ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.150 by root, Tue Nov 27 19:41:52 2007 UTC vs.
Revision 1.256 by root, Thu Jun 19 06:53:49 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 111# else
95# define EV_USE_PORT 0 112# define EV_USE_PORT 0
96# endif 113# endif
97# endif 114# endif
98 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
99#endif 132#endif
100 133
101#include <math.h> 134#include <math.h>
102#include <stdlib.h> 135#include <stdlib.h>
103#include <fcntl.h> 136#include <fcntl.h>
109#include <errno.h> 142#include <errno.h>
110#include <sys/types.h> 143#include <sys/types.h>
111#include <time.h> 144#include <time.h>
112 145
113#include <signal.h> 146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
114 153
115#ifndef _WIN32 154#ifndef _WIN32
116# include <sys/time.h> 155# include <sys/time.h>
117# include <sys/wait.h> 156# include <sys/wait.h>
118# include <unistd.h> 157# include <unistd.h>
119#else 158#else
159# include <io.h>
120# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 161# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
124# endif 164# endif
125#endif 165#endif
126 166
127/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
128 168
129#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
130# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
131#endif 175#endif
132 176
133#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
135#endif 187#endif
136 188
137#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
139#endif 191#endif
145# define EV_USE_POLL 1 197# define EV_USE_POLL 1
146# endif 198# endif
147#endif 199#endif
148 200
149#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
150# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
151#endif 207#endif
152 208
153#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
155#endif 211#endif
156 212
157#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 214# define EV_USE_PORT 0
215#endif
216
217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
221# define EV_USE_INOTIFY 0
222# endif
159#endif 223#endif
160 224
161#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
162# if EV_MINIMAL 226# if EV_MINIMAL
163# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
164# else 228# else
165# define EV_PID_HASHSIZE 16 229# define EV_PID_HASHSIZE 16
166# endif 230# endif
167#endif 231#endif
168 232
169/**/ 233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
170 268
171#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
172# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
173# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
174#endif 272#endif
176#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
177# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
179#endif 277#endif
180 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/inotify.h>
292#endif
293
181#if EV_SELECT_IS_WINSOCKET 294#if EV_SELECT_IS_WINSOCKET
182# include <winsock.h> 295# include <winsock.h>
183#endif 296#endif
184 297
298#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h>
301# ifdef __cplusplus
302extern "C" {
303# endif
304int eventfd (unsigned int initval, int flags);
305# ifdef __cplusplus
306}
307# endif
308#endif
309
185/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
317
318/*
319 * This is used to avoid floating point rounding problems.
320 * It is added to ev_rt_now when scheduling periodics
321 * to ensure progress, time-wise, even when rounding
322 * errors are against us.
323 * This value is good at least till the year 4000.
324 * Better solutions welcome.
325 */
326#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
186 327
187#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 328#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
188#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 329#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
189/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 330/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
190 331
191#ifdef EV_H
192# include EV_H
193#else
194# include "ev.h"
195#endif
196
197#if __GNUC__ >= 3 332#if __GNUC__ >= 4
198# define expect(expr,value) __builtin_expect ((expr),(value)) 333# define expect(expr,value) __builtin_expect ((expr),(value))
199# define inline_size static inline /* inline for codesize */
200# if EV_MINIMAL
201# define noinline __attribute__ ((noinline)) 334# define noinline __attribute__ ((noinline))
202# define inline_speed static noinline
203# else
204# define noinline
205# define inline_speed static inline
206# endif
207#else 335#else
208# define expect(expr,value) (expr) 336# define expect(expr,value) (expr)
209# define inline_speed static
210# define inline_size static
211# define noinline 337# define noinline
338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
339# define inline
340# endif
212#endif 341#endif
213 342
214#define expect_false(expr) expect ((expr) != 0, 0) 343#define expect_false(expr) expect ((expr) != 0, 0)
215#define expect_true(expr) expect ((expr) != 0, 1) 344#define expect_true(expr) expect ((expr) != 0, 1)
345#define inline_size static inline
346
347#if EV_MINIMAL
348# define inline_speed static noinline
349#else
350# define inline_speed static inline
351#endif
216 352
217#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 353#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
218#define ABSPRI(w) ((w)->priority - EV_MINPRI) 354#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
219 355
220#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 356#define EMPTY /* required for microsofts broken pseudo-c compiler */
221#define EMPTY2(a,b) /* used to suppress some warnings */ 357#define EMPTY2(a,b) /* used to suppress some warnings */
222 358
223typedef ev_watcher *W; 359typedef ev_watcher *W;
224typedef ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
225typedef ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
226 362
363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
366#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
227static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
370#endif
228 371
229#ifdef _WIN32 372#ifdef _WIN32
230# include "ev_win32.c" 373# include "ev_win32.c"
231#endif 374#endif
232 375
253 perror (msg); 396 perror (msg);
254 abort (); 397 abort ();
255 } 398 }
256} 399}
257 400
401static void *
402ev_realloc_emul (void *ptr, long size)
403{
404 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and
406 * the single unix specification, so work around them here.
407 */
408
409 if (size)
410 return realloc (ptr, size);
411
412 free (ptr);
413 return 0;
414}
415
258static void *(*alloc)(void *ptr, size_t size) = realloc; 416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
259 417
260void 418void
261ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 419ev_set_allocator (void *(*cb)(void *ptr, long size))
262{ 420{
263 alloc = cb; 421 alloc = cb;
264} 422}
265 423
266inline_speed void * 424inline_speed void *
267ev_realloc (void *ptr, size_t size) 425ev_realloc (void *ptr, long size)
268{ 426{
269 ptr = alloc (ptr, size); 427 ptr = alloc (ptr, size);
270 428
271 if (!ptr && size) 429 if (!ptr && size)
272 { 430 {
273 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
274 abort (); 432 abort ();
275 } 433 }
276 434
277 return ptr; 435 return ptr;
278} 436}
295typedef struct 453typedef struct
296{ 454{
297 W w; 455 W w;
298 int events; 456 int events;
299} ANPENDING; 457} ANPENDING;
458
459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
461typedef struct
462{
463 WL head;
464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
483#endif
300 484
301#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
302 486
303 struct ev_loop 487 struct ev_loop
304 { 488 {
361{ 545{
362 return ev_rt_now; 546 return ev_rt_now;
363} 547}
364#endif 548#endif
365 549
366#define array_roundsize(type,n) (((n) | 4) & ~3) 550void
551ev_sleep (ev_tstamp delay)
552{
553 if (delay > 0.)
554 {
555#if EV_USE_NANOSLEEP
556 struct timespec ts;
557
558 ts.tv_sec = (time_t)delay;
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0);
562#elif defined(_WIN32)
563 Sleep ((unsigned long)(delay * 1e3));
564#else
565 struct timeval tv;
566
567 tv.tv_sec = (time_t)delay;
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
569
570 select (0, 0, 0, 0, &tv);
571#endif
572 }
573}
574
575/*****************************************************************************/
576
577#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
578
579int inline_size
580array_nextsize (int elem, int cur, int cnt)
581{
582 int ncur = cur + 1;
583
584 do
585 ncur <<= 1;
586 while (cnt > ncur);
587
588 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
589 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
590 {
591 ncur *= elem;
592 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
593 ncur = ncur - sizeof (void *) * 4;
594 ncur /= elem;
595 }
596
597 return ncur;
598}
599
600static noinline void *
601array_realloc (int elem, void *base, int *cur, int cnt)
602{
603 *cur = array_nextsize (elem, *cur, cnt);
604 return ev_realloc (base, elem * *cur);
605}
367 606
368#define array_needsize(type,base,cur,cnt,init) \ 607#define array_needsize(type,base,cur,cnt,init) \
369 if (expect_false ((cnt) > cur)) \ 608 if (expect_false ((cnt) > (cur))) \
370 { \ 609 { \
371 int newcnt = cur; \ 610 int ocur_ = (cur); \
372 do \ 611 (base) = (type *)array_realloc \
373 { \ 612 (sizeof (type), (base), &(cur), (cnt)); \
374 newcnt = array_roundsize (type, newcnt << 1); \ 613 init ((base) + (ocur_), (cur) - ocur_); \
375 } \
376 while ((cnt) > newcnt); \
377 \
378 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
379 init (base + cur, newcnt - cur); \
380 cur = newcnt; \
381 } 614 }
382 615
616#if 0
383#define array_slim(type,stem) \ 617#define array_slim(type,stem) \
384 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 618 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
385 { \ 619 { \
386 stem ## max = array_roundsize (stem ## cnt >> 1); \ 620 stem ## max = array_roundsize (stem ## cnt >> 1); \
387 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 621 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
388 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 622 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
389 } 623 }
624#endif
390 625
391#define array_free(stem, idx) \ 626#define array_free(stem, idx) \
392 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 627 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
393 628
394/*****************************************************************************/ 629/*****************************************************************************/
395 630
396void noinline 631void noinline
397ev_feed_event (EV_P_ void *w, int revents) 632ev_feed_event (EV_P_ void *w, int revents)
398{ 633{
399 W w_ = (W)w; 634 W w_ = (W)w;
635 int pri = ABSPRI (w_);
400 636
401 if (expect_false (w_->pending)) 637 if (expect_false (w_->pending))
638 pendings [pri][w_->pending - 1].events |= revents;
639 else
402 { 640 {
641 w_->pending = ++pendingcnt [pri];
642 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
643 pendings [pri][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 644 pendings [pri][w_->pending - 1].events = revents;
404 return;
405 } 645 }
406
407 w_->pending = ++pendingcnt [ABSPRI (w_)];
408 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
409 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
410 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
411} 646}
412 647
413void inline_size 648void inline_speed
414queue_events (EV_P_ W *events, int eventcnt, int type) 649queue_events (EV_P_ W *events, int eventcnt, int type)
415{ 650{
416 int i; 651 int i;
417 652
418 for (i = 0; i < eventcnt; ++i) 653 for (i = 0; i < eventcnt; ++i)
450} 685}
451 686
452void 687void
453ev_feed_fd_event (EV_P_ int fd, int revents) 688ev_feed_fd_event (EV_P_ int fd, int revents)
454{ 689{
690 if (fd >= 0 && fd < anfdmax)
455 fd_event (EV_A_ fd, revents); 691 fd_event (EV_A_ fd, revents);
456} 692}
457 693
458void inline_size 694void inline_size
459fd_reify (EV_P) 695fd_reify (EV_P)
460{ 696{
464 { 700 {
465 int fd = fdchanges [i]; 701 int fd = fdchanges [i];
466 ANFD *anfd = anfds + fd; 702 ANFD *anfd = anfds + fd;
467 ev_io *w; 703 ev_io *w;
468 704
469 int events = 0; 705 unsigned char events = 0;
470 706
471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 707 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
472 events |= w->events; 708 events |= (unsigned char)w->events;
473 709
474#if EV_SELECT_IS_WINSOCKET 710#if EV_SELECT_IS_WINSOCKET
475 if (events) 711 if (events)
476 { 712 {
477 unsigned long argp; 713 unsigned long arg;
714 #ifdef EV_FD_TO_WIN32_HANDLE
715 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
716 #else
478 anfd->handle = _get_osfhandle (fd); 717 anfd->handle = _get_osfhandle (fd);
718 #endif
479 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 719 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
480 } 720 }
481#endif 721#endif
482 722
723 {
724 unsigned char o_events = anfd->events;
725 unsigned char o_reify = anfd->reify;
726
483 anfd->reify = 0; 727 anfd->reify = 0;
484
485 backend_modify (EV_A_ fd, anfd->events, events);
486 anfd->events = events; 728 anfd->events = events;
729
730 if (o_events != events || o_reify & EV_IOFDSET)
731 backend_modify (EV_A_ fd, o_events, events);
732 }
487 } 733 }
488 734
489 fdchangecnt = 0; 735 fdchangecnt = 0;
490} 736}
491 737
492void inline_size 738void inline_size
493fd_change (EV_P_ int fd) 739fd_change (EV_P_ int fd, int flags)
494{ 740{
495 if (expect_false (anfds [fd].reify)) 741 unsigned char reify = anfds [fd].reify;
496 return;
497
498 anfds [fd].reify = 1; 742 anfds [fd].reify |= flags;
499 743
744 if (expect_true (!reify))
745 {
500 ++fdchangecnt; 746 ++fdchangecnt;
501 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 747 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
502 fdchanges [fdchangecnt - 1] = fd; 748 fdchanges [fdchangecnt - 1] = fd;
749 }
503} 750}
504 751
505void inline_speed 752void inline_speed
506fd_kill (EV_P_ int fd) 753fd_kill (EV_P_ int fd)
507{ 754{
530{ 777{
531 int fd; 778 int fd;
532 779
533 for (fd = 0; fd < anfdmax; ++fd) 780 for (fd = 0; fd < anfdmax; ++fd)
534 if (anfds [fd].events) 781 if (anfds [fd].events)
535 if (!fd_valid (fd) == -1 && errno == EBADF) 782 if (!fd_valid (fd) && errno == EBADF)
536 fd_kill (EV_A_ fd); 783 fd_kill (EV_A_ fd);
537} 784}
538 785
539/* called on ENOMEM in select/poll to kill some fds and retry */ 786/* called on ENOMEM in select/poll to kill some fds and retry */
540static void noinline 787static void noinline
554static void noinline 801static void noinline
555fd_rearm_all (EV_P) 802fd_rearm_all (EV_P)
556{ 803{
557 int fd; 804 int fd;
558 805
559 /* this should be highly optimised to not do anything but set a flag */
560 for (fd = 0; fd < anfdmax; ++fd) 806 for (fd = 0; fd < anfdmax; ++fd)
561 if (anfds [fd].events) 807 if (anfds [fd].events)
562 { 808 {
563 anfds [fd].events = 0; 809 anfds [fd].events = 0;
564 fd_change (EV_A_ fd); 810 fd_change (EV_A_ fd, EV_IOFDSET | 1);
565 } 811 }
566} 812}
567 813
568/*****************************************************************************/ 814/*****************************************************************************/
569 815
816/*
817 * the heap functions want a real array index. array index 0 uis guaranteed to not
818 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
819 * the branching factor of the d-tree.
820 */
821
822/*
823 * at the moment we allow libev the luxury of two heaps,
824 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
825 * which is more cache-efficient.
826 * the difference is about 5% with 50000+ watchers.
827 */
828#if EV_USE_4HEAP
829
830#define DHEAP 4
831#define HEAP0 (DHEAP - 1) /* index of first element in heap */
832#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
833#define UPHEAP_DONE(p,k) ((p) == (k))
834
835/* away from the root */
570void inline_speed 836void inline_speed
571upheap (WT *heap, int k) 837downheap (ANHE *heap, int N, int k)
572{ 838{
573 WT w = heap [k]; 839 ANHE he = heap [k];
840 ANHE *E = heap + N + HEAP0;
574 841
575 while (k && heap [k >> 1]->at > w->at) 842 for (;;)
576 {
577 heap [k] = heap [k >> 1];
578 ((W)heap [k])->active = k + 1;
579 k >>= 1;
580 } 843 {
844 ev_tstamp minat;
845 ANHE *minpos;
846 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
581 847
848 /* find minimum child */
849 if (expect_true (pos + DHEAP - 1 < E))
850 {
851 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
854 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
855 }
856 else if (pos < E)
857 {
858 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
859 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
860 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
861 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
862 }
863 else
864 break;
865
866 if (ANHE_at (he) <= minat)
867 break;
868
869 heap [k] = *minpos;
870 ev_active (ANHE_w (*minpos)) = k;
871
872 k = minpos - heap;
873 }
874
582 heap [k] = w; 875 heap [k] = he;
583 ((W)heap [k])->active = k + 1; 876 ev_active (ANHE_w (he)) = k;
584
585} 877}
586 878
879#else /* 4HEAP */
880
881#define HEAP0 1
882#define HPARENT(k) ((k) >> 1)
883#define UPHEAP_DONE(p,k) (!(p))
884
885/* away from the root */
587void inline_speed 886void inline_speed
588downheap (WT *heap, int N, int k) 887downheap (ANHE *heap, int N, int k)
589{ 888{
590 WT w = heap [k]; 889 ANHE he = heap [k];
591 890
592 while (k < (N >> 1)) 891 for (;;)
593 { 892 {
594 int j = k << 1; 893 int c = k << 1;
595 894
596 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 895 if (c > N + HEAP0 - 1)
597 ++j;
598
599 if (w->at <= heap [j]->at)
600 break; 896 break;
601 897
898 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
899 ? 1 : 0;
900
901 if (ANHE_at (he) <= ANHE_at (heap [c]))
902 break;
903
602 heap [k] = heap [j]; 904 heap [k] = heap [c];
603 ((W)heap [k])->active = k + 1; 905 ev_active (ANHE_w (heap [k])) = k;
906
604 k = j; 907 k = c;
605 } 908 }
606 909
607 heap [k] = w; 910 heap [k] = he;
608 ((W)heap [k])->active = k + 1; 911 ev_active (ANHE_w (he)) = k;
912}
913#endif
914
915/* towards the root */
916void inline_speed
917upheap (ANHE *heap, int k)
918{
919 ANHE he = heap [k];
920
921 for (;;)
922 {
923 int p = HPARENT (k);
924
925 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
926 break;
927
928 heap [k] = heap [p];
929 ev_active (ANHE_w (heap [k])) = k;
930 k = p;
931 }
932
933 heap [k] = he;
934 ev_active (ANHE_w (he)) = k;
609} 935}
610 936
611void inline_size 937void inline_size
612adjustheap (WT *heap, int N, int k) 938adjustheap (ANHE *heap, int N, int k)
613{ 939{
940 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
614 upheap (heap, k); 941 upheap (heap, k);
942 else
615 downheap (heap, N, k); 943 downheap (heap, N, k);
944}
945
946/* rebuild the heap: this function is used only once and executed rarely */
947void inline_size
948reheap (ANHE *heap, int N)
949{
950 int i;
951
952 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
953 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
954 for (i = 0; i < N; ++i)
955 upheap (heap, i + HEAP0);
616} 956}
617 957
618/*****************************************************************************/ 958/*****************************************************************************/
619 959
620typedef struct 960typedef struct
621{ 961{
622 WL head; 962 WL head;
623 sig_atomic_t volatile gotsig; 963 EV_ATOMIC_T gotsig;
624} ANSIG; 964} ANSIG;
625 965
626static ANSIG *signals; 966static ANSIG *signals;
627static int signalmax; 967static int signalmax;
628 968
629static int sigpipe [2]; 969static EV_ATOMIC_T gotsig;
630static sig_atomic_t volatile gotsig;
631static ev_io sigev;
632 970
633void inline_size 971void inline_size
634signals_init (ANSIG *base, int count) 972signals_init (ANSIG *base, int count)
635{ 973{
636 while (count--) 974 while (count--)
640 978
641 ++base; 979 ++base;
642 } 980 }
643} 981}
644 982
645static void 983/*****************************************************************************/
646sighandler (int signum)
647{
648#if _WIN32
649 signal (signum, sighandler);
650#endif
651 984
652 signals [signum - 1].gotsig = 1;
653
654 if (!gotsig)
655 {
656 int old_errno = errno;
657 gotsig = 1;
658 write (sigpipe [1], &signum, 1);
659 errno = old_errno;
660 }
661}
662
663void noinline
664ev_feed_signal_event (EV_P_ int signum)
665{
666 WL w;
667
668#if EV_MULTIPLICITY
669 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
670#endif
671
672 --signum;
673
674 if (signum < 0 || signum >= signalmax)
675 return;
676
677 signals [signum].gotsig = 0;
678
679 for (w = signals [signum].head; w; w = w->next)
680 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
681}
682
683static void
684sigcb (EV_P_ ev_io *iow, int revents)
685{
686 int signum;
687
688 read (sigpipe [0], &revents, 1);
689 gotsig = 0;
690
691 for (signum = signalmax; signum--; )
692 if (signals [signum].gotsig)
693 ev_feed_signal_event (EV_A_ signum + 1);
694}
695
696void inline_size 985void inline_speed
697fd_intern (int fd) 986fd_intern (int fd)
698{ 987{
699#ifdef _WIN32 988#ifdef _WIN32
700 int arg = 1; 989 unsigned long arg = 1;
701 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
702#else 991#else
703 fcntl (fd, F_SETFD, FD_CLOEXEC); 992 fcntl (fd, F_SETFD, FD_CLOEXEC);
704 fcntl (fd, F_SETFL, O_NONBLOCK); 993 fcntl (fd, F_SETFL, O_NONBLOCK);
705#endif 994#endif
706} 995}
707 996
708static void noinline 997static void noinline
709siginit (EV_P) 998evpipe_init (EV_P)
710{ 999{
1000 if (!ev_is_active (&pipeev))
1001 {
1002#if EV_USE_EVENTFD
1003 if ((evfd = eventfd (0, 0)) >= 0)
1004 {
1005 evpipe [0] = -1;
1006 fd_intern (evfd);
1007 ev_io_set (&pipeev, evfd, EV_READ);
1008 }
1009 else
1010#endif
1011 {
1012 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe");
1014
711 fd_intern (sigpipe [0]); 1015 fd_intern (evpipe [0]);
712 fd_intern (sigpipe [1]); 1016 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ);
1018 }
713 1019
714 ev_io_set (&sigev, sigpipe [0], EV_READ);
715 ev_io_start (EV_A_ &sigev); 1020 ev_io_start (EV_A_ &pipeev);
716 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1021 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 }
1023}
1024
1025void inline_size
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{
1028 if (!*flag)
1029 {
1030 int old_errno = errno; /* save errno because write might clobber it */
1031
1032 *flag = 1;
1033
1034#if EV_USE_EVENTFD
1035 if (evfd >= 0)
1036 {
1037 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t));
1039 }
1040 else
1041#endif
1042 write (evpipe [1], &old_errno, 1);
1043
1044 errno = old_errno;
1045 }
1046}
1047
1048static void
1049pipecb (EV_P_ ev_io *iow, int revents)
1050{
1051#if EV_USE_EVENTFD
1052 if (evfd >= 0)
1053 {
1054 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t));
1056 }
1057 else
1058#endif
1059 {
1060 char dummy;
1061 read (evpipe [0], &dummy, 1);
1062 }
1063
1064 if (gotsig && ev_is_default_loop (EV_A))
1065 {
1066 int signum;
1067 gotsig = 0;
1068
1069 for (signum = signalmax; signum--; )
1070 if (signals [signum].gotsig)
1071 ev_feed_signal_event (EV_A_ signum + 1);
1072 }
1073
1074#if EV_ASYNC_ENABLE
1075 if (gotasync)
1076 {
1077 int i;
1078 gotasync = 0;
1079
1080 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent)
1082 {
1083 asyncs [i]->sent = 0;
1084 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1085 }
1086 }
1087#endif
717} 1088}
718 1089
719/*****************************************************************************/ 1090/*****************************************************************************/
720 1091
1092static void
1093ev_sighandler (int signum)
1094{
1095#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct;
1097#endif
1098
1099#if _WIN32
1100 signal (signum, ev_sighandler);
1101#endif
1102
1103 signals [signum - 1].gotsig = 1;
1104 evpipe_write (EV_A_ &gotsig);
1105}
1106
1107void noinline
1108ev_feed_signal_event (EV_P_ int signum)
1109{
1110 WL w;
1111
1112#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1114#endif
1115
1116 --signum;
1117
1118 if (signum < 0 || signum >= signalmax)
1119 return;
1120
1121 signals [signum].gotsig = 0;
1122
1123 for (w = signals [signum].head; w; w = w->next)
1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1125}
1126
1127/*****************************************************************************/
1128
721static ev_child *childs [EV_PID_HASHSIZE]; 1129static WL childs [EV_PID_HASHSIZE];
722 1130
723#ifndef _WIN32 1131#ifndef _WIN32
724 1132
725static ev_signal childev; 1133static ev_signal childev;
726 1134
1135#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0
1137#endif
1138
727void inline_speed 1139void inline_speed
728child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1140child_reap (EV_P_ int chain, int pid, int status)
729{ 1141{
730 ev_child *w; 1142 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
731 1144
732 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 {
733 if (w->pid == pid || !w->pid) 1147 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1)))
734 { 1149 {
735 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
736 w->rpid = pid; 1151 w->rpid = pid;
737 w->rstatus = status; 1152 w->rstatus = status;
738 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1153 ev_feed_event (EV_A_ (W)w, EV_CHILD);
739 } 1154 }
1155 }
740} 1156}
741 1157
742#ifndef WCONTINUED 1158#ifndef WCONTINUED
743# define WCONTINUED 0 1159# define WCONTINUED 0
744#endif 1160#endif
753 if (!WCONTINUED 1169 if (!WCONTINUED
754 || errno != EINVAL 1170 || errno != EINVAL
755 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1171 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
756 return; 1172 return;
757 1173
758 /* make sure we are called again until all childs have been reaped */ 1174 /* make sure we are called again until all children have been reaped */
759 /* we need to do it this way so that the callback gets called before we continue */ 1175 /* we need to do it this way so that the callback gets called before we continue */
760 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
761 1177
762 child_reap (EV_A_ sw, pid, pid, status); 1178 child_reap (EV_A_ pid, pid, status);
763 if (EV_PID_HASHSIZE > 1) 1179 if (EV_PID_HASHSIZE > 1)
764 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
765} 1181}
766 1182
767#endif 1183#endif
768 1184
769/*****************************************************************************/ 1185/*****************************************************************************/
841} 1257}
842 1258
843unsigned int 1259unsigned int
844ev_embeddable_backends (void) 1260ev_embeddable_backends (void)
845{ 1261{
846 return EVBACKEND_EPOLL 1262 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
847 | EVBACKEND_KQUEUE 1263
848 | EVBACKEND_PORT; 1264 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1265 /* please fix it and tell me how to detect the fix */
1266 flags &= ~EVBACKEND_EPOLL;
1267
1268 return flags;
849} 1269}
850 1270
851unsigned int 1271unsigned int
852ev_backend (EV_P) 1272ev_backend (EV_P)
853{ 1273{
854 return backend; 1274 return backend;
855} 1275}
856 1276
857static void 1277unsigned int
1278ev_loop_count (EV_P)
1279{
1280 return loop_count;
1281}
1282
1283void
1284ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 io_blocktime = interval;
1287}
1288
1289void
1290ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1291{
1292 timeout_blocktime = interval;
1293}
1294
1295static void noinline
858loop_init (EV_P_ unsigned int flags) 1296loop_init (EV_P_ unsigned int flags)
859{ 1297{
860 if (!backend) 1298 if (!backend)
861 { 1299 {
862#if EV_USE_MONOTONIC 1300#if EV_USE_MONOTONIC
865 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
866 have_monotonic = 1; 1304 have_monotonic = 1;
867 } 1305 }
868#endif 1306#endif
869 1307
870 ev_rt_now = ev_time (); 1308 ev_rt_now = ev_time ();
871 mn_now = get_clock (); 1309 mn_now = get_clock ();
872 now_floor = mn_now; 1310 now_floor = mn_now;
873 rtmn_diff = ev_rt_now - mn_now; 1311 rtmn_diff = ev_rt_now - mn_now;
1312
1313 io_blocktime = 0.;
1314 timeout_blocktime = 0.;
1315 backend = 0;
1316 backend_fd = -1;
1317 gotasync = 0;
1318#if EV_USE_INOTIFY
1319 fs_fd = -2;
1320#endif
1321
1322 /* pid check not overridable via env */
1323#ifndef _WIN32
1324 if (flags & EVFLAG_FORKCHECK)
1325 curpid = getpid ();
1326#endif
874 1327
875 if (!(flags & EVFLAG_NOENV) 1328 if (!(flags & EVFLAG_NOENV)
876 && !enable_secure () 1329 && !enable_secure ()
877 && getenv ("LIBEV_FLAGS")) 1330 && getenv ("LIBEV_FLAGS"))
878 flags = atoi (getenv ("LIBEV_FLAGS")); 1331 flags = atoi (getenv ("LIBEV_FLAGS"));
879 1332
880 if (!(flags & 0x0000ffffUL)) 1333 if (!(flags & 0x0000ffffU))
881 flags |= ev_recommended_backends (); 1334 flags |= ev_recommended_backends ();
882 1335
883 backend = 0;
884#if EV_USE_PORT 1336#if EV_USE_PORT
885 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
886#endif 1338#endif
887#if EV_USE_KQUEUE 1339#if EV_USE_KQUEUE
888 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
895#endif 1347#endif
896#if EV_USE_SELECT 1348#if EV_USE_SELECT
897 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
898#endif 1350#endif
899 1351
900 ev_init (&sigev, sigcb); 1352 ev_init (&pipeev, pipecb);
901 ev_set_priority (&sigev, EV_MAXPRI); 1353 ev_set_priority (&pipeev, EV_MAXPRI);
902 } 1354 }
903} 1355}
904 1356
905static void 1357static void noinline
906loop_destroy (EV_P) 1358loop_destroy (EV_P)
907{ 1359{
908 int i; 1360 int i;
1361
1362 if (ev_is_active (&pipeev))
1363 {
1364 ev_ref (EV_A); /* signal watcher */
1365 ev_io_stop (EV_A_ &pipeev);
1366
1367#if EV_USE_EVENTFD
1368 if (evfd >= 0)
1369 close (evfd);
1370#endif
1371
1372 if (evpipe [0] >= 0)
1373 {
1374 close (evpipe [0]);
1375 close (evpipe [1]);
1376 }
1377 }
1378
1379#if EV_USE_INOTIFY
1380 if (fs_fd >= 0)
1381 close (fs_fd);
1382#endif
1383
1384 if (backend_fd >= 0)
1385 close (backend_fd);
909 1386
910#if EV_USE_PORT 1387#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1388 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
912#endif 1389#endif
913#if EV_USE_KQUEUE 1390#if EV_USE_KQUEUE
922#if EV_USE_SELECT 1399#if EV_USE_SELECT
923 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1400 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
924#endif 1401#endif
925 1402
926 for (i = NUMPRI; i--; ) 1403 for (i = NUMPRI; i--; )
1404 {
927 array_free (pending, [i]); 1405 array_free (pending, [i]);
1406#if EV_IDLE_ENABLE
1407 array_free (idle, [i]);
1408#endif
1409 }
1410
1411 ev_free (anfds); anfdmax = 0;
928 1412
929 /* have to use the microsoft-never-gets-it-right macro */ 1413 /* have to use the microsoft-never-gets-it-right macro */
930 array_free (fdchange, EMPTY0); 1414 array_free (fdchange, EMPTY);
931 array_free (timer, EMPTY0); 1415 array_free (timer, EMPTY);
932#if EV_PERIODIC_ENABLE 1416#if EV_PERIODIC_ENABLE
933 array_free (periodic, EMPTY0); 1417 array_free (periodic, EMPTY);
934#endif 1418#endif
1419#if EV_FORK_ENABLE
935 array_free (idle, EMPTY0); 1420 array_free (fork, EMPTY);
1421#endif
936 array_free (prepare, EMPTY0); 1422 array_free (prepare, EMPTY);
937 array_free (check, EMPTY0); 1423 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY);
1426#endif
938 1427
939 backend = 0; 1428 backend = 0;
940} 1429}
941 1430
942static void 1431#if EV_USE_INOTIFY
1432void inline_size infy_fork (EV_P);
1433#endif
1434
1435void inline_size
943loop_fork (EV_P) 1436loop_fork (EV_P)
944{ 1437{
945#if EV_USE_PORT 1438#if EV_USE_PORT
946 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1439 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
947#endif 1440#endif
949 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1442 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
950#endif 1443#endif
951#if EV_USE_EPOLL 1444#if EV_USE_EPOLL
952 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1445 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
953#endif 1446#endif
1447#if EV_USE_INOTIFY
1448 infy_fork (EV_A);
1449#endif
954 1450
955 if (ev_is_active (&sigev)) 1451 if (ev_is_active (&pipeev))
956 { 1452 {
957 /* default loop */ 1453 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */
1455 gotsig = 1;
1456#if EV_ASYNC_ENABLE
1457 gotasync = 1;
1458#endif
958 1459
959 ev_ref (EV_A); 1460 ev_ref (EV_A);
960 ev_io_stop (EV_A_ &sigev); 1461 ev_io_stop (EV_A_ &pipeev);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
961 close (sigpipe [0]); 1470 close (evpipe [0]);
962 close (sigpipe [1]); 1471 close (evpipe [1]);
1472 }
963 1473
964 while (pipe (sigpipe))
965 syserr ("(libev) error creating pipe");
966
967 siginit (EV_A); 1474 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ);
968 } 1477 }
969 1478
970 postfork = 0; 1479 postfork = 0;
971} 1480}
972 1481
973#if EV_MULTIPLICITY 1482#if EV_MULTIPLICITY
1483
974struct ev_loop * 1484struct ev_loop *
975ev_loop_new (unsigned int flags) 1485ev_loop_new (unsigned int flags)
976{ 1486{
977 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1487 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
978 1488
994} 1504}
995 1505
996void 1506void
997ev_loop_fork (EV_P) 1507ev_loop_fork (EV_P)
998{ 1508{
999 postfork = 1; 1509 postfork = 1; /* must be in line with ev_default_fork */
1000} 1510}
1001 1511
1512#if EV_VERIFY
1513void noinline
1514verify_watcher (EV_P_ W w)
1515{
1516 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1517
1518 if (w->pending)
1519 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1520}
1521
1522static void noinline
1523verify_heap (EV_P_ ANHE *heap, int N)
1524{
1525 int i;
1526
1527 for (i = HEAP0; i < N + HEAP0; ++i)
1528 {
1529 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1530 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1531 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1532
1533 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1534 }
1535}
1536
1537static void noinline
1538array_verify (EV_P_ W *ws, int cnt)
1539{
1540 while (cnt--)
1541 {
1542 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1543 verify_watcher (EV_A_ ws [cnt]);
1544 }
1545}
1546#endif
1547
1548void
1549ev_loop_verify (EV_P)
1550{
1551#if EV_VERIFY
1552 int i;
1553 WL w;
1554
1555 assert (activecnt >= -1);
1556
1557 assert (fdchangemax >= fdchangecnt);
1558 for (i = 0; i < fdchangecnt; ++i)
1559 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1560
1561 assert (anfdmax >= 0);
1562 for (i = 0; i < anfdmax; ++i)
1563 for (w = anfds [i].head; w; w = w->next)
1564 {
1565 verify_watcher (EV_A_ (W)w);
1566 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1567 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1568 }
1569
1570 assert (timermax >= timercnt);
1571 verify_heap (EV_A_ timers, timercnt);
1572
1573#if EV_PERIODIC_ENABLE
1574 assert (periodicmax >= periodiccnt);
1575 verify_heap (EV_A_ periodics, periodiccnt);
1576#endif
1577
1578 for (i = NUMPRI; i--; )
1579 {
1580 assert (pendingmax [i] >= pendingcnt [i]);
1581#if EV_IDLE_ENABLE
1582 assert (idleall >= 0);
1583 assert (idlemax [i] >= idlecnt [i]);
1584 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1585#endif
1586 }
1587
1588#if EV_FORK_ENABLE
1589 assert (forkmax >= forkcnt);
1590 array_verify (EV_A_ (W *)forks, forkcnt);
1591#endif
1592
1593#if EV_ASYNC_ENABLE
1594 assert (asyncmax >= asynccnt);
1595 array_verify (EV_A_ (W *)asyncs, asynccnt);
1596#endif
1597
1598 assert (preparemax >= preparecnt);
1599 array_verify (EV_A_ (W *)prepares, preparecnt);
1600
1601 assert (checkmax >= checkcnt);
1602 array_verify (EV_A_ (W *)checks, checkcnt);
1603
1604# if 0
1605 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1606 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1002#endif 1607# endif
1608#endif
1609}
1610
1611#endif /* multiplicity */
1003 1612
1004#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
1005struct ev_loop * 1614struct ev_loop *
1006ev_default_loop_init (unsigned int flags) 1615ev_default_loop_init (unsigned int flags)
1007#else 1616#else
1008int 1617int
1009ev_default_loop (unsigned int flags) 1618ev_default_loop (unsigned int flags)
1010#endif 1619#endif
1011{ 1620{
1012 if (sigpipe [0] == sigpipe [1])
1013 if (pipe (sigpipe))
1014 return 0;
1015
1016 if (!ev_default_loop_ptr) 1621 if (!ev_default_loop_ptr)
1017 { 1622 {
1018#if EV_MULTIPLICITY 1623#if EV_MULTIPLICITY
1019 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1624 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1020#else 1625#else
1023 1628
1024 loop_init (EV_A_ flags); 1629 loop_init (EV_A_ flags);
1025 1630
1026 if (ev_backend (EV_A)) 1631 if (ev_backend (EV_A))
1027 { 1632 {
1028 siginit (EV_A);
1029
1030#ifndef _WIN32 1633#ifndef _WIN32
1031 ev_signal_init (&childev, childcb, SIGCHLD); 1634 ev_signal_init (&childev, childcb, SIGCHLD);
1032 ev_set_priority (&childev, EV_MAXPRI); 1635 ev_set_priority (&childev, EV_MAXPRI);
1033 ev_signal_start (EV_A_ &childev); 1636 ev_signal_start (EV_A_ &childev);
1034 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1637 ev_unref (EV_A); /* child watcher should not keep loop alive */
1051#ifndef _WIN32 1654#ifndef _WIN32
1052 ev_ref (EV_A); /* child watcher */ 1655 ev_ref (EV_A); /* child watcher */
1053 ev_signal_stop (EV_A_ &childev); 1656 ev_signal_stop (EV_A_ &childev);
1054#endif 1657#endif
1055 1658
1056 ev_ref (EV_A); /* signal watcher */
1057 ev_io_stop (EV_A_ &sigev);
1058
1059 close (sigpipe [0]); sigpipe [0] = 0;
1060 close (sigpipe [1]); sigpipe [1] = 0;
1061
1062 loop_destroy (EV_A); 1659 loop_destroy (EV_A);
1063} 1660}
1064 1661
1065void 1662void
1066ev_default_fork (void) 1663ev_default_fork (void)
1068#if EV_MULTIPLICITY 1665#if EV_MULTIPLICITY
1069 struct ev_loop *loop = ev_default_loop_ptr; 1666 struct ev_loop *loop = ev_default_loop_ptr;
1070#endif 1667#endif
1071 1668
1072 if (backend) 1669 if (backend)
1073 postfork = 1; 1670 postfork = 1; /* must be in line with ev_loop_fork */
1074} 1671}
1075 1672
1076/*****************************************************************************/ 1673/*****************************************************************************/
1077 1674
1078int inline_size 1675void
1079any_pending (EV_P) 1676ev_invoke (EV_P_ void *w, int revents)
1080{ 1677{
1081 int pri; 1678 EV_CB_INVOKE ((W)w, revents);
1082
1083 for (pri = NUMPRI; pri--; )
1084 if (pendingcnt [pri])
1085 return 1;
1086
1087 return 0;
1088} 1679}
1089 1680
1090void inline_speed 1681void inline_speed
1091call_pending (EV_P) 1682call_pending (EV_P)
1092{ 1683{
1097 { 1688 {
1098 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1689 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1099 1690
1100 if (expect_true (p->w)) 1691 if (expect_true (p->w))
1101 { 1692 {
1102 assert (("non-pending watcher on pending list", p->w->pending)); 1693 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1103 1694
1104 p->w->pending = 0; 1695 p->w->pending = 0;
1105 EV_CB_INVOKE (p->w, p->events); 1696 EV_CB_INVOKE (p->w, p->events);
1697 EV_FREQUENT_CHECK;
1106 } 1698 }
1107 } 1699 }
1108} 1700}
1109 1701
1702#if EV_IDLE_ENABLE
1703void inline_size
1704idle_reify (EV_P)
1705{
1706 if (expect_false (idleall))
1707 {
1708 int pri;
1709
1710 for (pri = NUMPRI; pri--; )
1711 {
1712 if (pendingcnt [pri])
1713 break;
1714
1715 if (idlecnt [pri])
1716 {
1717 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1718 break;
1719 }
1720 }
1721 }
1722}
1723#endif
1724
1110void inline_size 1725void inline_size
1111timers_reify (EV_P) 1726timers_reify (EV_P)
1112{ 1727{
1728 EV_FREQUENT_CHECK;
1729
1113 while (timercnt && ((WT)timers [0])->at <= mn_now) 1730 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1114 { 1731 {
1115 ev_timer *w = timers [0]; 1732 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1116 1733
1117 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1734 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1118 1735
1119 /* first reschedule or stop timer */ 1736 /* first reschedule or stop timer */
1120 if (w->repeat) 1737 if (w->repeat)
1121 { 1738 {
1739 ev_at (w) += w->repeat;
1740 if (ev_at (w) < mn_now)
1741 ev_at (w) = mn_now;
1742
1122 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1743 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1123 1744
1124 ((WT)w)->at += w->repeat; 1745 ANHE_at_cache (timers [HEAP0]);
1125 if (((WT)w)->at < mn_now)
1126 ((WT)w)->at = mn_now;
1127
1128 downheap ((WT *)timers, timercnt, 0); 1746 downheap (timers, timercnt, HEAP0);
1129 } 1747 }
1130 else 1748 else
1131 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1749 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1132 1750
1751 EV_FREQUENT_CHECK;
1133 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1752 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1134 } 1753 }
1135} 1754}
1136 1755
1137#if EV_PERIODIC_ENABLE 1756#if EV_PERIODIC_ENABLE
1138void inline_size 1757void inline_size
1139periodics_reify (EV_P) 1758periodics_reify (EV_P)
1140{ 1759{
1760 EV_FREQUENT_CHECK;
1761
1141 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1762 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1142 { 1763 {
1143 ev_periodic *w = periodics [0]; 1764 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1144 1765
1145 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1766 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1146 1767
1147 /* first reschedule or stop timer */ 1768 /* first reschedule or stop timer */
1148 if (w->reschedule_cb) 1769 if (w->reschedule_cb)
1149 { 1770 {
1150 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1771 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1772
1151 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1773 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1774
1775 ANHE_at_cache (periodics [HEAP0]);
1152 downheap ((WT *)periodics, periodiccnt, 0); 1776 downheap (periodics, periodiccnt, HEAP0);
1153 } 1777 }
1154 else if (w->interval) 1778 else if (w->interval)
1155 { 1779 {
1156 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1780 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1157 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1781 /* if next trigger time is not sufficiently in the future, put it there */
1782 /* this might happen because of floating point inexactness */
1783 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1784 {
1785 ev_at (w) += w->interval;
1786
1787 /* if interval is unreasonably low we might still have a time in the past */
1788 /* so correct this. this will make the periodic very inexact, but the user */
1789 /* has effectively asked to get triggered more often than possible */
1790 if (ev_at (w) < ev_rt_now)
1791 ev_at (w) = ev_rt_now;
1792 }
1793
1794 ANHE_at_cache (periodics [HEAP0]);
1158 downheap ((WT *)periodics, periodiccnt, 0); 1795 downheap (periodics, periodiccnt, HEAP0);
1159 } 1796 }
1160 else 1797 else
1161 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1162 1799
1800 EV_FREQUENT_CHECK;
1163 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1801 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1164 } 1802 }
1165} 1803}
1166 1804
1167static void noinline 1805static void noinline
1168periodics_reschedule (EV_P) 1806periodics_reschedule (EV_P)
1169{ 1807{
1170 int i; 1808 int i;
1171 1809
1172 /* adjust periodics after time jump */ 1810 /* adjust periodics after time jump */
1173 for (i = 0; i < periodiccnt; ++i) 1811 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1174 { 1812 {
1175 ev_periodic *w = periodics [i]; 1813 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1176 1814
1177 if (w->reschedule_cb) 1815 if (w->reschedule_cb)
1178 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1816 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1179 else if (w->interval) 1817 else if (w->interval)
1180 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1818 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1819
1820 ANHE_at_cache (periodics [i]);
1821 }
1822
1823 reheap (periodics, periodiccnt);
1824}
1825#endif
1826
1827void inline_speed
1828time_update (EV_P_ ev_tstamp max_block)
1829{
1830 int i;
1831
1832#if EV_USE_MONOTONIC
1833 if (expect_true (have_monotonic))
1181 } 1834 {
1835 ev_tstamp odiff = rtmn_diff;
1182 1836
1183 /* now rebuild the heap */
1184 for (i = periodiccnt >> 1; i--; )
1185 downheap ((WT *)periodics, periodiccnt, i);
1186}
1187#endif
1188
1189int inline_size
1190time_update_monotonic (EV_P)
1191{
1192 mn_now = get_clock (); 1837 mn_now = get_clock ();
1193 1838
1839 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1840 /* interpolate in the meantime */
1194 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1841 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1195 { 1842 {
1196 ev_rt_now = rtmn_diff + mn_now; 1843 ev_rt_now = rtmn_diff + mn_now;
1197 return 0; 1844 return;
1198 } 1845 }
1199 else 1846
1200 {
1201 now_floor = mn_now; 1847 now_floor = mn_now;
1202 ev_rt_now = ev_time (); 1848 ev_rt_now = ev_time ();
1203 return 1;
1204 }
1205}
1206 1849
1207void inline_size 1850 /* loop a few times, before making important decisions.
1208time_update (EV_P) 1851 * on the choice of "4": one iteration isn't enough,
1209{ 1852 * in case we get preempted during the calls to
1210 int i; 1853 * ev_time and get_clock. a second call is almost guaranteed
1211 1854 * to succeed in that case, though. and looping a few more times
1212#if EV_USE_MONOTONIC 1855 * doesn't hurt either as we only do this on time-jumps or
1213 if (expect_true (have_monotonic)) 1856 * in the unlikely event of having been preempted here.
1214 { 1857 */
1215 if (time_update_monotonic (EV_A)) 1858 for (i = 4; --i; )
1216 { 1859 {
1217 ev_tstamp odiff = rtmn_diff;
1218
1219 /* loop a few times, before making important decisions.
1220 * on the choice of "4": one iteration isn't enough,
1221 * in case we get preempted during the calls to
1222 * ev_time and get_clock. a second call is almost guarenteed
1223 * to succeed in that case, though. and looping a few more times
1224 * doesn't hurt either as we only do this on time-jumps or
1225 * in the unlikely event of getting preempted here.
1226 */
1227 for (i = 4; --i; )
1228 {
1229 rtmn_diff = ev_rt_now - mn_now; 1860 rtmn_diff = ev_rt_now - mn_now;
1230 1861
1231 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1862 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1232 return; /* all is well */ 1863 return; /* all is well */
1233 1864
1234 ev_rt_now = ev_time (); 1865 ev_rt_now = ev_time ();
1235 mn_now = get_clock (); 1866 mn_now = get_clock ();
1236 now_floor = mn_now; 1867 now_floor = mn_now;
1237 } 1868 }
1238 1869
1239# if EV_PERIODIC_ENABLE 1870# if EV_PERIODIC_ENABLE
1240 periodics_reschedule (EV_A); 1871 periodics_reschedule (EV_A);
1241# endif 1872# endif
1242 /* no timer adjustment, as the monotonic clock doesn't jump */ 1873 /* no timer adjustment, as the monotonic clock doesn't jump */
1243 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1874 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1244 }
1245 } 1875 }
1246 else 1876 else
1247#endif 1877#endif
1248 { 1878 {
1249 ev_rt_now = ev_time (); 1879 ev_rt_now = ev_time ();
1250 1880
1251 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1881 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1252 { 1882 {
1253#if EV_PERIODIC_ENABLE 1883#if EV_PERIODIC_ENABLE
1254 periodics_reschedule (EV_A); 1884 periodics_reschedule (EV_A);
1255#endif 1885#endif
1256
1257 /* adjust timers. this is easy, as the offset is the same for all */ 1886 /* adjust timers. this is easy, as the offset is the same for all of them */
1258 for (i = 0; i < timercnt; ++i) 1887 for (i = 0; i < timercnt; ++i)
1888 {
1889 ANHE *he = timers + i + HEAP0;
1259 ((WT)timers [i])->at += ev_rt_now - mn_now; 1890 ANHE_w (*he)->at += ev_rt_now - mn_now;
1891 ANHE_at_cache (*he);
1892 }
1260 } 1893 }
1261 1894
1262 mn_now = ev_rt_now; 1895 mn_now = ev_rt_now;
1263 } 1896 }
1264} 1897}
1278static int loop_done; 1911static int loop_done;
1279 1912
1280void 1913void
1281ev_loop (EV_P_ int flags) 1914ev_loop (EV_P_ int flags)
1282{ 1915{
1283 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1916 loop_done = EVUNLOOP_CANCEL;
1284 ? EVUNLOOP_ONE
1285 : EVUNLOOP_CANCEL;
1286 1917
1287 while (activecnt) 1918 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1919
1920 do
1288 { 1921 {
1289 /* we might have forked, so reify kernel state if necessary */ 1922#if EV_VERIFY >= 2
1923 ev_loop_verify (EV_A);
1924#endif
1925
1926#ifndef _WIN32
1927 if (expect_false (curpid)) /* penalise the forking check even more */
1928 if (expect_false (getpid () != curpid))
1929 {
1930 curpid = getpid ();
1931 postfork = 1;
1932 }
1933#endif
1934
1290 #if EV_FORK_ENABLE 1935#if EV_FORK_ENABLE
1936 /* we might have forked, so queue fork handlers */
1291 if (expect_false (postfork)) 1937 if (expect_false (postfork))
1292 if (forkcnt) 1938 if (forkcnt)
1293 { 1939 {
1294 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1940 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1295 call_pending (EV_A); 1941 call_pending (EV_A);
1296 } 1942 }
1297 #endif 1943#endif
1298 1944
1299 /* queue check watchers (and execute them) */ 1945 /* queue prepare watchers (and execute them) */
1300 if (expect_false (preparecnt)) 1946 if (expect_false (preparecnt))
1301 { 1947 {
1302 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1948 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1303 call_pending (EV_A); 1949 call_pending (EV_A);
1304 } 1950 }
1305 1951
1952 if (expect_false (!activecnt))
1953 break;
1954
1306 /* we might have forked, so reify kernel state if necessary */ 1955 /* we might have forked, so reify kernel state if necessary */
1307 if (expect_false (postfork)) 1956 if (expect_false (postfork))
1308 loop_fork (EV_A); 1957 loop_fork (EV_A);
1309 1958
1310 /* update fd-related kernel structures */ 1959 /* update fd-related kernel structures */
1311 fd_reify (EV_A); 1960 fd_reify (EV_A);
1312 1961
1313 /* calculate blocking time */ 1962 /* calculate blocking time */
1314 { 1963 {
1315 double block; 1964 ev_tstamp waittime = 0.;
1965 ev_tstamp sleeptime = 0.;
1316 1966
1317 if (flags & EVLOOP_NONBLOCK || idlecnt) 1967 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1318 block = 0.; /* do not block at all */
1319 else
1320 { 1968 {
1321 /* update time to cancel out callback processing overhead */ 1969 /* update time to cancel out callback processing overhead */
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 time_update_monotonic (EV_A); 1970 time_update (EV_A_ 1e100);
1325 else
1326#endif
1327 {
1328 ev_rt_now = ev_time ();
1329 mn_now = ev_rt_now;
1330 }
1331 1971
1332 block = MAX_BLOCKTIME; 1972 waittime = MAX_BLOCKTIME;
1333 1973
1334 if (timercnt) 1974 if (timercnt)
1335 { 1975 {
1336 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1976 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1337 if (block > to) block = to; 1977 if (waittime > to) waittime = to;
1338 } 1978 }
1339 1979
1340#if EV_PERIODIC_ENABLE 1980#if EV_PERIODIC_ENABLE
1341 if (periodiccnt) 1981 if (periodiccnt)
1342 { 1982 {
1343 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1983 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1344 if (block > to) block = to; 1984 if (waittime > to) waittime = to;
1345 } 1985 }
1346#endif 1986#endif
1347 1987
1348 if (expect_false (block < 0.)) block = 0.; 1988 if (expect_false (waittime < timeout_blocktime))
1989 waittime = timeout_blocktime;
1990
1991 sleeptime = waittime - backend_fudge;
1992
1993 if (expect_true (sleeptime > io_blocktime))
1994 sleeptime = io_blocktime;
1995
1996 if (sleeptime)
1997 {
1998 ev_sleep (sleeptime);
1999 waittime -= sleeptime;
2000 }
1349 } 2001 }
1350 2002
2003 ++loop_count;
1351 backend_poll (EV_A_ block); 2004 backend_poll (EV_A_ waittime);
2005
2006 /* update ev_rt_now, do magic */
2007 time_update (EV_A_ waittime + sleeptime);
1352 } 2008 }
1353
1354 /* update ev_rt_now, do magic */
1355 time_update (EV_A);
1356 2009
1357 /* queue pending timers and reschedule them */ 2010 /* queue pending timers and reschedule them */
1358 timers_reify (EV_A); /* relative timers called last */ 2011 timers_reify (EV_A); /* relative timers called last */
1359#if EV_PERIODIC_ENABLE 2012#if EV_PERIODIC_ENABLE
1360 periodics_reify (EV_A); /* absolute timers called first */ 2013 periodics_reify (EV_A); /* absolute timers called first */
1361#endif 2014#endif
1362 2015
2016#if EV_IDLE_ENABLE
1363 /* queue idle watchers unless other events are pending */ 2017 /* queue idle watchers unless other events are pending */
1364 if (idlecnt && !any_pending (EV_A)) 2018 idle_reify (EV_A);
1365 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2019#endif
1366 2020
1367 /* queue check watchers, to be executed first */ 2021 /* queue check watchers, to be executed first */
1368 if (expect_false (checkcnt)) 2022 if (expect_false (checkcnt))
1369 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1370 2024
1371 call_pending (EV_A); 2025 call_pending (EV_A);
1372
1373 if (expect_false (loop_done))
1374 break;
1375 } 2026 }
2027 while (expect_true (
2028 activecnt
2029 && !loop_done
2030 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2031 ));
1376 2032
1377 if (loop_done == EVUNLOOP_ONE) 2033 if (loop_done == EVUNLOOP_ONE)
1378 loop_done = EVUNLOOP_CANCEL; 2034 loop_done = EVUNLOOP_CANCEL;
1379} 2035}
1380 2036
1407 head = &(*head)->next; 2063 head = &(*head)->next;
1408 } 2064 }
1409} 2065}
1410 2066
1411void inline_speed 2067void inline_speed
1412ev_clear_pending (EV_P_ W w) 2068clear_pending (EV_P_ W w)
1413{ 2069{
1414 if (w->pending) 2070 if (w->pending)
1415 { 2071 {
1416 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2072 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1417 w->pending = 0; 2073 w->pending = 0;
1418 } 2074 }
1419} 2075}
1420 2076
2077int
2078ev_clear_pending (EV_P_ void *w)
2079{
2080 W w_ = (W)w;
2081 int pending = w_->pending;
2082
2083 if (expect_true (pending))
2084 {
2085 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2086 w_->pending = 0;
2087 p->w = 0;
2088 return p->events;
2089 }
2090 else
2091 return 0;
2092}
2093
2094void inline_size
2095pri_adjust (EV_P_ W w)
2096{
2097 int pri = w->priority;
2098 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2099 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2100 w->priority = pri;
2101}
2102
1421void inline_speed 2103void inline_speed
1422ev_start (EV_P_ W w, int active) 2104ev_start (EV_P_ W w, int active)
1423{ 2105{
1424 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2106 pri_adjust (EV_A_ w);
1425 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1426
1427 w->active = active; 2107 w->active = active;
1428 ev_ref (EV_A); 2108 ev_ref (EV_A);
1429} 2109}
1430 2110
1431void inline_size 2111void inline_size
1435 w->active = 0; 2115 w->active = 0;
1436} 2116}
1437 2117
1438/*****************************************************************************/ 2118/*****************************************************************************/
1439 2119
1440void 2120void noinline
1441ev_io_start (EV_P_ ev_io *w) 2121ev_io_start (EV_P_ ev_io *w)
1442{ 2122{
1443 int fd = w->fd; 2123 int fd = w->fd;
1444 2124
1445 if (expect_false (ev_is_active (w))) 2125 if (expect_false (ev_is_active (w)))
1446 return; 2126 return;
1447 2127
1448 assert (("ev_io_start called with negative fd", fd >= 0)); 2128 assert (("ev_io_start called with negative fd", fd >= 0));
1449 2129
2130 EV_FREQUENT_CHECK;
2131
1450 ev_start (EV_A_ (W)w, 1); 2132 ev_start (EV_A_ (W)w, 1);
1451 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2133 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1452 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2134 wlist_add (&anfds[fd].head, (WL)w);
1453 2135
1454 fd_change (EV_A_ fd); 2136 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1455} 2137 w->events &= ~EV_IOFDSET;
1456 2138
1457void 2139 EV_FREQUENT_CHECK;
2140}
2141
2142void noinline
1458ev_io_stop (EV_P_ ev_io *w) 2143ev_io_stop (EV_P_ ev_io *w)
1459{ 2144{
1460 ev_clear_pending (EV_A_ (W)w); 2145 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 2146 if (expect_false (!ev_is_active (w)))
1462 return; 2147 return;
1463 2148
1464 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2149 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1465 2150
2151 EV_FREQUENT_CHECK;
2152
1466 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2153 wlist_del (&anfds[w->fd].head, (WL)w);
1467 ev_stop (EV_A_ (W)w); 2154 ev_stop (EV_A_ (W)w);
1468 2155
1469 fd_change (EV_A_ w->fd); 2156 fd_change (EV_A_ w->fd, 1);
1470}
1471 2157
1472void 2158 EV_FREQUENT_CHECK;
2159}
2160
2161void noinline
1473ev_timer_start (EV_P_ ev_timer *w) 2162ev_timer_start (EV_P_ ev_timer *w)
1474{ 2163{
1475 if (expect_false (ev_is_active (w))) 2164 if (expect_false (ev_is_active (w)))
1476 return; 2165 return;
1477 2166
1478 ((WT)w)->at += mn_now; 2167 ev_at (w) += mn_now;
1479 2168
1480 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2169 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1481 2170
2171 EV_FREQUENT_CHECK;
2172
2173 ++timercnt;
1482 ev_start (EV_A_ (W)w, ++timercnt); 2174 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1483 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2175 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1484 timers [timercnt - 1] = w; 2176 ANHE_w (timers [ev_active (w)]) = (WT)w;
1485 upheap ((WT *)timers, timercnt - 1); 2177 ANHE_at_cache (timers [ev_active (w)]);
2178 upheap (timers, ev_active (w));
1486 2179
2180 EV_FREQUENT_CHECK;
2181
1487 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2182 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1488} 2183}
1489 2184
1490void 2185void noinline
1491ev_timer_stop (EV_P_ ev_timer *w) 2186ev_timer_stop (EV_P_ ev_timer *w)
1492{ 2187{
1493 ev_clear_pending (EV_A_ (W)w); 2188 clear_pending (EV_A_ (W)w);
1494 if (expect_false (!ev_is_active (w))) 2189 if (expect_false (!ev_is_active (w)))
1495 return; 2190 return;
1496 2191
2192 EV_FREQUENT_CHECK;
2193
2194 {
2195 int active = ev_active (w);
2196
1497 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2197 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1498 2198
2199 --timercnt;
2200
1499 if (expect_true (((W)w)->active < timercnt--)) 2201 if (expect_true (active < timercnt + HEAP0))
1500 { 2202 {
1501 timers [((W)w)->active - 1] = timers [timercnt]; 2203 timers [active] = timers [timercnt + HEAP0];
1502 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2204 adjustheap (timers, timercnt, active);
1503 } 2205 }
2206 }
1504 2207
1505 ((WT)w)->at -= mn_now; 2208 EV_FREQUENT_CHECK;
2209
2210 ev_at (w) -= mn_now;
1506 2211
1507 ev_stop (EV_A_ (W)w); 2212 ev_stop (EV_A_ (W)w);
1508} 2213}
1509 2214
1510void 2215void noinline
1511ev_timer_again (EV_P_ ev_timer *w) 2216ev_timer_again (EV_P_ ev_timer *w)
1512{ 2217{
2218 EV_FREQUENT_CHECK;
2219
1513 if (ev_is_active (w)) 2220 if (ev_is_active (w))
1514 { 2221 {
1515 if (w->repeat) 2222 if (w->repeat)
1516 { 2223 {
1517 ((WT)w)->at = mn_now + w->repeat; 2224 ev_at (w) = mn_now + w->repeat;
2225 ANHE_at_cache (timers [ev_active (w)]);
1518 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2226 adjustheap (timers, timercnt, ev_active (w));
1519 } 2227 }
1520 else 2228 else
1521 ev_timer_stop (EV_A_ w); 2229 ev_timer_stop (EV_A_ w);
1522 } 2230 }
1523 else if (w->repeat) 2231 else if (w->repeat)
1524 { 2232 {
1525 w->at = w->repeat; 2233 ev_at (w) = w->repeat;
1526 ev_timer_start (EV_A_ w); 2234 ev_timer_start (EV_A_ w);
1527 } 2235 }
2236
2237 EV_FREQUENT_CHECK;
1528} 2238}
1529 2239
1530#if EV_PERIODIC_ENABLE 2240#if EV_PERIODIC_ENABLE
1531void 2241void noinline
1532ev_periodic_start (EV_P_ ev_periodic *w) 2242ev_periodic_start (EV_P_ ev_periodic *w)
1533{ 2243{
1534 if (expect_false (ev_is_active (w))) 2244 if (expect_false (ev_is_active (w)))
1535 return; 2245 return;
1536 2246
1537 if (w->reschedule_cb) 2247 if (w->reschedule_cb)
1538 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2248 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1539 else if (w->interval) 2249 else if (w->interval)
1540 { 2250 {
1541 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2251 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1542 /* this formula differs from the one in periodic_reify because we do not always round up */ 2252 /* this formula differs from the one in periodic_reify because we do not always round up */
1543 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2253 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1544 } 2254 }
2255 else
2256 ev_at (w) = w->offset;
1545 2257
2258 EV_FREQUENT_CHECK;
2259
2260 ++periodiccnt;
1546 ev_start (EV_A_ (W)w, ++periodiccnt); 2261 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1547 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2262 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1548 periodics [periodiccnt - 1] = w; 2263 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1549 upheap ((WT *)periodics, periodiccnt - 1); 2264 ANHE_at_cache (periodics [ev_active (w)]);
2265 upheap (periodics, ev_active (w));
1550 2266
2267 EV_FREQUENT_CHECK;
2268
1551 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2269 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1552} 2270}
1553 2271
1554void 2272void noinline
1555ev_periodic_stop (EV_P_ ev_periodic *w) 2273ev_periodic_stop (EV_P_ ev_periodic *w)
1556{ 2274{
1557 ev_clear_pending (EV_A_ (W)w); 2275 clear_pending (EV_A_ (W)w);
1558 if (expect_false (!ev_is_active (w))) 2276 if (expect_false (!ev_is_active (w)))
1559 return; 2277 return;
1560 2278
2279 EV_FREQUENT_CHECK;
2280
2281 {
2282 int active = ev_active (w);
2283
1561 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2284 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1562 2285
2286 --periodiccnt;
2287
1563 if (expect_true (((W)w)->active < periodiccnt--)) 2288 if (expect_true (active < periodiccnt + HEAP0))
1564 { 2289 {
1565 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2290 periodics [active] = periodics [periodiccnt + HEAP0];
1566 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2291 adjustheap (periodics, periodiccnt, active);
1567 } 2292 }
2293 }
2294
2295 EV_FREQUENT_CHECK;
1568 2296
1569 ev_stop (EV_A_ (W)w); 2297 ev_stop (EV_A_ (W)w);
1570} 2298}
1571 2299
1572void 2300void noinline
1573ev_periodic_again (EV_P_ ev_periodic *w) 2301ev_periodic_again (EV_P_ ev_periodic *w)
1574{ 2302{
1575 /* TODO: use adjustheap and recalculation */ 2303 /* TODO: use adjustheap and recalculation */
1576 ev_periodic_stop (EV_A_ w); 2304 ev_periodic_stop (EV_A_ w);
1577 ev_periodic_start (EV_A_ w); 2305 ev_periodic_start (EV_A_ w);
1580 2308
1581#ifndef SA_RESTART 2309#ifndef SA_RESTART
1582# define SA_RESTART 0 2310# define SA_RESTART 0
1583#endif 2311#endif
1584 2312
1585void 2313void noinline
1586ev_signal_start (EV_P_ ev_signal *w) 2314ev_signal_start (EV_P_ ev_signal *w)
1587{ 2315{
1588#if EV_MULTIPLICITY 2316#if EV_MULTIPLICITY
1589 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2317 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1590#endif 2318#endif
1591 if (expect_false (ev_is_active (w))) 2319 if (expect_false (ev_is_active (w)))
1592 return; 2320 return;
1593 2321
1594 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2322 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1595 2323
2324 evpipe_init (EV_A);
2325
2326 EV_FREQUENT_CHECK;
2327
2328 {
2329#ifndef _WIN32
2330 sigset_t full, prev;
2331 sigfillset (&full);
2332 sigprocmask (SIG_SETMASK, &full, &prev);
2333#endif
2334
2335 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2336
2337#ifndef _WIN32
2338 sigprocmask (SIG_SETMASK, &prev, 0);
2339#endif
2340 }
2341
1596 ev_start (EV_A_ (W)w, 1); 2342 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1598 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2343 wlist_add (&signals [w->signum - 1].head, (WL)w);
1599 2344
1600 if (!((WL)w)->next) 2345 if (!((WL)w)->next)
1601 { 2346 {
1602#if _WIN32 2347#if _WIN32
1603 signal (w->signum, sighandler); 2348 signal (w->signum, ev_sighandler);
1604#else 2349#else
1605 struct sigaction sa; 2350 struct sigaction sa;
1606 sa.sa_handler = sighandler; 2351 sa.sa_handler = ev_sighandler;
1607 sigfillset (&sa.sa_mask); 2352 sigfillset (&sa.sa_mask);
1608 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2353 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1609 sigaction (w->signum, &sa, 0); 2354 sigaction (w->signum, &sa, 0);
1610#endif 2355#endif
1611 } 2356 }
1612}
1613 2357
1614void 2358 EV_FREQUENT_CHECK;
2359}
2360
2361void noinline
1615ev_signal_stop (EV_P_ ev_signal *w) 2362ev_signal_stop (EV_P_ ev_signal *w)
1616{ 2363{
1617 ev_clear_pending (EV_A_ (W)w); 2364 clear_pending (EV_A_ (W)w);
1618 if (expect_false (!ev_is_active (w))) 2365 if (expect_false (!ev_is_active (w)))
1619 return; 2366 return;
1620 2367
2368 EV_FREQUENT_CHECK;
2369
1621 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2370 wlist_del (&signals [w->signum - 1].head, (WL)w);
1622 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
1623 2372
1624 if (!signals [w->signum - 1].head) 2373 if (!signals [w->signum - 1].head)
1625 signal (w->signum, SIG_DFL); 2374 signal (w->signum, SIG_DFL);
2375
2376 EV_FREQUENT_CHECK;
1626} 2377}
1627 2378
1628void 2379void
1629ev_child_start (EV_P_ ev_child *w) 2380ev_child_start (EV_P_ ev_child *w)
1630{ 2381{
1632 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2383 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1633#endif 2384#endif
1634 if (expect_false (ev_is_active (w))) 2385 if (expect_false (ev_is_active (w)))
1635 return; 2386 return;
1636 2387
2388 EV_FREQUENT_CHECK;
2389
1637 ev_start (EV_A_ (W)w, 1); 2390 ev_start (EV_A_ (W)w, 1);
1638 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2391 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2392
2393 EV_FREQUENT_CHECK;
1639} 2394}
1640 2395
1641void 2396void
1642ev_child_stop (EV_P_ ev_child *w) 2397ev_child_stop (EV_P_ ev_child *w)
1643{ 2398{
1644 ev_clear_pending (EV_A_ (W)w); 2399 clear_pending (EV_A_ (W)w);
1645 if (expect_false (!ev_is_active (w))) 2400 if (expect_false (!ev_is_active (w)))
1646 return; 2401 return;
1647 2402
2403 EV_FREQUENT_CHECK;
2404
1648 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2405 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1649 ev_stop (EV_A_ (W)w); 2406 ev_stop (EV_A_ (W)w);
2407
2408 EV_FREQUENT_CHECK;
1650} 2409}
1651 2410
1652#if EV_STAT_ENABLE 2411#if EV_STAT_ENABLE
1653 2412
1654# ifdef _WIN32 2413# ifdef _WIN32
1657# endif 2416# endif
1658 2417
1659#define DEF_STAT_INTERVAL 5.0074891 2418#define DEF_STAT_INTERVAL 5.0074891
1660#define MIN_STAT_INTERVAL 0.1074891 2419#define MIN_STAT_INTERVAL 0.1074891
1661 2420
2421static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2422
2423#if EV_USE_INOTIFY
2424# define EV_INOTIFY_BUFSIZE 8192
2425
2426static void noinline
2427infy_add (EV_P_ ev_stat *w)
2428{
2429 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2430
2431 if (w->wd < 0)
2432 {
2433 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2434
2435 /* monitor some parent directory for speedup hints */
2436 /* note that exceeding the hardcoded limit is not a correctness issue, */
2437 /* but an efficiency issue only */
2438 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2439 {
2440 char path [4096];
2441 strcpy (path, w->path);
2442
2443 do
2444 {
2445 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2446 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2447
2448 char *pend = strrchr (path, '/');
2449
2450 if (!pend)
2451 break; /* whoops, no '/', complain to your admin */
2452
2453 *pend = 0;
2454 w->wd = inotify_add_watch (fs_fd, path, mask);
2455 }
2456 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2457 }
2458 }
2459 else
2460 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2461
2462 if (w->wd >= 0)
2463 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2464}
2465
2466static void noinline
2467infy_del (EV_P_ ev_stat *w)
2468{
2469 int slot;
2470 int wd = w->wd;
2471
2472 if (wd < 0)
2473 return;
2474
2475 w->wd = -2;
2476 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2477 wlist_del (&fs_hash [slot].head, (WL)w);
2478
2479 /* remove this watcher, if others are watching it, they will rearm */
2480 inotify_rm_watch (fs_fd, wd);
2481}
2482
2483static void noinline
2484infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2485{
2486 if (slot < 0)
2487 /* overflow, need to check for all hahs slots */
2488 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2489 infy_wd (EV_A_ slot, wd, ev);
2490 else
2491 {
2492 WL w_;
2493
2494 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2495 {
2496 ev_stat *w = (ev_stat *)w_;
2497 w_ = w_->next; /* lets us remove this watcher and all before it */
2498
2499 if (w->wd == wd || wd == -1)
2500 {
2501 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2502 {
2503 w->wd = -1;
2504 infy_add (EV_A_ w); /* re-add, no matter what */
2505 }
2506
2507 stat_timer_cb (EV_A_ &w->timer, 0);
2508 }
2509 }
2510 }
2511}
2512
2513static void
2514infy_cb (EV_P_ ev_io *w, int revents)
2515{
2516 char buf [EV_INOTIFY_BUFSIZE];
2517 struct inotify_event *ev = (struct inotify_event *)buf;
2518 int ofs;
2519 int len = read (fs_fd, buf, sizeof (buf));
2520
2521 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2522 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2523}
2524
2525void inline_size
2526infy_init (EV_P)
2527{
2528 if (fs_fd != -2)
2529 return;
2530
2531 fs_fd = inotify_init ();
2532
2533 if (fs_fd >= 0)
2534 {
2535 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2536 ev_set_priority (&fs_w, EV_MAXPRI);
2537 ev_io_start (EV_A_ &fs_w);
2538 }
2539}
2540
2541void inline_size
2542infy_fork (EV_P)
2543{
2544 int slot;
2545
2546 if (fs_fd < 0)
2547 return;
2548
2549 close (fs_fd);
2550 fs_fd = inotify_init ();
2551
2552 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2553 {
2554 WL w_ = fs_hash [slot].head;
2555 fs_hash [slot].head = 0;
2556
2557 while (w_)
2558 {
2559 ev_stat *w = (ev_stat *)w_;
2560 w_ = w_->next; /* lets us add this watcher */
2561
2562 w->wd = -1;
2563
2564 if (fs_fd >= 0)
2565 infy_add (EV_A_ w); /* re-add, no matter what */
2566 else
2567 ev_timer_start (EV_A_ &w->timer);
2568 }
2569
2570 }
2571}
2572
2573#endif
2574
2575#ifdef _WIN32
2576# define EV_LSTAT(p,b) _stati64 (p, b)
2577#else
2578# define EV_LSTAT(p,b) lstat (p, b)
2579#endif
2580
1662void 2581void
1663ev_stat_stat (EV_P_ ev_stat *w) 2582ev_stat_stat (EV_P_ ev_stat *w)
1664{ 2583{
1665 if (lstat (w->path, &w->attr) < 0) 2584 if (lstat (w->path, &w->attr) < 0)
1666 w->attr.st_nlink = 0; 2585 w->attr.st_nlink = 0;
1667 else if (!w->attr.st_nlink) 2586 else if (!w->attr.st_nlink)
1668 w->attr.st_nlink = 1; 2587 w->attr.st_nlink = 1;
1669} 2588}
1670 2589
1671static void 2590static void noinline
1672stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2591stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1673{ 2592{
1674 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2593 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1675 2594
1676 /* we copy this here each the time so that */ 2595 /* we copy this here each the time so that */
1677 /* prev has the old value when the callback gets invoked */ 2596 /* prev has the old value when the callback gets invoked */
1678 w->prev = w->attr; 2597 w->prev = w->attr;
1679 ev_stat_stat (EV_A_ w); 2598 ev_stat_stat (EV_A_ w);
1680 2599
1681 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2600 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2601 if (
2602 w->prev.st_dev != w->attr.st_dev
2603 || w->prev.st_ino != w->attr.st_ino
2604 || w->prev.st_mode != w->attr.st_mode
2605 || w->prev.st_nlink != w->attr.st_nlink
2606 || w->prev.st_uid != w->attr.st_uid
2607 || w->prev.st_gid != w->attr.st_gid
2608 || w->prev.st_rdev != w->attr.st_rdev
2609 || w->prev.st_size != w->attr.st_size
2610 || w->prev.st_atime != w->attr.st_atime
2611 || w->prev.st_mtime != w->attr.st_mtime
2612 || w->prev.st_ctime != w->attr.st_ctime
2613 ) {
2614 #if EV_USE_INOTIFY
2615 infy_del (EV_A_ w);
2616 infy_add (EV_A_ w);
2617 ev_stat_stat (EV_A_ w); /* avoid race... */
2618 #endif
2619
1682 ev_feed_event (EV_A_ w, EV_STAT); 2620 ev_feed_event (EV_A_ w, EV_STAT);
2621 }
1683} 2622}
1684 2623
1685void 2624void
1686ev_stat_start (EV_P_ ev_stat *w) 2625ev_stat_start (EV_P_ ev_stat *w)
1687{ 2626{
1697 if (w->interval < MIN_STAT_INTERVAL) 2636 if (w->interval < MIN_STAT_INTERVAL)
1698 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL; 2637 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1699 2638
1700 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2639 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1701 ev_set_priority (&w->timer, ev_priority (w)); 2640 ev_set_priority (&w->timer, ev_priority (w));
2641
2642#if EV_USE_INOTIFY
2643 infy_init (EV_A);
2644
2645 if (fs_fd >= 0)
2646 infy_add (EV_A_ w);
2647 else
2648#endif
1702 ev_timer_start (EV_A_ &w->timer); 2649 ev_timer_start (EV_A_ &w->timer);
1703 2650
1704 ev_start (EV_A_ (W)w, 1); 2651 ev_start (EV_A_ (W)w, 1);
2652
2653 EV_FREQUENT_CHECK;
1705} 2654}
1706 2655
1707void 2656void
1708ev_stat_stop (EV_P_ ev_stat *w) 2657ev_stat_stop (EV_P_ ev_stat *w)
1709{ 2658{
1710 ev_clear_pending (EV_A_ (W)w); 2659 clear_pending (EV_A_ (W)w);
1711 if (expect_false (!ev_is_active (w))) 2660 if (expect_false (!ev_is_active (w)))
1712 return; 2661 return;
1713 2662
2663 EV_FREQUENT_CHECK;
2664
2665#if EV_USE_INOTIFY
2666 infy_del (EV_A_ w);
2667#endif
1714 ev_timer_stop (EV_A_ &w->timer); 2668 ev_timer_stop (EV_A_ &w->timer);
1715 2669
1716 ev_stop (EV_A_ (W)w); 2670 ev_stop (EV_A_ (W)w);
1717}
1718#endif
1719 2671
2672 EV_FREQUENT_CHECK;
2673}
2674#endif
2675
2676#if EV_IDLE_ENABLE
1720void 2677void
1721ev_idle_start (EV_P_ ev_idle *w) 2678ev_idle_start (EV_P_ ev_idle *w)
1722{ 2679{
1723 if (expect_false (ev_is_active (w))) 2680 if (expect_false (ev_is_active (w)))
1724 return; 2681 return;
1725 2682
2683 pri_adjust (EV_A_ (W)w);
2684
2685 EV_FREQUENT_CHECK;
2686
2687 {
2688 int active = ++idlecnt [ABSPRI (w)];
2689
2690 ++idleall;
1726 ev_start (EV_A_ (W)w, ++idlecnt); 2691 ev_start (EV_A_ (W)w, active);
2692
1727 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2693 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1728 idles [idlecnt - 1] = w; 2694 idles [ABSPRI (w)][active - 1] = w;
2695 }
2696
2697 EV_FREQUENT_CHECK;
1729} 2698}
1730 2699
1731void 2700void
1732ev_idle_stop (EV_P_ ev_idle *w) 2701ev_idle_stop (EV_P_ ev_idle *w)
1733{ 2702{
1734 ev_clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
1735 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
1736 return; 2705 return;
1737 2706
2707 EV_FREQUENT_CHECK;
2708
1738 { 2709 {
1739 int active = ((W)w)->active; 2710 int active = ev_active (w);
1740 idles [active - 1] = idles [--idlecnt]; 2711
1741 ((W)idles [active - 1])->active = active; 2712 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2713 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2714
2715 ev_stop (EV_A_ (W)w);
2716 --idleall;
1742 } 2717 }
1743 2718
1744 ev_stop (EV_A_ (W)w); 2719 EV_FREQUENT_CHECK;
1745} 2720}
2721#endif
1746 2722
1747void 2723void
1748ev_prepare_start (EV_P_ ev_prepare *w) 2724ev_prepare_start (EV_P_ ev_prepare *w)
1749{ 2725{
1750 if (expect_false (ev_is_active (w))) 2726 if (expect_false (ev_is_active (w)))
1751 return; 2727 return;
2728
2729 EV_FREQUENT_CHECK;
1752 2730
1753 ev_start (EV_A_ (W)w, ++preparecnt); 2731 ev_start (EV_A_ (W)w, ++preparecnt);
1754 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2732 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1755 prepares [preparecnt - 1] = w; 2733 prepares [preparecnt - 1] = w;
2734
2735 EV_FREQUENT_CHECK;
1756} 2736}
1757 2737
1758void 2738void
1759ev_prepare_stop (EV_P_ ev_prepare *w) 2739ev_prepare_stop (EV_P_ ev_prepare *w)
1760{ 2740{
1761 ev_clear_pending (EV_A_ (W)w); 2741 clear_pending (EV_A_ (W)w);
1762 if (expect_false (!ev_is_active (w))) 2742 if (expect_false (!ev_is_active (w)))
1763 return; 2743 return;
1764 2744
2745 EV_FREQUENT_CHECK;
2746
1765 { 2747 {
1766 int active = ((W)w)->active; 2748 int active = ev_active (w);
2749
1767 prepares [active - 1] = prepares [--preparecnt]; 2750 prepares [active - 1] = prepares [--preparecnt];
1768 ((W)prepares [active - 1])->active = active; 2751 ev_active (prepares [active - 1]) = active;
1769 } 2752 }
1770 2753
1771 ev_stop (EV_A_ (W)w); 2754 ev_stop (EV_A_ (W)w);
2755
2756 EV_FREQUENT_CHECK;
1772} 2757}
1773 2758
1774void 2759void
1775ev_check_start (EV_P_ ev_check *w) 2760ev_check_start (EV_P_ ev_check *w)
1776{ 2761{
1777 if (expect_false (ev_is_active (w))) 2762 if (expect_false (ev_is_active (w)))
1778 return; 2763 return;
2764
2765 EV_FREQUENT_CHECK;
1779 2766
1780 ev_start (EV_A_ (W)w, ++checkcnt); 2767 ev_start (EV_A_ (W)w, ++checkcnt);
1781 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2768 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1782 checks [checkcnt - 1] = w; 2769 checks [checkcnt - 1] = w;
2770
2771 EV_FREQUENT_CHECK;
1783} 2772}
1784 2773
1785void 2774void
1786ev_check_stop (EV_P_ ev_check *w) 2775ev_check_stop (EV_P_ ev_check *w)
1787{ 2776{
1788 ev_clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
1789 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
1790 return; 2779 return;
1791 2780
2781 EV_FREQUENT_CHECK;
2782
1792 { 2783 {
1793 int active = ((W)w)->active; 2784 int active = ev_active (w);
2785
1794 checks [active - 1] = checks [--checkcnt]; 2786 checks [active - 1] = checks [--checkcnt];
1795 ((W)checks [active - 1])->active = active; 2787 ev_active (checks [active - 1]) = active;
1796 } 2788 }
1797 2789
1798 ev_stop (EV_A_ (W)w); 2790 ev_stop (EV_A_ (W)w);
2791
2792 EV_FREQUENT_CHECK;
1799} 2793}
1800 2794
1801#if EV_EMBED_ENABLE 2795#if EV_EMBED_ENABLE
1802void noinline 2796void noinline
1803ev_embed_sweep (EV_P_ ev_embed *w) 2797ev_embed_sweep (EV_P_ ev_embed *w)
1804{ 2798{
1805 ev_loop (w->loop, EVLOOP_NONBLOCK); 2799 ev_loop (w->other, EVLOOP_NONBLOCK);
1806} 2800}
1807 2801
1808static void 2802static void
1809embed_cb (EV_P_ ev_io *io, int revents) 2803embed_io_cb (EV_P_ ev_io *io, int revents)
1810{ 2804{
1811 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2805 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1812 2806
1813 if (ev_cb (w)) 2807 if (ev_cb (w))
1814 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2808 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1815 else 2809 else
1816 ev_embed_sweep (loop, w); 2810 ev_loop (w->other, EVLOOP_NONBLOCK);
1817} 2811}
2812
2813static void
2814embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2815{
2816 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2817
2818 {
2819 struct ev_loop *loop = w->other;
2820
2821 while (fdchangecnt)
2822 {
2823 fd_reify (EV_A);
2824 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2825 }
2826 }
2827}
2828
2829#if 0
2830static void
2831embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2832{
2833 ev_idle_stop (EV_A_ idle);
2834}
2835#endif
1818 2836
1819void 2837void
1820ev_embed_start (EV_P_ ev_embed *w) 2838ev_embed_start (EV_P_ ev_embed *w)
1821{ 2839{
1822 if (expect_false (ev_is_active (w))) 2840 if (expect_false (ev_is_active (w)))
1823 return; 2841 return;
1824 2842
1825 { 2843 {
1826 struct ev_loop *loop = w->loop; 2844 struct ev_loop *loop = w->other;
1827 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2845 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1828 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2846 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1829 } 2847 }
2848
2849 EV_FREQUENT_CHECK;
1830 2850
1831 ev_set_priority (&w->io, ev_priority (w)); 2851 ev_set_priority (&w->io, ev_priority (w));
1832 ev_io_start (EV_A_ &w->io); 2852 ev_io_start (EV_A_ &w->io);
1833 2853
2854 ev_prepare_init (&w->prepare, embed_prepare_cb);
2855 ev_set_priority (&w->prepare, EV_MINPRI);
2856 ev_prepare_start (EV_A_ &w->prepare);
2857
2858 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2859
1834 ev_start (EV_A_ (W)w, 1); 2860 ev_start (EV_A_ (W)w, 1);
2861
2862 EV_FREQUENT_CHECK;
1835} 2863}
1836 2864
1837void 2865void
1838ev_embed_stop (EV_P_ ev_embed *w) 2866ev_embed_stop (EV_P_ ev_embed *w)
1839{ 2867{
1840 ev_clear_pending (EV_A_ (W)w); 2868 clear_pending (EV_A_ (W)w);
1841 if (expect_false (!ev_is_active (w))) 2869 if (expect_false (!ev_is_active (w)))
1842 return; 2870 return;
1843 2871
2872 EV_FREQUENT_CHECK;
2873
1844 ev_io_stop (EV_A_ &w->io); 2874 ev_io_stop (EV_A_ &w->io);
2875 ev_prepare_stop (EV_A_ &w->prepare);
1845 2876
1846 ev_stop (EV_A_ (W)w); 2877 ev_stop (EV_A_ (W)w);
2878
2879 EV_FREQUENT_CHECK;
1847} 2880}
1848#endif 2881#endif
1849 2882
1850#if EV_FORK_ENABLE 2883#if EV_FORK_ENABLE
1851void 2884void
1852ev_fork_start (EV_P_ ev_fork *w) 2885ev_fork_start (EV_P_ ev_fork *w)
1853{ 2886{
1854 if (expect_false (ev_is_active (w))) 2887 if (expect_false (ev_is_active (w)))
1855 return; 2888 return;
2889
2890 EV_FREQUENT_CHECK;
1856 2891
1857 ev_start (EV_A_ (W)w, ++forkcnt); 2892 ev_start (EV_A_ (W)w, ++forkcnt);
1858 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2893 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
1859 forks [forkcnt - 1] = w; 2894 forks [forkcnt - 1] = w;
2895
2896 EV_FREQUENT_CHECK;
1860} 2897}
1861 2898
1862void 2899void
1863ev_fork_stop (EV_P_ ev_fork *w) 2900ev_fork_stop (EV_P_ ev_fork *w)
1864{ 2901{
1865 ev_clear_pending (EV_A_ (W)w); 2902 clear_pending (EV_A_ (W)w);
1866 if (expect_false (!ev_is_active (w))) 2903 if (expect_false (!ev_is_active (w)))
1867 return; 2904 return;
1868 2905
2906 EV_FREQUENT_CHECK;
2907
1869 { 2908 {
1870 int active = ((W)w)->active; 2909 int active = ev_active (w);
2910
1871 forks [active - 1] = forks [--forkcnt]; 2911 forks [active - 1] = forks [--forkcnt];
1872 ((W)forks [active - 1])->active = active; 2912 ev_active (forks [active - 1]) = active;
1873 } 2913 }
1874 2914
1875 ev_stop (EV_A_ (W)w); 2915 ev_stop (EV_A_ (W)w);
2916
2917 EV_FREQUENT_CHECK;
2918}
2919#endif
2920
2921#if EV_ASYNC_ENABLE
2922void
2923ev_async_start (EV_P_ ev_async *w)
2924{
2925 if (expect_false (ev_is_active (w)))
2926 return;
2927
2928 evpipe_init (EV_A);
2929
2930 EV_FREQUENT_CHECK;
2931
2932 ev_start (EV_A_ (W)w, ++asynccnt);
2933 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2934 asyncs [asynccnt - 1] = w;
2935
2936 EV_FREQUENT_CHECK;
2937}
2938
2939void
2940ev_async_stop (EV_P_ ev_async *w)
2941{
2942 clear_pending (EV_A_ (W)w);
2943 if (expect_false (!ev_is_active (w)))
2944 return;
2945
2946 EV_FREQUENT_CHECK;
2947
2948 {
2949 int active = ev_active (w);
2950
2951 asyncs [active - 1] = asyncs [--asynccnt];
2952 ev_active (asyncs [active - 1]) = active;
2953 }
2954
2955 ev_stop (EV_A_ (W)w);
2956
2957 EV_FREQUENT_CHECK;
2958}
2959
2960void
2961ev_async_send (EV_P_ ev_async *w)
2962{
2963 w->sent = 1;
2964 evpipe_write (EV_A_ &gotasync);
1876} 2965}
1877#endif 2966#endif
1878 2967
1879/*****************************************************************************/ 2968/*****************************************************************************/
1880 2969
1938 ev_timer_set (&once->to, timeout, 0.); 3027 ev_timer_set (&once->to, timeout, 0.);
1939 ev_timer_start (EV_A_ &once->to); 3028 ev_timer_start (EV_A_ &once->to);
1940 } 3029 }
1941} 3030}
1942 3031
3032#if EV_MULTIPLICITY
3033 #include "ev_wrap.h"
3034#endif
3035
1943#ifdef __cplusplus 3036#ifdef __cplusplus
1944} 3037}
1945#endif 3038#endif
1946 3039

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines