ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.15 by root, Wed Oct 31 11:56:34 2007 UTC vs.
Revision 1.70 by root, Tue Nov 6 00:52:32 2007 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
56
1#include <math.h> 57#include <math.h>
2#include <stdlib.h> 58#include <stdlib.h>
3#include <unistd.h> 59#include <unistd.h>
4#include <fcntl.h> 60#include <fcntl.h>
5#include <signal.h> 61#include <signal.h>
62#include <stddef.h>
6 63
7#include <stdio.h> 64#include <stdio.h>
8 65
9#include <assert.h> 66#include <assert.h>
10#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
11#include <sys/time.h> 72#include <sys/time.h>
12#include <time.h> 73#include <time.h>
13 74
14#define HAVE_EPOLL 1 75/**/
15 76
16#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
17# ifdef CLOCK_MONOTONIC
18# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
19# endif 102# endif
20#endif 103#endif
21 104
22#ifndef HAVE_SELECT
23# define HAVE_SELECT 1
24#endif
25
26#ifndef HAVE_EPOLL
27# define HAVE_EPOLL 0
28#endif
29
30#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
31# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
32#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
33 122
34#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
35#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
36 127
37#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
38 143
39typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
40typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
41typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
42 147
43static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
44ev_tstamp ev_now;
45int ev_method;
46 149
47static int have_monotonic; /* runtime */ 150#if WIN32
48 151/* note: the comment below could not be substantiated, but what would I care */
49static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
50static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
51static void (*method_poll)(ev_tstamp timeout); 154#endif
52 155
53/*****************************************************************************/ 156/*****************************************************************************/
54 157
55ev_tstamp 158static void (*syserr_cb)(const char *msg);
159
160void ev_set_syserr_cb (void (*cb)(const char *msg))
161{
162 syserr_cb = cb;
163}
164
165static void
166syserr (const char *msg)
167{
168 if (!msg)
169 msg = "(libev) system error";
170
171 if (syserr_cb)
172 syserr_cb (msg);
173 else
174 {
175 perror (msg);
176 abort ();
177 }
178}
179
180static void *(*alloc)(void *ptr, long size);
181
182void ev_set_allocator (void *(*cb)(void *ptr, long size))
183{
184 alloc = cb;
185}
186
187static void *
188ev_realloc (void *ptr, long size)
189{
190 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
191
192 if (!ptr && size)
193 {
194 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
195 abort ();
196 }
197
198 return ptr;
199}
200
201#define ev_malloc(size) ev_realloc (0, (size))
202#define ev_free(ptr) ev_realloc ((ptr), 0)
203
204/*****************************************************************************/
205
206typedef struct
207{
208 WL head;
209 unsigned char events;
210 unsigned char reify;
211} ANFD;
212
213typedef struct
214{
215 W w;
216 int events;
217} ANPENDING;
218
219#if EV_MULTIPLICITY
220
221struct ev_loop
222{
223# define VAR(name,decl) decl;
224# include "ev_vars.h"
225};
226# undef VAR
227# include "ev_wrap.h"
228
229#else
230
231# define VAR(name,decl) static decl;
232# include "ev_vars.h"
233# undef VAR
234
235#endif
236
237/*****************************************************************************/
238
239inline ev_tstamp
56ev_time (void) 240ev_time (void)
57{ 241{
58#if HAVE_REALTIME 242#if EV_USE_REALTIME
59 struct timespec ts; 243 struct timespec ts;
60 clock_gettime (CLOCK_REALTIME, &ts); 244 clock_gettime (CLOCK_REALTIME, &ts);
61 return ts.tv_sec + ts.tv_nsec * 1e-9; 245 return ts.tv_sec + ts.tv_nsec * 1e-9;
62#else 246#else
63 struct timeval tv; 247 struct timeval tv;
64 gettimeofday (&tv, 0); 248 gettimeofday (&tv, 0);
65 return tv.tv_sec + tv.tv_usec * 1e-6; 249 return tv.tv_sec + tv.tv_usec * 1e-6;
66#endif 250#endif
67} 251}
68 252
69static ev_tstamp 253inline ev_tstamp
70get_clock (void) 254get_clock (void)
71{ 255{
72#if HAVE_MONOTONIC 256#if EV_USE_MONOTONIC
73 if (have_monotonic) 257 if (expect_true (have_monotonic))
74 { 258 {
75 struct timespec ts; 259 struct timespec ts;
76 clock_gettime (CLOCK_MONOTONIC, &ts); 260 clock_gettime (CLOCK_MONOTONIC, &ts);
77 return ts.tv_sec + ts.tv_nsec * 1e-9; 261 return ts.tv_sec + ts.tv_nsec * 1e-9;
78 } 262 }
79#endif 263#endif
80 264
81 return ev_time (); 265 return ev_time ();
82} 266}
83 267
268ev_tstamp
269ev_now (EV_P)
270{
271 return rt_now;
272}
273
274#define array_roundsize(base,n) ((n) | 4 & ~3)
275
84#define array_needsize(base,cur,cnt,init) \ 276#define array_needsize(base,cur,cnt,init) \
85 if ((cnt) > cur) \ 277 if (expect_false ((cnt) > cur)) \
86 { \ 278 { \
87 int newcnt = cur ? cur << 1 : 16; \ 279 int newcnt = cur; \
280 do \
281 { \
282 newcnt = array_roundsize (base, newcnt << 1); \
283 } \
284 while ((cnt) > newcnt); \
285 \
88 base = realloc (base, sizeof (*base) * (newcnt)); \ 286 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
89 init (base + cur, newcnt - cur); \ 287 init (base + cur, newcnt - cur); \
90 cur = newcnt; \ 288 cur = newcnt; \
91 } 289 }
290
291#define array_slim(stem) \
292 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
293 { \
294 stem ## max = array_roundsize (stem ## cnt >> 1); \
295 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
296 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
297 }
298
299#define array_free(stem, idx) \
300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
92 301
93/*****************************************************************************/ 302/*****************************************************************************/
94 303
95typedef struct
96{
97 struct ev_io *head;
98 unsigned char wev, rev; /* want, received event set */
99} ANFD;
100
101static ANFD *anfds;
102static int anfdmax;
103
104static int *fdchanges;
105static int fdchangemax, fdchangecnt;
106
107static void 304static void
108anfds_init (ANFD *base, int count) 305anfds_init (ANFD *base, int count)
109{ 306{
110 while (count--) 307 while (count--)
111 { 308 {
112 base->head = 0; 309 base->head = 0;
113 base->wev = base->rev = EV_NONE; 310 base->events = EV_NONE;
311 base->reify = 0;
312
114 ++base; 313 ++base;
115 } 314 }
116} 315}
117 316
118typedef struct
119{
120 W w;
121 int events;
122} ANPENDING;
123
124static ANPENDING *pendings;
125static int pendingmax, pendingcnt;
126
127static void 317static void
128event (W w, int events) 318event (EV_P_ W w, int events)
129{ 319{
320 if (w->pending)
321 {
322 pendings [ABSPRI (w)][w->pending - 1].events |= events;
323 return;
324 }
325
130 w->pending = ++pendingcnt; 326 w->pending = ++pendingcnt [ABSPRI (w)];
131 array_needsize (pendings, pendingmax, pendingcnt, ); 327 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
132 pendings [pendingcnt - 1].w = w; 328 pendings [ABSPRI (w)][w->pending - 1].w = w;
133 pendings [pendingcnt - 1].events = events; 329 pendings [ABSPRI (w)][w->pending - 1].events = events;
134} 330}
135 331
136static void 332static void
333queue_events (EV_P_ W *events, int eventcnt, int type)
334{
335 int i;
336
337 for (i = 0; i < eventcnt; ++i)
338 event (EV_A_ events [i], type);
339}
340
341static void
137fd_event (int fd, int events) 342fd_event (EV_P_ int fd, int events)
138{ 343{
139 ANFD *anfd = anfds + fd; 344 ANFD *anfd = anfds + fd;
140 struct ev_io *w; 345 struct ev_io *w;
141 346
142 for (w = anfd->head; w; w = w->next) 347 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
143 { 348 {
144 int ev = w->events & events; 349 int ev = w->events & events;
145 350
146 if (ev) 351 if (ev)
147 event ((W)w, ev); 352 event (EV_A_ (W)w, ev);
148 } 353 }
149} 354}
150 355
356/*****************************************************************************/
357
151static void 358static void
152queue_events (W *events, int eventcnt, int type) 359fd_reify (EV_P)
153{ 360{
154 int i; 361 int i;
155 362
156 for (i = 0; i < eventcnt; ++i) 363 for (i = 0; i < fdchangecnt; ++i)
157 event (events [i], type); 364 {
365 int fd = fdchanges [i];
366 ANFD *anfd = anfds + fd;
367 struct ev_io *w;
368
369 int events = 0;
370
371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
372 events |= w->events;
373
374 anfd->reify = 0;
375
376 method_modify (EV_A_ fd, anfd->events, events);
377 anfd->events = events;
378 }
379
380 fdchangecnt = 0;
381}
382
383static void
384fd_change (EV_P_ int fd)
385{
386 if (anfds [fd].reify)
387 return;
388
389 anfds [fd].reify = 1;
390
391 ++fdchangecnt;
392 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
393 fdchanges [fdchangecnt - 1] = fd;
394}
395
396static void
397fd_kill (EV_P_ int fd)
398{
399 struct ev_io *w;
400
401 while ((w = (struct ev_io *)anfds [fd].head))
402 {
403 ev_io_stop (EV_A_ w);
404 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
405 }
406}
407
408/* called on EBADF to verify fds */
409static void
410fd_ebadf (EV_P)
411{
412 int fd;
413
414 for (fd = 0; fd < anfdmax; ++fd)
415 if (anfds [fd].events)
416 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
417 fd_kill (EV_A_ fd);
418}
419
420/* called on ENOMEM in select/poll to kill some fds and retry */
421static void
422fd_enomem (EV_P)
423{
424 int fd;
425
426 for (fd = anfdmax; fd--; )
427 if (anfds [fd].events)
428 {
429 fd_kill (EV_A_ fd);
430 return;
431 }
432}
433
434/* usually called after fork if method needs to re-arm all fds from scratch */
435static void
436fd_rearm_all (EV_P)
437{
438 int fd;
439
440 /* this should be highly optimised to not do anything but set a flag */
441 for (fd = 0; fd < anfdmax; ++fd)
442 if (anfds [fd].events)
443 {
444 anfds [fd].events = 0;
445 fd_change (EV_A_ fd);
446 }
158} 447}
159 448
160/*****************************************************************************/ 449/*****************************************************************************/
161 450
162static struct ev_timer **timers;
163static int timermax, timercnt;
164
165static struct ev_periodic **periodics;
166static int periodicmax, periodiccnt;
167
168static void 451static void
169upheap (WT *timers, int k) 452upheap (WT *heap, int k)
170{ 453{
171 WT w = timers [k]; 454 WT w = heap [k];
172 455
173 while (k && timers [k >> 1]->at > w->at) 456 while (k && heap [k >> 1]->at > w->at)
174 { 457 {
175 timers [k] = timers [k >> 1]; 458 heap [k] = heap [k >> 1];
176 timers [k]->active = k + 1; 459 ((W)heap [k])->active = k + 1;
177 k >>= 1; 460 k >>= 1;
178 } 461 }
179 462
180 timers [k] = w; 463 heap [k] = w;
181 timers [k]->active = k + 1; 464 ((W)heap [k])->active = k + 1;
182 465
183} 466}
184 467
185static void 468static void
186downheap (WT *timers, int N, int k) 469downheap (WT *heap, int N, int k)
187{ 470{
188 WT w = timers [k]; 471 WT w = heap [k];
189 472
190 while (k < (N >> 1)) 473 while (k < (N >> 1))
191 { 474 {
192 int j = k << 1; 475 int j = k << 1;
193 476
194 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 477 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
195 ++j; 478 ++j;
196 479
197 if (w->at <= timers [j]->at) 480 if (w->at <= heap [j]->at)
198 break; 481 break;
199 482
200 timers [k] = timers [j]; 483 heap [k] = heap [j];
201 timers [k]->active = k + 1; 484 ((W)heap [k])->active = k + 1;
202 k = j; 485 k = j;
203 } 486 }
204 487
205 timers [k] = w; 488 heap [k] = w;
206 timers [k]->active = k + 1; 489 ((W)heap [k])->active = k + 1;
207} 490}
208 491
209/*****************************************************************************/ 492/*****************************************************************************/
210 493
211typedef struct 494typedef struct
212{ 495{
213 struct ev_signal *head; 496 WL head;
214 sig_atomic_t gotsig; 497 sig_atomic_t volatile gotsig;
215} ANSIG; 498} ANSIG;
216 499
217static ANSIG *signals; 500static ANSIG *signals;
218static int signalmax; 501static int signalmax;
219 502
220static int sigpipe [2]; 503static int sigpipe [2];
221static sig_atomic_t gotsig; 504static sig_atomic_t volatile gotsig;
222static struct ev_io sigev; 505static struct ev_io sigev;
223 506
224static void 507static void
225signals_init (ANSIG *base, int count) 508signals_init (ANSIG *base, int count)
226{ 509{
227 while (count--) 510 while (count--)
228 { 511 {
229 base->head = 0; 512 base->head = 0;
230 base->gotsig = 0; 513 base->gotsig = 0;
514
231 ++base; 515 ++base;
232 } 516 }
233} 517}
234 518
235static void 519static void
236sighandler (int signum) 520sighandler (int signum)
237{ 521{
522#if WIN32
523 signal (signum, sighandler);
524#endif
525
238 signals [signum - 1].gotsig = 1; 526 signals [signum - 1].gotsig = 1;
239 527
240 if (!gotsig) 528 if (!gotsig)
241 { 529 {
530 int old_errno = errno;
242 gotsig = 1; 531 gotsig = 1;
243 write (sigpipe [1], &gotsig, 1); 532 write (sigpipe [1], &signum, 1);
533 errno = old_errno;
244 } 534 }
245} 535}
246 536
247static void 537static void
248sigcb (struct ev_io *iow, int revents) 538sigcb (EV_P_ struct ev_io *iow, int revents)
249{ 539{
250 struct ev_signal *w; 540 WL w;
251 int sig; 541 int signum;
252 542
543 read (sigpipe [0], &revents, 1);
253 gotsig = 0; 544 gotsig = 0;
254 read (sigpipe [0], &revents, 1);
255 545
256 for (sig = signalmax; sig--; ) 546 for (signum = signalmax; signum--; )
257 if (signals [sig].gotsig) 547 if (signals [signum].gotsig)
258 { 548 {
259 signals [sig].gotsig = 0; 549 signals [signum].gotsig = 0;
260 550
261 for (w = signals [sig].head; w; w = w->next) 551 for (w = signals [signum].head; w; w = w->next)
262 event ((W)w, EV_SIGNAL); 552 event (EV_A_ (W)w, EV_SIGNAL);
263 } 553 }
264} 554}
265 555
266static void 556static void
267siginit (void) 557siginit (EV_P)
268{ 558{
559#ifndef WIN32
269 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 560 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
270 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 561 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
271 562
272 /* rather than sort out wether we really need nb, set it */ 563 /* rather than sort out wether we really need nb, set it */
273 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 564 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
274 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 565 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
566#endif
275 567
276 evio_set (&sigev, sigpipe [0], EV_READ); 568 ev_io_set (&sigev, sigpipe [0], EV_READ);
277 evio_start (&sigev); 569 ev_io_start (EV_A_ &sigev);
570 ev_unref (EV_A); /* child watcher should not keep loop alive */
278} 571}
279 572
280/*****************************************************************************/ 573/*****************************************************************************/
281 574
282static struct ev_idle **idles; 575#ifndef WIN32
283static int idlemax, idlecnt;
284 576
285static struct ev_check **checks; 577static struct ev_child *childs [PID_HASHSIZE];
286static int checkmax, checkcnt; 578static struct ev_signal childev;
579
580#ifndef WCONTINUED
581# define WCONTINUED 0
582#endif
583
584static void
585child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
586{
587 struct ev_child *w;
588
589 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
590 if (w->pid == pid || !w->pid)
591 {
592 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
593 w->rpid = pid;
594 w->rstatus = status;
595 event (EV_A_ (W)w, EV_CHILD);
596 }
597}
598
599static void
600childcb (EV_P_ struct ev_signal *sw, int revents)
601{
602 int pid, status;
603
604 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
605 {
606 /* make sure we are called again until all childs have been reaped */
607 event (EV_A_ (W)sw, EV_SIGNAL);
608
609 child_reap (EV_A_ sw, pid, pid, status);
610 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
611 }
612}
613
614#endif
287 615
288/*****************************************************************************/ 616/*****************************************************************************/
289 617
618#if EV_USE_KQUEUE
619# include "ev_kqueue.c"
620#endif
290#if HAVE_EPOLL 621#if EV_USE_EPOLL
291# include "ev_epoll.c" 622# include "ev_epoll.c"
292#endif 623#endif
624#if EV_USE_POLL
625# include "ev_poll.c"
626#endif
293#if HAVE_SELECT 627#if EV_USE_SELECT
294# include "ev_select.c" 628# include "ev_select.c"
295#endif 629#endif
296 630
297int ev_init (int flags) 631int
632ev_version_major (void)
298{ 633{
634 return EV_VERSION_MAJOR;
635}
636
637int
638ev_version_minor (void)
639{
640 return EV_VERSION_MINOR;
641}
642
643/* return true if we are running with elevated privileges and should ignore env variables */
644static int
645enable_secure (void)
646{
647#ifdef WIN32
648 return 0;
649#else
650 return getuid () != geteuid ()
651 || getgid () != getegid ();
652#endif
653}
654
655int
656ev_method (EV_P)
657{
658 return method;
659}
660
661static void
662loop_init (EV_P_ int methods)
663{
664 if (!method)
665 {
299#if HAVE_MONOTONIC 666#if EV_USE_MONOTONIC
300 { 667 {
301 struct timespec ts; 668 struct timespec ts;
302 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 669 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
303 have_monotonic = 1; 670 have_monotonic = 1;
304 } 671 }
305#endif 672#endif
306 673
307 ev_now = ev_time (); 674 rt_now = ev_time ();
308 now = get_clock (); 675 mn_now = get_clock ();
309 diff = ev_now - now; 676 now_floor = mn_now;
677 rtmn_diff = rt_now - mn_now;
310 678
679 if (methods == EVMETHOD_AUTO)
680 if (!enable_secure () && getenv ("LIBEV_METHODS"))
681 methods = atoi (getenv ("LIBEV_METHODS"));
682 else
683 methods = EVMETHOD_ANY;
684
685 method = 0;
686#if EV_USE_WIN32
687 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
688#endif
689#if EV_USE_KQUEUE
690 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
691#endif
692#if EV_USE_EPOLL
693 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
694#endif
695#if EV_USE_POLL
696 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
697#endif
698#if EV_USE_SELECT
699 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
700#endif
701
702 ev_watcher_init (&sigev, sigcb);
703 ev_set_priority (&sigev, EV_MAXPRI);
704 }
705}
706
707void
708loop_destroy (EV_P)
709{
710 int i;
711
712#if EV_USE_WIN32
713 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
714#endif
715#if EV_USE_KQUEUE
716 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
717#endif
718#if EV_USE_EPOLL
719 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
720#endif
721#if EV_USE_POLL
722 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
723#endif
724#if EV_USE_SELECT
725 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
726#endif
727
728 for (i = NUMPRI; i--; )
729 array_free (pending, [i]);
730
731 array_free (fdchange, );
732 array_free (timer, );
733 array_free (periodic, );
734 array_free (idle, );
735 array_free (prepare, );
736 array_free (check, );
737
738 method = 0;
739}
740
741static void
742loop_fork (EV_P)
743{
744#if EV_USE_EPOLL
745 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
746#endif
747#if EV_USE_KQUEUE
748 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
749#endif
750
751 if (ev_is_active (&sigev))
752 {
753 /* default loop */
754
755 ev_ref (EV_A);
756 ev_io_stop (EV_A_ &sigev);
757 close (sigpipe [0]);
758 close (sigpipe [1]);
759
760 while (pipe (sigpipe))
761 syserr ("(libev) error creating pipe");
762
763 siginit (EV_A);
764 }
765
766 postfork = 0;
767}
768
769#if EV_MULTIPLICITY
770struct ev_loop *
771ev_loop_new (int methods)
772{
773 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
774
775 memset (loop, 0, sizeof (struct ev_loop));
776
777 loop_init (EV_A_ methods);
778
779 if (ev_method (EV_A))
780 return loop;
781
782 return 0;
783}
784
785void
786ev_loop_destroy (EV_P)
787{
788 loop_destroy (EV_A);
789 ev_free (loop);
790}
791
792void
793ev_loop_fork (EV_P)
794{
795 postfork = 1;
796}
797
798#endif
799
800#if EV_MULTIPLICITY
801struct ev_loop default_loop_struct;
802static struct ev_loop *default_loop;
803
804struct ev_loop *
805#else
806static int default_loop;
807
808int
809#endif
810ev_default_loop (int methods)
811{
812 if (sigpipe [0] == sigpipe [1])
311 if (pipe (sigpipe)) 813 if (pipe (sigpipe))
312 return 0; 814 return 0;
313 815
314 ev_method = EVMETHOD_NONE; 816 if (!default_loop)
315#if HAVE_EPOLL 817 {
316 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 818#if EV_MULTIPLICITY
819 struct ev_loop *loop = default_loop = &default_loop_struct;
820#else
821 default_loop = 1;
317#endif 822#endif
318#if HAVE_SELECT
319 if (ev_method == EVMETHOD_NONE) select_init (flags);
320#endif
321 823
824 loop_init (EV_A_ methods);
825
826 if (ev_method (EV_A))
827 {
828 siginit (EV_A);
829
830#ifndef WIN32
831 ev_signal_init (&childev, childcb, SIGCHLD);
832 ev_set_priority (&childev, EV_MAXPRI);
833 ev_signal_start (EV_A_ &childev);
834 ev_unref (EV_A); /* child watcher should not keep loop alive */
835#endif
836 }
837 else
838 default_loop = 0;
839 }
840
841 return default_loop;
842}
843
844void
845ev_default_destroy (void)
846{
847#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop;
849#endif
850
851 ev_ref (EV_A); /* child watcher */
852 ev_signal_stop (EV_A_ &childev);
853
854 ev_ref (EV_A); /* signal watcher */
855 ev_io_stop (EV_A_ &sigev);
856
857 close (sigpipe [0]); sigpipe [0] = 0;
858 close (sigpipe [1]); sigpipe [1] = 0;
859
860 loop_destroy (EV_A);
861}
862
863void
864ev_default_fork (void)
865{
866#if EV_MULTIPLICITY
867 struct ev_loop *loop = default_loop;
868#endif
869
322 if (ev_method) 870 if (method)
323 { 871 postfork = 1;
324 evw_init (&sigev, sigcb);
325 siginit ();
326 }
327
328 return ev_method;
329} 872}
330 873
331/*****************************************************************************/ 874/*****************************************************************************/
332 875
333void ev_prefork (void)
334{
335 /* nop */
336}
337
338void ev_postfork_parent (void)
339{
340 /* nop */
341}
342
343void ev_postfork_child (void)
344{
345#if HAVE_EPOLL
346 if (ev_method == EVMETHOD_EPOLL)
347 epoll_postfork_child ();
348#endif
349
350 evio_stop (&sigev);
351 close (sigpipe [0]);
352 close (sigpipe [1]);
353 pipe (sigpipe);
354 siginit ();
355}
356
357/*****************************************************************************/
358
359static void 876static void
360fd_reify (void) 877call_pending (EV_P)
361{ 878{
362 int i; 879 int pri;
363 880
364 for (i = 0; i < fdchangecnt; ++i) 881 for (pri = NUMPRI; pri--; )
365 { 882 while (pendingcnt [pri])
366 int fd = fdchanges [i];
367 ANFD *anfd = anfds + fd;
368 struct ev_io *w;
369
370 int wev = 0;
371
372 for (w = anfd->head; w; w = w->next)
373 wev |= w->events;
374
375 if (anfd->wev != wev)
376 { 883 {
377 method_modify (fd, anfd->wev, wev); 884 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
378 anfd->wev = wev;
379 }
380 }
381 885
382 fdchangecnt = 0;
383}
384
385static void
386call_pending ()
387{
388 int i;
389
390 for (i = 0; i < pendingcnt; ++i)
391 {
392 ANPENDING *p = pendings + i;
393
394 if (p->w) 886 if (p->w)
395 { 887 {
396 p->w->pending = 0; 888 p->w->pending = 0;
397 p->w->cb (p->w, p->events); 889 p->w->cb (EV_A_ p->w, p->events);
398 } 890 }
399 } 891 }
400
401 pendingcnt = 0;
402} 892}
403 893
404static void 894static void
405timers_reify () 895timers_reify (EV_P)
406{ 896{
407 while (timercnt && timers [0]->at <= now) 897 while (timercnt && ((WT)timers [0])->at <= mn_now)
408 { 898 {
409 struct ev_timer *w = timers [0]; 899 struct ev_timer *w = timers [0];
900
901 assert (("inactive timer on timer heap detected", ev_is_active (w)));
410 902
411 /* first reschedule or stop timer */ 903 /* first reschedule or stop timer */
412 if (w->repeat) 904 if (w->repeat)
413 { 905 {
906 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
414 w->at = now + w->repeat; 907 ((WT)w)->at = mn_now + w->repeat;
415 assert (("timer timeout in the past, negative repeat?", w->at > now));
416 downheap ((WT *)timers, timercnt, 0); 908 downheap ((WT *)timers, timercnt, 0);
417 } 909 }
418 else 910 else
419 evtimer_stop (w); /* nonrepeating: stop timer */ 911 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
420 912
421 event ((W)w, EV_TIMEOUT); 913 event (EV_A_ (W)w, EV_TIMEOUT);
422 } 914 }
423} 915}
424 916
425static void 917static void
426periodics_reify () 918periodics_reify (EV_P)
427{ 919{
428 while (periodiccnt && periodics [0]->at <= ev_now) 920 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
429 { 921 {
430 struct ev_periodic *w = periodics [0]; 922 struct ev_periodic *w = periodics [0];
923
924 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
431 925
432 /* first reschedule or stop timer */ 926 /* first reschedule or stop timer */
433 if (w->interval) 927 if (w->interval)
434 { 928 {
435 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 929 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
436 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 930 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
437 downheap ((WT *)periodics, periodiccnt, 0); 931 downheap ((WT *)periodics, periodiccnt, 0);
438 } 932 }
439 else 933 else
440 evperiodic_stop (w); /* nonrepeating: stop timer */ 934 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
441 935
442 event ((W)w, EV_TIMEOUT); 936 event (EV_A_ (W)w, EV_PERIODIC);
443 } 937 }
444} 938}
445 939
446static void 940static void
447periodics_reschedule (ev_tstamp diff) 941periodics_reschedule (EV_P)
448{ 942{
449 int i; 943 int i;
450 944
451 /* adjust periodics after time jump */ 945 /* adjust periodics after time jump */
452 for (i = 0; i < periodiccnt; ++i) 946 for (i = 0; i < periodiccnt; ++i)
453 { 947 {
454 struct ev_periodic *w = periodics [i]; 948 struct ev_periodic *w = periodics [i];
455 949
456 if (w->interval) 950 if (w->interval)
457 { 951 {
458 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 952 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
459 953
460 if (fabs (diff) >= 1e-4) 954 if (fabs (diff) >= 1e-4)
461 { 955 {
462 evperiodic_stop (w); 956 ev_periodic_stop (EV_A_ w);
463 evperiodic_start (w); 957 ev_periodic_start (EV_A_ w);
464 958
465 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 959 i = 0; /* restart loop, inefficient, but time jumps should be rare */
466 } 960 }
467 } 961 }
468 } 962 }
469} 963}
470 964
965inline int
966time_update_monotonic (EV_P)
967{
968 mn_now = get_clock ();
969
970 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
971 {
972 rt_now = rtmn_diff + mn_now;
973 return 0;
974 }
975 else
976 {
977 now_floor = mn_now;
978 rt_now = ev_time ();
979 return 1;
980 }
981}
982
471static void 983static void
472time_update () 984time_update (EV_P)
473{ 985{
474 int i; 986 int i;
475 987
476 ev_now = ev_time (); 988#if EV_USE_MONOTONIC
477
478 if (have_monotonic) 989 if (expect_true (have_monotonic))
479 { 990 {
480 ev_tstamp odiff = diff; 991 if (time_update_monotonic (EV_A))
481
482 for (i = 4; --i; ) /* loop a few times, before making important decisions */
483 { 992 {
484 now = get_clock (); 993 ev_tstamp odiff = rtmn_diff;
994
995 for (i = 4; --i; ) /* loop a few times, before making important decisions */
996 {
485 diff = ev_now - now; 997 rtmn_diff = rt_now - mn_now;
486 998
487 if (fabs (odiff - diff) < MIN_TIMEJUMP) 999 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
488 return; /* all is well */ 1000 return; /* all is well */
489 1001
490 ev_now = ev_time (); 1002 rt_now = ev_time ();
1003 mn_now = get_clock ();
1004 now_floor = mn_now;
1005 }
1006
1007 periodics_reschedule (EV_A);
1008 /* no timer adjustment, as the monotonic clock doesn't jump */
1009 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
491 } 1010 }
492
493 periodics_reschedule (diff - odiff);
494 /* no timer adjustment, as the monotonic clock doesn't jump */
495 } 1011 }
496 else 1012 else
1013#endif
497 { 1014 {
498 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 1015 rt_now = ev_time ();
1016
1017 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
499 { 1018 {
500 periodics_reschedule (ev_now - now); 1019 periodics_reschedule (EV_A);
501 1020
502 /* adjust timers. this is easy, as the offset is the same for all */ 1021 /* adjust timers. this is easy, as the offset is the same for all */
503 for (i = 0; i < timercnt; ++i) 1022 for (i = 0; i < timercnt; ++i)
504 timers [i]->at += diff; 1023 ((WT)timers [i])->at += rt_now - mn_now;
505 } 1024 }
506 1025
507 now = ev_now; 1026 mn_now = rt_now;
508 } 1027 }
509} 1028}
510 1029
511int ev_loop_done; 1030void
1031ev_ref (EV_P)
1032{
1033 ++activecnt;
1034}
512 1035
1036void
1037ev_unref (EV_P)
1038{
1039 --activecnt;
1040}
1041
1042static int loop_done;
1043
1044void
513void ev_loop (int flags) 1045ev_loop (EV_P_ int flags)
514{ 1046{
515 double block; 1047 double block;
516 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 1048 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
517
518 if (checkcnt)
519 {
520 queue_events ((W *)checks, checkcnt, EV_CHECK);
521 call_pending ();
522 }
523 1049
524 do 1050 do
525 { 1051 {
1052 /* queue check watchers (and execute them) */
1053 if (expect_false (preparecnt))
1054 {
1055 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1056 call_pending (EV_A);
1057 }
1058
1059 /* we might have forked, so reify kernel state if necessary */
1060 if (expect_false (postfork))
1061 loop_fork (EV_A);
1062
526 /* update fd-related kernel structures */ 1063 /* update fd-related kernel structures */
527 fd_reify (); 1064 fd_reify (EV_A);
528 1065
529 /* calculate blocking time */ 1066 /* calculate blocking time */
530 1067
531 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 1068 /* we only need this for !monotonic clockor timers, but as we basically
1069 always have timers, we just calculate it always */
1070#if EV_USE_MONOTONIC
1071 if (expect_true (have_monotonic))
1072 time_update_monotonic (EV_A);
1073 else
1074#endif
1075 {
532 ev_now = ev_time (); 1076 rt_now = ev_time ();
1077 mn_now = rt_now;
1078 }
533 1079
534 if (flags & EVLOOP_NONBLOCK || idlecnt) 1080 if (flags & EVLOOP_NONBLOCK || idlecnt)
535 block = 0.; 1081 block = 0.;
536 else 1082 else
537 { 1083 {
538 block = MAX_BLOCKTIME; 1084 block = MAX_BLOCKTIME;
539 1085
540 if (timercnt) 1086 if (timercnt)
541 { 1087 {
542 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1088 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
543 if (block > to) block = to; 1089 if (block > to) block = to;
544 } 1090 }
545 1091
546 if (periodiccnt) 1092 if (periodiccnt)
547 { 1093 {
548 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1094 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
549 if (block > to) block = to; 1095 if (block > to) block = to;
550 } 1096 }
551 1097
552 if (block < 0.) block = 0.; 1098 if (block < 0.) block = 0.;
553 } 1099 }
554 1100
555 method_poll (block); 1101 method_poll (EV_A_ block);
556 1102
557 /* update ev_now, do magic */ 1103 /* update rt_now, do magic */
558 time_update (); 1104 time_update (EV_A);
559 1105
560 /* queue pending timers and reschedule them */ 1106 /* queue pending timers and reschedule them */
1107 timers_reify (EV_A); /* relative timers called last */
561 periodics_reify (); /* absolute timers first */ 1108 periodics_reify (EV_A); /* absolute timers called first */
562 timers_reify (); /* relative timers second */
563 1109
564 /* queue idle watchers unless io or timers are pending */ 1110 /* queue idle watchers unless io or timers are pending */
565 if (!pendingcnt) 1111 if (!pendingcnt)
566 queue_events ((W *)idles, idlecnt, EV_IDLE); 1112 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
567 1113
568 /* queue check and possibly idle watchers */ 1114 /* queue check watchers, to be executed first */
1115 if (checkcnt)
569 queue_events ((W *)checks, checkcnt, EV_CHECK); 1116 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
570 1117
571 call_pending (); 1118 call_pending (EV_A);
572 } 1119 }
573 while (!ev_loop_done); 1120 while (activecnt && !loop_done);
574 1121
575 if (ev_loop_done != 2) 1122 if (loop_done != 2)
576 ev_loop_done = 0; 1123 loop_done = 0;
1124}
1125
1126void
1127ev_unloop (EV_P_ int how)
1128{
1129 loop_done = how;
577} 1130}
578 1131
579/*****************************************************************************/ 1132/*****************************************************************************/
580 1133
581static void 1134inline void
582wlist_add (WL *head, WL elem) 1135wlist_add (WL *head, WL elem)
583{ 1136{
584 elem->next = *head; 1137 elem->next = *head;
585 *head = elem; 1138 *head = elem;
586} 1139}
587 1140
588static void 1141inline void
589wlist_del (WL *head, WL elem) 1142wlist_del (WL *head, WL elem)
590{ 1143{
591 while (*head) 1144 while (*head)
592 { 1145 {
593 if (*head == elem) 1146 if (*head == elem)
598 1151
599 head = &(*head)->next; 1152 head = &(*head)->next;
600 } 1153 }
601} 1154}
602 1155
603static void 1156inline void
1157ev_clear_pending (EV_P_ W w)
1158{
1159 if (w->pending)
1160 {
1161 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1162 w->pending = 0;
1163 }
1164}
1165
1166inline void
604ev_start (W w, int active) 1167ev_start (EV_P_ W w, int active)
605{ 1168{
606 w->pending = 0; 1169 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1170 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1171
607 w->active = active; 1172 w->active = active;
1173 ev_ref (EV_A);
608} 1174}
609 1175
610static void 1176inline void
611ev_stop (W w) 1177ev_stop (EV_P_ W w)
612{ 1178{
613 if (w->pending) 1179 ev_unref (EV_A);
614 pendings [w->pending - 1].w = 0;
615
616 w->active = 0; 1180 w->active = 0;
617} 1181}
618 1182
619/*****************************************************************************/ 1183/*****************************************************************************/
620 1184
621void 1185void
622evio_start (struct ev_io *w) 1186ev_io_start (EV_P_ struct ev_io *w)
623{ 1187{
1188 int fd = w->fd;
1189
624 if (ev_is_active (w)) 1190 if (ev_is_active (w))
625 return; 1191 return;
626 1192
627 int fd = w->fd; 1193 assert (("ev_io_start called with negative fd", fd >= 0));
628 1194
629 ev_start ((W)w, 1); 1195 ev_start (EV_A_ (W)w, 1);
630 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1196 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
631 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1197 wlist_add ((WL *)&anfds[fd].head, (WL)w);
632 1198
633 ++fdchangecnt; 1199 fd_change (EV_A_ fd);
634 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
635 fdchanges [fdchangecnt - 1] = fd;
636} 1200}
637 1201
638void 1202void
639evio_stop (struct ev_io *w) 1203ev_io_stop (EV_P_ struct ev_io *w)
640{ 1204{
1205 ev_clear_pending (EV_A_ (W)w);
641 if (!ev_is_active (w)) 1206 if (!ev_is_active (w))
642 return; 1207 return;
643 1208
644 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1209 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
645 ev_stop ((W)w); 1210 ev_stop (EV_A_ (W)w);
646 1211
647 ++fdchangecnt; 1212 fd_change (EV_A_ w->fd);
648 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
649 fdchanges [fdchangecnt - 1] = w->fd;
650} 1213}
651 1214
652
653void 1215void
654evtimer_start (struct ev_timer *w) 1216ev_timer_start (EV_P_ struct ev_timer *w)
655{ 1217{
656 if (ev_is_active (w)) 1218 if (ev_is_active (w))
657 return; 1219 return;
658 1220
659 w->at += now; 1221 ((WT)w)->at += mn_now;
660 1222
661 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1223 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
662 1224
663 ev_start ((W)w, ++timercnt); 1225 ev_start (EV_A_ (W)w, ++timercnt);
664 array_needsize (timers, timermax, timercnt, ); 1226 array_needsize (timers, timermax, timercnt, );
665 timers [timercnt - 1] = w; 1227 timers [timercnt - 1] = w;
666 upheap ((WT *)timers, timercnt - 1); 1228 upheap ((WT *)timers, timercnt - 1);
667}
668 1229
1230 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1231}
1232
669void 1233void
670evtimer_stop (struct ev_timer *w) 1234ev_timer_stop (EV_P_ struct ev_timer *w)
671{ 1235{
1236 ev_clear_pending (EV_A_ (W)w);
672 if (!ev_is_active (w)) 1237 if (!ev_is_active (w))
673 return; 1238 return;
674 1239
1240 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1241
675 if (w->active < timercnt--) 1242 if (((W)w)->active < timercnt--)
676 { 1243 {
677 timers [w->active - 1] = timers [timercnt]; 1244 timers [((W)w)->active - 1] = timers [timercnt];
678 downheap ((WT *)timers, timercnt, w->active - 1); 1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
679 } 1246 }
680 1247
681 w->at = w->repeat; 1248 ((WT)w)->at = w->repeat;
682 1249
683 ev_stop ((W)w); 1250 ev_stop (EV_A_ (W)w);
684} 1251}
685 1252
686void 1253void
687evtimer_again (struct ev_timer *w) 1254ev_timer_again (EV_P_ struct ev_timer *w)
688{ 1255{
689 if (ev_is_active (w)) 1256 if (ev_is_active (w))
690 { 1257 {
691 if (w->repeat) 1258 if (w->repeat)
692 { 1259 {
693 w->at = now + w->repeat; 1260 ((WT)w)->at = mn_now + w->repeat;
694 downheap ((WT *)timers, timercnt, w->active - 1); 1261 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
695 } 1262 }
696 else 1263 else
697 evtimer_stop (w); 1264 ev_timer_stop (EV_A_ w);
698 } 1265 }
699 else if (w->repeat) 1266 else if (w->repeat)
700 evtimer_start (w); 1267 ev_timer_start (EV_A_ w);
701} 1268}
702 1269
703void 1270void
704evperiodic_start (struct ev_periodic *w) 1271ev_periodic_start (EV_P_ struct ev_periodic *w)
705{ 1272{
706 if (ev_is_active (w)) 1273 if (ev_is_active (w))
707 return; 1274 return;
708 1275
709 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1276 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
710 1277
711 /* this formula differs from the one in periodic_reify because we do not always round up */ 1278 /* this formula differs from the one in periodic_reify because we do not always round up */
712 if (w->interval) 1279 if (w->interval)
713 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1280 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
714 1281
715 ev_start ((W)w, ++periodiccnt); 1282 ev_start (EV_A_ (W)w, ++periodiccnt);
716 array_needsize (periodics, periodicmax, periodiccnt, ); 1283 array_needsize (periodics, periodicmax, periodiccnt, );
717 periodics [periodiccnt - 1] = w; 1284 periodics [periodiccnt - 1] = w;
718 upheap ((WT *)periodics, periodiccnt - 1); 1285 upheap ((WT *)periodics, periodiccnt - 1);
719}
720 1286
1287 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1288}
1289
721void 1290void
722evperiodic_stop (struct ev_periodic *w) 1291ev_periodic_stop (EV_P_ struct ev_periodic *w)
723{ 1292{
1293 ev_clear_pending (EV_A_ (W)w);
724 if (!ev_is_active (w)) 1294 if (!ev_is_active (w))
725 return; 1295 return;
726 1296
1297 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1298
727 if (w->active < periodiccnt--) 1299 if (((W)w)->active < periodiccnt--)
728 { 1300 {
729 periodics [w->active - 1] = periodics [periodiccnt]; 1301 periodics [((W)w)->active - 1] = periodics [periodiccnt];
730 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1302 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
731 } 1303 }
732 1304
733 ev_stop ((W)w); 1305 ev_stop (EV_A_ (W)w);
734} 1306}
735 1307
736void 1308void
737evsignal_start (struct ev_signal *w) 1309ev_idle_start (EV_P_ struct ev_idle *w)
738{ 1310{
739 if (ev_is_active (w)) 1311 if (ev_is_active (w))
740 return; 1312 return;
741 1313
1314 ev_start (EV_A_ (W)w, ++idlecnt);
1315 array_needsize (idles, idlemax, idlecnt, );
1316 idles [idlecnt - 1] = w;
1317}
1318
1319void
1320ev_idle_stop (EV_P_ struct ev_idle *w)
1321{
1322 ev_clear_pending (EV_A_ (W)w);
1323 if (ev_is_active (w))
1324 return;
1325
1326 idles [((W)w)->active - 1] = idles [--idlecnt];
1327 ev_stop (EV_A_ (W)w);
1328}
1329
1330void
1331ev_prepare_start (EV_P_ struct ev_prepare *w)
1332{
1333 if (ev_is_active (w))
1334 return;
1335
1336 ev_start (EV_A_ (W)w, ++preparecnt);
1337 array_needsize (prepares, preparemax, preparecnt, );
1338 prepares [preparecnt - 1] = w;
1339}
1340
1341void
1342ev_prepare_stop (EV_P_ struct ev_prepare *w)
1343{
1344 ev_clear_pending (EV_A_ (W)w);
1345 if (ev_is_active (w))
1346 return;
1347
1348 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1349 ev_stop (EV_A_ (W)w);
1350}
1351
1352void
1353ev_check_start (EV_P_ struct ev_check *w)
1354{
1355 if (ev_is_active (w))
1356 return;
1357
1358 ev_start (EV_A_ (W)w, ++checkcnt);
1359 array_needsize (checks, checkmax, checkcnt, );
1360 checks [checkcnt - 1] = w;
1361}
1362
1363void
1364ev_check_stop (EV_P_ struct ev_check *w)
1365{
1366 ev_clear_pending (EV_A_ (W)w);
1367 if (ev_is_active (w))
1368 return;
1369
1370 checks [((W)w)->active - 1] = checks [--checkcnt];
1371 ev_stop (EV_A_ (W)w);
1372}
1373
1374#ifndef SA_RESTART
1375# define SA_RESTART 0
1376#endif
1377
1378void
1379ev_signal_start (EV_P_ struct ev_signal *w)
1380{
1381#if EV_MULTIPLICITY
1382 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1383#endif
1384 if (ev_is_active (w))
1385 return;
1386
1387 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1388
742 ev_start ((W)w, 1); 1389 ev_start (EV_A_ (W)w, 1);
743 array_needsize (signals, signalmax, w->signum, signals_init); 1390 array_needsize (signals, signalmax, w->signum, signals_init);
744 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1391 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
745 1392
746 if (!w->next) 1393 if (!((WL)w)->next)
747 { 1394 {
1395#if WIN32
1396 signal (w->signum, sighandler);
1397#else
748 struct sigaction sa; 1398 struct sigaction sa;
749 sa.sa_handler = sighandler; 1399 sa.sa_handler = sighandler;
750 sigfillset (&sa.sa_mask); 1400 sigfillset (&sa.sa_mask);
751 sa.sa_flags = 0; 1401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
752 sigaction (w->signum, &sa, 0); 1402 sigaction (w->signum, &sa, 0);
1403#endif
753 } 1404 }
754} 1405}
755 1406
756void 1407void
757evsignal_stop (struct ev_signal *w) 1408ev_signal_stop (EV_P_ struct ev_signal *w)
758{ 1409{
1410 ev_clear_pending (EV_A_ (W)w);
759 if (!ev_is_active (w)) 1411 if (!ev_is_active (w))
760 return; 1412 return;
761 1413
762 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1414 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
763 ev_stop ((W)w); 1415 ev_stop (EV_A_ (W)w);
764 1416
765 if (!signals [w->signum - 1].head) 1417 if (!signals [w->signum - 1].head)
766 signal (w->signum, SIG_DFL); 1418 signal (w->signum, SIG_DFL);
767} 1419}
768 1420
769void evidle_start (struct ev_idle *w) 1421void
1422ev_child_start (EV_P_ struct ev_child *w)
770{ 1423{
1424#if EV_MULTIPLICITY
1425 assert (("child watchers are only supported in the default loop", loop == default_loop));
1426#endif
771 if (ev_is_active (w)) 1427 if (ev_is_active (w))
772 return; 1428 return;
773 1429
774 ev_start ((W)w, ++idlecnt); 1430 ev_start (EV_A_ (W)w, 1);
775 array_needsize (idles, idlemax, idlecnt, ); 1431 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
776 idles [idlecnt - 1] = w;
777} 1432}
778 1433
779void evidle_stop (struct ev_idle *w) 1434void
1435ev_child_stop (EV_P_ struct ev_child *w)
780{ 1436{
781 idles [w->active - 1] = idles [--idlecnt]; 1437 ev_clear_pending (EV_A_ (W)w);
782 ev_stop ((W)w);
783}
784
785void evcheck_start (struct ev_check *w)
786{
787 if (ev_is_active (w)) 1438 if (ev_is_active (w))
788 return; 1439 return;
789 1440
790 ev_start ((W)w, ++checkcnt); 1441 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
791 array_needsize (checks, checkmax, checkcnt, );
792 checks [checkcnt - 1] = w;
793}
794
795void evcheck_stop (struct ev_check *w)
796{
797 checks [w->active - 1] = checks [--checkcnt];
798 ev_stop ((W)w); 1442 ev_stop (EV_A_ (W)w);
799} 1443}
800 1444
801/*****************************************************************************/ 1445/*****************************************************************************/
802 1446
803#if 0 1447struct ev_once
804 1448{
805struct ev_io wio; 1449 struct ev_io io;
806
807static void
808sin_cb (struct ev_io *w, int revents)
809{
810 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
811}
812
813static void
814ocb (struct ev_timer *w, int revents)
815{
816 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
817 evtimer_stop (w);
818 evtimer_start (w);
819}
820
821static void
822scb (struct ev_signal *w, int revents)
823{
824 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
825 evio_stop (&wio);
826 evio_start (&wio);
827}
828
829static void
830gcb (struct ev_signal *w, int revents)
831{
832 fprintf (stderr, "generic %x\n", revents);
833
834}
835
836int main (void)
837{
838 ev_init (0);
839
840 evio_init (&wio, sin_cb, 0, EV_READ);
841 evio_start (&wio);
842
843 struct ev_timer t[10000];
844
845#if 0
846 int i;
847 for (i = 0; i < 10000; ++i)
848 {
849 struct ev_timer *w = t + i;
850 evw_init (w, ocb, i);
851 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
852 evtimer_start (w);
853 if (drand48 () < 0.5)
854 evtimer_stop (w);
855 }
856#endif
857
858 struct ev_timer t1; 1450 struct ev_timer to;
859 evtimer_init (&t1, ocb, 5, 10); 1451 void (*cb)(int revents, void *arg);
860 evtimer_start (&t1); 1452 void *arg;
1453};
861 1454
862 struct ev_signal sig; 1455static void
863 evsignal_init (&sig, scb, SIGQUIT); 1456once_cb (EV_P_ struct ev_once *once, int revents)
864 evsignal_start (&sig); 1457{
1458 void (*cb)(int revents, void *arg) = once->cb;
1459 void *arg = once->arg;
865 1460
866 struct ev_check cw; 1461 ev_io_stop (EV_A_ &once->io);
867 evcheck_init (&cw, gcb); 1462 ev_timer_stop (EV_A_ &once->to);
868 evcheck_start (&cw); 1463 ev_free (once);
869 1464
870 struct ev_idle iw; 1465 cb (revents, arg);
871 evidle_init (&iw, gcb);
872 evidle_start (&iw);
873
874 ev_loop (0);
875
876 return 0;
877} 1466}
878 1467
879#endif 1468static void
1469once_cb_io (EV_P_ struct ev_io *w, int revents)
1470{
1471 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1472}
880 1473
1474static void
1475once_cb_to (EV_P_ struct ev_timer *w, int revents)
1476{
1477 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1478}
881 1479
1480void
1481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1482{
1483 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
882 1484
1485 if (!once)
1486 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1487 else
1488 {
1489 once->cb = cb;
1490 once->arg = arg;
883 1491
1492 ev_watcher_init (&once->io, once_cb_io);
1493 if (fd >= 0)
1494 {
1495 ev_io_set (&once->io, fd, events);
1496 ev_io_start (EV_A_ &once->io);
1497 }
1498
1499 ev_watcher_init (&once->to, once_cb_to);
1500 if (timeout >= 0.)
1501 {
1502 ev_timer_set (&once->to, timeout, 0.);
1503 ev_timer_start (EV_A_ &once->to);
1504 }
1505 }
1506}
1507

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines