345 } 2200 }
346#endif 2201#endif
347 2202
348 return ev_time (); 2203 return ev_time ();
349} 2204}
350 2205
351#if EV_MULTIPLICITY 2206#if EV_MULTIPLICITY
352ev_tstamp 2207ev_tstamp
353ev_now (EV_P) 2208ev_now (EV_P) EV_NOEXCEPT
354{ 2209{
355 return ev_rt_now; 2210 return ev_rt_now;
356} 2211}
357#endif 2212#endif
358 2213
359#define array_roundsize(type,n) (((n) | 4) & ~3) 2214void
2215ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2216{
2217 if (delay > EV_TS_CONST (0.))
2218 {
2219#if EV_USE_NANOSLEEP
2220 struct timespec ts;
2221
2222 EV_TS_SET (ts, delay);
2223 nanosleep (&ts, 0);
2224#elif defined _WIN32
2225 /* maybe this should round up, as ms is very low resolution */
2226 /* compared to select (µs) or nanosleep (ns) */
2227 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
2228#else
2229 struct timeval tv;
2230
2231 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2232 /* something not guaranteed by newer posix versions, but guaranteed */
2233 /* by older ones */
2234 EV_TV_SET (tv, delay);
2235 select (0, 0, 0, 0, &tv);
2236#endif
2237 }
2238}
2239
2240/*****************************************************************************/
2241
2242#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2243
2244/* find a suitable new size for the given array, */
2245/* hopefully by rounding to a nice-to-malloc size */
2246inline_size int
2247array_nextsize (int elem, int cur, int cnt)
2248{
2249 int ncur = cur + 1;
2250
2251 do
2252 ncur <<= 1;
2253 while (cnt > ncur);
2254
2255 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2256 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2257 {
2258 ncur *= elem;
2259 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2260 ncur = ncur - sizeof (void *) * 4;
2261 ncur /= elem;
2262 }
2263
2264 return ncur;
2265}
2266
2267ecb_noinline ecb_cold
2268static void *
2269array_realloc (int elem, void *base, int *cur, int cnt)
2270{
2271 *cur = array_nextsize (elem, *cur, cnt);
2272 return ev_realloc (base, elem * *cur);
2273}
2274
2275#define array_needsize_noinit(base,offset,count)
2276
2277#define array_needsize_zerofill(base,offset,count) \
2278 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
360 2279
361#define array_needsize(type,base,cur,cnt,init) \ 2280#define array_needsize(type,base,cur,cnt,init) \
362 if (expect_false ((cnt) > cur)) \ 2281 if (ecb_expect_false ((cnt) > (cur))) \
363 { \ 2282 { \
364 int newcnt = cur; \ 2283 ecb_unused int ocur_ = (cur); \
365 do \ 2284 (base) = (type *)array_realloc \
366 { \ 2285 (sizeof (type), (base), &(cur), (cnt)); \
367 newcnt = array_roundsize (type, newcnt << 1); \ 2286 init ((base), ocur_, ((cur) - ocur_)); \
368 } \
369 while ((cnt) > newcnt); \
370 \
371 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
372 init (base + cur, newcnt - cur); \
373 cur = newcnt; \
374 } 2287 }
375 2288
2289#if 0
376#define array_slim(type,stem) \ 2290#define array_slim(type,stem) \
377 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
378 { \ 2292 { \
379 stem ## max = array_roundsize (stem ## cnt >> 1); \ 2293 stem ## max = array_roundsize (stem ## cnt >> 1); \
380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 2294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
382 } 2296 }
2297#endif
383 2298
384#define array_free(stem, idx) \ 2299#define array_free(stem, idx) \
385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
386 2301
387/*****************************************************************************/ 2302/*****************************************************************************/
388 2303
389void noinline 2304/* dummy callback for pending events */
2305ecb_noinline
2306static void
2307pendingcb (EV_P_ ev_prepare *w, int revents)
2308{
2309}
2310
2311ecb_noinline
2312void
390ev_feed_event (EV_P_ void *w, int revents) 2313ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
391{ 2314{
392 W w_ = (W)w; 2315 W w_ = (W)w;
2316 int pri = ABSPRI (w_);
393 2317
394 if (expect_false (w_->pending)) 2318 if (ecb_expect_false (w_->pending))
2319 pendings [pri][w_->pending - 1].events |= revents;
2320 else
395 { 2321 {
2322 w_->pending = ++pendingcnt [pri];
2323 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2324 pendings [pri][w_->pending - 1].w = w_;
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 2325 pendings [pri][w_->pending - 1].events = revents;
397 return;
398 } 2326 }
399 2327
400 w_->pending = ++pendingcnt [ABSPRI (w_)]; 2328 pendingpri = NUMPRI - 1;
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404} 2329}
405 2330
406void inline_size 2331inline_speed void
2332feed_reverse (EV_P_ W w)
2333{
2334 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2335 rfeeds [rfeedcnt++] = w;
2336}
2337
2338inline_size void
2339feed_reverse_done (EV_P_ int revents)
2340{
2341 do
2342 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2343 while (rfeedcnt);
2344}
2345
2346inline_speed void
407queue_events (EV_P_ W *events, int eventcnt, int type) 2347queue_events (EV_P_ W *events, int eventcnt, int type)
408{ 2348{
409 int i; 2349 int i;
410 2350
411 for (i = 0; i < eventcnt; ++i) 2351 for (i = 0; i < eventcnt; ++i)
412 ev_feed_event (EV_A_ events [i], type); 2352 ev_feed_event (EV_A_ events [i], type);
413} 2353}
414 2354
415/*****************************************************************************/ 2355/*****************************************************************************/
416 2356
417void inline_size 2357inline_speed void
418anfds_init (ANFD *base, int count)
419{
420 while (count--)
421 {
422 base->head = 0;
423 base->events = EV_NONE;
424 base->reify = 0;
425
426 ++base;
427 }
428}
429
430void inline_speed
431fd_event (EV_P_ int fd, int revents) 2358fd_event_nocheck (EV_P_ int fd, int revents)
432{ 2359{
433 ANFD *anfd = anfds + fd; 2360 ANFD *anfd = anfds + fd;
434 ev_io *w; 2361 ev_io *w;
435 2362
436 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2363 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
440 if (ev) 2367 if (ev)
441 ev_feed_event (EV_A_ (W)w, ev); 2368 ev_feed_event (EV_A_ (W)w, ev);
442 } 2369 }
443} 2370}
444 2371
2372/* do not submit kernel events for fds that have reify set */
2373/* because that means they changed while we were polling for new events */
2374inline_speed void
2375fd_event (EV_P_ int fd, int revents)
2376{
2377 ANFD *anfd = anfds + fd;
2378
2379 if (ecb_expect_true (!anfd->reify))
2380 fd_event_nocheck (EV_A_ fd, revents);
2381}
2382
445void 2383void
446ev_feed_fd_event (EV_P_ int fd, int revents) 2384ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
447{ 2385{
2386 if (fd >= 0 && fd < anfdmax)
448 fd_event (EV_A_ fd, revents); 2387 fd_event_nocheck (EV_A_ fd, revents);
449} 2388}
450 2389
451void inline_size 2390/* make sure the external fd watch events are in-sync */
2391/* with the kernel/libev internal state */
2392inline_size void
452fd_reify (EV_P) 2393fd_reify (EV_P)
453{ 2394{
454 int i; 2395 int i;
455 2396
2397 /* most backends do not modify the fdchanges list in backend_modfiy.
2398 * except io_uring, which has fixed-size buffers which might force us
2399 * to handle events in backend_modify, causing fdchanges to be amended,
2400 * which could result in an endless loop.
2401 * to avoid this, we do not dynamically handle fds that were added
2402 * during fd_reify. that means that for those backends, fdchangecnt
2403 * might be non-zero during poll, which must cause them to not block.
2404 * to not put too much of a burden on other backends, this detail
2405 * needs to be handled in the backend.
2406 */
2407 int changecnt = fdchangecnt;
2408
2409#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
456 for (i = 0; i < fdchangecnt; ++i) 2410 for (i = 0; i < changecnt; ++i)
2411 {
2412 int fd = fdchanges [i];
2413 ANFD *anfd = anfds + fd;
2414
2415 if (anfd->reify & EV__IOFDSET && anfd->head)
2416 {
2417 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2418
2419 if (handle != anfd->handle)
2420 {
2421 unsigned long arg;
2422
2423 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2424
2425 /* handle changed, but fd didn't - we need to do it in two steps */
2426 backend_modify (EV_A_ fd, anfd->events, 0);
2427 anfd->events = 0;
2428 anfd->handle = handle;
2429 }
2430 }
2431 }
2432#endif
2433
2434 for (i = 0; i < changecnt; ++i)
457 { 2435 {
458 int fd = fdchanges [i]; 2436 int fd = fdchanges [i];
459 ANFD *anfd = anfds + fd; 2437 ANFD *anfd = anfds + fd;
460 ev_io *w; 2438 ev_io *w;
461 2439
462 int events = 0; 2440 unsigned char o_events = anfd->events;
2441 unsigned char o_reify = anfd->reify;
463 2442
464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2443 anfd->reify = 0;
465 events |= w->events;
466 2444
467#if EV_SELECT_IS_WINSOCKET 2445 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
468 if (events)
469 { 2446 {
470 unsigned long argp; 2447 anfd->events = 0;
471 anfd->handle = _get_osfhandle (fd); 2448
472 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2449 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2450 anfd->events |= (unsigned char)w->events;
2451
2452 if (o_events != anfd->events)
2453 o_reify = EV__IOFDSET; /* actually |= */
473 } 2454 }
474#endif
475 2455
476 anfd->reify = 0; 2456 if (o_reify & EV__IOFDSET)
477
478 backend_modify (EV_A_ fd, anfd->events, events); 2457 backend_modify (EV_A_ fd, o_events, anfd->events);
479 anfd->events = events;
480 } 2458 }
481 2459
2460 /* normally, fdchangecnt hasn't changed. if it has, then new fds have been added.
2461 * this is a rare case (see beginning comment in this function), so we copy them to the
2462 * front and hope the backend handles this case.
2463 */
2464 if (ecb_expect_false (fdchangecnt != changecnt))
2465 memmove (fdchanges, fdchanges + changecnt, (fdchangecnt - changecnt) * sizeof (*fdchanges));
2466
482 fdchangecnt = 0; 2467 fdchangecnt -= changecnt;
483} 2468}
484 2469
2470/* something about the given fd changed */
485void inline_size 2471inline_size
2472void
486fd_change (EV_P_ int fd) 2473fd_change (EV_P_ int fd, int flags)
487{ 2474{
488 if (expect_false (anfds [fd].reify)) 2475 unsigned char reify = anfds [fd].reify;
489 return;
490
491 anfds [fd].reify = 1; 2476 anfds [fd].reify = reify | flags;
492 2477
2478 if (ecb_expect_true (!reify))
2479 {
493 ++fdchangecnt; 2480 ++fdchangecnt;
494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2481 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
495 fdchanges [fdchangecnt - 1] = fd; 2482 fdchanges [fdchangecnt - 1] = fd;
2483 }
496} 2484}
497 2485
498void inline_speed 2486/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2487inline_speed ecb_cold void
499fd_kill (EV_P_ int fd) 2488fd_kill (EV_P_ int fd)
500{ 2489{
501 ev_io *w; 2490 ev_io *w;
502 2491
503 while ((w = (ev_io *)anfds [fd].head)) 2492 while ((w = (ev_io *)anfds [fd].head))
505 ev_io_stop (EV_A_ w); 2494 ev_io_stop (EV_A_ w);
506 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
507 } 2496 }
508} 2497}
509 2498
510int inline_size 2499/* check whether the given fd is actually valid, for error recovery */
2500inline_size ecb_cold int
511fd_valid (int fd) 2501fd_valid (int fd)
512{ 2502{
513#ifdef _WIN32 2503#ifdef _WIN32
514 return _get_osfhandle (fd) != -1; 2504 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
515#else 2505#else
516 return fcntl (fd, F_GETFD) != -1; 2506 return fcntl (fd, F_GETFD) != -1;
517#endif 2507#endif
518} 2508}
519 2509
520/* called on EBADF to verify fds */ 2510/* called on EBADF to verify fds */
521static void noinline 2511ecb_noinline ecb_cold
2512static void
522fd_ebadf (EV_P) 2513fd_ebadf (EV_P)
523{ 2514{
524 int fd; 2515 int fd;
525 2516
526 for (fd = 0; fd < anfdmax; ++fd) 2517 for (fd = 0; fd < anfdmax; ++fd)
527 if (anfds [fd].events) 2518 if (anfds [fd].events)
528 if (!fd_valid (fd) == -1 && errno == EBADF) 2519 if (!fd_valid (fd) && errno == EBADF)
529 fd_kill (EV_A_ fd); 2520 fd_kill (EV_A_ fd);
530} 2521}
531 2522
532/* called on ENOMEM in select/poll to kill some fds and retry */ 2523/* called on ENOMEM in select/poll to kill some fds and retry */
533static void noinline 2524ecb_noinline ecb_cold
2525static void
534fd_enomem (EV_P) 2526fd_enomem (EV_P)
535{ 2527{
536 int fd; 2528 int fd;
537 2529
538 for (fd = anfdmax; fd--; ) 2530 for (fd = anfdmax; fd--; )
539 if (anfds [fd].events) 2531 if (anfds [fd].events)
540 { 2532 {
541 fd_kill (EV_A_ fd); 2533 fd_kill (EV_A_ fd);
542 return; 2534 break;
543 } 2535 }
544} 2536}
545 2537
546/* usually called after fork if backend needs to re-arm all fds from scratch */ 2538/* usually called after fork if backend needs to re-arm all fds from scratch */
547static void noinline 2539ecb_noinline
2540static void
548fd_rearm_all (EV_P) 2541fd_rearm_all (EV_P)
549{ 2542{
550 int fd; 2543 int fd;
551 2544
552 /* this should be highly optimised to not do anything but set a flag */
553 for (fd = 0; fd < anfdmax; ++fd) 2545 for (fd = 0; fd < anfdmax; ++fd)
554 if (anfds [fd].events) 2546 if (anfds [fd].events)
555 { 2547 {
556 anfds [fd].events = 0; 2548 anfds [fd].events = 0;
557 fd_change (EV_A_ fd); 2549 anfds [fd].emask = 0;
2550 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
558 } 2551 }
559} 2552}
560 2553
561/*****************************************************************************/ 2554/* used to prepare libev internal fd's */
562 2555/* this is not fork-safe */
563void inline_speed 2556inline_speed void
564upheap (WT *heap, int k)
565{
566 WT w = heap [k];
567
568 while (k && heap [k >> 1]->at > w->at)
569 {
570 heap [k] = heap [k >> 1];
571 ((W)heap [k])->active = k + 1;
572 k >>= 1;
573 }
574
575 heap [k] = w;
576 ((W)heap [k])->active = k + 1;
577
578}
579
580void inline_speed
581downheap (WT *heap, int N, int k)
582{
583 WT w = heap [k];
584
585 while (k < (N >> 1))
586 {
587 int j = k << 1;
588
589 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
590 ++j;
591
592 if (w->at <= heap [j]->at)
593 break;
594
595 heap [k] = heap [j];
596 ((W)heap [k])->active = k + 1;
597 k = j;
598 }
599
600 heap [k] = w;
601 ((W)heap [k])->active = k + 1;
602}
603
604void inline_size
605adjustheap (WT *heap, int N, int k)
606{
607 upheap (heap, k);
608 downheap (heap, N, k);
609}
610
611/*****************************************************************************/
612
613typedef struct
614{
615 WL head;
616 sig_atomic_t volatile gotsig;
617} ANSIG;
618
619static ANSIG *signals;
620static int signalmax;
621
622static int sigpipe [2];
623static sig_atomic_t volatile gotsig;
624static ev_io sigev;
625
626void inline_size
627signals_init (ANSIG *base, int count)
628{
629 while (count--)
630 {
631 base->head = 0;
632 base->gotsig = 0;
633
634 ++base;
635 }
636}
637
638static void
639sighandler (int signum)
640{
641#if _WIN32
642 signal (signum, sighandler);
643#endif
644
645 signals [signum - 1].gotsig = 1;
646
647 if (!gotsig)
648 {
649 int old_errno = errno;
650 gotsig = 1;
651 write (sigpipe [1], &signum, 1);
652 errno = old_errno;
653 }
654}
655
656void noinline
657ev_feed_signal_event (EV_P_ int signum)
658{
659 WL w;
660
661#if EV_MULTIPLICITY
662 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
663#endif
664
665 --signum;
666
667 if (signum < 0 || signum >= signalmax)
668 return;
669
670 signals [signum].gotsig = 0;
671
672 for (w = signals [signum].head; w; w = w->next)
673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
674}
675
676static void
677sigcb (EV_P_ ev_io *iow, int revents)
678{
679 int signum;
680
681 read (sigpipe [0], &revents, 1);
682 gotsig = 0;
683
684 for (signum = signalmax; signum--; )
685 if (signals [signum].gotsig)
686 ev_feed_signal_event (EV_A_ signum + 1);
687}
688
689void inline_size
690fd_intern (int fd) 2557fd_intern (int fd)
691{ 2558{
692#ifdef _WIN32 2559#ifdef _WIN32
693 int arg = 1; 2560 unsigned long arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2561 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
695#else 2562#else
696 fcntl (fd, F_SETFD, FD_CLOEXEC); 2563 fcntl (fd, F_SETFD, FD_CLOEXEC);
697 fcntl (fd, F_SETFL, O_NONBLOCK); 2564 fcntl (fd, F_SETFL, O_NONBLOCK);
698#endif 2565#endif
699} 2566}
700 2567
701static void noinline
702siginit (EV_P)
703{
704 fd_intern (sigpipe [0]);
705 fd_intern (sigpipe [1]);
706
707 ev_io_set (&sigev, sigpipe [0], EV_READ);
708 ev_io_start (EV_A_ &sigev);
709 ev_unref (EV_A); /* child watcher should not keep loop alive */
710}
711
712/*****************************************************************************/ 2568/*****************************************************************************/
713 2569
714static ev_child *childs [PID_HASHSIZE]; 2570/*
2571 * the heap functions want a real array index. array index 0 is guaranteed to not
2572 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2573 * the branching factor of the d-tree.
2574 */
715 2575
2576/*
2577 * at the moment we allow libev the luxury of two heaps,
2578 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2579 * which is more cache-efficient.
2580 * the difference is about 5% with 50000+ watchers.
2581 */
2582#if EV_USE_4HEAP
2583
2584#define DHEAP 4
2585#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2586#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2587#define UPHEAP_DONE(p,k) ((p) == (k))
2588
2589/* away from the root */
2590inline_speed void
2591downheap (ANHE *heap, int N, int k)
2592{
2593 ANHE he = heap [k];
2594 ANHE *E = heap + N + HEAP0;
2595
2596 for (;;)
2597 {
2598 ev_tstamp minat;
2599 ANHE *minpos;
2600 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2601
2602 /* find minimum child */
2603 if (ecb_expect_true (pos + DHEAP - 1 < E))
2604 {
2605 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2606 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2607 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2608 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2609 }
2610 else if (pos < E)
2611 {
2612 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2613 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2614 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2615 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2616 }
2617 else
2618 break;
2619
2620 if (ANHE_at (he) <= minat)
2621 break;
2622
2623 heap [k] = *minpos;
2624 ev_active (ANHE_w (*minpos)) = k;
2625
2626 k = minpos - heap;
2627 }
2628
2629 heap [k] = he;
2630 ev_active (ANHE_w (he)) = k;
2631}
2632
2633#else /* not 4HEAP */
2634
2635#define HEAP0 1
2636#define HPARENT(k) ((k) >> 1)
2637#define UPHEAP_DONE(p,k) (!(p))
2638
2639/* away from the root */
2640inline_speed void
2641downheap (ANHE *heap, int N, int k)
2642{
2643 ANHE he = heap [k];
2644
2645 for (;;)
2646 {
2647 int c = k << 1;
2648
2649 if (c >= N + HEAP0)
2650 break;
2651
2652 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2653 ? 1 : 0;
2654
2655 if (ANHE_at (he) <= ANHE_at (heap [c]))
2656 break;
2657
2658 heap [k] = heap [c];
2659 ev_active (ANHE_w (heap [k])) = k;
2660
2661 k = c;
2662 }
2663
2664 heap [k] = he;
2665 ev_active (ANHE_w (he)) = k;
2666}
2667#endif
2668
2669/* towards the root */
2670inline_speed void
2671upheap (ANHE *heap, int k)
2672{
2673 ANHE he = heap [k];
2674
2675 for (;;)
2676 {
2677 int p = HPARENT (k);
2678
2679 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2680 break;
2681
2682 heap [k] = heap [p];
2683 ev_active (ANHE_w (heap [k])) = k;
2684 k = p;
2685 }
2686
2687 heap [k] = he;
2688 ev_active (ANHE_w (he)) = k;
2689}
2690
2691/* move an element suitably so it is in a correct place */
2692inline_size void
2693adjustheap (ANHE *heap, int N, int k)
2694{
2695 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2696 upheap (heap, k);
2697 else
2698 downheap (heap, N, k);
2699}
2700
2701/* rebuild the heap: this function is used only once and executed rarely */
2702inline_size void
2703reheap (ANHE *heap, int N)
2704{
2705 int i;
2706
2707 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2708 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2709 for (i = 0; i < N; ++i)
2710 upheap (heap, i + HEAP0);
2711}
2712
2713/*****************************************************************************/
2714
2715/* associate signal watchers to a signal */
2716typedef struct
2717{
2718 EV_ATOMIC_T pending;
2719#if EV_MULTIPLICITY
2720 EV_P;
2721#endif
2722 WL head;
2723} ANSIG;
2724
2725static ANSIG signals [EV_NSIG - 1];
2726
2727/*****************************************************************************/
2728
2729#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2730
2731ecb_noinline ecb_cold
2732static void
2733evpipe_init (EV_P)
2734{
2735 if (!ev_is_active (&pipe_w))
2736 {
2737 int fds [2];
2738
2739# if EV_USE_EVENTFD
2740 fds [0] = -1;
2741 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2742 if (fds [1] < 0 && errno == EINVAL)
2743 fds [1] = eventfd (0, 0);
2744
2745 if (fds [1] < 0)
2746# endif
2747 {
2748 while (pipe (fds))
2749 ev_syserr ("(libev) error creating signal/async pipe");
2750
2751 fd_intern (fds [0]);
2752 }
2753
2754 evpipe [0] = fds [0];
2755
2756 if (evpipe [1] < 0)
2757 evpipe [1] = fds [1]; /* first call, set write fd */
2758 else
2759 {
2760 /* on subsequent calls, do not change evpipe [1] */
2761 /* so that evpipe_write can always rely on its value. */
2762 /* this branch does not do anything sensible on windows, */
2763 /* so must not be executed on windows */
2764
2765 dup2 (fds [1], evpipe [1]);
2766 close (fds [1]);
2767 }
2768
2769 fd_intern (evpipe [1]);
2770
2771 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2772 ev_io_start (EV_A_ &pipe_w);
2773 ev_unref (EV_A); /* watcher should not keep loop alive */
2774 }
2775}
2776
2777inline_speed void
2778evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2779{
2780 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2781
2782 if (ecb_expect_true (*flag))
2783 return;
2784
2785 *flag = 1;
2786 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2787
2788 pipe_write_skipped = 1;
2789
2790 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2791
2792 if (pipe_write_wanted)
2793 {
2794 int old_errno;
2795
2796 pipe_write_skipped = 0;
2797 ECB_MEMORY_FENCE_RELEASE;
2798
2799 old_errno = errno; /* save errno because write will clobber it */
2800
2801#if EV_USE_EVENTFD
2802 if (evpipe [0] < 0)
2803 {
2804 uint64_t counter = 1;
2805 write (evpipe [1], &counter, sizeof (uint64_t));
2806 }
2807 else
2808#endif
2809 {
716#ifndef _WIN32 2810#ifdef _WIN32
2811 WSABUF buf;
2812 DWORD sent;
2813 buf.buf = (char *)&buf;
2814 buf.len = 1;
2815 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2816#else
2817 write (evpipe [1], &(evpipe [1]), 1);
2818#endif
2819 }
2820
2821 errno = old_errno;
2822 }
2823}
2824
2825/* called whenever the libev signal pipe */
2826/* got some events (signal, async) */
2827static void
2828pipecb (EV_P_ ev_io *iow, int revents)
2829{
2830 int i;
2831
2832 if (revents & EV_READ)
2833 {
2834#if EV_USE_EVENTFD
2835 if (evpipe [0] < 0)
2836 {
2837 uint64_t counter;
2838 read (evpipe [1], &counter, sizeof (uint64_t));
2839 }
2840 else
2841#endif
2842 {
2843 char dummy[4];
2844#ifdef _WIN32
2845 WSABUF buf;
2846 DWORD recvd;
2847 DWORD flags = 0;
2848 buf.buf = dummy;
2849 buf.len = sizeof (dummy);
2850 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2851#else
2852 read (evpipe [0], &dummy, sizeof (dummy));
2853#endif
2854 }
2855 }
2856
2857 pipe_write_skipped = 0;
2858
2859 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2860
2861#if EV_SIGNAL_ENABLE
2862 if (sig_pending)
2863 {
2864 sig_pending = 0;
2865
2866 ECB_MEMORY_FENCE;
2867
2868 for (i = EV_NSIG - 1; i--; )
2869 if (ecb_expect_false (signals [i].pending))
2870 ev_feed_signal_event (EV_A_ i + 1);
2871 }
2872#endif
2873
2874#if EV_ASYNC_ENABLE
2875 if (async_pending)
2876 {
2877 async_pending = 0;
2878
2879 ECB_MEMORY_FENCE;
2880
2881 for (i = asynccnt; i--; )
2882 if (asyncs [i]->sent)
2883 {
2884 asyncs [i]->sent = 0;
2885 ECB_MEMORY_FENCE_RELEASE;
2886 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2887 }
2888 }
2889#endif
2890}
2891
2892/*****************************************************************************/
2893
2894void
2895ev_feed_signal (int signum) EV_NOEXCEPT
2896{
2897#if EV_MULTIPLICITY
2898 EV_P;
2899 ECB_MEMORY_FENCE_ACQUIRE;
2900 EV_A = signals [signum - 1].loop;
2901
2902 if (!EV_A)
2903 return;
2904#endif
2905
2906 signals [signum - 1].pending = 1;
2907 evpipe_write (EV_A_ &sig_pending);
2908}
2909
2910static void
2911ev_sighandler (int signum)
2912{
2913#ifdef _WIN32
2914 signal (signum, ev_sighandler);
2915#endif
2916
2917 ev_feed_signal (signum);
2918}
2919
2920ecb_noinline
2921void
2922ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2923{
2924 WL w;
2925
2926 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2927 return;
2928
2929 --signum;
2930
2931#if EV_MULTIPLICITY
2932 /* it is permissible to try to feed a signal to the wrong loop */
2933 /* or, likely more useful, feeding a signal nobody is waiting for */
2934
2935 if (ecb_expect_false (signals [signum].loop != EV_A))
2936 return;
2937#endif
2938
2939 signals [signum].pending = 0;
2940 ECB_MEMORY_FENCE_RELEASE;
2941
2942 for (w = signals [signum].head; w; w = w->next)
2943 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2944}
2945
2946#if EV_USE_SIGNALFD
2947static void
2948sigfdcb (EV_P_ ev_io *iow, int revents)
2949{
2950 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2951
2952 for (;;)
2953 {
2954 ssize_t res = read (sigfd, si, sizeof (si));
2955
2956 /* not ISO-C, as res might be -1, but works with SuS */
2957 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2958 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2959
2960 if (res < (ssize_t)sizeof (si))
2961 break;
2962 }
2963}
2964#endif
2965
2966#endif
2967
2968/*****************************************************************************/
2969
2970#if EV_CHILD_ENABLE
2971static WL childs [EV_PID_HASHSIZE];
717 2972
718static ev_signal childev; 2973static ev_signal childev;
719 2974
720void inline_speed 2975#ifndef WIFCONTINUED
2976# define WIFCONTINUED(status) 0
2977#endif
2978
2979/* handle a single child status event */
2980inline_speed void
721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2981child_reap (EV_P_ int chain, int pid, int status)
722{ 2982{
723 ev_child *w; 2983 ev_child *w;
2984 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
724 2985
725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2986 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2987 {
726 if (w->pid == pid || !w->pid) 2988 if ((w->pid == pid || !w->pid)
2989 && (!traced || (w->flags & 1)))
727 { 2990 {
728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 2991 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
729 w->rpid = pid; 2992 w->rpid = pid;
730 w->rstatus = status; 2993 w->rstatus = status;
731 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2994 ev_feed_event (EV_A_ (W)w, EV_CHILD);
732 } 2995 }
2996 }
733} 2997}
734 2998
735#ifndef WCONTINUED 2999#ifndef WCONTINUED
736# define WCONTINUED 0 3000# define WCONTINUED 0
737#endif 3001#endif
738 3002
3003/* called on sigchld etc., calls waitpid */
739static void 3004static void
740childcb (EV_P_ ev_signal *sw, int revents) 3005childcb (EV_P_ ev_signal *sw, int revents)
741{ 3006{
742 int pid, status; 3007 int pid, status;
743 3008
746 if (!WCONTINUED 3011 if (!WCONTINUED
747 || errno != EINVAL 3012 || errno != EINVAL
748 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 3013 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
749 return; 3014 return;
750 3015
751 /* make sure we are called again until all childs have been reaped */ 3016 /* make sure we are called again until all children have been reaped */
752 /* we need to do it this way so that the callback gets called before we continue */ 3017 /* we need to do it this way so that the callback gets called before we continue */
753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 3018 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
754 3019
755 child_reap (EV_A_ sw, pid, pid, status); 3020 child_reap (EV_A_ pid, pid, status);
3021 if ((EV_PID_HASHSIZE) > 1)
756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 3022 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
757} 3023}
758 3024
759#endif 3025#endif
760 3026
761/*****************************************************************************/ 3027/*****************************************************************************/
762 3028
3029#if EV_USE_TIMERFD
3030
3031static void periodics_reschedule (EV_P);
3032
3033static void
3034timerfdcb (EV_P_ ev_io *iow, int revents)
3035{
3036 struct itimerspec its = { 0 };
3037
3038 its.it_value.tv_sec = ev_rt_now + (int)MAX_BLOCKTIME2;
3039 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
3040
3041 ev_rt_now = ev_time ();
3042 /* periodics_reschedule only needs ev_rt_now */
3043 /* but maybe in the future we want the full treatment. */
3044 /*
3045 now_floor = EV_TS_CONST (0.);
3046 time_update (EV_A_ EV_TSTAMP_HUGE);
3047 */
3048#if EV_PERIODIC_ENABLE
3049 periodics_reschedule (EV_A);
3050#endif
3051}
3052
3053ecb_noinline ecb_cold
3054static void
3055evtimerfd_init (EV_P)
3056{
3057 if (!ev_is_active (&timerfd_w))
3058 {
3059 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
3060
3061 if (timerfd >= 0)
3062 {
3063 fd_intern (timerfd); /* just to be sure */
3064
3065 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
3066 ev_set_priority (&timerfd_w, EV_MINPRI);
3067 ev_io_start (EV_A_ &timerfd_w);
3068 ev_unref (EV_A); /* watcher should not keep loop alive */
3069
3070 /* (re-) arm timer */
3071 timerfdcb (EV_A_ 0, 0);
3072 }
3073 }
3074}
3075
3076#endif
3077
3078/*****************************************************************************/
3079
3080#if EV_USE_IOCP
3081# include "ev_iocp.c"
3082#endif
763#if EV_USE_PORT 3083#if EV_USE_PORT
764# include "ev_port.c" 3084# include "ev_port.c"
765#endif 3085#endif
766#if EV_USE_KQUEUE 3086#if EV_USE_KQUEUE
767# include "ev_kqueue.c" 3087# include "ev_kqueue.c"
768#endif 3088#endif
769#if EV_USE_EPOLL 3089#if EV_USE_EPOLL
770# include "ev_epoll.c" 3090# include "ev_epoll.c"
771#endif 3091#endif
3092#if EV_USE_LINUXAIO
3093# include "ev_linuxaio.c"
3094#endif
3095#if EV_USE_IOURING
3096# include "ev_iouring.c"
3097#endif
772#if EV_USE_POLL 3098#if EV_USE_POLL
773# include "ev_poll.c" 3099# include "ev_poll.c"
774#endif 3100#endif
775#if EV_USE_SELECT 3101#if EV_USE_SELECT
776# include "ev_select.c" 3102# include "ev_select.c"
777#endif 3103#endif
778 3104
779int 3105ecb_cold int
780ev_version_major (void) 3106ev_version_major (void) EV_NOEXCEPT
781{ 3107{
782 return EV_VERSION_MAJOR; 3108 return EV_VERSION_MAJOR;
783} 3109}
784 3110
785int 3111ecb_cold int
786ev_version_minor (void) 3112ev_version_minor (void) EV_NOEXCEPT
787{ 3113{
788 return EV_VERSION_MINOR; 3114 return EV_VERSION_MINOR;
789} 3115}
790 3116
791/* return true if we are running with elevated privileges and should ignore env variables */ 3117/* return true if we are running with elevated privileges and should ignore env variables */
792int inline_size 3118inline_size ecb_cold int
793enable_secure (void) 3119enable_secure (void)
794{ 3120{
795#ifdef _WIN32 3121#ifdef _WIN32
796 return 0; 3122 return 0;
797#else 3123#else
798 return getuid () != geteuid () 3124 return getuid () != geteuid ()
799 || getgid () != getegid (); 3125 || getgid () != getegid ();
800#endif 3126#endif
801} 3127}
802 3128
3129ecb_cold
803unsigned int 3130unsigned int
804ev_supported_backends (void) 3131ev_supported_backends (void) EV_NOEXCEPT
805{ 3132{
806 unsigned int flags = 0; 3133 unsigned int flags = 0;
807 3134
808 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 3135 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
809 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 3136 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
810 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 3137 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
811 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 3138 if (EV_USE_LINUXAIO ) flags |= EVBACKEND_LINUXAIO;
812 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 3139 if (EV_USE_IOURING && ev_linux_version () >= 0x050601) flags |= EVBACKEND_IOURING; /* 5.6.1+ */
813 3140 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
3141 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
3142
814 return flags; 3143 return flags;
815} 3144}
816 3145
3146ecb_cold
817unsigned int 3147unsigned int
818ev_recommended_backends (void) 3148ev_recommended_backends (void) EV_NOEXCEPT
819{ 3149{
820 unsigned int flags = ev_supported_backends (); 3150 unsigned int flags = ev_supported_backends ();
821 3151
822#ifndef __NetBSD__ 3152#ifndef __NetBSD__
823 /* kqueue is borked on everything but netbsd apparently */ 3153 /* kqueue is borked on everything but netbsd apparently */
824 /* it usually doesn't work correctly on anything but sockets and pipes */ 3154 /* it usually doesn't work correctly on anything but sockets and pipes */
825 flags &= ~EVBACKEND_KQUEUE; 3155 flags &= ~EVBACKEND_KQUEUE;
826#endif 3156#endif
827#ifdef __APPLE__ 3157#ifdef __APPLE__
828 // flags &= ~EVBACKEND_KQUEUE; for documentation 3158 /* only select works correctly on that "unix-certified" platform */
3159 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
3160 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
3161#endif
3162#ifdef __FreeBSD__
3163 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3164#endif
3165
3166 /* TODO: linuxaio is very experimental */
3167#if !EV_RECOMMEND_LINUXAIO
3168 flags &= ~EVBACKEND_LINUXAIO;
3169#endif
3170 /* TODO: linuxaio is super experimental */
3171#if !EV_RECOMMEND_IOURING
829 flags &= ~EVBACKEND_POLL; 3172 flags &= ~EVBACKEND_IOURING;
830#endif 3173#endif
831 3174
832 return flags; 3175 return flags;
833} 3176}
834 3177
3178ecb_cold
835unsigned int 3179unsigned int
836ev_embeddable_backends (void) 3180ev_embeddable_backends (void) EV_NOEXCEPT
837{ 3181{
838 return EVBACKEND_EPOLL 3182 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT | EVBACKEND_IOURING;
839 | EVBACKEND_KQUEUE 3183
840 | EVBACKEND_PORT; 3184 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
3185 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
3186 flags &= ~EVBACKEND_EPOLL;
3187
3188 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
3189
3190 return flags;
841} 3191}
842 3192
843unsigned int 3193unsigned int
844ev_backend (EV_P) 3194ev_backend (EV_P) EV_NOEXCEPT
845{ 3195{
846 return backend; 3196 return backend;
847} 3197}
848 3198
3199#if EV_FEATURE_API
3200unsigned int
3201ev_iteration (EV_P) EV_NOEXCEPT
3202{
3203 return loop_count;
3204}
3205
3206unsigned int
3207ev_depth (EV_P) EV_NOEXCEPT
3208{
3209 return loop_depth;
3210}
3211
3212void
3213ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3214{
3215 io_blocktime = interval;
3216}
3217
3218void
3219ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3220{
3221 timeout_blocktime = interval;
3222}
3223
3224void
3225ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3226{
3227 userdata = data;
3228}
3229
3230void *
3231ev_userdata (EV_P) EV_NOEXCEPT
3232{
3233 return userdata;
3234}
3235
3236void
3237ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3238{
3239 invoke_cb = invoke_pending_cb;
3240}
3241
3242void
3243ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3244{
3245 release_cb = release;
3246 acquire_cb = acquire;
3247}
3248#endif
3249
3250/* initialise a loop structure, must be zero-initialised */
3251ecb_noinline ecb_cold
849static void 3252static void
850loop_init (EV_P_ unsigned int flags) 3253loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
851{ 3254{
852 if (!backend) 3255 if (!backend)
853 { 3256 {
3257 origflags = flags;
3258
3259#if EV_USE_REALTIME
3260 if (!have_realtime)
3261 {
3262 struct timespec ts;
3263
3264 if (!clock_gettime (CLOCK_REALTIME, &ts))
3265 have_realtime = 1;
3266 }
3267#endif
3268
854#if EV_USE_MONOTONIC 3269#if EV_USE_MONOTONIC
3270 if (!have_monotonic)
855 { 3271 {
856 struct timespec ts; 3272 struct timespec ts;
3273
857 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3274 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
858 have_monotonic = 1; 3275 have_monotonic = 1;
859 } 3276 }
860#endif 3277#endif
861 3278
862 ev_rt_now = ev_time (); 3279 /* pid check not overridable via env */
863 mn_now = get_clock (); 3280#ifndef _WIN32
864 now_floor = mn_now; 3281 if (flags & EVFLAG_FORKCHECK)
865 rtmn_diff = ev_rt_now - mn_now; 3282 curpid = getpid ();
3283#endif
866 3284
867 if (!(flags & EVFLAG_NOENV) 3285 if (!(flags & EVFLAG_NOENV)
868 && !enable_secure () 3286 && !enable_secure ()
869 && getenv ("LIBEV_FLAGS")) 3287 && getenv ("LIBEV_FLAGS"))
870 flags = atoi (getenv ("LIBEV_FLAGS")); 3288 flags = atoi (getenv ("LIBEV_FLAGS"));
871 3289
872 if (!(flags & 0x0000ffffUL)) 3290 ev_rt_now = ev_time ();
3291 mn_now = get_clock ();
3292 now_floor = mn_now;
3293 rtmn_diff = ev_rt_now - mn_now;
3294#if EV_FEATURE_API
3295 invoke_cb = ev_invoke_pending;
3296#endif
3297
3298 io_blocktime = 0.;
3299 timeout_blocktime = 0.;
3300 backend = 0;
3301 backend_fd = -1;
3302 sig_pending = 0;
3303#if EV_ASYNC_ENABLE
3304 async_pending = 0;
3305#endif
3306 pipe_write_skipped = 0;
3307 pipe_write_wanted = 0;
3308 evpipe [0] = -1;
3309 evpipe [1] = -1;
3310#if EV_USE_INOTIFY
3311 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3312#endif
3313#if EV_USE_SIGNALFD
3314 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3315#endif
3316#if EV_USE_TIMERFD
3317 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3318#endif
3319
3320 if (!(flags & EVBACKEND_MASK))
873 flags |= ev_recommended_backends (); 3321 flags |= ev_recommended_backends ();
874 3322
875 backend = 0; 3323#if EV_USE_IOCP
3324 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3325#endif
876#if EV_USE_PORT 3326#if EV_USE_PORT
877 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3327 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
878#endif 3328#endif
879#if EV_USE_KQUEUE 3329#if EV_USE_KQUEUE
880 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3330 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3331#endif
3332#if EV_USE_IOURING
3333 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3334#endif
3335#if EV_USE_LINUXAIO
3336 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
881#endif 3337#endif
882#if EV_USE_EPOLL 3338#if EV_USE_EPOLL
883 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3339 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
884#endif 3340#endif
885#if EV_USE_POLL 3341#if EV_USE_POLL
886 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3342 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
887#endif 3343#endif
888#if EV_USE_SELECT 3344#if EV_USE_SELECT
889 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3345 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
890#endif 3346#endif
891 3347
3348 ev_prepare_init (&pending_w, pendingcb);
3349
3350#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
892 ev_init (&sigev, sigcb); 3351 ev_init (&pipe_w, pipecb);
893 ev_set_priority (&sigev, EV_MAXPRI); 3352 ev_set_priority (&pipe_w, EV_MAXPRI);
894 }
895}
896
897static void
898loop_destroy (EV_P)
899{
900 int i;
901
902#if EV_USE_PORT
903 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
904#endif 3353#endif
905#if EV_USE_KQUEUE
906 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
907#endif
908#if EV_USE_EPOLL
909 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
910#endif
911#if EV_USE_POLL
912 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
913#endif
914#if EV_USE_SELECT
915 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
916#endif
917
918 for (i = NUMPRI; i--; )
919 array_free (pending, [i]);
920
921 /* have to use the microsoft-never-gets-it-right macro */
922 array_free (fdchange, EMPTY0);
923 array_free (timer, EMPTY0);
924#if EV_PERIODIC_ENABLE
925 array_free (periodic, EMPTY0);
926#endif
927 array_free (idle, EMPTY0);
928 array_free (prepare, EMPTY0);
929 array_free (check, EMPTY0);
930
931 backend = 0;
932}
933
934static void
935loop_fork (EV_P)
936{
937#if EV_USE_PORT
938 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
939#endif
940#if EV_USE_KQUEUE
941 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
942#endif
943#if EV_USE_EPOLL
944 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
945#endif
946
947 if (ev_is_active (&sigev))
948 { 3354 }
949 /* default loop */
950
951 ev_ref (EV_A);
952 ev_io_stop (EV_A_ &sigev);
953 close (sigpipe [0]);
954 close (sigpipe [1]);
955
956 while (pipe (sigpipe))
957 syserr ("(libev) error creating pipe");
958
959 siginit (EV_A);
960 }
961
962 postfork = 0;
963} 3355}
964 3356
965#if EV_MULTIPLICITY 3357/* free up a loop structure */
966struct ev_loop * 3358ecb_cold
967ev_loop_new (unsigned int flags)
968{
969 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
970
971 memset (loop, 0, sizeof (struct ev_loop));
972
973 loop_init (EV_A_ flags);
974
975 if (ev_backend (EV_A))
976 return loop;
977
978 return 0;
979}
980
981void 3359void
982ev_loop_destroy (EV_P) 3360ev_loop_destroy (EV_P)
983{ 3361{
984 loop_destroy (EV_A); 3362 int i;
985 ev_free (loop);
986}
987
988void
989ev_loop_fork (EV_P)
990{
991 postfork = 1;
992}
993
994#endif
995 3363
996#if EV_MULTIPLICITY 3364#if EV_MULTIPLICITY
3365 /* mimic free (0) */
3366 if (!EV_A)
3367 return;
3368#endif
3369
3370#if EV_CLEANUP_ENABLE
3371 /* queue cleanup watchers (and execute them) */
3372 if (ecb_expect_false (cleanupcnt))
3373 {
3374 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3375 EV_INVOKE_PENDING;
3376 }
3377#endif
3378
3379#if EV_CHILD_ENABLE
3380 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3381 {
3382 ev_ref (EV_A); /* child watcher */
3383 ev_signal_stop (EV_A_ &childev);
3384 }
3385#endif
3386
3387 if (ev_is_active (&pipe_w))
3388 {
3389 /*ev_ref (EV_A);*/
3390 /*ev_io_stop (EV_A_ &pipe_w);*/
3391
3392 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3393 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3394 }
3395
3396#if EV_USE_SIGNALFD
3397 if (ev_is_active (&sigfd_w))
3398 close (sigfd);
3399#endif
3400
3401#if EV_USE_TIMERFD
3402 if (ev_is_active (&timerfd_w))
3403 close (timerfd);
3404#endif
3405
3406#if EV_USE_INOTIFY
3407 if (fs_fd >= 0)
3408 close (fs_fd);
3409#endif
3410
3411 if (backend_fd >= 0)
3412 close (backend_fd);
3413
3414#if EV_USE_IOCP
3415 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3416#endif
3417#if EV_USE_PORT
3418 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3419#endif
3420#if EV_USE_KQUEUE
3421 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3422#endif
3423#if EV_USE_IOURING
3424 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3425#endif
3426#if EV_USE_LINUXAIO
3427 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3428#endif
3429#if EV_USE_EPOLL
3430 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3431#endif
3432#if EV_USE_POLL
3433 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3434#endif
3435#if EV_USE_SELECT
3436 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3437#endif
3438
3439 for (i = NUMPRI; i--; )
3440 {
3441 array_free (pending, [i]);
3442#if EV_IDLE_ENABLE
3443 array_free (idle, [i]);
3444#endif
3445 }
3446
3447 ev_free (anfds); anfds = 0; anfdmax = 0;
3448
3449 /* have to use the microsoft-never-gets-it-right macro */
3450 array_free (rfeed, EMPTY);
3451 array_free (fdchange, EMPTY);
3452 array_free (timer, EMPTY);
3453#if EV_PERIODIC_ENABLE
3454 array_free (periodic, EMPTY);
3455#endif
3456#if EV_FORK_ENABLE
3457 array_free (fork, EMPTY);
3458#endif
3459#if EV_CLEANUP_ENABLE
3460 array_free (cleanup, EMPTY);
3461#endif
3462 array_free (prepare, EMPTY);
3463 array_free (check, EMPTY);
3464#if EV_ASYNC_ENABLE
3465 array_free (async, EMPTY);
3466#endif
3467
3468 backend = 0;
3469
3470#if EV_MULTIPLICITY
3471 if (ev_is_default_loop (EV_A))
3472#endif
3473 ev_default_loop_ptr = 0;
3474#if EV_MULTIPLICITY
3475 else
3476 ev_free (EV_A);
3477#endif
3478}
3479
3480#if EV_USE_INOTIFY
3481inline_size void infy_fork (EV_P);
3482#endif
3483
3484inline_size void
3485loop_fork (EV_P)
3486{
3487#if EV_USE_PORT
3488 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3489#endif
3490#if EV_USE_KQUEUE
3491 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3492#endif
3493#if EV_USE_IOURING
3494 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3495#endif
3496#if EV_USE_LINUXAIO
3497 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3498#endif
3499#if EV_USE_EPOLL
3500 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3501#endif
3502#if EV_USE_INOTIFY
3503 infy_fork (EV_A);
3504#endif
3505
3506 if (postfork != 2)
3507 {
3508 #if EV_USE_SIGNALFD
3509 /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
3510 #endif
3511
3512 #if EV_USE_TIMERFD
3513 if (ev_is_active (&timerfd_w))
3514 {
3515 ev_ref (EV_A);
3516 ev_io_stop (EV_A_ &timerfd_w);
3517
3518 close (timerfd);
3519 timerfd = -2;
3520
3521 evtimerfd_init (EV_A);
3522 /* reschedule periodics, in case we missed something */
3523 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
3524 }
3525 #endif
3526
3527 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3528 if (ev_is_active (&pipe_w))
3529 {
3530 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3531
3532 ev_ref (EV_A);
3533 ev_io_stop (EV_A_ &pipe_w);
3534
3535 if (evpipe [0] >= 0)
3536 EV_WIN32_CLOSE_FD (evpipe [0]);
3537
3538 evpipe_init (EV_A);
3539 /* iterate over everything, in case we missed something before */
3540 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3541 }
3542 #endif
3543 }
3544
3545 postfork = 0;
3546}
3547
3548#if EV_MULTIPLICITY
3549
3550ecb_cold
997struct ev_loop * 3551struct ev_loop *
998ev_default_loop_init (unsigned int flags) 3552ev_loop_new (unsigned int flags) EV_NOEXCEPT
3553{
3554 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3555
3556 memset (EV_A, 0, sizeof (struct ev_loop));
3557 loop_init (EV_A_ flags);
3558
3559 if (ev_backend (EV_A))
3560 return EV_A;
3561
3562 ev_free (EV_A);
3563 return 0;
3564}
3565
3566#endif /* multiplicity */
3567
3568#if EV_VERIFY
3569ecb_noinline ecb_cold
3570static void
3571verify_watcher (EV_P_ W w)
3572{
3573 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3574
3575 if (w->pending)
3576 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3577}
3578
3579ecb_noinline ecb_cold
3580static void
3581verify_heap (EV_P_ ANHE *heap, int N)
3582{
3583 int i;
3584
3585 for (i = HEAP0; i < N + HEAP0; ++i)
3586 {
3587 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3588 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3589 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3590
3591 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3592 }
3593}
3594
3595ecb_noinline ecb_cold
3596static void
3597array_verify (EV_P_ W *ws, int cnt)
3598{
3599 while (cnt--)
3600 {
3601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3602 verify_watcher (EV_A_ ws [cnt]);
3603 }
3604}
3605#endif
3606
3607#if EV_FEATURE_API
3608void ecb_cold
3609ev_verify (EV_P) EV_NOEXCEPT
3610{
3611#if EV_VERIFY
3612 int i;
3613 WL w, w2;
3614
3615 assert (activecnt >= -1);
3616
3617 assert (fdchangemax >= fdchangecnt);
3618 for (i = 0; i < fdchangecnt; ++i)
3619 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3620
3621 assert (anfdmax >= 0);
3622 for (i = 0; i < anfdmax; ++i)
3623 {
3624 int j = 0;
3625
3626 for (w = w2 = anfds [i].head; w; w = w->next)
3627 {
3628 verify_watcher (EV_A_ (W)w);
3629
3630 if (j++ & 1)
3631 {
3632 assert (("libev: io watcher list contains a loop", w != w2));
3633 w2 = w2->next;
3634 }
3635
3636 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3637 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3638 }
3639 }
3640
3641 assert (timermax >= timercnt);
3642 verify_heap (EV_A_ timers, timercnt);
3643
3644#if EV_PERIODIC_ENABLE
3645 assert (periodicmax >= periodiccnt);
3646 verify_heap (EV_A_ periodics, periodiccnt);
3647#endif
3648
3649 for (i = NUMPRI; i--; )
3650 {
3651 assert (pendingmax [i] >= pendingcnt [i]);
3652#if EV_IDLE_ENABLE
3653 assert (idleall >= 0);
3654 assert (idlemax [i] >= idlecnt [i]);
3655 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3656#endif
3657 }
3658
3659#if EV_FORK_ENABLE
3660 assert (forkmax >= forkcnt);
3661 array_verify (EV_A_ (W *)forks, forkcnt);
3662#endif
3663
3664#if EV_CLEANUP_ENABLE
3665 assert (cleanupmax >= cleanupcnt);
3666 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3667#endif
3668
3669#if EV_ASYNC_ENABLE
3670 assert (asyncmax >= asynccnt);
3671 array_verify (EV_A_ (W *)asyncs, asynccnt);
3672#endif
3673
3674#if EV_PREPARE_ENABLE
3675 assert (preparemax >= preparecnt);
3676 array_verify (EV_A_ (W *)prepares, preparecnt);
3677#endif
3678
3679#if EV_CHECK_ENABLE
3680 assert (checkmax >= checkcnt);
3681 array_verify (EV_A_ (W *)checks, checkcnt);
3682#endif
3683
3684# if 0
3685#if EV_CHILD_ENABLE
3686 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3687 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3688#endif
3689# endif
3690#endif
3691}
3692#endif
3693
3694#if EV_MULTIPLICITY
3695ecb_cold
3696struct ev_loop *
999#else 3697#else
1000int 3698int
3699#endif
1001ev_default_loop (unsigned int flags) 3700ev_default_loop (unsigned int flags) EV_NOEXCEPT
1002#endif
1003{ 3701{
1004 if (sigpipe [0] == sigpipe [1])
1005 if (pipe (sigpipe))
1006 return 0;
1007
1008 if (!ev_default_loop_ptr) 3702 if (!ev_default_loop_ptr)
1009 { 3703 {
1010#if EV_MULTIPLICITY 3704#if EV_MULTIPLICITY
1011 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3705 EV_P = ev_default_loop_ptr = &default_loop_struct;
1012#else 3706#else
1013 ev_default_loop_ptr = 1; 3707 ev_default_loop_ptr = 1;
1014#endif 3708#endif
1015 3709
1016 loop_init (EV_A_ flags); 3710 loop_init (EV_A_ flags);
1017 3711
1018 if (ev_backend (EV_A)) 3712 if (ev_backend (EV_A))
1019 { 3713 {
1020 siginit (EV_A); 3714#if EV_CHILD_ENABLE
1021
1022#ifndef _WIN32
1023 ev_signal_init (&childev, childcb, SIGCHLD); 3715 ev_signal_init (&childev, childcb, SIGCHLD);
1024 ev_set_priority (&childev, EV_MAXPRI); 3716 ev_set_priority (&childev, EV_MAXPRI);
1025 ev_signal_start (EV_A_ &childev); 3717 ev_signal_start (EV_A_ &childev);
1026 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3718 ev_unref (EV_A); /* child watcher should not keep loop alive */
1027#endif 3719#endif
1032 3724
1033 return ev_default_loop_ptr; 3725 return ev_default_loop_ptr;
1034} 3726}
1035 3727
1036void 3728void
1037ev_default_destroy (void) 3729ev_loop_fork (EV_P) EV_NOEXCEPT
1038{ 3730{
1039#if EV_MULTIPLICITY 3731 postfork = 1;
1040 struct ev_loop *loop = ev_default_loop_ptr;
1041#endif
1042
1043#ifndef _WIN32
1044 ev_ref (EV_A); /* child watcher */
1045 ev_signal_stop (EV_A_ &childev);
1046#endif
1047
1048 ev_ref (EV_A); /* signal watcher */
1049 ev_io_stop (EV_A_ &sigev);
1050
1051 close (sigpipe [0]); sigpipe [0] = 0;
1052 close (sigpipe [1]); sigpipe [1] = 0;
1053
1054 loop_destroy (EV_A);
1055} 3732}
3733
3734/*****************************************************************************/
1056 3735
1057void 3736void
1058ev_default_fork (void) 3737ev_invoke (EV_P_ void *w, int revents)
1059{ 3738{
1060#if EV_MULTIPLICITY 3739 EV_CB_INVOKE ((W)w, revents);
1061 struct ev_loop *loop = ev_default_loop_ptr;
1062#endif
1063
1064 if (backend)
1065 postfork = 1;
1066} 3740}
1067 3741
1068/*****************************************************************************/ 3742unsigned int
1069 3743ev_pending_count (EV_P) EV_NOEXCEPT
1070int inline_size
1071any_pending (EV_P)
1072{ 3744{
1073 int pri; 3745 int pri;
3746 unsigned int count = 0;
1074 3747
1075 for (pri = NUMPRI; pri--; ) 3748 for (pri = NUMPRI; pri--; )
1076 if (pendingcnt [pri]) 3749 count += pendingcnt [pri];
1077 return 1;
1078 3750
1079 return 0; 3751 return count;
1080} 3752}
1081 3753
1082void inline_speed 3754ecb_noinline
1083call_pending (EV_P) 3755void
3756ev_invoke_pending (EV_P)
1084{ 3757{
1085 int pri; 3758 pendingpri = NUMPRI;
1086 3759
1087 for (pri = NUMPRI; pri--; ) 3760 do
3761 {
3762 --pendingpri;
3763
3764 /* pendingpri possibly gets modified in the inner loop */
1088 while (pendingcnt [pri]) 3765 while (pendingcnt [pendingpri])
1089 {
1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1091
1092 if (expect_true (p->w))
1093 { 3766 {
1094 assert (("non-pending watcher on pending list", p->w->pending)); 3767 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1095 3768
1096 p->w->pending = 0; 3769 p->w->pending = 0;
1097 EV_CB_INVOKE (p->w, p->events); 3770 EV_CB_INVOKE (p->w, p->events);
3771 EV_FREQUENT_CHECK;
3772 }
3773 }
3774 while (pendingpri);
3775}
3776
3777#if EV_IDLE_ENABLE
3778/* make idle watchers pending. this handles the "call-idle */
3779/* only when higher priorities are idle" logic */
3780inline_size void
3781idle_reify (EV_P)
3782{
3783 if (ecb_expect_false (idleall))
3784 {
3785 int pri;
3786
3787 for (pri = NUMPRI; pri--; )
3788 {
3789 if (pendingcnt [pri])
3790 break;
3791
3792 if (idlecnt [pri])
3793 {
3794 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3795 break;
1098 } 3796 }
1099 } 3797 }
3798 }
1100} 3799}
3800#endif
1101 3801
1102void inline_size 3802/* make timers pending */
3803inline_size void
1103timers_reify (EV_P) 3804timers_reify (EV_P)
1104{ 3805{
3806 EV_FREQUENT_CHECK;
3807
1105 while (timercnt && ((WT)timers [0])->at <= mn_now) 3808 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1106 { 3809 {
1107 ev_timer *w = timers [0]; 3810 do
1108
1109 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1110
1111 /* first reschedule or stop timer */
1112 if (w->repeat)
1113 { 3811 {
3812 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3813
3814 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3815
3816 /* first reschedule or stop timer */
3817 if (w->repeat)
3818 {
3819 ev_at (w) += w->repeat;
3820 if (ev_at (w) < mn_now)
3821 ev_at (w) = mn_now;
3822
1114 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3823 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
1115 3824
1116 ((WT)w)->at += w->repeat; 3825 ANHE_at_cache (timers [HEAP0]);
1117 if (((WT)w)->at < mn_now)
1118 ((WT)w)->at = mn_now;
1119
1120 downheap ((WT *)timers, timercnt, 0); 3826 downheap (timers, timercnt, HEAP0);
3827 }
3828 else
3829 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3830
3831 EV_FREQUENT_CHECK;
3832 feed_reverse (EV_A_ (W)w);
1121 } 3833 }
1122 else 3834 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1123 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 3835
1125 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3836 feed_reverse_done (EV_A_ EV_TIMER);
1126 } 3837 }
1127} 3838}
1128 3839
1129#if EV_PERIODIC_ENABLE 3840#if EV_PERIODIC_ENABLE
1130void inline_size 3841
3842ecb_noinline
3843static void
3844periodic_recalc (EV_P_ ev_periodic *w)
3845{
3846 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3847 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3848
3849 /* the above almost always errs on the low side */
3850 while (at <= ev_rt_now)
3851 {
3852 ev_tstamp nat = at + w->interval;
3853
3854 /* when resolution fails us, we use ev_rt_now */
3855 if (ecb_expect_false (nat == at))
3856 {
3857 at = ev_rt_now;
3858 break;
3859 }
3860
3861 at = nat;
3862 }
3863
3864 ev_at (w) = at;
3865}
3866
3867/* make periodics pending */
3868inline_size void
1131periodics_reify (EV_P) 3869periodics_reify (EV_P)
1132{ 3870{
3871 EV_FREQUENT_CHECK;
3872
1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 3873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1134 { 3874 {
1135 ev_periodic *w = periodics [0]; 3875 do
3876 {
3877 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1136 3878
1137 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 3879 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1138 3880
1139 /* first reschedule or stop timer */ 3881 /* first reschedule or stop timer */
3882 if (w->reschedule_cb)
3883 {
3884 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3885
3886 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3887
3888 ANHE_at_cache (periodics [HEAP0]);
3889 downheap (periodics, periodiccnt, HEAP0);
3890 }
3891 else if (w->interval)
3892 {
3893 periodic_recalc (EV_A_ w);
3894 ANHE_at_cache (periodics [HEAP0]);
3895 downheap (periodics, periodiccnt, HEAP0);
3896 }
3897 else
3898 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3899
3900 EV_FREQUENT_CHECK;
3901 feed_reverse (EV_A_ (W)w);
3902 }
3903 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3904
3905 feed_reverse_done (EV_A_ EV_PERIODIC);
3906 }
3907}
3908
3909/* simply recalculate all periodics */
3910/* TODO: maybe ensure that at least one event happens when jumping forward? */
3911ecb_noinline ecb_cold
3912static void
3913periodics_reschedule (EV_P)
3914{
3915 int i;
3916
3917 /* adjust periodics after time jump */
3918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3919 {
3920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3921
1140 if (w->reschedule_cb) 3922 if (w->reschedule_cb)
3923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3924 else if (w->interval)
3925 periodic_recalc (EV_A_ w);
3926
3927 ANHE_at_cache (periodics [i]);
3928 }
3929
3930 reheap (periodics, periodiccnt);
3931}
3932#endif
3933
3934/* adjust all timers by a given offset */
3935ecb_noinline ecb_cold
3936static void
3937timers_reschedule (EV_P_ ev_tstamp adjust)
3938{
3939 int i;
3940
3941 for (i = 0; i < timercnt; ++i)
3942 {
3943 ANHE *he = timers + i + HEAP0;
3944 ANHE_w (*he)->at += adjust;
3945 ANHE_at_cache (*he);
3946 }
3947}
3948
3949/* fetch new monotonic and realtime times from the kernel */
3950/* also detect if there was a timejump, and act accordingly */
3951inline_speed void
3952time_update (EV_P_ ev_tstamp max_block)
3953{
3954#if EV_USE_MONOTONIC
3955 if (ecb_expect_true (have_monotonic))
3956 {
3957 int i;
3958 ev_tstamp odiff = rtmn_diff;
3959
3960 mn_now = get_clock ();
3961
3962 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3963 /* interpolate in the meantime */
3964 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
1141 { 3965 {
1142 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 3966 ev_rt_now = rtmn_diff + mn_now;
1143 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 3967 return;
1144 downheap ((WT *)periodics, periodiccnt, 0);
1145 } 3968 }
1146 else if (w->interval)
1147 {
1148 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1149 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1150 downheap ((WT *)periodics, periodiccnt, 0);
1151 }
1152 else
1153 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1154 3969
1155 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1156 }
1157}
1158
1159static void noinline
1160periodics_reschedule (EV_P)
1161{
1162 int i;
1163
1164 /* adjust periodics after time jump */
1165 for (i = 0; i < periodiccnt; ++i)
1166 {
1167 ev_periodic *w = periodics [i];
1168
1169 if (w->reschedule_cb)
1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1171 else if (w->interval)
1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1173 }
1174
1175 /* now rebuild the heap */
1176 for (i = periodiccnt >> 1; i--; )
1177 downheap ((WT *)periodics, periodiccnt, i);
1178}
1179#endif
1180
1181int inline_size
1182time_update_monotonic (EV_P)
1183{
1184 mn_now = get_clock ();
1185
1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1187 {
1188 ev_rt_now = rtmn_diff + mn_now;
1189 return 0;
1190 }
1191 else
1192 {
1193 now_floor = mn_now; 3970 now_floor = mn_now;
1194 ev_rt_now = ev_time (); 3971 ev_rt_now = ev_time ();
1195 return 1;
1196 }
1197}
1198 3972
1199void inline_size 3973 /* loop a few times, before making important decisions.
1200time_update (EV_P) 3974 * on the choice of "4": one iteration isn't enough,
1201{ 3975 * in case we get preempted during the calls to
1202 int i; 3976 * ev_time and get_clock. a second call is almost guaranteed
1203 3977 * to succeed in that case, though. and looping a few more times
1204#if EV_USE_MONOTONIC 3978 * doesn't hurt either as we only do this on time-jumps or
1205 if (expect_true (have_monotonic)) 3979 * in the unlikely event of having been preempted here.
1206 { 3980 */
1207 if (time_update_monotonic (EV_A)) 3981 for (i = 4; --i; )
1208 { 3982 {
1209 ev_tstamp odiff = rtmn_diff; 3983 ev_tstamp diff;
1210
1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
1220 {
1221 rtmn_diff = ev_rt_now - mn_now; 3984 rtmn_diff = ev_rt_now - mn_now;
1222 3985
1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3986 diff = odiff - rtmn_diff;
3987
3988 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
1224 return; /* all is well */ 3989 return; /* all is well */
1225 3990
1226 ev_rt_now = ev_time (); 3991 ev_rt_now = ev_time ();
1227 mn_now = get_clock (); 3992 mn_now = get_clock ();
1228 now_floor = mn_now; 3993 now_floor = mn_now;
1229 } 3994 }
1230 3995
3996 /* no timer adjustment, as the monotonic clock doesn't jump */
3997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1231# if EV_PERIODIC_ENABLE 3998# if EV_PERIODIC_ENABLE
1232 periodics_reschedule (EV_A); 3999 periodics_reschedule (EV_A);
1233# endif 4000# endif
1234 /* no timer adjustment, as the monotonic clock doesn't jump */
1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1236 }
1237 } 4001 }
1238 else 4002 else
1239#endif 4003#endif
1240 { 4004 {
1241 ev_rt_now = ev_time (); 4005 ev_rt_now = ev_time ();
1242 4006
1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 4007 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
1244 { 4008 {
4009 /* adjust timers. this is easy, as the offset is the same for all of them */
4010 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1245#if EV_PERIODIC_ENABLE 4011#if EV_PERIODIC_ENABLE
1246 periodics_reschedule (EV_A); 4012 periodics_reschedule (EV_A);
1247#endif 4013#endif
1248
1249 /* adjust timers. this is easy, as the offset is the same for all */
1250 for (i = 0; i < timercnt; ++i)
1251 ((WT)timers [i])->at += ev_rt_now - mn_now;
1252 } 4014 }
1253 4015
1254 mn_now = ev_rt_now; 4016 mn_now = ev_rt_now;
1255 } 4017 }
1256} 4018}
1257 4019
1258void 4020int
1259ev_ref (EV_P)
1260{
1261 ++activecnt;
1262}
1263
1264void
1265ev_unref (EV_P)
1266{
1267 --activecnt;
1268}
1269
1270static int loop_done;
1271
1272void
1273ev_loop (EV_P_ int flags) 4021ev_run (EV_P_ int flags)
1274{ 4022{
1275 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 4023#if EV_FEATURE_API
1276 ? EVUNLOOP_ONE 4024 ++loop_depth;
1277 : EVUNLOOP_CANCEL; 4025#endif
1278 4026
1279 while (activecnt) 4027 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
4028
4029 loop_done = EVBREAK_CANCEL;
4030
4031 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
4032
4033 do
1280 { 4034 {
1281 /* we might have forked, so reify kernel state if necessary */ 4035#if EV_VERIFY >= 2
4036 ev_verify (EV_A);
4037#endif
4038
4039#ifndef _WIN32
4040 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
4041 if (ecb_expect_false (getpid () != curpid))
4042 {
4043 curpid = getpid ();
4044 postfork = 1;
4045 }
4046#endif
4047
1282 #if EV_FORK_ENABLE 4048#if EV_FORK_ENABLE
4049 /* we might have forked, so queue fork handlers */
1283 if (expect_false (postfork)) 4050 if (ecb_expect_false (postfork))
1284 if (forkcnt) 4051 if (forkcnt)
1285 { 4052 {
1286 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 4053 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1287 call_pending (EV_A); 4054 EV_INVOKE_PENDING;
1288 } 4055 }
1289 #endif 4056#endif
1290 4057
4058#if EV_PREPARE_ENABLE
1291 /* queue check watchers (and execute them) */ 4059 /* queue prepare watchers (and execute them) */
1292 if (expect_false (preparecnt)) 4060 if (ecb_expect_false (preparecnt))
1293 { 4061 {
1294 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 4062 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1295 call_pending (EV_A); 4063 EV_INVOKE_PENDING;
1296 } 4064 }
4065#endif
4066
4067 if (ecb_expect_false (loop_done))
4068 break;
1297 4069
1298 /* we might have forked, so reify kernel state if necessary */ 4070 /* we might have forked, so reify kernel state if necessary */
1299 if (expect_false (postfork)) 4071 if (ecb_expect_false (postfork))
1300 loop_fork (EV_A); 4072 loop_fork (EV_A);
1301 4073
1302 /* update fd-related kernel structures */ 4074 /* update fd-related kernel structures */
1303 fd_reify (EV_A); 4075 fd_reify (EV_A);
1304 4076
1305 /* calculate blocking time */ 4077 /* calculate blocking time */
1306 { 4078 {
1307 double block; 4079 ev_tstamp waittime = 0.;
4080 ev_tstamp sleeptime = 0.;
1308 4081
1309 if (flags & EVLOOP_NONBLOCK || idlecnt) 4082 /* remember old timestamp for io_blocktime calculation */
1310 block = 0.; /* do not block at all */ 4083 ev_tstamp prev_mn_now = mn_now;
1311 else 4084
4085 /* update time to cancel out callback processing overhead */
4086 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
4087
4088 /* from now on, we want a pipe-wake-up */
4089 pipe_write_wanted = 1;
4090
4091 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
4092
4093 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1312 { 4094 {
1313 /* update time to cancel out callback processing overhead */ 4095 waittime = EV_TS_CONST (MAX_BLOCKTIME);
1314#if EV_USE_MONOTONIC 4096
4097#if EV_USE_TIMERFD
4098 /* sleep a lot longer when we can reliably detect timejumps */
4099 if (ecb_expect_true (timerfd >= 0))
4100 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4101#endif
4102#if !EV_PERIODIC_ENABLE
4103 /* without periodics but with monotonic clock there is no need */
4104 /* for any time jump detection, so sleep longer */
1315 if (expect_true (have_monotonic)) 4105 if (ecb_expect_true (have_monotonic))
1316 time_update_monotonic (EV_A); 4106 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
1317 else
1318#endif 4107#endif
1319 {
1320 ev_rt_now = ev_time ();
1321 mn_now = ev_rt_now;
1322 }
1323
1324 block = MAX_BLOCKTIME;
1325 4108
1326 if (timercnt) 4109 if (timercnt)
1327 { 4110 {
1328 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 4111 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1329 if (block > to) block = to; 4112 if (waittime > to) waittime = to;
1330 } 4113 }
1331 4114
1332#if EV_PERIODIC_ENABLE 4115#if EV_PERIODIC_ENABLE
1333 if (periodiccnt) 4116 if (periodiccnt)
1334 { 4117 {
1335 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 4118 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1336 if (block > to) block = to; 4119 if (waittime > to) waittime = to;
1337 } 4120 }
1338#endif 4121#endif
1339 4122
1340 if (expect_false (block < 0.)) block = 0.; 4123 /* don't let timeouts decrease the waittime below timeout_blocktime */
4124 if (ecb_expect_false (waittime < timeout_blocktime))
4125 waittime = timeout_blocktime;
4126
4127 /* now there are two more special cases left, either we have
4128 * already-expired timers, so we should not sleep, or we have timers
4129 * that expire very soon, in which case we need to wait for a minimum
4130 * amount of time for some event loop backends.
4131 */
4132 if (ecb_expect_false (waittime < backend_mintime))
4133 waittime = waittime <= EV_TS_CONST (0.)
4134 ? EV_TS_CONST (0.)
4135 : backend_mintime;
4136
4137 /* extra check because io_blocktime is commonly 0 */
4138 if (ecb_expect_false (io_blocktime))
4139 {
4140 sleeptime = io_blocktime - (mn_now - prev_mn_now);
4141
4142 if (sleeptime > waittime - backend_mintime)
4143 sleeptime = waittime - backend_mintime;
4144
4145 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
4146 {
4147 ev_sleep (sleeptime);
4148 waittime -= sleeptime;
4149 }
4150 }
1341 } 4151 }
1342 4152
4153#if EV_FEATURE_API
4154 ++loop_count;
4155#endif
4156 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1343 backend_poll (EV_A_ block); 4157 backend_poll (EV_A_ waittime);
4158 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4159
4160 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4161
4162 ECB_MEMORY_FENCE_ACQUIRE;
4163 if (pipe_write_skipped)
4164 {
4165 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4166 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4167 }
4168
4169 /* update ev_rt_now, do magic */
4170 time_update (EV_A_ waittime + sleeptime);
1344 } 4171 }
1345
1346 /* update ev_rt_now, do magic */
1347 time_update (EV_A);
1348 4172
1349 /* queue pending timers and reschedule them */ 4173 /* queue pending timers and reschedule them */
1350 timers_reify (EV_A); /* relative timers called last */ 4174 timers_reify (EV_A); /* relative timers called last */
1351#if EV_PERIODIC_ENABLE 4175#if EV_PERIODIC_ENABLE
1352 periodics_reify (EV_A); /* absolute timers called first */ 4176 periodics_reify (EV_A); /* absolute timers called first */
1353#endif 4177#endif
1354 4178
4179#if EV_IDLE_ENABLE
1355 /* queue idle watchers unless other events are pending */ 4180 /* queue idle watchers unless other events are pending */
1356 if (idlecnt && !any_pending (EV_A)) 4181 idle_reify (EV_A);
1357 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 4182#endif
1358 4183
4184#if EV_CHECK_ENABLE
1359 /* queue check watchers, to be executed first */ 4185 /* queue check watchers, to be executed first */
1360 if (expect_false (checkcnt)) 4186 if (ecb_expect_false (checkcnt))
1361 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 4187 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4188#endif
1362 4189
1363 call_pending (EV_A); 4190 EV_INVOKE_PENDING;
1364
1365 if (expect_false (loop_done))
1366 break;
1367 } 4191 }
4192 while (ecb_expect_true (
4193 activecnt
4194 && !loop_done
4195 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
4196 ));
1368 4197
1369 if (loop_done == EVUNLOOP_ONE) 4198 if (loop_done == EVBREAK_ONE)
1370 loop_done = EVUNLOOP_CANCEL; 4199 loop_done = EVBREAK_CANCEL;
4200
4201#if EV_FEATURE_API
4202 --loop_depth;
4203#endif
4204
4205 return activecnt;
1371} 4206}
1372 4207
1373void 4208void
1374ev_unloop (EV_P_ int how) 4209ev_break (EV_P_ int how) EV_NOEXCEPT
1375{ 4210{
1376 loop_done = how; 4211 loop_done = how;
1377} 4212}
1378 4213
4214void
4215ev_ref (EV_P) EV_NOEXCEPT
4216{
4217 ++activecnt;
4218}
4219
4220void
4221ev_unref (EV_P) EV_NOEXCEPT
4222{
4223 --activecnt;
4224}
4225
4226void
4227ev_now_update (EV_P) EV_NOEXCEPT
4228{
4229 time_update (EV_A_ EV_TSTAMP_HUGE);
4230}
4231
4232void
4233ev_suspend (EV_P) EV_NOEXCEPT
4234{
4235 ev_now_update (EV_A);
4236}
4237
4238void
4239ev_resume (EV_P) EV_NOEXCEPT
4240{
4241 ev_tstamp mn_prev = mn_now;
4242
4243 ev_now_update (EV_A);
4244 timers_reschedule (EV_A_ mn_now - mn_prev);
4245#if EV_PERIODIC_ENABLE
4246 /* TODO: really do this? */
4247 periodics_reschedule (EV_A);
4248#endif
4249}
4250
1379/*****************************************************************************/ 4251/*****************************************************************************/
4252/* singly-linked list management, used when the expected list length is short */
1380 4253
1381void inline_size 4254inline_size void
1382wlist_add (WL *head, WL elem) 4255wlist_add (WL *head, WL elem)
1383{ 4256{
1384 elem->next = *head; 4257 elem->next = *head;
1385 *head = elem; 4258 *head = elem;
1386} 4259}
1387 4260
1388void inline_size 4261inline_size void
1389wlist_del (WL *head, WL elem) 4262wlist_del (WL *head, WL elem)
1390{ 4263{
1391 while (*head) 4264 while (*head)
1392 { 4265 {
1393 if (*head == elem) 4266 if (ecb_expect_true (*head == elem))
1394 { 4267 {
1395 *head = elem->next; 4268 *head = elem->next;
1396 return; 4269 break;
1397 } 4270 }
1398 4271
1399 head = &(*head)->next; 4272 head = &(*head)->next;
1400 } 4273 }
1401} 4274}
1402 4275
1403void inline_speed 4276/* internal, faster, version of ev_clear_pending */
4277inline_speed void
1404ev_clear_pending (EV_P_ W w) 4278clear_pending (EV_P_ W w)
1405{ 4279{
1406 if (w->pending) 4280 if (w->pending)
1407 { 4281 {
1408 pendings [ABSPRI (w)][w->pending - 1].w = 0; 4282 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1409 w->pending = 0; 4283 w->pending = 0;
1410 } 4284 }
1411} 4285}
1412 4286
1413void inline_speed 4287int
4288ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
4289{
4290 W w_ = (W)w;
4291 int pending = w_->pending;
4292
4293 if (ecb_expect_true (pending))
4294 {
4295 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4296 p->w = (W)&pending_w;
4297 w_->pending = 0;
4298 return p->events;
4299 }
4300 else
4301 return 0;
4302}
4303
4304inline_size void
4305pri_adjust (EV_P_ W w)
4306{
4307 int pri = ev_priority (w);
4308 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4309 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4310 ev_set_priority (w, pri);
4311}
4312
4313inline_speed void
1414ev_start (EV_P_ W w, int active) 4314ev_start (EV_P_ W w, int active)
1415{ 4315{
1416 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 4316 pri_adjust (EV_A_ w);
1417 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1418
1419 w->active = active; 4317 w->active = active;
1420 ev_ref (EV_A); 4318 ev_ref (EV_A);
1421} 4319}
1422 4320
1423void inline_size 4321inline_size void
1424ev_stop (EV_P_ W w) 4322ev_stop (EV_P_ W w)
1425{ 4323{
1426 ev_unref (EV_A); 4324 ev_unref (EV_A);
1427 w->active = 0; 4325 w->active = 0;
1428} 4326}
1429 4327
1430/*****************************************************************************/ 4328/*****************************************************************************/
1431 4329
4330ecb_noinline
1432void 4331void
1433ev_io_start (EV_P_ ev_io *w) 4332ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1434{ 4333{
1435 int fd = w->fd; 4334 int fd = w->fd;
1436 4335
1437 if (expect_false (ev_is_active (w))) 4336 if (ecb_expect_false (ev_is_active (w)))
1438 return; 4337 return;
1439 4338
1440 assert (("ev_io_start called with negative fd", fd >= 0)); 4339 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4340 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4341
4342#if EV_VERIFY >= 2
4343 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4344#endif
4345 EV_FREQUENT_CHECK;
1441 4346
1442 ev_start (EV_A_ (W)w, 1); 4347 ev_start (EV_A_ (W)w, 1);
1443 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 4348 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
1444 wlist_add ((WL *)&anfds[fd].head, (WL)w); 4349 wlist_add (&anfds[fd].head, (WL)w);
1445 4350
1446 fd_change (EV_A_ fd); 4351 /* common bug, apparently */
1447} 4352 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1448 4353
4354 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4355 w->events &= ~EV__IOFDSET;
4356
4357 EV_FREQUENT_CHECK;
4358}
4359
4360ecb_noinline
1449void 4361void
1450ev_io_stop (EV_P_ ev_io *w) 4362ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
1451{ 4363{
1452 ev_clear_pending (EV_A_ (W)w); 4364 clear_pending (EV_A_ (W)w);
1453 if (expect_false (!ev_is_active (w))) 4365 if (ecb_expect_false (!ev_is_active (w)))
1454 return; 4366 return;
1455 4367
1456 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4368 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1457 4369
4370#if EV_VERIFY >= 2
4371 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4372#endif
4373 EV_FREQUENT_CHECK;
4374
1458 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 4375 wlist_del (&anfds[w->fd].head, (WL)w);
1459 ev_stop (EV_A_ (W)w); 4376 ev_stop (EV_A_ (W)w);
1460 4377
1461 fd_change (EV_A_ w->fd); 4378 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1462}
1463 4379
4380 EV_FREQUENT_CHECK;
4381}
4382
4383ecb_noinline
1464void 4384void
1465ev_timer_start (EV_P_ ev_timer *w) 4385ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
1466{ 4386{
1467 if (expect_false (ev_is_active (w))) 4387 if (ecb_expect_false (ev_is_active (w)))
1468 return; 4388 return;
1469 4389
1470 ((WT)w)->at += mn_now; 4390 ev_at (w) += mn_now;
1471 4391
1472 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 4392 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1473 4393
4394 EV_FREQUENT_CHECK;
4395
4396 ++timercnt;
1474 ev_start (EV_A_ (W)w, ++timercnt); 4397 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1475 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 4398 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
1476 timers [timercnt - 1] = w; 4399 ANHE_w (timers [ev_active (w)]) = (WT)w;
1477 upheap ((WT *)timers, timercnt - 1); 4400 ANHE_at_cache (timers [ev_active (w)]);
4401 upheap (timers, ev_active (w));
1478 4402
4403 EV_FREQUENT_CHECK;
4404
1479 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 4405 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1480} 4406}
1481 4407
4408ecb_noinline
1482void 4409void
1483ev_timer_stop (EV_P_ ev_timer *w) 4410ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
1484{ 4411{
1485 ev_clear_pending (EV_A_ (W)w); 4412 clear_pending (EV_A_ (W)w);
1486 if (expect_false (!ev_is_active (w))) 4413 if (ecb_expect_false (!ev_is_active (w)))
1487 return; 4414 return;
1488 4415
4416 EV_FREQUENT_CHECK;
4417
4418 {
4419 int active = ev_active (w);
4420
1489 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 4421 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1490 4422
4423 --timercnt;
4424
1491 if (expect_true (((W)w)->active < timercnt--)) 4425 if (ecb_expect_true (active < timercnt + HEAP0))
1492 { 4426 {
1493 timers [((W)w)->active - 1] = timers [timercnt]; 4427 timers [active] = timers [timercnt + HEAP0];
1494 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 4428 adjustheap (timers, timercnt, active);
1495 } 4429 }
4430 }
1496 4431
1497 ((WT)w)->at -= mn_now; 4432 ev_at (w) -= mn_now;
1498 4433
1499 ev_stop (EV_A_ (W)w); 4434 ev_stop (EV_A_ (W)w);
1500}
1501 4435
4436 EV_FREQUENT_CHECK;
4437}
4438
4439ecb_noinline
1502void 4440void
1503ev_timer_again (EV_P_ ev_timer *w) 4441ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
1504{ 4442{
4443 EV_FREQUENT_CHECK;
4444
4445 clear_pending (EV_A_ (W)w);
4446
1505 if (ev_is_active (w)) 4447 if (ev_is_active (w))
1506 { 4448 {
1507 if (w->repeat) 4449 if (w->repeat)
1508 { 4450 {
1509 ((WT)w)->at = mn_now + w->repeat; 4451 ev_at (w) = mn_now + w->repeat;
4452 ANHE_at_cache (timers [ev_active (w)]);
1510 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 4453 adjustheap (timers, timercnt, ev_active (w));
1511 } 4454 }
1512 else 4455 else
1513 ev_timer_stop (EV_A_ w); 4456 ev_timer_stop (EV_A_ w);
1514 } 4457 }
1515 else if (w->repeat) 4458 else if (w->repeat)
1516 { 4459 {
1517 w->at = w->repeat; 4460 ev_at (w) = w->repeat;
1518 ev_timer_start (EV_A_ w); 4461 ev_timer_start (EV_A_ w);
1519 } 4462 }
4463
4464 EV_FREQUENT_CHECK;
4465}
4466
4467ev_tstamp
4468ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4469{
4470 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
1520} 4471}
1521 4472
1522#if EV_PERIODIC_ENABLE 4473#if EV_PERIODIC_ENABLE
4474ecb_noinline
1523void 4475void
1524ev_periodic_start (EV_P_ ev_periodic *w) 4476ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1525{ 4477{
1526 if (expect_false (ev_is_active (w))) 4478 if (ecb_expect_false (ev_is_active (w)))
1527 return; 4479 return;
1528 4480
4481#if EV_USE_TIMERFD
4482 if (timerfd == -2)
4483 evtimerfd_init (EV_A);
4484#endif
4485
1529 if (w->reschedule_cb) 4486 if (w->reschedule_cb)
1530 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4487 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1531 else if (w->interval) 4488 else if (w->interval)
1532 { 4489 {
1533 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4490 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1534 /* this formula differs from the one in periodic_reify because we do not always round up */ 4491 periodic_recalc (EV_A_ w);
1535 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1536 } 4492 }
4493 else
4494 ev_at (w) = w->offset;
1537 4495
4496 EV_FREQUENT_CHECK;
4497
4498 ++periodiccnt;
1538 ev_start (EV_A_ (W)w, ++periodiccnt); 4499 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1539 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 4500 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1540 periodics [periodiccnt - 1] = w; 4501 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1541 upheap ((WT *)periodics, periodiccnt - 1); 4502 ANHE_at_cache (periodics [ev_active (w)]);
4503 upheap (periodics, ev_active (w));
1542 4504
4505 EV_FREQUENT_CHECK;
4506
1543 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4507 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1544} 4508}
1545 4509
4510ecb_noinline
1546void 4511void
1547ev_periodic_stop (EV_P_ ev_periodic *w) 4512ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1548{ 4513{
1549 ev_clear_pending (EV_A_ (W)w); 4514 clear_pending (EV_A_ (W)w);
1550 if (expect_false (!ev_is_active (w))) 4515 if (ecb_expect_false (!ev_is_active (w)))
1551 return; 4516 return;
1552 4517
4518 EV_FREQUENT_CHECK;
4519
4520 {
4521 int active = ev_active (w);
4522
1553 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4523 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1554 4524
4525 --periodiccnt;
4526
1555 if (expect_true (((W)w)->active < periodiccnt--)) 4527 if (ecb_expect_true (active < periodiccnt + HEAP0))
1556 { 4528 {
1557 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 4529 periodics [active] = periodics [periodiccnt + HEAP0];
1558 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 4530 adjustheap (periodics, periodiccnt, active);
1559 } 4531 }
4532 }
1560 4533
1561 ev_stop (EV_A_ (W)w); 4534 ev_stop (EV_A_ (W)w);
1562}
1563 4535
4536 EV_FREQUENT_CHECK;
4537}
4538
4539ecb_noinline
1564void 4540void
1565ev_periodic_again (EV_P_ ev_periodic *w) 4541ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1566{ 4542{
1567 /* TODO: use adjustheap and recalculation */ 4543 /* TODO: use adjustheap and recalculation */
1568 ev_periodic_stop (EV_A_ w); 4544 ev_periodic_stop (EV_A_ w);
1569 ev_periodic_start (EV_A_ w); 4545 ev_periodic_start (EV_A_ w);
1570} 4546}
1572 4548
1573#ifndef SA_RESTART 4549#ifndef SA_RESTART
1574# define SA_RESTART 0 4550# define SA_RESTART 0
1575#endif 4551#endif
1576 4552
4553#if EV_SIGNAL_ENABLE
4554
4555ecb_noinline
1577void 4556void
1578ev_signal_start (EV_P_ ev_signal *w) 4557ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1579{ 4558{
4559 if (ecb_expect_false (ev_is_active (w)))
4560 return;
4561
4562 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4563
1580#if EV_MULTIPLICITY 4564#if EV_MULTIPLICITY
1581 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4565 assert (("libev: a signal must not be attached to two different loops",
4566 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4567
4568 signals [w->signum - 1].loop = EV_A;
4569 ECB_MEMORY_FENCE_RELEASE;
4570#endif
4571
4572 EV_FREQUENT_CHECK;
4573
4574#if EV_USE_SIGNALFD
4575 if (sigfd == -2)
4576 {
4577 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4578 if (sigfd < 0 && errno == EINVAL)
4579 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4580
4581 if (sigfd >= 0)
4582 {
4583 fd_intern (sigfd); /* doing it twice will not hurt */
4584
4585 sigemptyset (&sigfd_set);
4586
4587 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4588 ev_set_priority (&sigfd_w, EV_MAXPRI);
4589 ev_io_start (EV_A_ &sigfd_w);
4590 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4591 }
4592 }
4593
4594 if (sigfd >= 0)
4595 {
4596 /* TODO: check .head */
4597 sigaddset (&sigfd_set, w->signum);
4598 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4599
4600 signalfd (sigfd, &sigfd_set, 0);
4601 }
4602#endif
4603
4604 ev_start (EV_A_ (W)w, 1);
4605 wlist_add (&signals [w->signum - 1].head, (WL)w);
4606
4607 if (!((WL)w)->next)
4608# if EV_USE_SIGNALFD
4609 if (sigfd < 0) /*TODO*/
1582#endif 4610# endif
4611 {
4612# ifdef _WIN32
4613 evpipe_init (EV_A);
4614
4615 signal (w->signum, ev_sighandler);
4616# else
4617 struct sigaction sa;
4618
4619 evpipe_init (EV_A);
4620
4621 sa.sa_handler = ev_sighandler;
4622 sigfillset (&sa.sa_mask);
4623 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4624 sigaction (w->signum, &sa, 0);
4625
4626 if (origflags & EVFLAG_NOSIGMASK)
4627 {
4628 sigemptyset (&sa.sa_mask);
4629 sigaddset (&sa.sa_mask, w->signum);
4630 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4631 }
4632#endif
4633 }
4634
4635 EV_FREQUENT_CHECK;
4636}
4637
4638ecb_noinline
4639void
4640ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4641{
4642 clear_pending (EV_A_ (W)w);
1583 if (expect_false (ev_is_active (w))) 4643 if (ecb_expect_false (!ev_is_active (w)))
1584 return; 4644 return;
1585 4645
1586 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4646 EV_FREQUENT_CHECK;
4647
4648 wlist_del (&signals [w->signum - 1].head, (WL)w);
4649 ev_stop (EV_A_ (W)w);
4650
4651 if (!signals [w->signum - 1].head)
4652 {
4653#if EV_MULTIPLICITY
4654 signals [w->signum - 1].loop = 0; /* unattach from signal */
4655#endif
4656#if EV_USE_SIGNALFD
4657 if (sigfd >= 0)
4658 {
4659 sigset_t ss;
4660
4661 sigemptyset (&ss);
4662 sigaddset (&ss, w->signum);
4663 sigdelset (&sigfd_set, w->signum);
4664
4665 signalfd (sigfd, &sigfd_set, 0);
4666 sigprocmask (SIG_UNBLOCK, &ss, 0);
4667 }
4668 else
4669#endif
4670 signal (w->signum, SIG_DFL);
4671 }
4672
4673 EV_FREQUENT_CHECK;
4674}
4675
4676#endif
4677
4678#if EV_CHILD_ENABLE
4679
4680void
4681ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4682{
4683#if EV_MULTIPLICITY
4684 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4685#endif
4686 if (ecb_expect_false (ev_is_active (w)))
4687 return;
4688
4689 EV_FREQUENT_CHECK;
1587 4690
1588 ev_start (EV_A_ (W)w, 1); 4691 ev_start (EV_A_ (W)w, 1);
1589 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4692 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1590 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1591 4693
1592 if (!((WL)w)->next) 4694 EV_FREQUENT_CHECK;
1593 {
1594#if _WIN32
1595 signal (w->signum, sighandler);
1596#else
1597 struct sigaction sa;
1598 sa.sa_handler = sighandler;
1599 sigfillset (&sa.sa_mask);
1600 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1601 sigaction (w->signum, &sa, 0);
1602#endif
1603 }
1604} 4695}
1605 4696
1606void 4697void
1607ev_signal_stop (EV_P_ ev_signal *w) 4698ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
1608{ 4699{
1609 ev_clear_pending (EV_A_ (W)w); 4700 clear_pending (EV_A_ (W)w);
1610 if (expect_false (!ev_is_active (w))) 4701 if (ecb_expect_false (!ev_is_active (w)))
1611 return; 4702 return;
1612 4703
1613 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4704 EV_FREQUENT_CHECK;
4705
4706 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1614 ev_stop (EV_A_ (W)w); 4707 ev_stop (EV_A_ (W)w);
1615 4708
1616 if (!signals [w->signum - 1].head) 4709 EV_FREQUENT_CHECK;
1617 signal (w->signum, SIG_DFL);
1618} 4710}
1619 4711
1620void
1621ev_child_start (EV_P_ ev_child *w)
1622{
1623#if EV_MULTIPLICITY
1624 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1625#endif 4712#endif
1626 if (expect_false (ev_is_active (w)))
1627 return;
1628
1629 ev_start (EV_A_ (W)w, 1);
1630 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1631}
1632
1633void
1634ev_child_stop (EV_P_ ev_child *w)
1635{
1636 ev_clear_pending (EV_A_ (W)w);
1637 if (expect_false (!ev_is_active (w)))
1638 return;
1639
1640 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1641 ev_stop (EV_A_ (W)w);
1642}
1643 4713
1644#if EV_STAT_ENABLE 4714#if EV_STAT_ENABLE
1645 4715
1646# ifdef _WIN32 4716# ifdef _WIN32
1647# undef lstat 4717# undef lstat
1648# define lstat(a,b) _stati64 (a,b) 4718# define lstat(a,b) _stati64 (a,b)
1649# endif 4719# endif
1650 4720
1651#define DEF_STAT_INTERVAL 5.0074891 4721#define DEF_STAT_INTERVAL 5.0074891
4722#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1652#define MIN_STAT_INTERVAL 0.1074891 4723#define MIN_STAT_INTERVAL 0.1074891
1653 4724
4725ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4726
4727#if EV_USE_INOTIFY
4728
4729/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4730# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4731
4732ecb_noinline
4733static void
4734infy_add (EV_P_ ev_stat *w)
4735{
4736 w->wd = inotify_add_watch (fs_fd, w->path,
4737 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4738 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4739 | IN_DONT_FOLLOW | IN_MASK_ADD);
4740
4741 if (w->wd >= 0)
4742 {
4743 struct statfs sfs;
4744
4745 /* now local changes will be tracked by inotify, but remote changes won't */
4746 /* unless the filesystem is known to be local, we therefore still poll */
4747 /* also do poll on <2.6.25, but with normal frequency */
4748
4749 if (!fs_2625)
4750 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4751 else if (!statfs (w->path, &sfs)
4752 && (sfs.f_type == 0x1373 /* devfs */
4753 || sfs.f_type == 0x4006 /* fat */
4754 || sfs.f_type == 0x4d44 /* msdos */
4755 || sfs.f_type == 0xEF53 /* ext2/3 */
4756 || sfs.f_type == 0x72b6 /* jffs2 */
4757 || sfs.f_type == 0x858458f6 /* ramfs */
4758 || sfs.f_type == 0x5346544e /* ntfs */
4759 || sfs.f_type == 0x3153464a /* jfs */
4760 || sfs.f_type == 0x9123683e /* btrfs */
4761 || sfs.f_type == 0x52654973 /* reiser3 */
4762 || sfs.f_type == 0x01021994 /* tmpfs */
4763 || sfs.f_type == 0x58465342 /* xfs */))
4764 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4765 else
4766 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4767 }
4768 else
4769 {
4770 /* can't use inotify, continue to stat */
4771 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4772
4773 /* if path is not there, monitor some parent directory for speedup hints */
4774 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4775 /* but an efficiency issue only */
4776 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4777 {
4778 char path [4096];
4779 strcpy (path, w->path);
4780
4781 do
4782 {
4783 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4784 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4785
4786 char *pend = strrchr (path, '/');
4787
4788 if (!pend || pend == path)
4789 break;
4790
4791 *pend = 0;
4792 w->wd = inotify_add_watch (fs_fd, path, mask);
4793 }
4794 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4795 }
4796 }
4797
4798 if (w->wd >= 0)
4799 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4800
4801 /* now re-arm timer, if required */
4802 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4803 ev_timer_again (EV_A_ &w->timer);
4804 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4805}
4806
4807ecb_noinline
4808static void
4809infy_del (EV_P_ ev_stat *w)
4810{
4811 int slot;
4812 int wd = w->wd;
4813
4814 if (wd < 0)
4815 return;
4816
4817 w->wd = -2;
4818 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4819 wlist_del (&fs_hash [slot].head, (WL)w);
4820
4821 /* remove this watcher, if others are watching it, they will rearm */
4822 inotify_rm_watch (fs_fd, wd);
4823}
4824
4825ecb_noinline
4826static void
4827infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4828{
4829 if (slot < 0)
4830 /* overflow, need to check for all hash slots */
4831 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4832 infy_wd (EV_A_ slot, wd, ev);
4833 else
4834 {
4835 WL w_;
4836
4837 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4838 {
4839 ev_stat *w = (ev_stat *)w_;
4840 w_ = w_->next; /* lets us remove this watcher and all before it */
4841
4842 if (w->wd == wd || wd == -1)
4843 {
4844 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4845 {
4846 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4847 w->wd = -1;
4848 infy_add (EV_A_ w); /* re-add, no matter what */
4849 }
4850
4851 stat_timer_cb (EV_A_ &w->timer, 0);
4852 }
4853 }
4854 }
4855}
4856
4857static void
4858infy_cb (EV_P_ ev_io *w, int revents)
4859{
4860 char buf [EV_INOTIFY_BUFSIZE];
4861 int ofs;
4862 int len = read (fs_fd, buf, sizeof (buf));
4863
4864 for (ofs = 0; ofs < len; )
4865 {
4866 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4867 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4868 ofs += sizeof (struct inotify_event) + ev->len;
4869 }
4870}
4871
4872inline_size ecb_cold
1654void 4873void
4874ev_check_2625 (EV_P)
4875{
4876 /* kernels < 2.6.25 are borked
4877 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4878 */
4879 if (ev_linux_version () < 0x020619)
4880 return;
4881
4882 fs_2625 = 1;
4883}
4884
4885inline_size int
4886infy_newfd (void)
4887{
4888#if defined IN_CLOEXEC && defined IN_NONBLOCK
4889 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4890 if (fd >= 0)
4891 return fd;
4892#endif
4893 return inotify_init ();
4894}
4895
4896inline_size void
4897infy_init (EV_P)
4898{
4899 if (fs_fd != -2)
4900 return;
4901
4902 fs_fd = -1;
4903
4904 ev_check_2625 (EV_A);
4905
4906 fs_fd = infy_newfd ();
4907
4908 if (fs_fd >= 0)
4909 {
4910 fd_intern (fs_fd);
4911 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4912 ev_set_priority (&fs_w, EV_MAXPRI);
4913 ev_io_start (EV_A_ &fs_w);
4914 ev_unref (EV_A);
4915 }
4916}
4917
4918inline_size void
4919infy_fork (EV_P)
4920{
4921 int slot;
4922
4923 if (fs_fd < 0)
4924 return;
4925
4926 ev_ref (EV_A);
4927 ev_io_stop (EV_A_ &fs_w);
4928 close (fs_fd);
4929 fs_fd = infy_newfd ();
4930
4931 if (fs_fd >= 0)
4932 {
4933 fd_intern (fs_fd);
4934 ev_io_set (&fs_w, fs_fd, EV_READ);
4935 ev_io_start (EV_A_ &fs_w);
4936 ev_unref (EV_A);
4937 }
4938
4939 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4940 {
4941 WL w_ = fs_hash [slot].head;
4942 fs_hash [slot].head = 0;
4943
4944 while (w_)
4945 {
4946 ev_stat *w = (ev_stat *)w_;
4947 w_ = w_->next; /* lets us add this watcher */
4948
4949 w->wd = -1;
4950
4951 if (fs_fd >= 0)
4952 infy_add (EV_A_ w); /* re-add, no matter what */
4953 else
4954 {
4955 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4956 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4957 ev_timer_again (EV_A_ &w->timer);
4958 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4959 }
4960 }
4961 }
4962}
4963
4964#endif
4965
4966#ifdef _WIN32
4967# define EV_LSTAT(p,b) _stati64 (p, b)
4968#else
4969# define EV_LSTAT(p,b) lstat (p, b)
4970#endif
4971
4972void
1655ev_stat_stat (EV_P_ ev_stat *w) 4973ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
1656{ 4974{
1657 if (lstat (w->path, &w->attr) < 0) 4975 if (lstat (w->path, &w->attr) < 0)
1658 w->attr.st_nlink = 0; 4976 w->attr.st_nlink = 0;
1659 else if (!w->attr.st_nlink) 4977 else if (!w->attr.st_nlink)
1660 w->attr.st_nlink = 1; 4978 w->attr.st_nlink = 1;
1661} 4979}
1662 4980
4981ecb_noinline
1663static void 4982static void
1664stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4983stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1665{ 4984{
1666 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4985 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1667 4986
1668 /* we copy this here each the time so that */ 4987 ev_statdata prev = w->attr;
1669 /* prev has the old value when the callback gets invoked */
1670 w->prev = w->attr;
1671 ev_stat_stat (EV_A_ w); 4988 ev_stat_stat (EV_A_ w);
1672 4989
1673 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 4990 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4991 if (
4992 prev.st_dev != w->attr.st_dev
4993 || prev.st_ino != w->attr.st_ino
4994 || prev.st_mode != w->attr.st_mode
4995 || prev.st_nlink != w->attr.st_nlink
4996 || prev.st_uid != w->attr.st_uid
4997 || prev.st_gid != w->attr.st_gid
4998 || prev.st_rdev != w->attr.st_rdev
4999 || prev.st_size != w->attr.st_size
5000 || prev.st_atime != w->attr.st_atime
5001 || prev.st_mtime != w->attr.st_mtime
5002 || prev.st_ctime != w->attr.st_ctime
5003 ) {
5004 /* we only update w->prev on actual differences */
5005 /* in case we test more often than invoke the callback, */
5006 /* to ensure that prev is always different to attr */
5007 w->prev = prev;
5008
5009 #if EV_USE_INOTIFY
5010 if (fs_fd >= 0)
5011 {
5012 infy_del (EV_A_ w);
5013 infy_add (EV_A_ w);
5014 ev_stat_stat (EV_A_ w); /* avoid race... */
5015 }
5016 #endif
5017
1674 ev_feed_event (EV_A_ w, EV_STAT); 5018 ev_feed_event (EV_A_ w, EV_STAT);
5019 }
1675} 5020}
1676 5021
1677void 5022void
1678ev_stat_start (EV_P_ ev_stat *w) 5023ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
1679{ 5024{
1680 if (expect_false (ev_is_active (w))) 5025 if (ecb_expect_false (ev_is_active (w)))
1681 return; 5026 return;
1682 5027
1683 /* since we use memcmp, we need to clear any padding data etc. */
1684 memset (&w->prev, 0, sizeof (ev_statdata));
1685 memset (&w->attr, 0, sizeof (ev_statdata));
1686
1687 ev_stat_stat (EV_A_ w); 5028 ev_stat_stat (EV_A_ w);
1688 5029
5030 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1689 if (w->interval < MIN_STAT_INTERVAL) 5031 w->interval = MIN_STAT_INTERVAL;
1690 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1691 5032
1692 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 5033 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1693 ev_set_priority (&w->timer, ev_priority (w)); 5034 ev_set_priority (&w->timer, ev_priority (w));
5035
5036#if EV_USE_INOTIFY
5037 infy_init (EV_A);
5038
5039 if (fs_fd >= 0)
5040 infy_add (EV_A_ w);
5041 else
5042#endif
5043 {
1694 ev_timer_start (EV_A_ &w->timer); 5044 ev_timer_again (EV_A_ &w->timer);
5045 ev_unref (EV_A);
5046 }
1695 5047
1696 ev_start (EV_A_ (W)w, 1); 5048 ev_start (EV_A_ (W)w, 1);
5049
5050 EV_FREQUENT_CHECK;
1697} 5051}
1698 5052
1699void 5053void
1700ev_stat_stop (EV_P_ ev_stat *w) 5054ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
1701{ 5055{
1702 ev_clear_pending (EV_A_ (W)w); 5056 clear_pending (EV_A_ (W)w);
1703 if (expect_false (!ev_is_active (w))) 5057 if (ecb_expect_false (!ev_is_active (w)))
1704 return; 5058 return;
1705 5059
5060 EV_FREQUENT_CHECK;
5061
5062#if EV_USE_INOTIFY
5063 infy_del (EV_A_ w);
5064#endif
5065
5066 if (ev_is_active (&w->timer))
5067 {
5068 ev_ref (EV_A);
1706 ev_timer_stop (EV_A_ &w->timer); 5069 ev_timer_stop (EV_A_ &w->timer);
5070 }
1707 5071
1708 ev_stop (EV_A_ (W)w); 5072 ev_stop (EV_A_ (W)w);
1709}
1710#endif
1711 5073
5074 EV_FREQUENT_CHECK;
5075}
5076#endif
5077
5078#if EV_IDLE_ENABLE
1712void 5079void
1713ev_idle_start (EV_P_ ev_idle *w) 5080ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
1714{ 5081{
1715 if (expect_false (ev_is_active (w))) 5082 if (ecb_expect_false (ev_is_active (w)))
1716 return; 5083 return;
1717 5084
5085 pri_adjust (EV_A_ (W)w);
5086
5087 EV_FREQUENT_CHECK;
5088
5089 {
5090 int active = ++idlecnt [ABSPRI (w)];
5091
5092 ++idleall;
1718 ev_start (EV_A_ (W)w, ++idlecnt); 5093 ev_start (EV_A_ (W)w, active);
1719 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 5094
1720 idles [idlecnt - 1] = w; 5095 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
5096 idles [ABSPRI (w)][active - 1] = w;
5097 }
5098
5099 EV_FREQUENT_CHECK;
1721} 5100}
1722 5101
1723void 5102void
1724ev_idle_stop (EV_P_ ev_idle *w) 5103ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
1725{ 5104{
1726 ev_clear_pending (EV_A_ (W)w); 5105 clear_pending (EV_A_ (W)w);
1727 if (expect_false (!ev_is_active (w))) 5106 if (ecb_expect_false (!ev_is_active (w)))
1728 return; 5107 return;
1729 5108
5109 EV_FREQUENT_CHECK;
5110
1730 { 5111 {
1731 int active = ((W)w)->active; 5112 int active = ev_active (w);
1732 idles [active - 1] = idles [--idlecnt]; 5113
1733 ((W)idles [active - 1])->active = active; 5114 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
5115 ev_active (idles [ABSPRI (w)][active - 1]) = active;
5116
5117 ev_stop (EV_A_ (W)w);
5118 --idleall;
1734 } 5119 }
1735 5120
5121 EV_FREQUENT_CHECK;
5122}
5123#endif
5124
5125#if EV_PREPARE_ENABLE
5126void
5127ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
5128{
5129 if (ecb_expect_false (ev_is_active (w)))
5130 return;
5131
5132 EV_FREQUENT_CHECK;
5133
5134 ev_start (EV_A_ (W)w, ++preparecnt);
5135 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
5136 prepares [preparecnt - 1] = w;
5137
5138 EV_FREQUENT_CHECK;
5139}
5140
5141void
5142ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
5143{
5144 clear_pending (EV_A_ (W)w);
5145 if (ecb_expect_false (!ev_is_active (w)))
5146 return;
5147
5148 EV_FREQUENT_CHECK;
5149
5150 {
5151 int active = ev_active (w);
5152
5153 prepares [active - 1] = prepares [--preparecnt];
5154 ev_active (prepares [active - 1]) = active;
5155 }
5156
1736 ev_stop (EV_A_ (W)w); 5157 ev_stop (EV_A_ (W)w);
1737}
1738 5158
5159 EV_FREQUENT_CHECK;
5160}
5161#endif
5162
5163#if EV_CHECK_ENABLE
1739void 5164void
1740ev_prepare_start (EV_P_ ev_prepare *w) 5165ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
1741{ 5166{
1742 if (expect_false (ev_is_active (w))) 5167 if (ecb_expect_false (ev_is_active (w)))
1743 return; 5168 return;
1744 5169
5170 EV_FREQUENT_CHECK;
5171
1745 ev_start (EV_A_ (W)w, ++preparecnt); 5172 ev_start (EV_A_ (W)w, ++checkcnt);
1746 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 5173 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
1747 prepares [preparecnt - 1] = w; 5174 checks [checkcnt - 1] = w;
5175
5176 EV_FREQUENT_CHECK;
1748} 5177}
1749 5178
1750void 5179void
1751ev_prepare_stop (EV_P_ ev_prepare *w) 5180ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
1752{ 5181{
1753 ev_clear_pending (EV_A_ (W)w); 5182 clear_pending (EV_A_ (W)w);
1754 if (expect_false (!ev_is_active (w))) 5183 if (ecb_expect_false (!ev_is_active (w)))
1755 return; 5184 return;
1756 5185
5186 EV_FREQUENT_CHECK;
5187
1757 { 5188 {
1758 int active = ((W)w)->active; 5189 int active = ev_active (w);
1759 prepares [active - 1] = prepares [--preparecnt]; 5190
1760 ((W)prepares [active - 1])->active = active; 5191 checks [active - 1] = checks [--checkcnt];
5192 ev_active (checks [active - 1]) = active;
1761 } 5193 }
1762 5194
1763 ev_stop (EV_A_ (W)w); 5195 ev_stop (EV_A_ (W)w);
1764}
1765 5196
5197 EV_FREQUENT_CHECK;
5198}
5199#endif
5200
5201#if EV_EMBED_ENABLE
5202ecb_noinline
1766void 5203void
1767ev_check_start (EV_P_ ev_check *w)
1768{
1769 if (expect_false (ev_is_active (w)))
1770 return;
1771
1772 ev_start (EV_A_ (W)w, ++checkcnt);
1773 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1774 checks [checkcnt - 1] = w;
1775}
1776
1777void
1778ev_check_stop (EV_P_ ev_check *w)
1779{
1780 ev_clear_pending (EV_A_ (W)w);
1781 if (expect_false (!ev_is_active (w)))
1782 return;
1783
1784 {
1785 int active = ((W)w)->active;
1786 checks [active - 1] = checks [--checkcnt];
1787 ((W)checks [active - 1])->active = active;
1788 }
1789
1790 ev_stop (EV_A_ (W)w);
1791}
1792
1793#if EV_EMBED_ENABLE
1794void noinline
1795ev_embed_sweep (EV_P_ ev_embed *w) 5204ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
1796{ 5205{
1797 ev_loop (w->loop, EVLOOP_NONBLOCK); 5206 ev_run (w->other, EVRUN_NOWAIT);
1798} 5207}
1799 5208
1800static void 5209static void
1801embed_cb (EV_P_ ev_io *io, int revents) 5210embed_io_cb (EV_P_ ev_io *io, int revents)
1802{ 5211{
1803 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 5212 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1804 5213
1805 if (ev_cb (w)) 5214 if (ev_cb (w))
1806 ev_feed_event (EV_A_ (W)w, EV_EMBED); 5215 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1807 else 5216 else
1808 ev_embed_sweep (loop, w); 5217 ev_run (w->other, EVRUN_NOWAIT);
1809} 5218}
5219
5220static void
5221embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
5222{
5223 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
5224
5225 {
5226 EV_P = w->other;
5227
5228 while (fdchangecnt)
5229 {
5230 fd_reify (EV_A);
5231 ev_run (EV_A_ EVRUN_NOWAIT);
5232 }
5233 }
5234}
5235
5236#if EV_FORK_ENABLE
5237static void
5238embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
5239{
5240 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
5241
5242 ev_embed_stop (EV_A_ w);
5243
5244 {
5245 EV_P = w->other;
5246
5247 ev_loop_fork (EV_A);
5248 ev_run (EV_A_ EVRUN_NOWAIT);
5249 }
5250
5251 ev_embed_start (EV_A_ w);
5252}
5253#endif
5254
5255#if 0
5256static void
5257embed_idle_cb (EV_P_ ev_idle *idle, int revents)
5258{
5259 ev_idle_stop (EV_A_ idle);
5260}
5261#endif
1810 5262
1811void 5263void
1812ev_embed_start (EV_P_ ev_embed *w) 5264ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
1813{ 5265{
1814 if (expect_false (ev_is_active (w))) 5266 if (ecb_expect_false (ev_is_active (w)))
1815 return; 5267 return;
1816 5268
1817 { 5269 {
1818 struct ev_loop *loop = w->loop; 5270 EV_P = w->other;
1819 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 5271 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1820 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 5272 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1821 } 5273 }
5274
5275 EV_FREQUENT_CHECK;
1822 5276
1823 ev_set_priority (&w->io, ev_priority (w)); 5277 ev_set_priority (&w->io, ev_priority (w));
1824 ev_io_start (EV_A_ &w->io); 5278 ev_io_start (EV_A_ &w->io);
1825 5279
5280 ev_prepare_init (&w->prepare, embed_prepare_cb);
5281 ev_set_priority (&w->prepare, EV_MINPRI);
5282 ev_prepare_start (EV_A_ &w->prepare);
5283
5284#if EV_FORK_ENABLE
5285 ev_fork_init (&w->fork, embed_fork_cb);
5286 ev_fork_start (EV_A_ &w->fork);
5287#endif
5288
5289 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
5290
1826 ev_start (EV_A_ (W)w, 1); 5291 ev_start (EV_A_ (W)w, 1);
5292
5293 EV_FREQUENT_CHECK;
1827} 5294}
1828 5295
1829void 5296void
1830ev_embed_stop (EV_P_ ev_embed *w) 5297ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
1831{ 5298{
1832 ev_clear_pending (EV_A_ (W)w); 5299 clear_pending (EV_A_ (W)w);
1833 if (expect_false (!ev_is_active (w))) 5300 if (ecb_expect_false (!ev_is_active (w)))
1834 return; 5301 return;
1835 5302
5303 EV_FREQUENT_CHECK;
5304
1836 ev_io_stop (EV_A_ &w->io); 5305 ev_io_stop (EV_A_ &w->io);
5306 ev_prepare_stop (EV_A_ &w->prepare);
5307#if EV_FORK_ENABLE
5308 ev_fork_stop (EV_A_ &w->fork);
5309#endif
1837 5310
1838 ev_stop (EV_A_ (W)w); 5311 ev_stop (EV_A_ (W)w);
5312
5313 EV_FREQUENT_CHECK;
1839} 5314}
1840#endif 5315#endif
1841 5316
1842#if EV_FORK_ENABLE 5317#if EV_FORK_ENABLE
1843void 5318void
1844ev_fork_start (EV_P_ ev_fork *w) 5319ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
1845{ 5320{
1846 if (expect_false (ev_is_active (w))) 5321 if (ecb_expect_false (ev_is_active (w)))
1847 return; 5322 return;
1848 5323
5324 EV_FREQUENT_CHECK;
5325
1849 ev_start (EV_A_ (W)w, ++forkcnt); 5326 ev_start (EV_A_ (W)w, ++forkcnt);
1850 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 5327 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
1851 forks [forkcnt - 1] = w; 5328 forks [forkcnt - 1] = w;
5329
5330 EV_FREQUENT_CHECK;
1852} 5331}
1853 5332
1854void 5333void
1855ev_fork_stop (EV_P_ ev_fork *w) 5334ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
1856{ 5335{
1857 ev_clear_pending (EV_A_ (W)w); 5336 clear_pending (EV_A_ (W)w);
1858 if (expect_false (!ev_is_active (w))) 5337 if (ecb_expect_false (!ev_is_active (w)))
1859 return; 5338 return;
1860 5339
5340 EV_FREQUENT_CHECK;
5341
1861 { 5342 {
1862 int active = ((W)w)->active; 5343 int active = ev_active (w);
5344
1863 forks [active - 1] = forks [--forkcnt]; 5345 forks [active - 1] = forks [--forkcnt];
1864 ((W)forks [active - 1])->active = active; 5346 ev_active (forks [active - 1]) = active;
1865 } 5347 }
1866 5348
1867 ev_stop (EV_A_ (W)w); 5349 ev_stop (EV_A_ (W)w);
5350
5351 EV_FREQUENT_CHECK;
5352}
5353#endif
5354
5355#if EV_CLEANUP_ENABLE
5356void
5357ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5358{
5359 if (ecb_expect_false (ev_is_active (w)))
5360 return;
5361
5362 EV_FREQUENT_CHECK;
5363
5364 ev_start (EV_A_ (W)w, ++cleanupcnt);
5365 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5366 cleanups [cleanupcnt - 1] = w;
5367
5368 /* cleanup watchers should never keep a refcount on the loop */
5369 ev_unref (EV_A);
5370 EV_FREQUENT_CHECK;
5371}
5372
5373void
5374ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5375{
5376 clear_pending (EV_A_ (W)w);
5377 if (ecb_expect_false (!ev_is_active (w)))
5378 return;
5379
5380 EV_FREQUENT_CHECK;
5381 ev_ref (EV_A);
5382
5383 {
5384 int active = ev_active (w);
5385
5386 cleanups [active - 1] = cleanups [--cleanupcnt];
5387 ev_active (cleanups [active - 1]) = active;
5388 }
5389
5390 ev_stop (EV_A_ (W)w);
5391
5392 EV_FREQUENT_CHECK;
5393}
5394#endif
5395
5396#if EV_ASYNC_ENABLE
5397void
5398ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5399{
5400 if (ecb_expect_false (ev_is_active (w)))
5401 return;
5402
5403 w->sent = 0;
5404
5405 evpipe_init (EV_A);
5406
5407 EV_FREQUENT_CHECK;
5408
5409 ev_start (EV_A_ (W)w, ++asynccnt);
5410 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5411 asyncs [asynccnt - 1] = w;
5412
5413 EV_FREQUENT_CHECK;
5414}
5415
5416void
5417ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5418{
5419 clear_pending (EV_A_ (W)w);
5420 if (ecb_expect_false (!ev_is_active (w)))
5421 return;
5422
5423 EV_FREQUENT_CHECK;
5424
5425 {
5426 int active = ev_active (w);
5427
5428 asyncs [active - 1] = asyncs [--asynccnt];
5429 ev_active (asyncs [active - 1]) = active;
5430 }
5431
5432 ev_stop (EV_A_ (W)w);
5433
5434 EV_FREQUENT_CHECK;
5435}
5436
5437void
5438ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5439{
5440 w->sent = 1;
5441 evpipe_write (EV_A_ &async_pending);
1868} 5442}
1869#endif 5443#endif
1870 5444
1871/*****************************************************************************/ 5445/*****************************************************************************/
1872 5446
1882once_cb (EV_P_ struct ev_once *once, int revents) 5456once_cb (EV_P_ struct ev_once *once, int revents)
1883{ 5457{
1884 void (*cb)(int revents, void *arg) = once->cb; 5458 void (*cb)(int revents, void *arg) = once->cb;
1885 void *arg = once->arg; 5459 void *arg = once->arg;
1886 5460
1887 ev_io_stop (EV_A_ &once->io); 5461 ev_io_stop (EV_A_ &once->io);
1888 ev_timer_stop (EV_A_ &once->to); 5462 ev_timer_stop (EV_A_ &once->to);
1889 ev_free (once); 5463 ev_free (once);
1890 5464
1891 cb (revents, arg); 5465 cb (revents, arg);
1892} 5466}
1893 5467
1894static void 5468static void
1895once_cb_io (EV_P_ ev_io *w, int revents) 5469once_cb_io (EV_P_ ev_io *w, int revents)
1896{ 5470{
1897 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5471 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5472
5473 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1898} 5474}
1899 5475
1900static void 5476static void
1901once_cb_to (EV_P_ ev_timer *w, int revents) 5477once_cb_to (EV_P_ ev_timer *w, int revents)
1902{ 5478{
1903 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5479 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5480
5481 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1904} 5482}
1905 5483
1906void 5484void
1907ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5485ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
1908{ 5486{
1909 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5487 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1910
1911 if (expect_false (!once))
1912 {
1913 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1914 return;
1915 }
1916 5488
1917 once->cb = cb; 5489 once->cb = cb;
1918 once->arg = arg; 5490 once->arg = arg;
1919 5491
1920 ev_init (&once->io, once_cb_io); 5492 ev_init (&once->io, once_cb_io);
1930 ev_timer_set (&once->to, timeout, 0.); 5502 ev_timer_set (&once->to, timeout, 0.);
1931 ev_timer_start (EV_A_ &once->to); 5503 ev_timer_start (EV_A_ &once->to);
1932 } 5504 }
1933} 5505}
1934 5506
1935#ifdef __cplusplus 5507/*****************************************************************************/
1936} 5508
5509#if EV_WALK_ENABLE
5510ecb_cold
5511void
5512ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5513{
5514 int i, j;
5515 ev_watcher_list *wl, *wn;
5516
5517 if (types & (EV_IO | EV_EMBED))
5518 for (i = 0; i < anfdmax; ++i)
5519 for (wl = anfds [i].head; wl; )
5520 {
5521 wn = wl->next;
5522
5523#if EV_EMBED_ENABLE
5524 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5525 {
5526 if (types & EV_EMBED)
5527 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5528 }
5529 else
5530#endif
5531#if EV_USE_INOTIFY
5532 if (ev_cb ((ev_io *)wl) == infy_cb)
5533 ;
5534 else
5535#endif
5536 if ((ev_io *)wl != &pipe_w)
5537 if (types & EV_IO)
5538 cb (EV_A_ EV_IO, wl);
5539
5540 wl = wn;
5541 }
5542
5543 if (types & (EV_TIMER | EV_STAT))
5544 for (i = timercnt + HEAP0; i-- > HEAP0; )
5545#if EV_STAT_ENABLE
5546 /*TODO: timer is not always active*/
5547 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5548 {
5549 if (types & EV_STAT)
5550 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5551 }
5552 else
5553#endif
5554 if (types & EV_TIMER)
5555 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5556
5557#if EV_PERIODIC_ENABLE
5558 if (types & EV_PERIODIC)
5559 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5560 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5561#endif
5562
5563#if EV_IDLE_ENABLE
5564 if (types & EV_IDLE)
5565 for (j = NUMPRI; j--; )
5566 for (i = idlecnt [j]; i--; )
5567 cb (EV_A_ EV_IDLE, idles [j][i]);
5568#endif
5569
5570#if EV_FORK_ENABLE
5571 if (types & EV_FORK)
5572 for (i = forkcnt; i--; )
5573 if (ev_cb (forks [i]) != embed_fork_cb)
5574 cb (EV_A_ EV_FORK, forks [i]);
5575#endif
5576
5577#if EV_ASYNC_ENABLE
5578 if (types & EV_ASYNC)
5579 for (i = asynccnt; i--; )
5580 cb (EV_A_ EV_ASYNC, asyncs [i]);
5581#endif
5582
5583#if EV_PREPARE_ENABLE
5584 if (types & EV_PREPARE)
5585 for (i = preparecnt; i--; )
5586# if EV_EMBED_ENABLE
5587 if (ev_cb (prepares [i]) != embed_prepare_cb)
1937#endif 5588# endif
5589 cb (EV_A_ EV_PREPARE, prepares [i]);
5590#endif
1938 5591
5592#if EV_CHECK_ENABLE
5593 if (types & EV_CHECK)
5594 for (i = checkcnt; i--; )
5595 cb (EV_A_ EV_CHECK, checks [i]);
5596#endif
5597
5598#if EV_SIGNAL_ENABLE
5599 if (types & EV_SIGNAL)
5600 for (i = 0; i < EV_NSIG - 1; ++i)
5601 for (wl = signals [i].head; wl; )
5602 {
5603 wn = wl->next;
5604 cb (EV_A_ EV_SIGNAL, wl);
5605 wl = wn;
5606 }
5607#endif
5608
5609#if EV_CHILD_ENABLE
5610 if (types & EV_CHILD)
5611 for (i = (EV_PID_HASHSIZE); i--; )
5612 for (wl = childs [i]; wl; )
5613 {
5614 wn = wl->next;
5615 cb (EV_A_ EV_CHILD, wl);
5616 wl = wn;
5617 }
5618#endif
5619/* EV_STAT 0x00001000 /* stat data changed */
5620/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5621}
5622#endif
5623
5624#if EV_MULTIPLICITY
5625 #include "ev_wrap.h"
5626#endif
5627

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines