ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.104 by root, Mon Nov 12 00:39:45 2007 UTC vs.
Revision 1.150 by root, Tue Nov 27 19:41:52 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
43# ifndef EV_USE_REALTIME 47# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
45# endif 49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
46# endif 57# endif
47 58
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 59# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
50# endif 65# endif
51 66
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 67# ifndef EV_USE_POLL
68# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
54# endif 73# endif
55 74
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
58# endif 81# endif
59 82
83# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
62# endif 97# endif
63 98
64#endif 99#endif
65 100
66#include <math.h> 101#include <math.h>
76#include <time.h> 111#include <time.h>
77 112
78#include <signal.h> 113#include <signal.h>
79 114
80#ifndef _WIN32 115#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 116# include <sys/time.h>
83# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
84#else 119#else
85# define WIN32_LEAN_AND_MEAN 120# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 121# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 122# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 123# define EV_SELECT_IS_WINSOCKET 1
90#endif 125#endif
91 126
92/**/ 127/**/
93 128
94#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
95# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
96#endif 135#endif
97 136
98#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 139#endif
102 140
103#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
104# ifdef _WIN32 142# ifdef _WIN32
105# define EV_USE_POLL 0 143# define EV_USE_POLL 0
114 152
115#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
117#endif 155#endif
118 156
119#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
120# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
159#endif
160
161#ifndef EV_PID_HASHSIZE
162# if EV_MINIMAL
163# define EV_PID_HASHSIZE 1
164# else
165# define EV_PID_HASHSIZE 16
166# endif
121#endif 167#endif
122 168
123/**/ 169/**/
124 170
125#ifndef CLOCK_MONOTONIC 171#ifndef CLOCK_MONOTONIC
137#endif 183#endif
138 184
139/**/ 185/**/
140 186
141#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 187#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
142#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 188#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
143#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
144/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 189/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
145 190
146#ifdef EV_H 191#ifdef EV_H
147# include EV_H 192# include EV_H
148#else 193#else
149# include "ev.h" 194# include "ev.h"
150#endif 195#endif
151 196
152#if __GNUC__ >= 3 197#if __GNUC__ >= 3
153# define expect(expr,value) __builtin_expect ((expr),(value)) 198# define expect(expr,value) __builtin_expect ((expr),(value))
199# define inline_size static inline /* inline for codesize */
200# if EV_MINIMAL
154# define inline inline 201# define noinline __attribute__ ((noinline))
202# define inline_speed static noinline
203# else
204# define noinline
205# define inline_speed static inline
206# endif
155#else 207#else
156# define expect(expr,value) (expr) 208# define expect(expr,value) (expr)
209# define inline_speed static
157# define inline static 210# define inline_size static
211# define noinline
158#endif 212#endif
159 213
160#define expect_false(expr) expect ((expr) != 0, 0) 214#define expect_false(expr) expect ((expr) != 0, 0)
161#define expect_true(expr) expect ((expr) != 0, 1) 215#define expect_true(expr) expect ((expr) != 0, 1)
162 216
163#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 217#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
164#define ABSPRI(w) ((w)->priority - EV_MINPRI) 218#define ABSPRI(w) ((w)->priority - EV_MINPRI)
165 219
166#define EMPTY /* required for microsofts broken pseudo-c compiler */ 220#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
221#define EMPTY2(a,b) /* used to suppress some warnings */
167 222
168typedef struct ev_watcher *W; 223typedef ev_watcher *W;
169typedef struct ev_watcher_list *WL; 224typedef ev_watcher_list *WL;
170typedef struct ev_watcher_time *WT; 225typedef ev_watcher_time *WT;
171 226
172static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 227static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
173 228
174#ifdef _WIN32 229#ifdef _WIN32
175# include "ev_win32.c" 230# include "ev_win32.c"
177 232
178/*****************************************************************************/ 233/*****************************************************************************/
179 234
180static void (*syserr_cb)(const char *msg); 235static void (*syserr_cb)(const char *msg);
181 236
237void
182void ev_set_syserr_cb (void (*cb)(const char *msg)) 238ev_set_syserr_cb (void (*cb)(const char *msg))
183{ 239{
184 syserr_cb = cb; 240 syserr_cb = cb;
185} 241}
186 242
187static void 243static void noinline
188syserr (const char *msg) 244syserr (const char *msg)
189{ 245{
190 if (!msg) 246 if (!msg)
191 msg = "(libev) system error"; 247 msg = "(libev) system error";
192 248
197 perror (msg); 253 perror (msg);
198 abort (); 254 abort ();
199 } 255 }
200} 256}
201 257
202static void *(*alloc)(void *ptr, long size); 258static void *(*alloc)(void *ptr, size_t size) = realloc;
203 259
260void
204void ev_set_allocator (void *(*cb)(void *ptr, long size)) 261ev_set_allocator (void *(*cb)(void *ptr, size_t size))
205{ 262{
206 alloc = cb; 263 alloc = cb;
207} 264}
208 265
209static void * 266inline_speed void *
210ev_realloc (void *ptr, long size) 267ev_realloc (void *ptr, size_t size)
211{ 268{
212 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 269 ptr = alloc (ptr, size);
213 270
214 if (!ptr && size) 271 if (!ptr && size)
215 { 272 {
216 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 273 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size);
217 abort (); 274 abort ();
218 } 275 }
219 276
220 return ptr; 277 return ptr;
221} 278}
251 #include "ev_vars.h" 308 #include "ev_vars.h"
252 #undef VAR 309 #undef VAR
253 }; 310 };
254 #include "ev_wrap.h" 311 #include "ev_wrap.h"
255 312
256 struct ev_loop default_loop_struct; 313 static struct ev_loop default_loop_struct;
257 static struct ev_loop *default_loop; 314 struct ev_loop *ev_default_loop_ptr;
258 315
259#else 316#else
260 317
261 ev_tstamp ev_rt_now; 318 ev_tstamp ev_rt_now;
262 #define VAR(name,decl) static decl; 319 #define VAR(name,decl) static decl;
263 #include "ev_vars.h" 320 #include "ev_vars.h"
264 #undef VAR 321 #undef VAR
265 322
266 static int default_loop; 323 static int ev_default_loop_ptr;
267 324
268#endif 325#endif
269 326
270/*****************************************************************************/ 327/*****************************************************************************/
271 328
281 gettimeofday (&tv, 0); 338 gettimeofday (&tv, 0);
282 return tv.tv_sec + tv.tv_usec * 1e-6; 339 return tv.tv_sec + tv.tv_usec * 1e-6;
283#endif 340#endif
284} 341}
285 342
286inline ev_tstamp 343ev_tstamp inline_size
287get_clock (void) 344get_clock (void)
288{ 345{
289#if EV_USE_MONOTONIC 346#if EV_USE_MONOTONIC
290 if (expect_true (have_monotonic)) 347 if (expect_true (have_monotonic))
291 { 348 {
304{ 361{
305 return ev_rt_now; 362 return ev_rt_now;
306} 363}
307#endif 364#endif
308 365
309#define array_roundsize(type,n) ((n) | 4 & ~3) 366#define array_roundsize(type,n) (((n) | 4) & ~3)
310 367
311#define array_needsize(type,base,cur,cnt,init) \ 368#define array_needsize(type,base,cur,cnt,init) \
312 if (expect_false ((cnt) > cur)) \ 369 if (expect_false ((cnt) > cur)) \
313 { \ 370 { \
314 int newcnt = cur; \ 371 int newcnt = cur; \
334#define array_free(stem, idx) \ 391#define array_free(stem, idx) \
335 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 392 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
336 393
337/*****************************************************************************/ 394/*****************************************************************************/
338 395
339static void 396void noinline
397ev_feed_event (EV_P_ void *w, int revents)
398{
399 W w_ = (W)w;
400
401 if (expect_false (w_->pending))
402 {
403 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
404 return;
405 }
406
407 w_->pending = ++pendingcnt [ABSPRI (w_)];
408 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
409 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
410 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
411}
412
413void inline_size
414queue_events (EV_P_ W *events, int eventcnt, int type)
415{
416 int i;
417
418 for (i = 0; i < eventcnt; ++i)
419 ev_feed_event (EV_A_ events [i], type);
420}
421
422/*****************************************************************************/
423
424void inline_size
340anfds_init (ANFD *base, int count) 425anfds_init (ANFD *base, int count)
341{ 426{
342 while (count--) 427 while (count--)
343 { 428 {
344 base->head = 0; 429 base->head = 0;
347 432
348 ++base; 433 ++base;
349 } 434 }
350} 435}
351 436
352void 437void inline_speed
353ev_feed_event (EV_P_ void *w, int revents)
354{
355 W w_ = (W)w;
356
357 if (w_->pending)
358 {
359 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
360 return;
361 }
362
363 w_->pending = ++pendingcnt [ABSPRI (w_)];
364 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
365 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
366 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
367}
368
369static void
370queue_events (EV_P_ W *events, int eventcnt, int type)
371{
372 int i;
373
374 for (i = 0; i < eventcnt; ++i)
375 ev_feed_event (EV_A_ events [i], type);
376}
377
378inline void
379fd_event (EV_P_ int fd, int revents) 438fd_event (EV_P_ int fd, int revents)
380{ 439{
381 ANFD *anfd = anfds + fd; 440 ANFD *anfd = anfds + fd;
382 struct ev_io *w; 441 ev_io *w;
383 442
384 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 443 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
385 { 444 {
386 int ev = w->events & revents; 445 int ev = w->events & revents;
387 446
388 if (ev) 447 if (ev)
389 ev_feed_event (EV_A_ (W)w, ev); 448 ev_feed_event (EV_A_ (W)w, ev);
394ev_feed_fd_event (EV_P_ int fd, int revents) 453ev_feed_fd_event (EV_P_ int fd, int revents)
395{ 454{
396 fd_event (EV_A_ fd, revents); 455 fd_event (EV_A_ fd, revents);
397} 456}
398 457
399/*****************************************************************************/ 458void inline_size
400
401static void
402fd_reify (EV_P) 459fd_reify (EV_P)
403{ 460{
404 int i; 461 int i;
405 462
406 for (i = 0; i < fdchangecnt; ++i) 463 for (i = 0; i < fdchangecnt; ++i)
407 { 464 {
408 int fd = fdchanges [i]; 465 int fd = fdchanges [i];
409 ANFD *anfd = anfds + fd; 466 ANFD *anfd = anfds + fd;
410 struct ev_io *w; 467 ev_io *w;
411 468
412 int events = 0; 469 int events = 0;
413 470
414 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
415 events |= w->events; 472 events |= w->events;
416 473
417#if EV_SELECT_IS_WINSOCKET 474#if EV_SELECT_IS_WINSOCKET
418 if (events) 475 if (events)
419 { 476 {
423 } 480 }
424#endif 481#endif
425 482
426 anfd->reify = 0; 483 anfd->reify = 0;
427 484
428 method_modify (EV_A_ fd, anfd->events, events); 485 backend_modify (EV_A_ fd, anfd->events, events);
429 anfd->events = events; 486 anfd->events = events;
430 } 487 }
431 488
432 fdchangecnt = 0; 489 fdchangecnt = 0;
433} 490}
434 491
435static void 492void inline_size
436fd_change (EV_P_ int fd) 493fd_change (EV_P_ int fd)
437{ 494{
438 if (anfds [fd].reify) 495 if (expect_false (anfds [fd].reify))
439 return; 496 return;
440 497
441 anfds [fd].reify = 1; 498 anfds [fd].reify = 1;
442 499
443 ++fdchangecnt; 500 ++fdchangecnt;
444 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 501 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
445 fdchanges [fdchangecnt - 1] = fd; 502 fdchanges [fdchangecnt - 1] = fd;
446} 503}
447 504
448static void 505void inline_speed
449fd_kill (EV_P_ int fd) 506fd_kill (EV_P_ int fd)
450{ 507{
451 struct ev_io *w; 508 ev_io *w;
452 509
453 while ((w = (struct ev_io *)anfds [fd].head)) 510 while ((w = (ev_io *)anfds [fd].head))
454 { 511 {
455 ev_io_stop (EV_A_ w); 512 ev_io_stop (EV_A_ w);
456 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 513 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
457 } 514 }
458} 515}
459 516
460static int 517int inline_size
461fd_valid (int fd) 518fd_valid (int fd)
462{ 519{
463#ifdef _WIN32 520#ifdef _WIN32
464 return _get_osfhandle (fd) != -1; 521 return _get_osfhandle (fd) != -1;
465#else 522#else
466 return fcntl (fd, F_GETFD) != -1; 523 return fcntl (fd, F_GETFD) != -1;
467#endif 524#endif
468} 525}
469 526
470/* called on EBADF to verify fds */ 527/* called on EBADF to verify fds */
471static void 528static void noinline
472fd_ebadf (EV_P) 529fd_ebadf (EV_P)
473{ 530{
474 int fd; 531 int fd;
475 532
476 for (fd = 0; fd < anfdmax; ++fd) 533 for (fd = 0; fd < anfdmax; ++fd)
478 if (!fd_valid (fd) == -1 && errno == EBADF) 535 if (!fd_valid (fd) == -1 && errno == EBADF)
479 fd_kill (EV_A_ fd); 536 fd_kill (EV_A_ fd);
480} 537}
481 538
482/* called on ENOMEM in select/poll to kill some fds and retry */ 539/* called on ENOMEM in select/poll to kill some fds and retry */
483static void 540static void noinline
484fd_enomem (EV_P) 541fd_enomem (EV_P)
485{ 542{
486 int fd; 543 int fd;
487 544
488 for (fd = anfdmax; fd--; ) 545 for (fd = anfdmax; fd--; )
491 fd_kill (EV_A_ fd); 548 fd_kill (EV_A_ fd);
492 return; 549 return;
493 } 550 }
494} 551}
495 552
496/* usually called after fork if method needs to re-arm all fds from scratch */ 553/* usually called after fork if backend needs to re-arm all fds from scratch */
497static void 554static void noinline
498fd_rearm_all (EV_P) 555fd_rearm_all (EV_P)
499{ 556{
500 int fd; 557 int fd;
501 558
502 /* this should be highly optimised to not do anything but set a flag */ 559 /* this should be highly optimised to not do anything but set a flag */
508 } 565 }
509} 566}
510 567
511/*****************************************************************************/ 568/*****************************************************************************/
512 569
513static void 570void inline_speed
514upheap (WT *heap, int k) 571upheap (WT *heap, int k)
515{ 572{
516 WT w = heap [k]; 573 WT w = heap [k];
517 574
518 while (k && heap [k >> 1]->at > w->at) 575 while (k && heap [k >> 1]->at > w->at)
525 heap [k] = w; 582 heap [k] = w;
526 ((W)heap [k])->active = k + 1; 583 ((W)heap [k])->active = k + 1;
527 584
528} 585}
529 586
530static void 587void inline_speed
531downheap (WT *heap, int N, int k) 588downheap (WT *heap, int N, int k)
532{ 589{
533 WT w = heap [k]; 590 WT w = heap [k];
534 591
535 while (k < (N >> 1)) 592 while (k < (N >> 1))
549 606
550 heap [k] = w; 607 heap [k] = w;
551 ((W)heap [k])->active = k + 1; 608 ((W)heap [k])->active = k + 1;
552} 609}
553 610
554inline void 611void inline_size
555adjustheap (WT *heap, int N, int k) 612adjustheap (WT *heap, int N, int k)
556{ 613{
557 upheap (heap, k); 614 upheap (heap, k);
558 downheap (heap, N, k); 615 downheap (heap, N, k);
559} 616}
569static ANSIG *signals; 626static ANSIG *signals;
570static int signalmax; 627static int signalmax;
571 628
572static int sigpipe [2]; 629static int sigpipe [2];
573static sig_atomic_t volatile gotsig; 630static sig_atomic_t volatile gotsig;
574static struct ev_io sigev; 631static ev_io sigev;
575 632
576static void 633void inline_size
577signals_init (ANSIG *base, int count) 634signals_init (ANSIG *base, int count)
578{ 635{
579 while (count--) 636 while (count--)
580 { 637 {
581 base->head = 0; 638 base->head = 0;
601 write (sigpipe [1], &signum, 1); 658 write (sigpipe [1], &signum, 1);
602 errno = old_errno; 659 errno = old_errno;
603 } 660 }
604} 661}
605 662
606void 663void noinline
607ev_feed_signal_event (EV_P_ int signum) 664ev_feed_signal_event (EV_P_ int signum)
608{ 665{
609 WL w; 666 WL w;
610 667
611#if EV_MULTIPLICITY 668#if EV_MULTIPLICITY
612 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 669 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
613#endif 670#endif
614 671
615 --signum; 672 --signum;
616 673
617 if (signum < 0 || signum >= signalmax) 674 if (signum < 0 || signum >= signalmax)
622 for (w = signals [signum].head; w; w = w->next) 679 for (w = signals [signum].head; w; w = w->next)
623 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 680 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
624} 681}
625 682
626static void 683static void
627sigcb (EV_P_ struct ev_io *iow, int revents) 684sigcb (EV_P_ ev_io *iow, int revents)
628{ 685{
629 int signum; 686 int signum;
630 687
631 read (sigpipe [0], &revents, 1); 688 read (sigpipe [0], &revents, 1);
632 gotsig = 0; 689 gotsig = 0;
634 for (signum = signalmax; signum--; ) 691 for (signum = signalmax; signum--; )
635 if (signals [signum].gotsig) 692 if (signals [signum].gotsig)
636 ev_feed_signal_event (EV_A_ signum + 1); 693 ev_feed_signal_event (EV_A_ signum + 1);
637} 694}
638 695
639inline void 696void inline_size
640fd_intern (int fd) 697fd_intern (int fd)
641{ 698{
642#ifdef _WIN32 699#ifdef _WIN32
643 int arg = 1; 700 int arg = 1;
644 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 701 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
646 fcntl (fd, F_SETFD, FD_CLOEXEC); 703 fcntl (fd, F_SETFD, FD_CLOEXEC);
647 fcntl (fd, F_SETFL, O_NONBLOCK); 704 fcntl (fd, F_SETFL, O_NONBLOCK);
648#endif 705#endif
649} 706}
650 707
651static void 708static void noinline
652siginit (EV_P) 709siginit (EV_P)
653{ 710{
654 fd_intern (sigpipe [0]); 711 fd_intern (sigpipe [0]);
655 fd_intern (sigpipe [1]); 712 fd_intern (sigpipe [1]);
656 713
659 ev_unref (EV_A); /* child watcher should not keep loop alive */ 716 ev_unref (EV_A); /* child watcher should not keep loop alive */
660} 717}
661 718
662/*****************************************************************************/ 719/*****************************************************************************/
663 720
664static struct ev_child *childs [PID_HASHSIZE]; 721static ev_child *childs [EV_PID_HASHSIZE];
665 722
666#ifndef _WIN32 723#ifndef _WIN32
667 724
668static struct ev_signal childev; 725static ev_signal childev;
669 726
670#ifndef WCONTINUED 727void inline_speed
671# define WCONTINUED 0
672#endif
673
674static void
675child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 728child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
676{ 729{
677 struct ev_child *w; 730 ev_child *w;
678 731
679 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 732 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
680 if (w->pid == pid || !w->pid) 733 if (w->pid == pid || !w->pid)
681 { 734 {
682 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 735 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
683 w->rpid = pid; 736 w->rpid = pid;
684 w->rstatus = status; 737 w->rstatus = status;
685 ev_feed_event (EV_A_ (W)w, EV_CHILD); 738 ev_feed_event (EV_A_ (W)w, EV_CHILD);
686 } 739 }
687} 740}
688 741
742#ifndef WCONTINUED
743# define WCONTINUED 0
744#endif
745
689static void 746static void
690childcb (EV_P_ struct ev_signal *sw, int revents) 747childcb (EV_P_ ev_signal *sw, int revents)
691{ 748{
692 int pid, status; 749 int pid, status;
693 750
751 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
694 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 752 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
695 { 753 if (!WCONTINUED
754 || errno != EINVAL
755 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
756 return;
757
696 /* make sure we are called again until all childs have been reaped */ 758 /* make sure we are called again until all childs have been reaped */
759 /* we need to do it this way so that the callback gets called before we continue */
697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 760 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
698 761
699 child_reap (EV_A_ sw, pid, pid, status); 762 child_reap (EV_A_ sw, pid, pid, status);
763 if (EV_PID_HASHSIZE > 1)
700 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 764 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
701 }
702} 765}
703 766
704#endif 767#endif
705 768
706/*****************************************************************************/ 769/*****************************************************************************/
707 770
771#if EV_USE_PORT
772# include "ev_port.c"
773#endif
708#if EV_USE_KQUEUE 774#if EV_USE_KQUEUE
709# include "ev_kqueue.c" 775# include "ev_kqueue.c"
710#endif 776#endif
711#if EV_USE_EPOLL 777#if EV_USE_EPOLL
712# include "ev_epoll.c" 778# include "ev_epoll.c"
729{ 795{
730 return EV_VERSION_MINOR; 796 return EV_VERSION_MINOR;
731} 797}
732 798
733/* return true if we are running with elevated privileges and should ignore env variables */ 799/* return true if we are running with elevated privileges and should ignore env variables */
734static int 800int inline_size
735enable_secure (void) 801enable_secure (void)
736{ 802{
737#ifdef _WIN32 803#ifdef _WIN32
738 return 0; 804 return 0;
739#else 805#else
740 return getuid () != geteuid () 806 return getuid () != geteuid ()
741 || getgid () != getegid (); 807 || getgid () != getegid ();
742#endif 808#endif
743} 809}
744 810
745int 811unsigned int
746ev_method (EV_P) 812ev_supported_backends (void)
747{ 813{
748 return method; 814 unsigned int flags = 0;
815
816 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
817 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
818 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
819 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
820 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
821
822 return flags;
823}
824
825unsigned int
826ev_recommended_backends (void)
827{
828 unsigned int flags = ev_supported_backends ();
829
830#ifndef __NetBSD__
831 /* kqueue is borked on everything but netbsd apparently */
832 /* it usually doesn't work correctly on anything but sockets and pipes */
833 flags &= ~EVBACKEND_KQUEUE;
834#endif
835#ifdef __APPLE__
836 // flags &= ~EVBACKEND_KQUEUE; for documentation
837 flags &= ~EVBACKEND_POLL;
838#endif
839
840 return flags;
841}
842
843unsigned int
844ev_embeddable_backends (void)
845{
846 return EVBACKEND_EPOLL
847 | EVBACKEND_KQUEUE
848 | EVBACKEND_PORT;
849}
850
851unsigned int
852ev_backend (EV_P)
853{
854 return backend;
749} 855}
750 856
751static void 857static void
752loop_init (EV_P_ int methods) 858loop_init (EV_P_ unsigned int flags)
753{ 859{
754 if (!method) 860 if (!backend)
755 { 861 {
756#if EV_USE_MONOTONIC 862#if EV_USE_MONOTONIC
757 { 863 {
758 struct timespec ts; 864 struct timespec ts;
759 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 865 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
764 ev_rt_now = ev_time (); 870 ev_rt_now = ev_time ();
765 mn_now = get_clock (); 871 mn_now = get_clock ();
766 now_floor = mn_now; 872 now_floor = mn_now;
767 rtmn_diff = ev_rt_now - mn_now; 873 rtmn_diff = ev_rt_now - mn_now;
768 874
769 if (methods == EVMETHOD_AUTO) 875 if (!(flags & EVFLAG_NOENV)
770 if (!enable_secure () && getenv ("LIBEV_METHODS")) 876 && !enable_secure ()
877 && getenv ("LIBEV_FLAGS"))
771 methods = atoi (getenv ("LIBEV_METHODS")); 878 flags = atoi (getenv ("LIBEV_FLAGS"));
772 else
773 methods = EVMETHOD_ANY;
774 879
775 method = 0; 880 if (!(flags & 0x0000ffffUL))
881 flags |= ev_recommended_backends ();
882
883 backend = 0;
884#if EV_USE_PORT
885 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
886#endif
776#if EV_USE_KQUEUE 887#if EV_USE_KQUEUE
777 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 888 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
778#endif 889#endif
779#if EV_USE_EPOLL 890#if EV_USE_EPOLL
780 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 891 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
781#endif 892#endif
782#if EV_USE_POLL 893#if EV_USE_POLL
783 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 894 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
784#endif 895#endif
785#if EV_USE_SELECT 896#if EV_USE_SELECT
786 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 897 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
787#endif 898#endif
788 899
789 ev_init (&sigev, sigcb); 900 ev_init (&sigev, sigcb);
790 ev_set_priority (&sigev, EV_MAXPRI); 901 ev_set_priority (&sigev, EV_MAXPRI);
791 } 902 }
792} 903}
793 904
794void 905static void
795loop_destroy (EV_P) 906loop_destroy (EV_P)
796{ 907{
797 int i; 908 int i;
798 909
910#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
912#endif
799#if EV_USE_KQUEUE 913#if EV_USE_KQUEUE
800 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 914 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
801#endif 915#endif
802#if EV_USE_EPOLL 916#if EV_USE_EPOLL
803 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 917 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
804#endif 918#endif
805#if EV_USE_POLL 919#if EV_USE_POLL
806 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 920 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
807#endif 921#endif
808#if EV_USE_SELECT 922#if EV_USE_SELECT
809 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 923 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
810#endif 924#endif
811 925
812 for (i = NUMPRI; i--; ) 926 for (i = NUMPRI; i--; )
813 array_free (pending, [i]); 927 array_free (pending, [i]);
814 928
815 /* have to use the microsoft-never-gets-it-right macro */ 929 /* have to use the microsoft-never-gets-it-right macro */
816 array_free (fdchange, EMPTY); 930 array_free (fdchange, EMPTY0);
817 array_free (timer, EMPTY); 931 array_free (timer, EMPTY0);
818#if EV_PERIODICS 932#if EV_PERIODIC_ENABLE
819 array_free (periodic, EMPTY); 933 array_free (periodic, EMPTY0);
820#endif 934#endif
821 array_free (idle, EMPTY); 935 array_free (idle, EMPTY0);
822 array_free (prepare, EMPTY); 936 array_free (prepare, EMPTY0);
823 array_free (check, EMPTY); 937 array_free (check, EMPTY0);
824 938
825 method = 0; 939 backend = 0;
826} 940}
827 941
828static void 942static void
829loop_fork (EV_P) 943loop_fork (EV_P)
830{ 944{
945#if EV_USE_PORT
946 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
947#endif
948#if EV_USE_KQUEUE
949 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
950#endif
831#if EV_USE_EPOLL 951#if EV_USE_EPOLL
832 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 952 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
833#endif
834#if EV_USE_KQUEUE
835 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
836#endif 953#endif
837 954
838 if (ev_is_active (&sigev)) 955 if (ev_is_active (&sigev))
839 { 956 {
840 /* default loop */ 957 /* default loop */
853 postfork = 0; 970 postfork = 0;
854} 971}
855 972
856#if EV_MULTIPLICITY 973#if EV_MULTIPLICITY
857struct ev_loop * 974struct ev_loop *
858ev_loop_new (int methods) 975ev_loop_new (unsigned int flags)
859{ 976{
860 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 977 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
861 978
862 memset (loop, 0, sizeof (struct ev_loop)); 979 memset (loop, 0, sizeof (struct ev_loop));
863 980
864 loop_init (EV_A_ methods); 981 loop_init (EV_A_ flags);
865 982
866 if (ev_method (EV_A)) 983 if (ev_backend (EV_A))
867 return loop; 984 return loop;
868 985
869 return 0; 986 return 0;
870} 987}
871 988
884 1001
885#endif 1002#endif
886 1003
887#if EV_MULTIPLICITY 1004#if EV_MULTIPLICITY
888struct ev_loop * 1005struct ev_loop *
1006ev_default_loop_init (unsigned int flags)
889#else 1007#else
890int 1008int
1009ev_default_loop (unsigned int flags)
891#endif 1010#endif
892ev_default_loop (int methods)
893{ 1011{
894 if (sigpipe [0] == sigpipe [1]) 1012 if (sigpipe [0] == sigpipe [1])
895 if (pipe (sigpipe)) 1013 if (pipe (sigpipe))
896 return 0; 1014 return 0;
897 1015
898 if (!default_loop) 1016 if (!ev_default_loop_ptr)
899 { 1017 {
900#if EV_MULTIPLICITY 1018#if EV_MULTIPLICITY
901 struct ev_loop *loop = default_loop = &default_loop_struct; 1019 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
902#else 1020#else
903 default_loop = 1; 1021 ev_default_loop_ptr = 1;
904#endif 1022#endif
905 1023
906 loop_init (EV_A_ methods); 1024 loop_init (EV_A_ flags);
907 1025
908 if (ev_method (EV_A)) 1026 if (ev_backend (EV_A))
909 { 1027 {
910 siginit (EV_A); 1028 siginit (EV_A);
911 1029
912#ifndef _WIN32 1030#ifndef _WIN32
913 ev_signal_init (&childev, childcb, SIGCHLD); 1031 ev_signal_init (&childev, childcb, SIGCHLD);
915 ev_signal_start (EV_A_ &childev); 1033 ev_signal_start (EV_A_ &childev);
916 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1034 ev_unref (EV_A); /* child watcher should not keep loop alive */
917#endif 1035#endif
918 } 1036 }
919 else 1037 else
920 default_loop = 0; 1038 ev_default_loop_ptr = 0;
921 } 1039 }
922 1040
923 return default_loop; 1041 return ev_default_loop_ptr;
924} 1042}
925 1043
926void 1044void
927ev_default_destroy (void) 1045ev_default_destroy (void)
928{ 1046{
929#if EV_MULTIPLICITY 1047#if EV_MULTIPLICITY
930 struct ev_loop *loop = default_loop; 1048 struct ev_loop *loop = ev_default_loop_ptr;
931#endif 1049#endif
932 1050
933#ifndef _WIN32 1051#ifndef _WIN32
934 ev_ref (EV_A); /* child watcher */ 1052 ev_ref (EV_A); /* child watcher */
935 ev_signal_stop (EV_A_ &childev); 1053 ev_signal_stop (EV_A_ &childev);
946 1064
947void 1065void
948ev_default_fork (void) 1066ev_default_fork (void)
949{ 1067{
950#if EV_MULTIPLICITY 1068#if EV_MULTIPLICITY
951 struct ev_loop *loop = default_loop; 1069 struct ev_loop *loop = ev_default_loop_ptr;
952#endif 1070#endif
953 1071
954 if (method) 1072 if (backend)
955 postfork = 1; 1073 postfork = 1;
956} 1074}
957 1075
958/*****************************************************************************/ 1076/*****************************************************************************/
959 1077
960static int 1078int inline_size
961any_pending (EV_P) 1079any_pending (EV_P)
962{ 1080{
963 int pri; 1081 int pri;
964 1082
965 for (pri = NUMPRI; pri--; ) 1083 for (pri = NUMPRI; pri--; )
967 return 1; 1085 return 1;
968 1086
969 return 0; 1087 return 0;
970} 1088}
971 1089
972static void 1090void inline_speed
973call_pending (EV_P) 1091call_pending (EV_P)
974{ 1092{
975 int pri; 1093 int pri;
976 1094
977 for (pri = NUMPRI; pri--; ) 1095 for (pri = NUMPRI; pri--; )
978 while (pendingcnt [pri]) 1096 while (pendingcnt [pri])
979 { 1097 {
980 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1098 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
981 1099
982 if (p->w) 1100 if (expect_true (p->w))
983 { 1101 {
1102 assert (("non-pending watcher on pending list", p->w->pending));
1103
984 p->w->pending = 0; 1104 p->w->pending = 0;
985 EV_CB_INVOKE (p->w, p->events); 1105 EV_CB_INVOKE (p->w, p->events);
986 } 1106 }
987 } 1107 }
988} 1108}
989 1109
990static void 1110void inline_size
991timers_reify (EV_P) 1111timers_reify (EV_P)
992{ 1112{
993 while (timercnt && ((WT)timers [0])->at <= mn_now) 1113 while (timercnt && ((WT)timers [0])->at <= mn_now)
994 { 1114 {
995 struct ev_timer *w = timers [0]; 1115 ev_timer *w = timers [0];
996 1116
997 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1117 assert (("inactive timer on timer heap detected", ev_is_active (w)));
998 1118
999 /* first reschedule or stop timer */ 1119 /* first reschedule or stop timer */
1000 if (w->repeat) 1120 if (w->repeat)
1012 1132
1013 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1133 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1014 } 1134 }
1015} 1135}
1016 1136
1017#if EV_PERIODICS 1137#if EV_PERIODIC_ENABLE
1018static void 1138void inline_size
1019periodics_reify (EV_P) 1139periodics_reify (EV_P)
1020{ 1140{
1021 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1141 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1022 { 1142 {
1023 struct ev_periodic *w = periodics [0]; 1143 ev_periodic *w = periodics [0];
1024 1144
1025 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1145 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1026 1146
1027 /* first reschedule or stop timer */ 1147 /* first reschedule or stop timer */
1028 if (w->reschedule_cb) 1148 if (w->reschedule_cb)
1029 { 1149 {
1030 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1150 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1031
1032 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1151 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1033 downheap ((WT *)periodics, periodiccnt, 0); 1152 downheap ((WT *)periodics, periodiccnt, 0);
1034 } 1153 }
1035 else if (w->interval) 1154 else if (w->interval)
1036 { 1155 {
1043 1162
1044 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1163 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1045 } 1164 }
1046} 1165}
1047 1166
1048static void 1167static void noinline
1049periodics_reschedule (EV_P) 1168periodics_reschedule (EV_P)
1050{ 1169{
1051 int i; 1170 int i;
1052 1171
1053 /* adjust periodics after time jump */ 1172 /* adjust periodics after time jump */
1054 for (i = 0; i < periodiccnt; ++i) 1173 for (i = 0; i < periodiccnt; ++i)
1055 { 1174 {
1056 struct ev_periodic *w = periodics [i]; 1175 ev_periodic *w = periodics [i];
1057 1176
1058 if (w->reschedule_cb) 1177 if (w->reschedule_cb)
1059 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1178 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1060 else if (w->interval) 1179 else if (w->interval)
1061 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1180 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1065 for (i = periodiccnt >> 1; i--; ) 1184 for (i = periodiccnt >> 1; i--; )
1066 downheap ((WT *)periodics, periodiccnt, i); 1185 downheap ((WT *)periodics, periodiccnt, i);
1067} 1186}
1068#endif 1187#endif
1069 1188
1070inline int 1189int inline_size
1071time_update_monotonic (EV_P) 1190time_update_monotonic (EV_P)
1072{ 1191{
1073 mn_now = get_clock (); 1192 mn_now = get_clock ();
1074 1193
1075 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1194 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1083 ev_rt_now = ev_time (); 1202 ev_rt_now = ev_time ();
1084 return 1; 1203 return 1;
1085 } 1204 }
1086} 1205}
1087 1206
1088static void 1207void inline_size
1089time_update (EV_P) 1208time_update (EV_P)
1090{ 1209{
1091 int i; 1210 int i;
1092 1211
1093#if EV_USE_MONOTONIC 1212#if EV_USE_MONOTONIC
1095 { 1214 {
1096 if (time_update_monotonic (EV_A)) 1215 if (time_update_monotonic (EV_A))
1097 { 1216 {
1098 ev_tstamp odiff = rtmn_diff; 1217 ev_tstamp odiff = rtmn_diff;
1099 1218
1100 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1219 /* loop a few times, before making important decisions.
1220 * on the choice of "4": one iteration isn't enough,
1221 * in case we get preempted during the calls to
1222 * ev_time and get_clock. a second call is almost guarenteed
1223 * to succeed in that case, though. and looping a few more times
1224 * doesn't hurt either as we only do this on time-jumps or
1225 * in the unlikely event of getting preempted here.
1226 */
1227 for (i = 4; --i; )
1101 { 1228 {
1102 rtmn_diff = ev_rt_now - mn_now; 1229 rtmn_diff = ev_rt_now - mn_now;
1103 1230
1104 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1231 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1105 return; /* all is well */ 1232 return; /* all is well */
1107 ev_rt_now = ev_time (); 1234 ev_rt_now = ev_time ();
1108 mn_now = get_clock (); 1235 mn_now = get_clock ();
1109 now_floor = mn_now; 1236 now_floor = mn_now;
1110 } 1237 }
1111 1238
1112# if EV_PERIODICS 1239# if EV_PERIODIC_ENABLE
1113 periodics_reschedule (EV_A); 1240 periodics_reschedule (EV_A);
1114# endif 1241# endif
1115 /* no timer adjustment, as the monotonic clock doesn't jump */ 1242 /* no timer adjustment, as the monotonic clock doesn't jump */
1116 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1243 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1117 } 1244 }
1121 { 1248 {
1122 ev_rt_now = ev_time (); 1249 ev_rt_now = ev_time ();
1123 1250
1124 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1251 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1125 { 1252 {
1126#if EV_PERIODICS 1253#if EV_PERIODIC_ENABLE
1127 periodics_reschedule (EV_A); 1254 periodics_reschedule (EV_A);
1128#endif 1255#endif
1129 1256
1130 /* adjust timers. this is easy, as the offset is the same for all */ 1257 /* adjust timers. this is easy, as the offset is the same for all */
1131 for (i = 0; i < timercnt; ++i) 1258 for (i = 0; i < timercnt; ++i)
1151static int loop_done; 1278static int loop_done;
1152 1279
1153void 1280void
1154ev_loop (EV_P_ int flags) 1281ev_loop (EV_P_ int flags)
1155{ 1282{
1156 double block;
1157 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1283 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1284 ? EVUNLOOP_ONE
1285 : EVUNLOOP_CANCEL;
1158 1286
1159 do 1287 while (activecnt)
1160 { 1288 {
1289 /* we might have forked, so reify kernel state if necessary */
1290 #if EV_FORK_ENABLE
1291 if (expect_false (postfork))
1292 if (forkcnt)
1293 {
1294 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1295 call_pending (EV_A);
1296 }
1297 #endif
1298
1161 /* queue check watchers (and execute them) */ 1299 /* queue check watchers (and execute them) */
1162 if (expect_false (preparecnt)) 1300 if (expect_false (preparecnt))
1163 { 1301 {
1164 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1302 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1165 call_pending (EV_A); 1303 call_pending (EV_A);
1171 1309
1172 /* update fd-related kernel structures */ 1310 /* update fd-related kernel structures */
1173 fd_reify (EV_A); 1311 fd_reify (EV_A);
1174 1312
1175 /* calculate blocking time */ 1313 /* calculate blocking time */
1314 {
1315 double block;
1176 1316
1177 /* we only need this for !monotonic clock or timers, but as we basically 1317 if (flags & EVLOOP_NONBLOCK || idlecnt)
1178 always have timers, we just calculate it always */ 1318 block = 0.; /* do not block at all */
1319 else
1320 {
1321 /* update time to cancel out callback processing overhead */
1179#if EV_USE_MONOTONIC 1322#if EV_USE_MONOTONIC
1180 if (expect_true (have_monotonic)) 1323 if (expect_true (have_monotonic))
1181 time_update_monotonic (EV_A); 1324 time_update_monotonic (EV_A);
1182 else 1325 else
1183#endif 1326#endif
1184 { 1327 {
1185 ev_rt_now = ev_time (); 1328 ev_rt_now = ev_time ();
1186 mn_now = ev_rt_now; 1329 mn_now = ev_rt_now;
1187 } 1330 }
1188 1331
1189 if (flags & EVLOOP_NONBLOCK || idlecnt)
1190 block = 0.;
1191 else
1192 {
1193 block = MAX_BLOCKTIME; 1332 block = MAX_BLOCKTIME;
1194 1333
1195 if (timercnt) 1334 if (timercnt)
1196 { 1335 {
1197 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1336 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1198 if (block > to) block = to; 1337 if (block > to) block = to;
1199 } 1338 }
1200 1339
1201#if EV_PERIODICS 1340#if EV_PERIODIC_ENABLE
1202 if (periodiccnt) 1341 if (periodiccnt)
1203 { 1342 {
1204 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1343 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1205 if (block > to) block = to; 1344 if (block > to) block = to;
1206 } 1345 }
1207#endif 1346#endif
1208 1347
1209 if (block < 0.) block = 0.; 1348 if (expect_false (block < 0.)) block = 0.;
1210 } 1349 }
1211 1350
1212 method_poll (EV_A_ block); 1351 backend_poll (EV_A_ block);
1352 }
1213 1353
1214 /* update ev_rt_now, do magic */ 1354 /* update ev_rt_now, do magic */
1215 time_update (EV_A); 1355 time_update (EV_A);
1216 1356
1217 /* queue pending timers and reschedule them */ 1357 /* queue pending timers and reschedule them */
1218 timers_reify (EV_A); /* relative timers called last */ 1358 timers_reify (EV_A); /* relative timers called last */
1219#if EV_PERIODICS 1359#if EV_PERIODIC_ENABLE
1220 periodics_reify (EV_A); /* absolute timers called first */ 1360 periodics_reify (EV_A); /* absolute timers called first */
1221#endif 1361#endif
1222 1362
1223 /* queue idle watchers unless io or timers are pending */ 1363 /* queue idle watchers unless other events are pending */
1224 if (idlecnt && !any_pending (EV_A)) 1364 if (idlecnt && !any_pending (EV_A))
1225 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1365 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1226 1366
1227 /* queue check watchers, to be executed first */ 1367 /* queue check watchers, to be executed first */
1228 if (checkcnt) 1368 if (expect_false (checkcnt))
1229 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1369 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1230 1370
1231 call_pending (EV_A); 1371 call_pending (EV_A);
1232 }
1233 while (activecnt && !loop_done);
1234 1372
1235 if (loop_done != 2) 1373 if (expect_false (loop_done))
1236 loop_done = 0; 1374 break;
1375 }
1376
1377 if (loop_done == EVUNLOOP_ONE)
1378 loop_done = EVUNLOOP_CANCEL;
1237} 1379}
1238 1380
1239void 1381void
1240ev_unloop (EV_P_ int how) 1382ev_unloop (EV_P_ int how)
1241{ 1383{
1242 loop_done = how; 1384 loop_done = how;
1243} 1385}
1244 1386
1245/*****************************************************************************/ 1387/*****************************************************************************/
1246 1388
1247inline void 1389void inline_size
1248wlist_add (WL *head, WL elem) 1390wlist_add (WL *head, WL elem)
1249{ 1391{
1250 elem->next = *head; 1392 elem->next = *head;
1251 *head = elem; 1393 *head = elem;
1252} 1394}
1253 1395
1254inline void 1396void inline_size
1255wlist_del (WL *head, WL elem) 1397wlist_del (WL *head, WL elem)
1256{ 1398{
1257 while (*head) 1399 while (*head)
1258 { 1400 {
1259 if (*head == elem) 1401 if (*head == elem)
1264 1406
1265 head = &(*head)->next; 1407 head = &(*head)->next;
1266 } 1408 }
1267} 1409}
1268 1410
1269inline void 1411void inline_speed
1270ev_clear_pending (EV_P_ W w) 1412ev_clear_pending (EV_P_ W w)
1271{ 1413{
1272 if (w->pending) 1414 if (w->pending)
1273 { 1415 {
1274 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1416 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1275 w->pending = 0; 1417 w->pending = 0;
1276 } 1418 }
1277} 1419}
1278 1420
1279inline void 1421void inline_speed
1280ev_start (EV_P_ W w, int active) 1422ev_start (EV_P_ W w, int active)
1281{ 1423{
1282 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1424 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1283 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1425 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1284 1426
1285 w->active = active; 1427 w->active = active;
1286 ev_ref (EV_A); 1428 ev_ref (EV_A);
1287} 1429}
1288 1430
1289inline void 1431void inline_size
1290ev_stop (EV_P_ W w) 1432ev_stop (EV_P_ W w)
1291{ 1433{
1292 ev_unref (EV_A); 1434 ev_unref (EV_A);
1293 w->active = 0; 1435 w->active = 0;
1294} 1436}
1295 1437
1296/*****************************************************************************/ 1438/*****************************************************************************/
1297 1439
1298void 1440void
1299ev_io_start (EV_P_ struct ev_io *w) 1441ev_io_start (EV_P_ ev_io *w)
1300{ 1442{
1301 int fd = w->fd; 1443 int fd = w->fd;
1302 1444
1303 if (ev_is_active (w)) 1445 if (expect_false (ev_is_active (w)))
1304 return; 1446 return;
1305 1447
1306 assert (("ev_io_start called with negative fd", fd >= 0)); 1448 assert (("ev_io_start called with negative fd", fd >= 0));
1307 1449
1308 ev_start (EV_A_ (W)w, 1); 1450 ev_start (EV_A_ (W)w, 1);
1311 1453
1312 fd_change (EV_A_ fd); 1454 fd_change (EV_A_ fd);
1313} 1455}
1314 1456
1315void 1457void
1316ev_io_stop (EV_P_ struct ev_io *w) 1458ev_io_stop (EV_P_ ev_io *w)
1317{ 1459{
1318 ev_clear_pending (EV_A_ (W)w); 1460 ev_clear_pending (EV_A_ (W)w);
1319 if (!ev_is_active (w)) 1461 if (expect_false (!ev_is_active (w)))
1320 return; 1462 return;
1321 1463
1322 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1464 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1323 1465
1324 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1466 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1326 1468
1327 fd_change (EV_A_ w->fd); 1469 fd_change (EV_A_ w->fd);
1328} 1470}
1329 1471
1330void 1472void
1331ev_timer_start (EV_P_ struct ev_timer *w) 1473ev_timer_start (EV_P_ ev_timer *w)
1332{ 1474{
1333 if (ev_is_active (w)) 1475 if (expect_false (ev_is_active (w)))
1334 return; 1476 return;
1335 1477
1336 ((WT)w)->at += mn_now; 1478 ((WT)w)->at += mn_now;
1337 1479
1338 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1480 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1339 1481
1340 ev_start (EV_A_ (W)w, ++timercnt); 1482 ev_start (EV_A_ (W)w, ++timercnt);
1341 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1483 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1342 timers [timercnt - 1] = w; 1484 timers [timercnt - 1] = w;
1343 upheap ((WT *)timers, timercnt - 1); 1485 upheap ((WT *)timers, timercnt - 1);
1344 1486
1345 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1487 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1346} 1488}
1347 1489
1348void 1490void
1349ev_timer_stop (EV_P_ struct ev_timer *w) 1491ev_timer_stop (EV_P_ ev_timer *w)
1350{ 1492{
1351 ev_clear_pending (EV_A_ (W)w); 1493 ev_clear_pending (EV_A_ (W)w);
1352 if (!ev_is_active (w)) 1494 if (expect_false (!ev_is_active (w)))
1353 return; 1495 return;
1354 1496
1355 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1497 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1356 1498
1357 if (((W)w)->active < timercnt--) 1499 if (expect_true (((W)w)->active < timercnt--))
1358 { 1500 {
1359 timers [((W)w)->active - 1] = timers [timercnt]; 1501 timers [((W)w)->active - 1] = timers [timercnt];
1360 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1502 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1361 } 1503 }
1362 1504
1364 1506
1365 ev_stop (EV_A_ (W)w); 1507 ev_stop (EV_A_ (W)w);
1366} 1508}
1367 1509
1368void 1510void
1369ev_timer_again (EV_P_ struct ev_timer *w) 1511ev_timer_again (EV_P_ ev_timer *w)
1370{ 1512{
1371 if (ev_is_active (w)) 1513 if (ev_is_active (w))
1372 { 1514 {
1373 if (w->repeat) 1515 if (w->repeat)
1374 { 1516 {
1377 } 1519 }
1378 else 1520 else
1379 ev_timer_stop (EV_A_ w); 1521 ev_timer_stop (EV_A_ w);
1380 } 1522 }
1381 else if (w->repeat) 1523 else if (w->repeat)
1524 {
1525 w->at = w->repeat;
1382 ev_timer_start (EV_A_ w); 1526 ev_timer_start (EV_A_ w);
1527 }
1383} 1528}
1384 1529
1385#if EV_PERIODICS 1530#if EV_PERIODIC_ENABLE
1386void 1531void
1387ev_periodic_start (EV_P_ struct ev_periodic *w) 1532ev_periodic_start (EV_P_ ev_periodic *w)
1388{ 1533{
1389 if (ev_is_active (w)) 1534 if (expect_false (ev_is_active (w)))
1390 return; 1535 return;
1391 1536
1392 if (w->reschedule_cb) 1537 if (w->reschedule_cb)
1393 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1538 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1394 else if (w->interval) 1539 else if (w->interval)
1397 /* this formula differs from the one in periodic_reify because we do not always round up */ 1542 /* this formula differs from the one in periodic_reify because we do not always round up */
1398 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1543 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1399 } 1544 }
1400 1545
1401 ev_start (EV_A_ (W)w, ++periodiccnt); 1546 ev_start (EV_A_ (W)w, ++periodiccnt);
1402 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1547 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1403 periodics [periodiccnt - 1] = w; 1548 periodics [periodiccnt - 1] = w;
1404 upheap ((WT *)periodics, periodiccnt - 1); 1549 upheap ((WT *)periodics, periodiccnt - 1);
1405 1550
1406 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1551 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1407} 1552}
1408 1553
1409void 1554void
1410ev_periodic_stop (EV_P_ struct ev_periodic *w) 1555ev_periodic_stop (EV_P_ ev_periodic *w)
1411{ 1556{
1412 ev_clear_pending (EV_A_ (W)w); 1557 ev_clear_pending (EV_A_ (W)w);
1413 if (!ev_is_active (w)) 1558 if (expect_false (!ev_is_active (w)))
1414 return; 1559 return;
1415 1560
1416 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1561 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1417 1562
1418 if (((W)w)->active < periodiccnt--) 1563 if (expect_true (((W)w)->active < periodiccnt--))
1419 { 1564 {
1420 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1565 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1421 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1566 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1422 } 1567 }
1423 1568
1424 ev_stop (EV_A_ (W)w); 1569 ev_stop (EV_A_ (W)w);
1425} 1570}
1426 1571
1427void 1572void
1428ev_periodic_again (EV_P_ struct ev_periodic *w) 1573ev_periodic_again (EV_P_ ev_periodic *w)
1429{ 1574{
1430 /* TODO: use adjustheap and recalculation */ 1575 /* TODO: use adjustheap and recalculation */
1431 ev_periodic_stop (EV_A_ w); 1576 ev_periodic_stop (EV_A_ w);
1432 ev_periodic_start (EV_A_ w); 1577 ev_periodic_start (EV_A_ w);
1433} 1578}
1434#endif 1579#endif
1435 1580
1436void
1437ev_idle_start (EV_P_ struct ev_idle *w)
1438{
1439 if (ev_is_active (w))
1440 return;
1441
1442 ev_start (EV_A_ (W)w, ++idlecnt);
1443 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1444 idles [idlecnt - 1] = w;
1445}
1446
1447void
1448ev_idle_stop (EV_P_ struct ev_idle *w)
1449{
1450 ev_clear_pending (EV_A_ (W)w);
1451 if (!ev_is_active (w))
1452 return;
1453
1454 idles [((W)w)->active - 1] = idles [--idlecnt];
1455 ev_stop (EV_A_ (W)w);
1456}
1457
1458void
1459ev_prepare_start (EV_P_ struct ev_prepare *w)
1460{
1461 if (ev_is_active (w))
1462 return;
1463
1464 ev_start (EV_A_ (W)w, ++preparecnt);
1465 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1466 prepares [preparecnt - 1] = w;
1467}
1468
1469void
1470ev_prepare_stop (EV_P_ struct ev_prepare *w)
1471{
1472 ev_clear_pending (EV_A_ (W)w);
1473 if (!ev_is_active (w))
1474 return;
1475
1476 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1477 ev_stop (EV_A_ (W)w);
1478}
1479
1480void
1481ev_check_start (EV_P_ struct ev_check *w)
1482{
1483 if (ev_is_active (w))
1484 return;
1485
1486 ev_start (EV_A_ (W)w, ++checkcnt);
1487 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1488 checks [checkcnt - 1] = w;
1489}
1490
1491void
1492ev_check_stop (EV_P_ struct ev_check *w)
1493{
1494 ev_clear_pending (EV_A_ (W)w);
1495 if (!ev_is_active (w))
1496 return;
1497
1498 checks [((W)w)->active - 1] = checks [--checkcnt];
1499 ev_stop (EV_A_ (W)w);
1500}
1501
1502#ifndef SA_RESTART 1581#ifndef SA_RESTART
1503# define SA_RESTART 0 1582# define SA_RESTART 0
1504#endif 1583#endif
1505 1584
1506void 1585void
1507ev_signal_start (EV_P_ struct ev_signal *w) 1586ev_signal_start (EV_P_ ev_signal *w)
1508{ 1587{
1509#if EV_MULTIPLICITY 1588#if EV_MULTIPLICITY
1510 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1589 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1511#endif 1590#endif
1512 if (ev_is_active (w)) 1591 if (expect_false (ev_is_active (w)))
1513 return; 1592 return;
1514 1593
1515 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1594 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1516 1595
1517 ev_start (EV_A_ (W)w, 1); 1596 ev_start (EV_A_ (W)w, 1);
1531#endif 1610#endif
1532 } 1611 }
1533} 1612}
1534 1613
1535void 1614void
1536ev_signal_stop (EV_P_ struct ev_signal *w) 1615ev_signal_stop (EV_P_ ev_signal *w)
1537{ 1616{
1538 ev_clear_pending (EV_A_ (W)w); 1617 ev_clear_pending (EV_A_ (W)w);
1539 if (!ev_is_active (w)) 1618 if (expect_false (!ev_is_active (w)))
1540 return; 1619 return;
1541 1620
1542 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1621 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1543 ev_stop (EV_A_ (W)w); 1622 ev_stop (EV_A_ (W)w);
1544 1623
1545 if (!signals [w->signum - 1].head) 1624 if (!signals [w->signum - 1].head)
1546 signal (w->signum, SIG_DFL); 1625 signal (w->signum, SIG_DFL);
1547} 1626}
1548 1627
1549void 1628void
1550ev_child_start (EV_P_ struct ev_child *w) 1629ev_child_start (EV_P_ ev_child *w)
1551{ 1630{
1552#if EV_MULTIPLICITY 1631#if EV_MULTIPLICITY
1553 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1632 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1554#endif 1633#endif
1555 if (ev_is_active (w)) 1634 if (expect_false (ev_is_active (w)))
1556 return; 1635 return;
1557 1636
1558 ev_start (EV_A_ (W)w, 1); 1637 ev_start (EV_A_ (W)w, 1);
1559 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1638 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1560} 1639}
1561 1640
1562void 1641void
1563ev_child_stop (EV_P_ struct ev_child *w) 1642ev_child_stop (EV_P_ ev_child *w)
1564{ 1643{
1565 ev_clear_pending (EV_A_ (W)w); 1644 ev_clear_pending (EV_A_ (W)w);
1566 if (!ev_is_active (w)) 1645 if (expect_false (!ev_is_active (w)))
1567 return; 1646 return;
1568 1647
1569 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1648 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1570 ev_stop (EV_A_ (W)w); 1649 ev_stop (EV_A_ (W)w);
1571} 1650}
1572 1651
1652#if EV_STAT_ENABLE
1653
1654# ifdef _WIN32
1655# undef lstat
1656# define lstat(a,b) _stati64 (a,b)
1657# endif
1658
1659#define DEF_STAT_INTERVAL 5.0074891
1660#define MIN_STAT_INTERVAL 0.1074891
1661
1662void
1663ev_stat_stat (EV_P_ ev_stat *w)
1664{
1665 if (lstat (w->path, &w->attr) < 0)
1666 w->attr.st_nlink = 0;
1667 else if (!w->attr.st_nlink)
1668 w->attr.st_nlink = 1;
1669}
1670
1671static void
1672stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1673{
1674 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1675
1676 /* we copy this here each the time so that */
1677 /* prev has the old value when the callback gets invoked */
1678 w->prev = w->attr;
1679 ev_stat_stat (EV_A_ w);
1680
1681 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1682 ev_feed_event (EV_A_ w, EV_STAT);
1683}
1684
1685void
1686ev_stat_start (EV_P_ ev_stat *w)
1687{
1688 if (expect_false (ev_is_active (w)))
1689 return;
1690
1691 /* since we use memcmp, we need to clear any padding data etc. */
1692 memset (&w->prev, 0, sizeof (ev_statdata));
1693 memset (&w->attr, 0, sizeof (ev_statdata));
1694
1695 ev_stat_stat (EV_A_ w);
1696
1697 if (w->interval < MIN_STAT_INTERVAL)
1698 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1699
1700 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1701 ev_set_priority (&w->timer, ev_priority (w));
1702 ev_timer_start (EV_A_ &w->timer);
1703
1704 ev_start (EV_A_ (W)w, 1);
1705}
1706
1707void
1708ev_stat_stop (EV_P_ ev_stat *w)
1709{
1710 ev_clear_pending (EV_A_ (W)w);
1711 if (expect_false (!ev_is_active (w)))
1712 return;
1713
1714 ev_timer_stop (EV_A_ &w->timer);
1715
1716 ev_stop (EV_A_ (W)w);
1717}
1718#endif
1719
1720void
1721ev_idle_start (EV_P_ ev_idle *w)
1722{
1723 if (expect_false (ev_is_active (w)))
1724 return;
1725
1726 ev_start (EV_A_ (W)w, ++idlecnt);
1727 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1728 idles [idlecnt - 1] = w;
1729}
1730
1731void
1732ev_idle_stop (EV_P_ ev_idle *w)
1733{
1734 ev_clear_pending (EV_A_ (W)w);
1735 if (expect_false (!ev_is_active (w)))
1736 return;
1737
1738 {
1739 int active = ((W)w)->active;
1740 idles [active - 1] = idles [--idlecnt];
1741 ((W)idles [active - 1])->active = active;
1742 }
1743
1744 ev_stop (EV_A_ (W)w);
1745}
1746
1747void
1748ev_prepare_start (EV_P_ ev_prepare *w)
1749{
1750 if (expect_false (ev_is_active (w)))
1751 return;
1752
1753 ev_start (EV_A_ (W)w, ++preparecnt);
1754 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1755 prepares [preparecnt - 1] = w;
1756}
1757
1758void
1759ev_prepare_stop (EV_P_ ev_prepare *w)
1760{
1761 ev_clear_pending (EV_A_ (W)w);
1762 if (expect_false (!ev_is_active (w)))
1763 return;
1764
1765 {
1766 int active = ((W)w)->active;
1767 prepares [active - 1] = prepares [--preparecnt];
1768 ((W)prepares [active - 1])->active = active;
1769 }
1770
1771 ev_stop (EV_A_ (W)w);
1772}
1773
1774void
1775ev_check_start (EV_P_ ev_check *w)
1776{
1777 if (expect_false (ev_is_active (w)))
1778 return;
1779
1780 ev_start (EV_A_ (W)w, ++checkcnt);
1781 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1782 checks [checkcnt - 1] = w;
1783}
1784
1785void
1786ev_check_stop (EV_P_ ev_check *w)
1787{
1788 ev_clear_pending (EV_A_ (W)w);
1789 if (expect_false (!ev_is_active (w)))
1790 return;
1791
1792 {
1793 int active = ((W)w)->active;
1794 checks [active - 1] = checks [--checkcnt];
1795 ((W)checks [active - 1])->active = active;
1796 }
1797
1798 ev_stop (EV_A_ (W)w);
1799}
1800
1801#if EV_EMBED_ENABLE
1802void noinline
1803ev_embed_sweep (EV_P_ ev_embed *w)
1804{
1805 ev_loop (w->loop, EVLOOP_NONBLOCK);
1806}
1807
1808static void
1809embed_cb (EV_P_ ev_io *io, int revents)
1810{
1811 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1812
1813 if (ev_cb (w))
1814 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1815 else
1816 ev_embed_sweep (loop, w);
1817}
1818
1819void
1820ev_embed_start (EV_P_ ev_embed *w)
1821{
1822 if (expect_false (ev_is_active (w)))
1823 return;
1824
1825 {
1826 struct ev_loop *loop = w->loop;
1827 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1828 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1829 }
1830
1831 ev_set_priority (&w->io, ev_priority (w));
1832 ev_io_start (EV_A_ &w->io);
1833
1834 ev_start (EV_A_ (W)w, 1);
1835}
1836
1837void
1838ev_embed_stop (EV_P_ ev_embed *w)
1839{
1840 ev_clear_pending (EV_A_ (W)w);
1841 if (expect_false (!ev_is_active (w)))
1842 return;
1843
1844 ev_io_stop (EV_A_ &w->io);
1845
1846 ev_stop (EV_A_ (W)w);
1847}
1848#endif
1849
1850#if EV_FORK_ENABLE
1851void
1852ev_fork_start (EV_P_ ev_fork *w)
1853{
1854 if (expect_false (ev_is_active (w)))
1855 return;
1856
1857 ev_start (EV_A_ (W)w, ++forkcnt);
1858 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
1859 forks [forkcnt - 1] = w;
1860}
1861
1862void
1863ev_fork_stop (EV_P_ ev_fork *w)
1864{
1865 ev_clear_pending (EV_A_ (W)w);
1866 if (expect_false (!ev_is_active (w)))
1867 return;
1868
1869 {
1870 int active = ((W)w)->active;
1871 forks [active - 1] = forks [--forkcnt];
1872 ((W)forks [active - 1])->active = active;
1873 }
1874
1875 ev_stop (EV_A_ (W)w);
1876}
1877#endif
1878
1573/*****************************************************************************/ 1879/*****************************************************************************/
1574 1880
1575struct ev_once 1881struct ev_once
1576{ 1882{
1577 struct ev_io io; 1883 ev_io io;
1578 struct ev_timer to; 1884 ev_timer to;
1579 void (*cb)(int revents, void *arg); 1885 void (*cb)(int revents, void *arg);
1580 void *arg; 1886 void *arg;
1581}; 1887};
1582 1888
1583static void 1889static void
1592 1898
1593 cb (revents, arg); 1899 cb (revents, arg);
1594} 1900}
1595 1901
1596static void 1902static void
1597once_cb_io (EV_P_ struct ev_io *w, int revents) 1903once_cb_io (EV_P_ ev_io *w, int revents)
1598{ 1904{
1599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1905 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1600} 1906}
1601 1907
1602static void 1908static void
1603once_cb_to (EV_P_ struct ev_timer *w, int revents) 1909once_cb_to (EV_P_ ev_timer *w, int revents)
1604{ 1910{
1605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1911 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1606} 1912}
1607 1913
1608void 1914void
1609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1915ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1610{ 1916{
1611 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 1917 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1612 1918
1613 if (!once) 1919 if (expect_false (!once))
1920 {
1614 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1921 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1615 else 1922 return;
1616 { 1923 }
1924
1617 once->cb = cb; 1925 once->cb = cb;
1618 once->arg = arg; 1926 once->arg = arg;
1619 1927
1620 ev_init (&once->io, once_cb_io); 1928 ev_init (&once->io, once_cb_io);
1621 if (fd >= 0) 1929 if (fd >= 0)
1622 { 1930 {
1623 ev_io_set (&once->io, fd, events); 1931 ev_io_set (&once->io, fd, events);
1624 ev_io_start (EV_A_ &once->io); 1932 ev_io_start (EV_A_ &once->io);
1625 } 1933 }
1626 1934
1627 ev_init (&once->to, once_cb_to); 1935 ev_init (&once->to, once_cb_to);
1628 if (timeout >= 0.) 1936 if (timeout >= 0.)
1629 { 1937 {
1630 ev_timer_set (&once->to, timeout, 0.); 1938 ev_timer_set (&once->to, timeout, 0.);
1631 ev_timer_start (EV_A_ &once->to); 1939 ev_timer_start (EV_A_ &once->to);
1632 }
1633 } 1940 }
1634} 1941}
1635 1942
1636#ifdef __cplusplus 1943#ifdef __cplusplus
1637} 1944}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines