ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.15 by root, Wed Oct 31 11:56:34 2007 UTC vs.
Revision 1.61 by root, Sun Nov 4 19:45:09 2007 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
56
1#include <math.h> 57#include <math.h>
2#include <stdlib.h> 58#include <stdlib.h>
3#include <unistd.h> 59#include <unistd.h>
4#include <fcntl.h> 60#include <fcntl.h>
5#include <signal.h> 61#include <signal.h>
62#include <stddef.h>
6 63
7#include <stdio.h> 64#include <stdio.h>
8 65
9#include <assert.h> 66#include <assert.h>
10#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
11#include <sys/time.h> 72#include <sys/time.h>
12#include <time.h> 73#include <time.h>
13 74
14#define HAVE_EPOLL 1 75/**/
15 76
16#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_REALTIME
98# define EV_USE_REALTIME 1
99#endif
100
101/**/
102
17# ifdef CLOCK_MONOTONIC 103#ifndef CLOCK_MONOTONIC
104# undef EV_USE_MONOTONIC
18# define HAVE_MONOTONIC 1 105# define EV_USE_MONOTONIC 0
19# endif 106#endif
20#endif
21 107
22#ifndef HAVE_SELECT
23# define HAVE_SELECT 1
24#endif
25
26#ifndef HAVE_EPOLL
27# define HAVE_EPOLL 0
28#endif
29
30#ifndef HAVE_REALTIME 108#ifndef CLOCK_REALTIME
31# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 109# undef EV_USE_REALTIME
110# define EV_USE_REALTIME 0
32#endif 111#endif
112
113/**/
33 114
34#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
35#define MAX_BLOCKTIME 60. 116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
36 119
37#include "ev.h" 120#include "ev.h"
121
122#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline
125#else
126# define expect(expr,value) (expr)
127# define inline static
128#endif
129
130#define expect_false(expr) expect ((expr) != 0, 0)
131#define expect_true(expr) expect ((expr) != 0, 1)
132
133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
134#define ABSPRI(w) ((w)->priority - EV_MINPRI)
38 135
39typedef struct ev_watcher *W; 136typedef struct ev_watcher *W;
40typedef struct ev_watcher_list *WL; 137typedef struct ev_watcher_list *WL;
41typedef struct ev_watcher_time *WT; 138typedef struct ev_watcher_time *WT;
42 139
43static ev_tstamp now, diff; /* monotonic clock */ 140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
44ev_tstamp ev_now;
45int ev_method;
46
47static int have_monotonic; /* runtime */
48
49static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
50static void (*method_modify)(int fd, int oev, int nev);
51static void (*method_poll)(ev_tstamp timeout);
52 141
53/*****************************************************************************/ 142/*****************************************************************************/
54 143
55ev_tstamp 144typedef struct
145{
146 struct ev_watcher_list *head;
147 unsigned char events;
148 unsigned char reify;
149} ANFD;
150
151typedef struct
152{
153 W w;
154 int events;
155} ANPENDING;
156
157#if EV_MULTIPLICITY
158
159struct ev_loop
160{
161# define VAR(name,decl) decl;
162# include "ev_vars.h"
163};
164# undef VAR
165# include "ev_wrap.h"
166
167#else
168
169# define VAR(name,decl) static decl;
170# include "ev_vars.h"
171# undef VAR
172
173#endif
174
175/*****************************************************************************/
176
177inline ev_tstamp
56ev_time (void) 178ev_time (void)
57{ 179{
58#if HAVE_REALTIME 180#if EV_USE_REALTIME
59 struct timespec ts; 181 struct timespec ts;
60 clock_gettime (CLOCK_REALTIME, &ts); 182 clock_gettime (CLOCK_REALTIME, &ts);
61 return ts.tv_sec + ts.tv_nsec * 1e-9; 183 return ts.tv_sec + ts.tv_nsec * 1e-9;
62#else 184#else
63 struct timeval tv; 185 struct timeval tv;
64 gettimeofday (&tv, 0); 186 gettimeofday (&tv, 0);
65 return tv.tv_sec + tv.tv_usec * 1e-6; 187 return tv.tv_sec + tv.tv_usec * 1e-6;
66#endif 188#endif
67} 189}
68 190
69static ev_tstamp 191inline ev_tstamp
70get_clock (void) 192get_clock (void)
71{ 193{
72#if HAVE_MONOTONIC 194#if EV_USE_MONOTONIC
73 if (have_monotonic) 195 if (expect_true (have_monotonic))
74 { 196 {
75 struct timespec ts; 197 struct timespec ts;
76 clock_gettime (CLOCK_MONOTONIC, &ts); 198 clock_gettime (CLOCK_MONOTONIC, &ts);
77 return ts.tv_sec + ts.tv_nsec * 1e-9; 199 return ts.tv_sec + ts.tv_nsec * 1e-9;
78 } 200 }
79#endif 201#endif
80 202
81 return ev_time (); 203 return ev_time ();
82} 204}
83 205
206ev_tstamp
207ev_now (EV_P)
208{
209 return rt_now;
210}
211
212#define array_roundsize(base,n) ((n) | 4 & ~3)
213
84#define array_needsize(base,cur,cnt,init) \ 214#define array_needsize(base,cur,cnt,init) \
85 if ((cnt) > cur) \ 215 if (expect_false ((cnt) > cur)) \
86 { \ 216 { \
87 int newcnt = cur ? cur << 1 : 16; \ 217 int newcnt = cur; \
218 do \
219 { \
220 newcnt = array_roundsize (base, newcnt << 1); \
221 } \
222 while ((cnt) > newcnt); \
223 \
88 base = realloc (base, sizeof (*base) * (newcnt)); \ 224 base = realloc (base, sizeof (*base) * (newcnt)); \
89 init (base + cur, newcnt - cur); \ 225 init (base + cur, newcnt - cur); \
90 cur = newcnt; \ 226 cur = newcnt; \
91 } 227 }
92 228
93/*****************************************************************************/ 229/*****************************************************************************/
94 230
95typedef struct
96{
97 struct ev_io *head;
98 unsigned char wev, rev; /* want, received event set */
99} ANFD;
100
101static ANFD *anfds;
102static int anfdmax;
103
104static int *fdchanges;
105static int fdchangemax, fdchangecnt;
106
107static void 231static void
108anfds_init (ANFD *base, int count) 232anfds_init (ANFD *base, int count)
109{ 233{
110 while (count--) 234 while (count--)
111 { 235 {
112 base->head = 0; 236 base->head = 0;
113 base->wev = base->rev = EV_NONE; 237 base->events = EV_NONE;
238 base->reify = 0;
239
114 ++base; 240 ++base;
115 } 241 }
116} 242}
117 243
118typedef struct
119{
120 W w;
121 int events;
122} ANPENDING;
123
124static ANPENDING *pendings;
125static int pendingmax, pendingcnt;
126
127static void 244static void
128event (W w, int events) 245event (EV_P_ W w, int events)
129{ 246{
247 if (w->pending)
248 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events;
250 return;
251 }
252
130 w->pending = ++pendingcnt; 253 w->pending = ++pendingcnt [ABSPRI (w)];
131 array_needsize (pendings, pendingmax, pendingcnt, ); 254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
132 pendings [pendingcnt - 1].w = w; 255 pendings [ABSPRI (w)][w->pending - 1].w = w;
133 pendings [pendingcnt - 1].events = events; 256 pendings [ABSPRI (w)][w->pending - 1].events = events;
134} 257}
135 258
136static void 259static void
260queue_events (EV_P_ W *events, int eventcnt, int type)
261{
262 int i;
263
264 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type);
266}
267
268static void
137fd_event (int fd, int events) 269fd_event (EV_P_ int fd, int events)
138{ 270{
139 ANFD *anfd = anfds + fd; 271 ANFD *anfd = anfds + fd;
140 struct ev_io *w; 272 struct ev_io *w;
141 273
142 for (w = anfd->head; w; w = w->next) 274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
143 { 275 {
144 int ev = w->events & events; 276 int ev = w->events & events;
145 277
146 if (ev) 278 if (ev)
147 event ((W)w, ev); 279 event (EV_A_ (W)w, ev);
148 } 280 }
149} 281}
150 282
283/*****************************************************************************/
284
151static void 285static void
152queue_events (W *events, int eventcnt, int type) 286fd_reify (EV_P)
153{ 287{
154 int i; 288 int i;
155 289
156 for (i = 0; i < eventcnt; ++i) 290 for (i = 0; i < fdchangecnt; ++i)
157 event (events [i], type); 291 {
292 int fd = fdchanges [i];
293 ANFD *anfd = anfds + fd;
294 struct ev_io *w;
295
296 int events = 0;
297
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events;
300
301 anfd->reify = 0;
302
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events;
307 }
308 }
309
310 fdchangecnt = 0;
311}
312
313static void
314fd_change (EV_P_ int fd)
315{
316 if (anfds [fd].reify || fdchangecnt < 0)
317 return;
318
319 anfds [fd].reify = 1;
320
321 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
323 fdchanges [fdchangecnt - 1] = fd;
324}
325
326static void
327fd_kill (EV_P_ int fd)
328{
329 struct ev_io *w;
330
331 while ((w = (struct ev_io *)anfds [fd].head))
332 {
333 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 }
336}
337
338/* called on EBADF to verify fds */
339static void
340fd_ebadf (EV_P)
341{
342 int fd;
343
344 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd);
348}
349
350/* called on ENOMEM in select/poll to kill some fds and retry */
351static void
352fd_enomem (EV_P)
353{
354 int fd = anfdmax;
355
356 while (fd--)
357 if (anfds [fd].events)
358 {
359 close (fd);
360 fd_kill (EV_A_ fd);
361 return;
362 }
363}
364
365/* susually called after fork if method needs to re-arm all fds from scratch */
366static void
367fd_rearm_all (EV_P)
368{
369 int fd;
370
371 /* this should be highly optimised to not do anything but set a flag */
372 for (fd = 0; fd < anfdmax; ++fd)
373 if (anfds [fd].events)
374 {
375 anfds [fd].events = 0;
376 fd_change (EV_A_ fd);
377 }
158} 378}
159 379
160/*****************************************************************************/ 380/*****************************************************************************/
161 381
162static struct ev_timer **timers;
163static int timermax, timercnt;
164
165static struct ev_periodic **periodics;
166static int periodicmax, periodiccnt;
167
168static void 382static void
169upheap (WT *timers, int k) 383upheap (WT *heap, int k)
170{ 384{
171 WT w = timers [k]; 385 WT w = heap [k];
172 386
173 while (k && timers [k >> 1]->at > w->at) 387 while (k && heap [k >> 1]->at > w->at)
174 { 388 {
175 timers [k] = timers [k >> 1]; 389 heap [k] = heap [k >> 1];
176 timers [k]->active = k + 1; 390 heap [k]->active = k + 1;
177 k >>= 1; 391 k >>= 1;
178 } 392 }
179 393
180 timers [k] = w; 394 heap [k] = w;
181 timers [k]->active = k + 1; 395 heap [k]->active = k + 1;
182 396
183} 397}
184 398
185static void 399static void
186downheap (WT *timers, int N, int k) 400downheap (WT *heap, int N, int k)
187{ 401{
188 WT w = timers [k]; 402 WT w = heap [k];
189 403
190 while (k < (N >> 1)) 404 while (k < (N >> 1))
191 { 405 {
192 int j = k << 1; 406 int j = k << 1;
193 407
194 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 408 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
195 ++j; 409 ++j;
196 410
197 if (w->at <= timers [j]->at) 411 if (w->at <= heap [j]->at)
198 break; 412 break;
199 413
200 timers [k] = timers [j]; 414 heap [k] = heap [j];
201 timers [k]->active = k + 1; 415 heap [k]->active = k + 1;
202 k = j; 416 k = j;
203 } 417 }
204 418
205 timers [k] = w; 419 heap [k] = w;
206 timers [k]->active = k + 1; 420 heap [k]->active = k + 1;
207} 421}
208 422
209/*****************************************************************************/ 423/*****************************************************************************/
210 424
211typedef struct 425typedef struct
212{ 426{
213 struct ev_signal *head; 427 struct ev_watcher_list *head;
214 sig_atomic_t gotsig; 428 sig_atomic_t volatile gotsig;
215} ANSIG; 429} ANSIG;
216 430
217static ANSIG *signals; 431static ANSIG *signals;
218static int signalmax; 432static int signalmax;
219 433
220static int sigpipe [2]; 434static int sigpipe [2];
221static sig_atomic_t gotsig; 435static sig_atomic_t volatile gotsig;
222static struct ev_io sigev; 436static struct ev_io sigev;
223 437
224static void 438static void
225signals_init (ANSIG *base, int count) 439signals_init (ANSIG *base, int count)
226{ 440{
227 while (count--) 441 while (count--)
228 { 442 {
229 base->head = 0; 443 base->head = 0;
230 base->gotsig = 0; 444 base->gotsig = 0;
445
231 ++base; 446 ++base;
232 } 447 }
233} 448}
234 449
235static void 450static void
237{ 452{
238 signals [signum - 1].gotsig = 1; 453 signals [signum - 1].gotsig = 1;
239 454
240 if (!gotsig) 455 if (!gotsig)
241 { 456 {
457 int old_errno = errno;
242 gotsig = 1; 458 gotsig = 1;
243 write (sigpipe [1], &gotsig, 1); 459 write (sigpipe [1], &signum, 1);
460 errno = old_errno;
244 } 461 }
245} 462}
246 463
247static void 464static void
248sigcb (struct ev_io *iow, int revents) 465sigcb (EV_P_ struct ev_io *iow, int revents)
249{ 466{
250 struct ev_signal *w; 467 struct ev_watcher_list *w;
251 int sig; 468 int signum;
252 469
470 read (sigpipe [0], &revents, 1);
253 gotsig = 0; 471 gotsig = 0;
254 read (sigpipe [0], &revents, 1);
255 472
256 for (sig = signalmax; sig--; ) 473 for (signum = signalmax; signum--; )
257 if (signals [sig].gotsig) 474 if (signals [signum].gotsig)
258 { 475 {
259 signals [sig].gotsig = 0; 476 signals [signum].gotsig = 0;
260 477
261 for (w = signals [sig].head; w; w = w->next) 478 for (w = signals [signum].head; w; w = w->next)
262 event ((W)w, EV_SIGNAL); 479 event (EV_A_ (W)w, EV_SIGNAL);
263 } 480 }
264} 481}
265 482
266static void 483static void
267siginit (void) 484siginit (EV_P)
268{ 485{
486#ifndef WIN32
269 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
270 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
271 489
272 /* rather than sort out wether we really need nb, set it */ 490 /* rather than sort out wether we really need nb, set it */
273 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
274 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
275 494
276 evio_set (&sigev, sigpipe [0], EV_READ); 495 ev_io_set (&sigev, sigpipe [0], EV_READ);
277 evio_start (&sigev); 496 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */
278} 498}
279 499
280/*****************************************************************************/ 500/*****************************************************************************/
281 501
282static struct ev_idle **idles; 502#ifndef WIN32
283static int idlemax, idlecnt;
284 503
285static struct ev_check **checks; 504static struct ev_child *childs [PID_HASHSIZE];
286static int checkmax, checkcnt; 505static struct ev_signal childev;
506
507#ifndef WCONTINUED
508# define WCONTINUED 0
509#endif
510
511static void
512child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
513{
514 struct ev_child *w;
515
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid)
518 {
519 w->priority = sw->priority; /* need to do it *now* */
520 w->rpid = pid;
521 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD);
523 }
524}
525
526static void
527childcb (EV_P_ struct ev_signal *sw, int revents)
528{
529 int pid, status;
530
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 {
533 /* make sure we are called again until all childs have been reaped */
534 event (EV_A_ (W)sw, EV_SIGNAL);
535
536 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 }
539}
540
541#endif
287 542
288/*****************************************************************************/ 543/*****************************************************************************/
289 544
545#if EV_USE_KQUEUE
546# include "ev_kqueue.c"
547#endif
290#if HAVE_EPOLL 548#if EV_USE_EPOLL
291# include "ev_epoll.c" 549# include "ev_epoll.c"
292#endif 550#endif
551#if EV_USE_POLL
552# include "ev_poll.c"
553#endif
293#if HAVE_SELECT 554#if EV_USE_SELECT
294# include "ev_select.c" 555# include "ev_select.c"
295#endif 556#endif
296 557
297int ev_init (int flags) 558int
559ev_version_major (void)
298{ 560{
561 return EV_VERSION_MAJOR;
562}
563
564int
565ev_version_minor (void)
566{
567 return EV_VERSION_MINOR;
568}
569
570/* return true if we are running with elevated privileges and should ignore env variables */
571static int
572enable_secure (void)
573{
574#ifdef WIN32
575 return 0;
576#else
577 return getuid () != geteuid ()
578 || getgid () != getegid ();
579#endif
580}
581
582int
583ev_method (EV_P)
584{
585 return method;
586}
587
588static void
589loop_init (EV_P_ int methods)
590{
591 if (!method)
592 {
299#if HAVE_MONOTONIC 593#if EV_USE_MONOTONIC
300 { 594 {
301 struct timespec ts; 595 struct timespec ts;
302 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 596 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
303 have_monotonic = 1; 597 have_monotonic = 1;
304 } 598 }
305#endif 599#endif
306 600
307 ev_now = ev_time (); 601 rt_now = ev_time ();
308 now = get_clock (); 602 mn_now = get_clock ();
309 diff = ev_now - now; 603 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now;
310 605
606 if (methods == EVMETHOD_AUTO)
607 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS"));
609 else
610 methods = EVMETHOD_ANY;
611
612 method = 0;
613#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615#endif
616#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
618#endif
619#if EV_USE_POLL
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621#endif
622#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624#endif
625 }
626}
627
628void
629loop_destroy (EV_P)
630{
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif
634#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
636#endif
637#if EV_USE_POLL
638 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
639#endif
640#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif
643
644 method = 0;
645 /*TODO*/
646}
647
648void
649loop_fork (EV_P)
650{
651 /*TODO*/
652#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif
655#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif
658}
659
660#if EV_MULTIPLICITY
661struct ev_loop *
662ev_loop_new (int methods)
663{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
665
666 loop_init (EV_A_ methods);
667
668 if (ev_method (EV_A))
669 return loop;
670
671 return 0;
672}
673
674void
675ev_loop_destroy (EV_P)
676{
677 loop_destroy (EV_A);
678 free (loop);
679}
680
681void
682ev_loop_fork (EV_P)
683{
684 loop_fork (EV_A);
685}
686
687#endif
688
689#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop *
694#else
695static int default_loop;
696
697int
698#endif
699ev_default_loop (int methods)
700{
701 if (sigpipe [0] == sigpipe [1])
311 if (pipe (sigpipe)) 702 if (pipe (sigpipe))
312 return 0; 703 return 0;
313 704
314 ev_method = EVMETHOD_NONE; 705 if (!default_loop)
315#if HAVE_EPOLL
316 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
317#endif
318#if HAVE_SELECT
319 if (ev_method == EVMETHOD_NONE) select_init (flags);
320#endif
321
322 if (ev_method)
323 { 706 {
707#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct;
709#else
710 default_loop = 1;
711#endif
712
713 loop_init (EV_A_ methods);
714
715 if (ev_method (EV_A))
716 {
324 evw_init (&sigev, sigcb); 717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
325 siginit (); 719 siginit (EV_A);
326 }
327 720
328 return ev_method; 721#ifndef WIN32
329} 722 ev_signal_init (&childev, childcb, SIGCHLD);
330 723 ev_set_priority (&childev, EV_MAXPRI);
331/*****************************************************************************/ 724 ev_signal_start (EV_A_ &childev);
332 725 ev_unref (EV_A); /* child watcher should not keep loop alive */
333void ev_prefork (void)
334{
335 /* nop */
336}
337
338void ev_postfork_parent (void)
339{
340 /* nop */
341}
342
343void ev_postfork_child (void)
344{
345#if HAVE_EPOLL
346 if (ev_method == EVMETHOD_EPOLL)
347 epoll_postfork_child ();
348#endif 726#endif
727 }
728 else
729 default_loop = 0;
730 }
349 731
732 return default_loop;
733}
734
735void
736ev_default_destroy (void)
737{
738#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop;
740#endif
741
742 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev);
744
745 ev_ref (EV_A); /* signal watcher */
350 evio_stop (&sigev); 746 ev_io_stop (EV_A_ &sigev);
747
748 close (sigpipe [0]); sigpipe [0] = 0;
749 close (sigpipe [1]); sigpipe [1] = 0;
750
751 loop_destroy (EV_A);
752}
753
754void
755ev_default_fork (void)
756{
757#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop;
759#endif
760
761 loop_fork (EV_A);
762
763 ev_io_stop (EV_A_ &sigev);
351 close (sigpipe [0]); 764 close (sigpipe [0]);
352 close (sigpipe [1]); 765 close (sigpipe [1]);
353 pipe (sigpipe); 766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
354 siginit (); 769 siginit (EV_A);
355} 770}
356 771
357/*****************************************************************************/ 772/*****************************************************************************/
358 773
359static void 774static void
360fd_reify (void) 775call_pending (EV_P)
361{ 776{
362 int i; 777 int pri;
363 778
364 for (i = 0; i < fdchangecnt; ++i) 779 for (pri = NUMPRI; pri--; )
365 { 780 while (pendingcnt [pri])
366 int fd = fdchanges [i];
367 ANFD *anfd = anfds + fd;
368 struct ev_io *w;
369
370 int wev = 0;
371
372 for (w = anfd->head; w; w = w->next)
373 wev |= w->events;
374
375 if (anfd->wev != wev)
376 { 781 {
377 method_modify (fd, anfd->wev, wev); 782 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
378 anfd->wev = wev;
379 }
380 }
381 783
382 fdchangecnt = 0;
383}
384
385static void
386call_pending ()
387{
388 int i;
389
390 for (i = 0; i < pendingcnt; ++i)
391 {
392 ANPENDING *p = pendings + i;
393
394 if (p->w) 784 if (p->w)
395 { 785 {
396 p->w->pending = 0; 786 p->w->pending = 0;
397 p->w->cb (p->w, p->events); 787 p->w->cb (EV_A_ p->w, p->events);
398 } 788 }
399 } 789 }
400
401 pendingcnt = 0;
402} 790}
403 791
404static void 792static void
405timers_reify () 793timers_reify (EV_P)
406{ 794{
407 while (timercnt && timers [0]->at <= now) 795 while (timercnt && timers [0]->at <= mn_now)
408 { 796 {
409 struct ev_timer *w = timers [0]; 797 struct ev_timer *w = timers [0];
798
799 assert (("inactive timer on timer heap detected", ev_is_active (w)));
410 800
411 /* first reschedule or stop timer */ 801 /* first reschedule or stop timer */
412 if (w->repeat) 802 if (w->repeat)
413 { 803 {
804 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
414 w->at = now + w->repeat; 805 w->at = mn_now + w->repeat;
415 assert (("timer timeout in the past, negative repeat?", w->at > now));
416 downheap ((WT *)timers, timercnt, 0); 806 downheap ((WT *)timers, timercnt, 0);
417 } 807 }
418 else 808 else
419 evtimer_stop (w); /* nonrepeating: stop timer */ 809 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
420 810
421 event ((W)w, EV_TIMEOUT); 811 event (EV_A_ (W)w, EV_TIMEOUT);
422 } 812 }
423} 813}
424 814
425static void 815static void
426periodics_reify () 816periodics_reify (EV_P)
427{ 817{
428 while (periodiccnt && periodics [0]->at <= ev_now) 818 while (periodiccnt && periodics [0]->at <= rt_now)
429 { 819 {
430 struct ev_periodic *w = periodics [0]; 820 struct ev_periodic *w = periodics [0];
821
822 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
431 823
432 /* first reschedule or stop timer */ 824 /* first reschedule or stop timer */
433 if (w->interval) 825 if (w->interval)
434 { 826 {
435 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 827 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
436 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 828 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
437 downheap ((WT *)periodics, periodiccnt, 0); 829 downheap ((WT *)periodics, periodiccnt, 0);
438 } 830 }
439 else 831 else
440 evperiodic_stop (w); /* nonrepeating: stop timer */ 832 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
441 833
442 event ((W)w, EV_TIMEOUT); 834 event (EV_A_ (W)w, EV_PERIODIC);
443 } 835 }
444} 836}
445 837
446static void 838static void
447periodics_reschedule (ev_tstamp diff) 839periodics_reschedule (EV_P)
448{ 840{
449 int i; 841 int i;
450 842
451 /* adjust periodics after time jump */ 843 /* adjust periodics after time jump */
452 for (i = 0; i < periodiccnt; ++i) 844 for (i = 0; i < periodiccnt; ++i)
453 { 845 {
454 struct ev_periodic *w = periodics [i]; 846 struct ev_periodic *w = periodics [i];
455 847
456 if (w->interval) 848 if (w->interval)
457 { 849 {
458 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 850 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
459 851
460 if (fabs (diff) >= 1e-4) 852 if (fabs (diff) >= 1e-4)
461 { 853 {
462 evperiodic_stop (w); 854 ev_periodic_stop (EV_A_ w);
463 evperiodic_start (w); 855 ev_periodic_start (EV_A_ w);
464 856
465 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 857 i = 0; /* restart loop, inefficient, but time jumps should be rare */
466 } 858 }
467 } 859 }
468 } 860 }
469} 861}
470 862
863inline int
864time_update_monotonic (EV_P)
865{
866 mn_now = get_clock ();
867
868 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
869 {
870 rt_now = rtmn_diff + mn_now;
871 return 0;
872 }
873 else
874 {
875 now_floor = mn_now;
876 rt_now = ev_time ();
877 return 1;
878 }
879}
880
471static void 881static void
472time_update () 882time_update (EV_P)
473{ 883{
474 int i; 884 int i;
475 885
476 ev_now = ev_time (); 886#if EV_USE_MONOTONIC
477
478 if (have_monotonic) 887 if (expect_true (have_monotonic))
479 { 888 {
480 ev_tstamp odiff = diff; 889 if (time_update_monotonic (EV_A))
481
482 for (i = 4; --i; ) /* loop a few times, before making important decisions */
483 { 890 {
484 now = get_clock (); 891 ev_tstamp odiff = rtmn_diff;
892
893 for (i = 4; --i; ) /* loop a few times, before making important decisions */
894 {
485 diff = ev_now - now; 895 rtmn_diff = rt_now - mn_now;
486 896
487 if (fabs (odiff - diff) < MIN_TIMEJUMP) 897 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
488 return; /* all is well */ 898 return; /* all is well */
489 899
490 ev_now = ev_time (); 900 rt_now = ev_time ();
901 mn_now = get_clock ();
902 now_floor = mn_now;
903 }
904
905 periodics_reschedule (EV_A);
906 /* no timer adjustment, as the monotonic clock doesn't jump */
907 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
491 } 908 }
492
493 periodics_reschedule (diff - odiff);
494 /* no timer adjustment, as the monotonic clock doesn't jump */
495 } 909 }
496 else 910 else
911#endif
497 { 912 {
498 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 913 rt_now = ev_time ();
914
915 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
499 { 916 {
500 periodics_reschedule (ev_now - now); 917 periodics_reschedule (EV_A);
501 918
502 /* adjust timers. this is easy, as the offset is the same for all */ 919 /* adjust timers. this is easy, as the offset is the same for all */
503 for (i = 0; i < timercnt; ++i) 920 for (i = 0; i < timercnt; ++i)
504 timers [i]->at += diff; 921 timers [i]->at += rt_now - mn_now;
505 } 922 }
506 923
507 now = ev_now; 924 mn_now = rt_now;
508 } 925 }
509} 926}
510 927
511int ev_loop_done; 928void
929ev_ref (EV_P)
930{
931 ++activecnt;
932}
512 933
934void
935ev_unref (EV_P)
936{
937 --activecnt;
938}
939
940static int loop_done;
941
942void
513void ev_loop (int flags) 943ev_loop (EV_P_ int flags)
514{ 944{
515 double block; 945 double block;
516 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 946 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
517
518 if (checkcnt)
519 {
520 queue_events ((W *)checks, checkcnt, EV_CHECK);
521 call_pending ();
522 }
523 947
524 do 948 do
525 { 949 {
950 /* queue check watchers (and execute them) */
951 if (expect_false (preparecnt))
952 {
953 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
954 call_pending (EV_A);
955 }
956
526 /* update fd-related kernel structures */ 957 /* update fd-related kernel structures */
527 fd_reify (); 958 fd_reify (EV_A);
528 959
529 /* calculate blocking time */ 960 /* calculate blocking time */
530 961
531 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 962 /* we only need this for !monotonic clockor timers, but as we basically
963 always have timers, we just calculate it always */
964#if EV_USE_MONOTONIC
965 if (expect_true (have_monotonic))
966 time_update_monotonic (EV_A);
967 else
968#endif
969 {
532 ev_now = ev_time (); 970 rt_now = ev_time ();
971 mn_now = rt_now;
972 }
533 973
534 if (flags & EVLOOP_NONBLOCK || idlecnt) 974 if (flags & EVLOOP_NONBLOCK || idlecnt)
535 block = 0.; 975 block = 0.;
536 else 976 else
537 { 977 {
538 block = MAX_BLOCKTIME; 978 block = MAX_BLOCKTIME;
539 979
540 if (timercnt) 980 if (timercnt)
541 { 981 {
542 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 982 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
543 if (block > to) block = to; 983 if (block > to) block = to;
544 } 984 }
545 985
546 if (periodiccnt) 986 if (periodiccnt)
547 { 987 {
548 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 988 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
549 if (block > to) block = to; 989 if (block > to) block = to;
550 } 990 }
551 991
552 if (block < 0.) block = 0.; 992 if (block < 0.) block = 0.;
553 } 993 }
554 994
555 method_poll (block); 995 method_poll (EV_A_ block);
556 996
557 /* update ev_now, do magic */ 997 /* update rt_now, do magic */
558 time_update (); 998 time_update (EV_A);
559 999
560 /* queue pending timers and reschedule them */ 1000 /* queue pending timers and reschedule them */
1001 timers_reify (EV_A); /* relative timers called last */
561 periodics_reify (); /* absolute timers first */ 1002 periodics_reify (EV_A); /* absolute timers called first */
562 timers_reify (); /* relative timers second */
563 1003
564 /* queue idle watchers unless io or timers are pending */ 1004 /* queue idle watchers unless io or timers are pending */
565 if (!pendingcnt) 1005 if (!pendingcnt)
566 queue_events ((W *)idles, idlecnt, EV_IDLE); 1006 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
567 1007
568 /* queue check and possibly idle watchers */ 1008 /* queue check watchers, to be executed first */
1009 if (checkcnt)
569 queue_events ((W *)checks, checkcnt, EV_CHECK); 1010 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
570 1011
571 call_pending (); 1012 call_pending (EV_A);
572 } 1013 }
573 while (!ev_loop_done); 1014 while (activecnt && !loop_done);
574 1015
575 if (ev_loop_done != 2) 1016 if (loop_done != 2)
576 ev_loop_done = 0; 1017 loop_done = 0;
1018}
1019
1020void
1021ev_unloop (EV_P_ int how)
1022{
1023 loop_done = how;
577} 1024}
578 1025
579/*****************************************************************************/ 1026/*****************************************************************************/
580 1027
581static void 1028inline void
582wlist_add (WL *head, WL elem) 1029wlist_add (WL *head, WL elem)
583{ 1030{
584 elem->next = *head; 1031 elem->next = *head;
585 *head = elem; 1032 *head = elem;
586} 1033}
587 1034
588static void 1035inline void
589wlist_del (WL *head, WL elem) 1036wlist_del (WL *head, WL elem)
590{ 1037{
591 while (*head) 1038 while (*head)
592 { 1039 {
593 if (*head == elem) 1040 if (*head == elem)
598 1045
599 head = &(*head)->next; 1046 head = &(*head)->next;
600 } 1047 }
601} 1048}
602 1049
603static void 1050inline void
1051ev_clear_pending (EV_P_ W w)
1052{
1053 if (w->pending)
1054 {
1055 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1056 w->pending = 0;
1057 }
1058}
1059
1060inline void
604ev_start (W w, int active) 1061ev_start (EV_P_ W w, int active)
605{ 1062{
606 w->pending = 0; 1063 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1064 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1065
607 w->active = active; 1066 w->active = active;
1067 ev_ref (EV_A);
608} 1068}
609 1069
610static void 1070inline void
611ev_stop (W w) 1071ev_stop (EV_P_ W w)
612{ 1072{
613 if (w->pending) 1073 ev_unref (EV_A);
614 pendings [w->pending - 1].w = 0;
615
616 w->active = 0; 1074 w->active = 0;
617} 1075}
618 1076
619/*****************************************************************************/ 1077/*****************************************************************************/
620 1078
621void 1079void
622evio_start (struct ev_io *w) 1080ev_io_start (EV_P_ struct ev_io *w)
623{ 1081{
1082 int fd = w->fd;
1083
624 if (ev_is_active (w)) 1084 if (ev_is_active (w))
625 return; 1085 return;
626 1086
627 int fd = w->fd; 1087 assert (("ev_io_start called with negative fd", fd >= 0));
628 1088
629 ev_start ((W)w, 1); 1089 ev_start (EV_A_ (W)w, 1);
630 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1090 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
631 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1091 wlist_add ((WL *)&anfds[fd].head, (WL)w);
632 1092
633 ++fdchangecnt; 1093 fd_change (EV_A_ fd);
634 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
635 fdchanges [fdchangecnt - 1] = fd;
636} 1094}
637 1095
638void 1096void
639evio_stop (struct ev_io *w) 1097ev_io_stop (EV_P_ struct ev_io *w)
640{ 1098{
1099 ev_clear_pending (EV_A_ (W)w);
641 if (!ev_is_active (w)) 1100 if (!ev_is_active (w))
642 return; 1101 return;
643 1102
644 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1103 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
645 ev_stop ((W)w); 1104 ev_stop (EV_A_ (W)w);
646 1105
647 ++fdchangecnt; 1106 fd_change (EV_A_ w->fd);
648 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
649 fdchanges [fdchangecnt - 1] = w->fd;
650} 1107}
651 1108
652
653void 1109void
654evtimer_start (struct ev_timer *w) 1110ev_timer_start (EV_P_ struct ev_timer *w)
655{ 1111{
656 if (ev_is_active (w)) 1112 if (ev_is_active (w))
657 return; 1113 return;
658 1114
659 w->at += now; 1115 w->at += mn_now;
660 1116
661 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1117 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
662 1118
663 ev_start ((W)w, ++timercnt); 1119 ev_start (EV_A_ (W)w, ++timercnt);
664 array_needsize (timers, timermax, timercnt, ); 1120 array_needsize (timers, timermax, timercnt, );
665 timers [timercnt - 1] = w; 1121 timers [timercnt - 1] = w;
666 upheap ((WT *)timers, timercnt - 1); 1122 upheap ((WT *)timers, timercnt - 1);
667} 1123}
668 1124
669void 1125void
670evtimer_stop (struct ev_timer *w) 1126ev_timer_stop (EV_P_ struct ev_timer *w)
671{ 1127{
1128 ev_clear_pending (EV_A_ (W)w);
672 if (!ev_is_active (w)) 1129 if (!ev_is_active (w))
673 return; 1130 return;
674 1131
675 if (w->active < timercnt--) 1132 if (w->active < timercnt--)
676 { 1133 {
678 downheap ((WT *)timers, timercnt, w->active - 1); 1135 downheap ((WT *)timers, timercnt, w->active - 1);
679 } 1136 }
680 1137
681 w->at = w->repeat; 1138 w->at = w->repeat;
682 1139
683 ev_stop ((W)w); 1140 ev_stop (EV_A_ (W)w);
684} 1141}
685 1142
686void 1143void
687evtimer_again (struct ev_timer *w) 1144ev_timer_again (EV_P_ struct ev_timer *w)
688{ 1145{
689 if (ev_is_active (w)) 1146 if (ev_is_active (w))
690 { 1147 {
691 if (w->repeat) 1148 if (w->repeat)
692 { 1149 {
693 w->at = now + w->repeat; 1150 w->at = mn_now + w->repeat;
694 downheap ((WT *)timers, timercnt, w->active - 1); 1151 downheap ((WT *)timers, timercnt, w->active - 1);
695 } 1152 }
696 else 1153 else
697 evtimer_stop (w); 1154 ev_timer_stop (EV_A_ w);
698 } 1155 }
699 else if (w->repeat) 1156 else if (w->repeat)
700 evtimer_start (w); 1157 ev_timer_start (EV_A_ w);
701} 1158}
702 1159
703void 1160void
704evperiodic_start (struct ev_periodic *w) 1161ev_periodic_start (EV_P_ struct ev_periodic *w)
705{ 1162{
706 if (ev_is_active (w)) 1163 if (ev_is_active (w))
707 return; 1164 return;
708 1165
709 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1166 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
710 1167
711 /* this formula differs from the one in periodic_reify because we do not always round up */ 1168 /* this formula differs from the one in periodic_reify because we do not always round up */
712 if (w->interval) 1169 if (w->interval)
713 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1170 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
714 1171
715 ev_start ((W)w, ++periodiccnt); 1172 ev_start (EV_A_ (W)w, ++periodiccnt);
716 array_needsize (periodics, periodicmax, periodiccnt, ); 1173 array_needsize (periodics, periodicmax, periodiccnt, );
717 periodics [periodiccnt - 1] = w; 1174 periodics [periodiccnt - 1] = w;
718 upheap ((WT *)periodics, periodiccnt - 1); 1175 upheap ((WT *)periodics, periodiccnt - 1);
719} 1176}
720 1177
721void 1178void
722evperiodic_stop (struct ev_periodic *w) 1179ev_periodic_stop (EV_P_ struct ev_periodic *w)
723{ 1180{
1181 ev_clear_pending (EV_A_ (W)w);
724 if (!ev_is_active (w)) 1182 if (!ev_is_active (w))
725 return; 1183 return;
726 1184
727 if (w->active < periodiccnt--) 1185 if (w->active < periodiccnt--)
728 { 1186 {
729 periodics [w->active - 1] = periodics [periodiccnt]; 1187 periodics [w->active - 1] = periodics [periodiccnt];
730 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1188 downheap ((WT *)periodics, periodiccnt, w->active - 1);
731 } 1189 }
732 1190
733 ev_stop ((W)w); 1191 ev_stop (EV_A_ (W)w);
734} 1192}
735 1193
736void 1194void
737evsignal_start (struct ev_signal *w) 1195ev_idle_start (EV_P_ struct ev_idle *w)
738{ 1196{
739 if (ev_is_active (w)) 1197 if (ev_is_active (w))
740 return; 1198 return;
741 1199
1200 ev_start (EV_A_ (W)w, ++idlecnt);
1201 array_needsize (idles, idlemax, idlecnt, );
1202 idles [idlecnt - 1] = w;
1203}
1204
1205void
1206ev_idle_stop (EV_P_ struct ev_idle *w)
1207{
1208 ev_clear_pending (EV_A_ (W)w);
1209 if (ev_is_active (w))
1210 return;
1211
1212 idles [w->active - 1] = idles [--idlecnt];
1213 ev_stop (EV_A_ (W)w);
1214}
1215
1216void
1217ev_prepare_start (EV_P_ struct ev_prepare *w)
1218{
1219 if (ev_is_active (w))
1220 return;
1221
1222 ev_start (EV_A_ (W)w, ++preparecnt);
1223 array_needsize (prepares, preparemax, preparecnt, );
1224 prepares [preparecnt - 1] = w;
1225}
1226
1227void
1228ev_prepare_stop (EV_P_ struct ev_prepare *w)
1229{
1230 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w))
1232 return;
1233
1234 prepares [w->active - 1] = prepares [--preparecnt];
1235 ev_stop (EV_A_ (W)w);
1236}
1237
1238void
1239ev_check_start (EV_P_ struct ev_check *w)
1240{
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++checkcnt);
1245 array_needsize (checks, checkmax, checkcnt, );
1246 checks [checkcnt - 1] = w;
1247}
1248
1249void
1250ev_check_stop (EV_P_ struct ev_check *w)
1251{
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 checks [w->active - 1] = checks [--checkcnt];
1257 ev_stop (EV_A_ (W)w);
1258}
1259
1260#ifndef SA_RESTART
1261# define SA_RESTART 0
1262#endif
1263
1264void
1265ev_signal_start (EV_P_ struct ev_signal *w)
1266{
1267#if EV_MULTIPLICITY
1268 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1269#endif
1270 if (ev_is_active (w))
1271 return;
1272
1273 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1274
742 ev_start ((W)w, 1); 1275 ev_start (EV_A_ (W)w, 1);
743 array_needsize (signals, signalmax, w->signum, signals_init); 1276 array_needsize (signals, signalmax, w->signum, signals_init);
744 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1277 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
745 1278
746 if (!w->next) 1279 if (!w->next)
747 { 1280 {
748 struct sigaction sa; 1281 struct sigaction sa;
749 sa.sa_handler = sighandler; 1282 sa.sa_handler = sighandler;
750 sigfillset (&sa.sa_mask); 1283 sigfillset (&sa.sa_mask);
751 sa.sa_flags = 0; 1284 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
752 sigaction (w->signum, &sa, 0); 1285 sigaction (w->signum, &sa, 0);
753 } 1286 }
754} 1287}
755 1288
756void 1289void
757evsignal_stop (struct ev_signal *w) 1290ev_signal_stop (EV_P_ struct ev_signal *w)
758{ 1291{
1292 ev_clear_pending (EV_A_ (W)w);
759 if (!ev_is_active (w)) 1293 if (!ev_is_active (w))
760 return; 1294 return;
761 1295
762 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1296 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
763 ev_stop ((W)w); 1297 ev_stop (EV_A_ (W)w);
764 1298
765 if (!signals [w->signum - 1].head) 1299 if (!signals [w->signum - 1].head)
766 signal (w->signum, SIG_DFL); 1300 signal (w->signum, SIG_DFL);
767} 1301}
768 1302
769void evidle_start (struct ev_idle *w) 1303void
1304ev_child_start (EV_P_ struct ev_child *w)
770{ 1305{
1306#if EV_MULTIPLICITY
1307 assert (("child watchers are only supported in the default loop", loop == default_loop));
1308#endif
771 if (ev_is_active (w)) 1309 if (ev_is_active (w))
772 return; 1310 return;
773 1311
774 ev_start ((W)w, ++idlecnt); 1312 ev_start (EV_A_ (W)w, 1);
775 array_needsize (idles, idlemax, idlecnt, ); 1313 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
776 idles [idlecnt - 1] = w;
777} 1314}
778 1315
779void evidle_stop (struct ev_idle *w) 1316void
1317ev_child_stop (EV_P_ struct ev_child *w)
780{ 1318{
781 idles [w->active - 1] = idles [--idlecnt]; 1319 ev_clear_pending (EV_A_ (W)w);
782 ev_stop ((W)w);
783}
784
785void evcheck_start (struct ev_check *w)
786{
787 if (ev_is_active (w)) 1320 if (ev_is_active (w))
788 return; 1321 return;
789 1322
790 ev_start ((W)w, ++checkcnt); 1323 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
791 array_needsize (checks, checkmax, checkcnt, );
792 checks [checkcnt - 1] = w;
793}
794
795void evcheck_stop (struct ev_check *w)
796{
797 checks [w->active - 1] = checks [--checkcnt];
798 ev_stop ((W)w); 1324 ev_stop (EV_A_ (W)w);
799} 1325}
800 1326
801/*****************************************************************************/ 1327/*****************************************************************************/
802 1328
803#if 0 1329struct ev_once
804 1330{
805struct ev_io wio; 1331 struct ev_io io;
806
807static void
808sin_cb (struct ev_io *w, int revents)
809{
810 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
811}
812
813static void
814ocb (struct ev_timer *w, int revents)
815{
816 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
817 evtimer_stop (w);
818 evtimer_start (w);
819}
820
821static void
822scb (struct ev_signal *w, int revents)
823{
824 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
825 evio_stop (&wio);
826 evio_start (&wio);
827}
828
829static void
830gcb (struct ev_signal *w, int revents)
831{
832 fprintf (stderr, "generic %x\n", revents);
833
834}
835
836int main (void)
837{
838 ev_init (0);
839
840 evio_init (&wio, sin_cb, 0, EV_READ);
841 evio_start (&wio);
842
843 struct ev_timer t[10000];
844
845#if 0
846 int i;
847 for (i = 0; i < 10000; ++i)
848 {
849 struct ev_timer *w = t + i;
850 evw_init (w, ocb, i);
851 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
852 evtimer_start (w);
853 if (drand48 () < 0.5)
854 evtimer_stop (w);
855 }
856#endif
857
858 struct ev_timer t1; 1332 struct ev_timer to;
859 evtimer_init (&t1, ocb, 5, 10); 1333 void (*cb)(int revents, void *arg);
860 evtimer_start (&t1); 1334 void *arg;
1335};
861 1336
862 struct ev_signal sig; 1337static void
863 evsignal_init (&sig, scb, SIGQUIT); 1338once_cb (EV_P_ struct ev_once *once, int revents)
864 evsignal_start (&sig); 1339{
1340 void (*cb)(int revents, void *arg) = once->cb;
1341 void *arg = once->arg;
865 1342
866 struct ev_check cw; 1343 ev_io_stop (EV_A_ &once->io);
867 evcheck_init (&cw, gcb); 1344 ev_timer_stop (EV_A_ &once->to);
868 evcheck_start (&cw); 1345 free (once);
869 1346
870 struct ev_idle iw; 1347 cb (revents, arg);
871 evidle_init (&iw, gcb);
872 evidle_start (&iw);
873
874 ev_loop (0);
875
876 return 0;
877} 1348}
878 1349
879#endif 1350static void
1351once_cb_io (EV_P_ struct ev_io *w, int revents)
1352{
1353 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1354}
880 1355
1356static void
1357once_cb_to (EV_P_ struct ev_timer *w, int revents)
1358{
1359 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1360}
881 1361
1362void
1363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1364{
1365 struct ev_once *once = malloc (sizeof (struct ev_once));
882 1366
1367 if (!once)
1368 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1369 else
1370 {
1371 once->cb = cb;
1372 once->arg = arg;
883 1373
1374 ev_watcher_init (&once->io, once_cb_io);
1375 if (fd >= 0)
1376 {
1377 ev_io_set (&once->io, fd, events);
1378 ev_io_start (EV_A_ &once->io);
1379 }
1380
1381 ev_watcher_init (&once->to, once_cb_to);
1382 if (timeout >= 0.)
1383 {
1384 ev_timer_set (&once->to, timeout, 0.);
1385 ev_timer_start (EV_A_ &once->to);
1386 }
1387 }
1388}
1389

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines