ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.150 by root, Tue Nov 27 19:41:52 2007 UTC vs.
Revision 1.376 by root, Sat Jun 4 05:33:29 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
99#endif 145# endif
100 146
101#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
102#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
103#include <fcntl.h> 169#include <fcntl.h>
104#include <stddef.h> 170#include <stddef.h>
105 171
106#include <stdio.h> 172#include <stdio.h>
107 173
108#include <assert.h> 174#include <assert.h>
109#include <errno.h> 175#include <errno.h>
110#include <sys/types.h> 176#include <sys/types.h>
111#include <time.h> 177#include <time.h>
178#include <limits.h>
112 179
113#include <signal.h> 180#include <signal.h>
181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188EV_CPP(extern "C" {)
114 189
115#ifndef _WIN32 190#ifndef _WIN32
116# include <sys/time.h> 191# include <sys/time.h>
117# include <sys/wait.h> 192# include <sys/wait.h>
118# include <unistd.h> 193# include <unistd.h>
119#else 194#else
195# include <io.h>
120# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 197# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
124# endif 200# endif
201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
125#endif 251# endif
126 252#endif
127/**/
128 253
129#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
130# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
131#endif 260#endif
132 261
133#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
135#endif 272#endif
136 273
137#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
139#endif 276#endif
140 277
141#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
142# ifdef _WIN32 279# ifdef _WIN32
143# define EV_USE_POLL 0 280# define EV_USE_POLL 0
144# else 281# else
145# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
146# endif 283# endif
147#endif 284#endif
148 285
149#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
150# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
151#endif 292#endif
152 293
153#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
155#endif 296#endif
156 297
157#ifndef EV_USE_PORT 298#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 299# define EV_USE_PORT 0
159#endif 300#endif
160 301
302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
306# define EV_USE_INOTIFY 0
307# endif
308#endif
309
161#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
162# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
163# define EV_PID_HASHSIZE 1 312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
164# else 321# else
165# define EV_PID_HASHSIZE 16 322# define EV_USE_EVENTFD 0
166# endif 323# endif
167#endif 324#endif
168 325
169/**/ 326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
170 373
171#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
172# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
173# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
174#endif 377#endif
176#ifndef CLOCK_REALTIME 379#ifndef CLOCK_REALTIME
177# undef EV_USE_REALTIME 380# undef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 381# define EV_USE_REALTIME 0
179#endif 382#endif
180 383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
181#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
182# include <winsock.h> 407# include <winsock.h>
183#endif 408#endif
184 409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
185/**/ 448/**/
449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
186 462
187#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
188#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
189/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
190 465
191#ifdef EV_H 466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
192# include EV_H 467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
193#else
194# include "ev.h"
195#endif
196 468
197#if __GNUC__ >= 3 469#if __GNUC__ >= 4
198# define expect(expr,value) __builtin_expect ((expr),(value)) 470# define expect(expr,value) __builtin_expect ((expr),(value))
199# define inline_size static inline /* inline for codesize */
200# if EV_MINIMAL
201# define noinline __attribute__ ((noinline)) 471# define noinline __attribute__ ((noinline))
202# define inline_speed static noinline
203# else
204# define noinline
205# define inline_speed static inline
206# endif
207#else 472#else
208# define expect(expr,value) (expr) 473# define expect(expr,value) (expr)
209# define inline_speed static
210# define inline_size static
211# define noinline 474# define noinline
475# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
476# define inline
477# endif
212#endif 478#endif
213 479
214#define expect_false(expr) expect ((expr) != 0, 0) 480#define expect_false(expr) expect ((expr) != 0, 0)
215#define expect_true(expr) expect ((expr) != 0, 1) 481#define expect_true(expr) expect ((expr) != 0, 1)
482#define inline_size static inline
216 483
484#if EV_FEATURE_CODE
485# define inline_speed static inline
486#else
487# define inline_speed static noinline
488#endif
489
217#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 490#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491
492#if EV_MINPRI == EV_MAXPRI
493# define ABSPRI(w) (((W)w), 0)
494#else
218#define ABSPRI(w) ((w)->priority - EV_MINPRI) 495# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496#endif
219 497
220#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 498#define EMPTY /* required for microsofts broken pseudo-c compiler */
221#define EMPTY2(a,b) /* used to suppress some warnings */ 499#define EMPTY2(a,b) /* used to suppress some warnings */
222 500
223typedef ev_watcher *W; 501typedef ev_watcher *W;
224typedef ev_watcher_list *WL; 502typedef ev_watcher_list *WL;
225typedef ev_watcher_time *WT; 503typedef ev_watcher_time *WT;
226 504
505#define ev_active(w) ((W)(w))->active
506#define ev_at(w) ((WT)(w))->at
507
508#if EV_USE_REALTIME
509/* sig_atomic_t is used to avoid per-thread variables or locking but still */
510/* giving it a reasonably high chance of working on typical architectures */
511static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512#endif
513
514#if EV_USE_MONOTONIC
227static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 515static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516#endif
517
518#ifndef EV_FD_TO_WIN32_HANDLE
519# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520#endif
521#ifndef EV_WIN32_HANDLE_TO_FD
522# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523#endif
524#ifndef EV_WIN32_CLOSE_FD
525# define EV_WIN32_CLOSE_FD(fd) close (fd)
526#endif
228 527
229#ifdef _WIN32 528#ifdef _WIN32
230# include "ev_win32.c" 529# include "ev_win32.c"
231#endif 530#endif
232 531
233/*****************************************************************************/ 532/*****************************************************************************/
234 533
534/* define a suitable floor function (only used by periodics atm) */
535
536#if EV_USE_FLOOR
537# include <math.h>
538# define ev_floor(v) floor (v)
539#else
540
541#include <float.h>
542
543/* a floor() replacement function, should be independent of ev_tstamp type */
544static ev_tstamp noinline
545ev_floor (ev_tstamp v)
546{
547 /* the choice of shift factor is not terribly important */
548#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550#else
551 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552#endif
553
554 /* argument too large for an unsigned long? */
555 if (expect_false (v >= shift))
556 {
557 ev_tstamp f;
558
559 if (v == v - 1.)
560 return v; /* very large number */
561
562 f = shift * ev_floor (v * (1. / shift));
563 return f + ev_floor (v - f);
564 }
565
566 /* special treatment for negative args? */
567 if (expect_false (v < 0.))
568 {
569 ev_tstamp f = -ev_floor (-v);
570
571 return f - (f == v ? 0 : 1);
572 }
573
574 /* fits into an unsigned long */
575 return (unsigned long)v;
576}
577
578#endif
579
580/*****************************************************************************/
581
582#ifdef __linux
583# include <sys/utsname.h>
584#endif
585
586static unsigned int noinline
587ev_linux_version (void)
588{
589#ifdef __linux
590 unsigned int v = 0;
591 struct utsname buf;
592 int i;
593 char *p = buf.release;
594
595 if (uname (&buf))
596 return 0;
597
598 for (i = 3+1; --i; )
599 {
600 unsigned int c = 0;
601
602 for (;;)
603 {
604 if (*p >= '0' && *p <= '9')
605 c = c * 10 + *p++ - '0';
606 else
607 {
608 p += *p == '.';
609 break;
610 }
611 }
612
613 v = (v << 8) | c;
614 }
615
616 return v;
617#else
618 return 0;
619#endif
620}
621
622/*****************************************************************************/
623
624#if EV_AVOID_STDIO
625static void noinline
626ev_printerr (const char *msg)
627{
628 write (STDERR_FILENO, msg, strlen (msg));
629}
630#endif
631
235static void (*syserr_cb)(const char *msg); 632static void (*syserr_cb)(const char *msg);
236 633
237void 634void
238ev_set_syserr_cb (void (*cb)(const char *msg)) 635ev_set_syserr_cb (void (*cb)(const char *msg))
239{ 636{
240 syserr_cb = cb; 637 syserr_cb = cb;
241} 638}
242 639
243static void noinline 640static void noinline
244syserr (const char *msg) 641ev_syserr (const char *msg)
245{ 642{
246 if (!msg) 643 if (!msg)
247 msg = "(libev) system error"; 644 msg = "(libev) system error";
248 645
249 if (syserr_cb) 646 if (syserr_cb)
250 syserr_cb (msg); 647 syserr_cb (msg);
251 else 648 else
252 { 649 {
650#if EV_AVOID_STDIO
651 ev_printerr (msg);
652 ev_printerr (": ");
653 ev_printerr (strerror (errno));
654 ev_printerr ("\n");
655#else
253 perror (msg); 656 perror (msg);
657#endif
254 abort (); 658 abort ();
255 } 659 }
256} 660}
257 661
662static void *
663ev_realloc_emul (void *ptr, long size)
664{
665#if __GLIBC__
666 return realloc (ptr, size);
667#else
668 /* some systems, notably openbsd and darwin, fail to properly
669 * implement realloc (x, 0) (as required by both ansi c-89 and
670 * the single unix specification, so work around them here.
671 */
672
673 if (size)
674 return realloc (ptr, size);
675
676 free (ptr);
677 return 0;
678#endif
679}
680
258static void *(*alloc)(void *ptr, size_t size) = realloc; 681static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
259 682
260void 683void
261ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 684ev_set_allocator (void *(*cb)(void *ptr, long size))
262{ 685{
263 alloc = cb; 686 alloc = cb;
264} 687}
265 688
266inline_speed void * 689inline_speed void *
267ev_realloc (void *ptr, size_t size) 690ev_realloc (void *ptr, long size)
268{ 691{
269 ptr = alloc (ptr, size); 692 ptr = alloc (ptr, size);
270 693
271 if (!ptr && size) 694 if (!ptr && size)
272 { 695 {
696#if EV_AVOID_STDIO
697 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698#else
273 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 699 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700#endif
274 abort (); 701 abort ();
275 } 702 }
276 703
277 return ptr; 704 return ptr;
278} 705}
280#define ev_malloc(size) ev_realloc (0, (size)) 707#define ev_malloc(size) ev_realloc (0, (size))
281#define ev_free(ptr) ev_realloc ((ptr), 0) 708#define ev_free(ptr) ev_realloc ((ptr), 0)
282 709
283/*****************************************************************************/ 710/*****************************************************************************/
284 711
712/* set in reify when reification needed */
713#define EV_ANFD_REIFY 1
714
715/* file descriptor info structure */
285typedef struct 716typedef struct
286{ 717{
287 WL head; 718 WL head;
288 unsigned char events; 719 unsigned char events; /* the events watched for */
720 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
721 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
289 unsigned char reify; 722 unsigned char unused;
723#if EV_USE_EPOLL
724 unsigned int egen; /* generation counter to counter epoll bugs */
725#endif
290#if EV_SELECT_IS_WINSOCKET 726#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
291 SOCKET handle; 727 SOCKET handle;
292#endif 728#endif
729#if EV_USE_IOCP
730 OVERLAPPED or, ow;
731#endif
293} ANFD; 732} ANFD;
294 733
734/* stores the pending event set for a given watcher */
295typedef struct 735typedef struct
296{ 736{
297 W w; 737 W w;
298 int events; 738 int events; /* the pending event set for the given watcher */
299} ANPENDING; 739} ANPENDING;
740
741#if EV_USE_INOTIFY
742/* hash table entry per inotify-id */
743typedef struct
744{
745 WL head;
746} ANFS;
747#endif
748
749/* Heap Entry */
750#if EV_HEAP_CACHE_AT
751 /* a heap element */
752 typedef struct {
753 ev_tstamp at;
754 WT w;
755 } ANHE;
756
757 #define ANHE_w(he) (he).w /* access watcher, read-write */
758 #define ANHE_at(he) (he).at /* access cached at, read-only */
759 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
760#else
761 /* a heap element */
762 typedef WT ANHE;
763
764 #define ANHE_w(he) (he)
765 #define ANHE_at(he) (he)->at
766 #define ANHE_at_cache(he)
767#endif
300 768
301#if EV_MULTIPLICITY 769#if EV_MULTIPLICITY
302 770
303 struct ev_loop 771 struct ev_loop
304 { 772 {
322 790
323 static int ev_default_loop_ptr; 791 static int ev_default_loop_ptr;
324 792
325#endif 793#endif
326 794
795#if EV_FEATURE_API
796# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798# define EV_INVOKE_PENDING invoke_cb (EV_A)
799#else
800# define EV_RELEASE_CB (void)0
801# define EV_ACQUIRE_CB (void)0
802# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803#endif
804
805#define EVBREAK_RECURSE 0x80
806
327/*****************************************************************************/ 807/*****************************************************************************/
328 808
809#ifndef EV_HAVE_EV_TIME
329ev_tstamp 810ev_tstamp
330ev_time (void) 811ev_time (void)
331{ 812{
332#if EV_USE_REALTIME 813#if EV_USE_REALTIME
814 if (expect_true (have_realtime))
815 {
333 struct timespec ts; 816 struct timespec ts;
334 clock_gettime (CLOCK_REALTIME, &ts); 817 clock_gettime (CLOCK_REALTIME, &ts);
335 return ts.tv_sec + ts.tv_nsec * 1e-9; 818 return ts.tv_sec + ts.tv_nsec * 1e-9;
336#else 819 }
820#endif
821
337 struct timeval tv; 822 struct timeval tv;
338 gettimeofday (&tv, 0); 823 gettimeofday (&tv, 0);
339 return tv.tv_sec + tv.tv_usec * 1e-6; 824 return tv.tv_sec + tv.tv_usec * 1e-6;
340#endif
341} 825}
826#endif
342 827
343ev_tstamp inline_size 828inline_size ev_tstamp
344get_clock (void) 829get_clock (void)
345{ 830{
346#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
347 if (expect_true (have_monotonic)) 832 if (expect_true (have_monotonic))
348 { 833 {
361{ 846{
362 return ev_rt_now; 847 return ev_rt_now;
363} 848}
364#endif 849#endif
365 850
366#define array_roundsize(type,n) (((n) | 4) & ~3) 851void
852ev_sleep (ev_tstamp delay)
853{
854 if (delay > 0.)
855 {
856#if EV_USE_NANOSLEEP
857 struct timespec ts;
858
859 EV_TS_SET (ts, delay);
860 nanosleep (&ts, 0);
861#elif defined(_WIN32)
862 Sleep ((unsigned long)(delay * 1e3));
863#else
864 struct timeval tv;
865
866 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
867 /* something not guaranteed by newer posix versions, but guaranteed */
868 /* by older ones */
869 EV_TV_SET (tv, delay);
870 select (0, 0, 0, 0, &tv);
871#endif
872 }
873}
874
875/*****************************************************************************/
876
877#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
878
879/* find a suitable new size for the given array, */
880/* hopefully by rounding to a nice-to-malloc size */
881inline_size int
882array_nextsize (int elem, int cur, int cnt)
883{
884 int ncur = cur + 1;
885
886 do
887 ncur <<= 1;
888 while (cnt > ncur);
889
890 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
891 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
892 {
893 ncur *= elem;
894 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
895 ncur = ncur - sizeof (void *) * 4;
896 ncur /= elem;
897 }
898
899 return ncur;
900}
901
902static noinline void *
903array_realloc (int elem, void *base, int *cur, int cnt)
904{
905 *cur = array_nextsize (elem, *cur, cnt);
906 return ev_realloc (base, elem * *cur);
907}
908
909#define array_init_zero(base,count) \
910 memset ((void *)(base), 0, sizeof (*(base)) * (count))
367 911
368#define array_needsize(type,base,cur,cnt,init) \ 912#define array_needsize(type,base,cur,cnt,init) \
369 if (expect_false ((cnt) > cur)) \ 913 if (expect_false ((cnt) > (cur))) \
370 { \ 914 { \
371 int newcnt = cur; \ 915 int ocur_ = (cur); \
372 do \ 916 (base) = (type *)array_realloc \
373 { \ 917 (sizeof (type), (base), &(cur), (cnt)); \
374 newcnt = array_roundsize (type, newcnt << 1); \ 918 init ((base) + (ocur_), (cur) - ocur_); \
375 } \
376 while ((cnt) > newcnt); \
377 \
378 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
379 init (base + cur, newcnt - cur); \
380 cur = newcnt; \
381 } 919 }
382 920
921#if 0
383#define array_slim(type,stem) \ 922#define array_slim(type,stem) \
384 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 923 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
385 { \ 924 { \
386 stem ## max = array_roundsize (stem ## cnt >> 1); \ 925 stem ## max = array_roundsize (stem ## cnt >> 1); \
387 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 926 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
388 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 927 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
389 } 928 }
929#endif
390 930
391#define array_free(stem, idx) \ 931#define array_free(stem, idx) \
392 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 932 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
393 933
394/*****************************************************************************/ 934/*****************************************************************************/
935
936/* dummy callback for pending events */
937static void noinline
938pendingcb (EV_P_ ev_prepare *w, int revents)
939{
940}
395 941
396void noinline 942void noinline
397ev_feed_event (EV_P_ void *w, int revents) 943ev_feed_event (EV_P_ void *w, int revents)
398{ 944{
399 W w_ = (W)w; 945 W w_ = (W)w;
946 int pri = ABSPRI (w_);
400 947
401 if (expect_false (w_->pending)) 948 if (expect_false (w_->pending))
949 pendings [pri][w_->pending - 1].events |= revents;
950 else
402 { 951 {
952 w_->pending = ++pendingcnt [pri];
953 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
954 pendings [pri][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 955 pendings [pri][w_->pending - 1].events = revents;
404 return;
405 } 956 }
406
407 w_->pending = ++pendingcnt [ABSPRI (w_)];
408 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
409 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
410 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
411} 957}
412 958
413void inline_size 959inline_speed void
960feed_reverse (EV_P_ W w)
961{
962 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
963 rfeeds [rfeedcnt++] = w;
964}
965
966inline_size void
967feed_reverse_done (EV_P_ int revents)
968{
969 do
970 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
971 while (rfeedcnt);
972}
973
974inline_speed void
414queue_events (EV_P_ W *events, int eventcnt, int type) 975queue_events (EV_P_ W *events, int eventcnt, int type)
415{ 976{
416 int i; 977 int i;
417 978
418 for (i = 0; i < eventcnt; ++i) 979 for (i = 0; i < eventcnt; ++i)
419 ev_feed_event (EV_A_ events [i], type); 980 ev_feed_event (EV_A_ events [i], type);
420} 981}
421 982
422/*****************************************************************************/ 983/*****************************************************************************/
423 984
424void inline_size 985inline_speed void
425anfds_init (ANFD *base, int count)
426{
427 while (count--)
428 {
429 base->head = 0;
430 base->events = EV_NONE;
431 base->reify = 0;
432
433 ++base;
434 }
435}
436
437void inline_speed
438fd_event (EV_P_ int fd, int revents) 986fd_event_nocheck (EV_P_ int fd, int revents)
439{ 987{
440 ANFD *anfd = anfds + fd; 988 ANFD *anfd = anfds + fd;
441 ev_io *w; 989 ev_io *w;
442 990
443 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 991 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
447 if (ev) 995 if (ev)
448 ev_feed_event (EV_A_ (W)w, ev); 996 ev_feed_event (EV_A_ (W)w, ev);
449 } 997 }
450} 998}
451 999
1000/* do not submit kernel events for fds that have reify set */
1001/* because that means they changed while we were polling for new events */
1002inline_speed void
1003fd_event (EV_P_ int fd, int revents)
1004{
1005 ANFD *anfd = anfds + fd;
1006
1007 if (expect_true (!anfd->reify))
1008 fd_event_nocheck (EV_A_ fd, revents);
1009}
1010
452void 1011void
453ev_feed_fd_event (EV_P_ int fd, int revents) 1012ev_feed_fd_event (EV_P_ int fd, int revents)
454{ 1013{
1014 if (fd >= 0 && fd < anfdmax)
455 fd_event (EV_A_ fd, revents); 1015 fd_event_nocheck (EV_A_ fd, revents);
456} 1016}
457 1017
458void inline_size 1018/* make sure the external fd watch events are in-sync */
1019/* with the kernel/libev internal state */
1020inline_size void
459fd_reify (EV_P) 1021fd_reify (EV_P)
460{ 1022{
461 int i; 1023 int i;
1024
1025#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1026 for (i = 0; i < fdchangecnt; ++i)
1027 {
1028 int fd = fdchanges [i];
1029 ANFD *anfd = anfds + fd;
1030
1031 if (anfd->reify & EV__IOFDSET && anfd->head)
1032 {
1033 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1034
1035 if (handle != anfd->handle)
1036 {
1037 unsigned long arg;
1038
1039 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1040
1041 /* handle changed, but fd didn't - we need to do it in two steps */
1042 backend_modify (EV_A_ fd, anfd->events, 0);
1043 anfd->events = 0;
1044 anfd->handle = handle;
1045 }
1046 }
1047 }
1048#endif
462 1049
463 for (i = 0; i < fdchangecnt; ++i) 1050 for (i = 0; i < fdchangecnt; ++i)
464 { 1051 {
465 int fd = fdchanges [i]; 1052 int fd = fdchanges [i];
466 ANFD *anfd = anfds + fd; 1053 ANFD *anfd = anfds + fd;
467 ev_io *w; 1054 ev_io *w;
468 1055
469 int events = 0; 1056 unsigned char o_events = anfd->events;
1057 unsigned char o_reify = anfd->reify;
470 1058
471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1059 anfd->reify = 0;
472 events |= w->events;
473 1060
474#if EV_SELECT_IS_WINSOCKET 1061 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
475 if (events)
476 { 1062 {
477 unsigned long argp; 1063 anfd->events = 0;
478 anfd->handle = _get_osfhandle (fd); 1064
479 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1065 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1066 anfd->events |= (unsigned char)w->events;
1067
1068 if (o_events != anfd->events)
1069 o_reify = EV__IOFDSET; /* actually |= */
480 } 1070 }
481#endif
482 1071
483 anfd->reify = 0; 1072 if (o_reify & EV__IOFDSET)
484
485 backend_modify (EV_A_ fd, anfd->events, events); 1073 backend_modify (EV_A_ fd, o_events, anfd->events);
486 anfd->events = events;
487 } 1074 }
488 1075
489 fdchangecnt = 0; 1076 fdchangecnt = 0;
490} 1077}
491 1078
492void inline_size 1079/* something about the given fd changed */
1080inline_size void
493fd_change (EV_P_ int fd) 1081fd_change (EV_P_ int fd, int flags)
494{ 1082{
495 if (expect_false (anfds [fd].reify)) 1083 unsigned char reify = anfds [fd].reify;
496 return;
497
498 anfds [fd].reify = 1; 1084 anfds [fd].reify |= flags;
499 1085
1086 if (expect_true (!reify))
1087 {
500 ++fdchangecnt; 1088 ++fdchangecnt;
501 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1089 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
502 fdchanges [fdchangecnt - 1] = fd; 1090 fdchanges [fdchangecnt - 1] = fd;
1091 }
503} 1092}
504 1093
505void inline_speed 1094/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1095inline_speed void
506fd_kill (EV_P_ int fd) 1096fd_kill (EV_P_ int fd)
507{ 1097{
508 ev_io *w; 1098 ev_io *w;
509 1099
510 while ((w = (ev_io *)anfds [fd].head)) 1100 while ((w = (ev_io *)anfds [fd].head))
512 ev_io_stop (EV_A_ w); 1102 ev_io_stop (EV_A_ w);
513 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1103 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
514 } 1104 }
515} 1105}
516 1106
517int inline_size 1107/* check whether the given fd is actually valid, for error recovery */
1108inline_size int
518fd_valid (int fd) 1109fd_valid (int fd)
519{ 1110{
520#ifdef _WIN32 1111#ifdef _WIN32
521 return _get_osfhandle (fd) != -1; 1112 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
522#else 1113#else
523 return fcntl (fd, F_GETFD) != -1; 1114 return fcntl (fd, F_GETFD) != -1;
524#endif 1115#endif
525} 1116}
526 1117
530{ 1121{
531 int fd; 1122 int fd;
532 1123
533 for (fd = 0; fd < anfdmax; ++fd) 1124 for (fd = 0; fd < anfdmax; ++fd)
534 if (anfds [fd].events) 1125 if (anfds [fd].events)
535 if (!fd_valid (fd) == -1 && errno == EBADF) 1126 if (!fd_valid (fd) && errno == EBADF)
536 fd_kill (EV_A_ fd); 1127 fd_kill (EV_A_ fd);
537} 1128}
538 1129
539/* called on ENOMEM in select/poll to kill some fds and retry */ 1130/* called on ENOMEM in select/poll to kill some fds and retry */
540static void noinline 1131static void noinline
544 1135
545 for (fd = anfdmax; fd--; ) 1136 for (fd = anfdmax; fd--; )
546 if (anfds [fd].events) 1137 if (anfds [fd].events)
547 { 1138 {
548 fd_kill (EV_A_ fd); 1139 fd_kill (EV_A_ fd);
549 return; 1140 break;
550 } 1141 }
551} 1142}
552 1143
553/* usually called after fork if backend needs to re-arm all fds from scratch */ 1144/* usually called after fork if backend needs to re-arm all fds from scratch */
554static void noinline 1145static void noinline
555fd_rearm_all (EV_P) 1146fd_rearm_all (EV_P)
556{ 1147{
557 int fd; 1148 int fd;
558 1149
559 /* this should be highly optimised to not do anything but set a flag */
560 for (fd = 0; fd < anfdmax; ++fd) 1150 for (fd = 0; fd < anfdmax; ++fd)
561 if (anfds [fd].events) 1151 if (anfds [fd].events)
562 { 1152 {
563 anfds [fd].events = 0; 1153 anfds [fd].events = 0;
564 fd_change (EV_A_ fd); 1154 anfds [fd].emask = 0;
1155 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
565 } 1156 }
566} 1157}
567 1158
568/*****************************************************************************/ 1159/* used to prepare libev internal fd's */
569 1160/* this is not fork-safe */
570void inline_speed 1161inline_speed void
571upheap (WT *heap, int k)
572{
573 WT w = heap [k];
574
575 while (k && heap [k >> 1]->at > w->at)
576 {
577 heap [k] = heap [k >> 1];
578 ((W)heap [k])->active = k + 1;
579 k >>= 1;
580 }
581
582 heap [k] = w;
583 ((W)heap [k])->active = k + 1;
584
585}
586
587void inline_speed
588downheap (WT *heap, int N, int k)
589{
590 WT w = heap [k];
591
592 while (k < (N >> 1))
593 {
594 int j = k << 1;
595
596 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
597 ++j;
598
599 if (w->at <= heap [j]->at)
600 break;
601
602 heap [k] = heap [j];
603 ((W)heap [k])->active = k + 1;
604 k = j;
605 }
606
607 heap [k] = w;
608 ((W)heap [k])->active = k + 1;
609}
610
611void inline_size
612adjustheap (WT *heap, int N, int k)
613{
614 upheap (heap, k);
615 downheap (heap, N, k);
616}
617
618/*****************************************************************************/
619
620typedef struct
621{
622 WL head;
623 sig_atomic_t volatile gotsig;
624} ANSIG;
625
626static ANSIG *signals;
627static int signalmax;
628
629static int sigpipe [2];
630static sig_atomic_t volatile gotsig;
631static ev_io sigev;
632
633void inline_size
634signals_init (ANSIG *base, int count)
635{
636 while (count--)
637 {
638 base->head = 0;
639 base->gotsig = 0;
640
641 ++base;
642 }
643}
644
645static void
646sighandler (int signum)
647{
648#if _WIN32
649 signal (signum, sighandler);
650#endif
651
652 signals [signum - 1].gotsig = 1;
653
654 if (!gotsig)
655 {
656 int old_errno = errno;
657 gotsig = 1;
658 write (sigpipe [1], &signum, 1);
659 errno = old_errno;
660 }
661}
662
663void noinline
664ev_feed_signal_event (EV_P_ int signum)
665{
666 WL w;
667
668#if EV_MULTIPLICITY
669 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
670#endif
671
672 --signum;
673
674 if (signum < 0 || signum >= signalmax)
675 return;
676
677 signals [signum].gotsig = 0;
678
679 for (w = signals [signum].head; w; w = w->next)
680 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
681}
682
683static void
684sigcb (EV_P_ ev_io *iow, int revents)
685{
686 int signum;
687
688 read (sigpipe [0], &revents, 1);
689 gotsig = 0;
690
691 for (signum = signalmax; signum--; )
692 if (signals [signum].gotsig)
693 ev_feed_signal_event (EV_A_ signum + 1);
694}
695
696void inline_size
697fd_intern (int fd) 1162fd_intern (int fd)
698{ 1163{
699#ifdef _WIN32 1164#ifdef _WIN32
700 int arg = 1; 1165 unsigned long arg = 1;
701 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1166 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
702#else 1167#else
703 fcntl (fd, F_SETFD, FD_CLOEXEC); 1168 fcntl (fd, F_SETFD, FD_CLOEXEC);
704 fcntl (fd, F_SETFL, O_NONBLOCK); 1169 fcntl (fd, F_SETFL, O_NONBLOCK);
705#endif 1170#endif
706} 1171}
707 1172
1173/*****************************************************************************/
1174
1175/*
1176 * the heap functions want a real array index. array index 0 is guaranteed to not
1177 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1178 * the branching factor of the d-tree.
1179 */
1180
1181/*
1182 * at the moment we allow libev the luxury of two heaps,
1183 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1184 * which is more cache-efficient.
1185 * the difference is about 5% with 50000+ watchers.
1186 */
1187#if EV_USE_4HEAP
1188
1189#define DHEAP 4
1190#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1191#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1192#define UPHEAP_DONE(p,k) ((p) == (k))
1193
1194/* away from the root */
1195inline_speed void
1196downheap (ANHE *heap, int N, int k)
1197{
1198 ANHE he = heap [k];
1199 ANHE *E = heap + N + HEAP0;
1200
1201 for (;;)
1202 {
1203 ev_tstamp minat;
1204 ANHE *minpos;
1205 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1206
1207 /* find minimum child */
1208 if (expect_true (pos + DHEAP - 1 < E))
1209 {
1210 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1211 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1212 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1213 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1214 }
1215 else if (pos < E)
1216 {
1217 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1218 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1219 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1220 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1221 }
1222 else
1223 break;
1224
1225 if (ANHE_at (he) <= minat)
1226 break;
1227
1228 heap [k] = *minpos;
1229 ev_active (ANHE_w (*minpos)) = k;
1230
1231 k = minpos - heap;
1232 }
1233
1234 heap [k] = he;
1235 ev_active (ANHE_w (he)) = k;
1236}
1237
1238#else /* 4HEAP */
1239
1240#define HEAP0 1
1241#define HPARENT(k) ((k) >> 1)
1242#define UPHEAP_DONE(p,k) (!(p))
1243
1244/* away from the root */
1245inline_speed void
1246downheap (ANHE *heap, int N, int k)
1247{
1248 ANHE he = heap [k];
1249
1250 for (;;)
1251 {
1252 int c = k << 1;
1253
1254 if (c >= N + HEAP0)
1255 break;
1256
1257 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1258 ? 1 : 0;
1259
1260 if (ANHE_at (he) <= ANHE_at (heap [c]))
1261 break;
1262
1263 heap [k] = heap [c];
1264 ev_active (ANHE_w (heap [k])) = k;
1265
1266 k = c;
1267 }
1268
1269 heap [k] = he;
1270 ev_active (ANHE_w (he)) = k;
1271}
1272#endif
1273
1274/* towards the root */
1275inline_speed void
1276upheap (ANHE *heap, int k)
1277{
1278 ANHE he = heap [k];
1279
1280 for (;;)
1281 {
1282 int p = HPARENT (k);
1283
1284 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1285 break;
1286
1287 heap [k] = heap [p];
1288 ev_active (ANHE_w (heap [k])) = k;
1289 k = p;
1290 }
1291
1292 heap [k] = he;
1293 ev_active (ANHE_w (he)) = k;
1294}
1295
1296/* move an element suitably so it is in a correct place */
1297inline_size void
1298adjustheap (ANHE *heap, int N, int k)
1299{
1300 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1301 upheap (heap, k);
1302 else
1303 downheap (heap, N, k);
1304}
1305
1306/* rebuild the heap: this function is used only once and executed rarely */
1307inline_size void
1308reheap (ANHE *heap, int N)
1309{
1310 int i;
1311
1312 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1313 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1314 for (i = 0; i < N; ++i)
1315 upheap (heap, i + HEAP0);
1316}
1317
1318/*****************************************************************************/
1319
1320/* associate signal watchers to a signal signal */
1321typedef struct
1322{
1323 EV_ATOMIC_T pending;
1324#if EV_MULTIPLICITY
1325 EV_P;
1326#endif
1327 WL head;
1328} ANSIG;
1329
1330static ANSIG signals [EV_NSIG - 1];
1331
1332/*****************************************************************************/
1333
1334#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1335
708static void noinline 1336static void noinline
709siginit (EV_P) 1337evpipe_init (EV_P)
710{ 1338{
1339 if (!ev_is_active (&pipe_w))
1340 {
1341# if EV_USE_EVENTFD
1342 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1343 if (evfd < 0 && errno == EINVAL)
1344 evfd = eventfd (0, 0);
1345
1346 if (evfd >= 0)
1347 {
1348 evpipe [0] = -1;
1349 fd_intern (evfd); /* doing it twice doesn't hurt */
1350 ev_io_set (&pipe_w, evfd, EV_READ);
1351 }
1352 else
1353# endif
1354 {
1355 while (pipe (evpipe))
1356 ev_syserr ("(libev) error creating signal/async pipe");
1357
711 fd_intern (sigpipe [0]); 1358 fd_intern (evpipe [0]);
712 fd_intern (sigpipe [1]); 1359 fd_intern (evpipe [1]);
1360 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1361 }
713 1362
714 ev_io_set (&sigev, sigpipe [0], EV_READ);
715 ev_io_start (EV_A_ &sigev); 1363 ev_io_start (EV_A_ &pipe_w);
716 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1364 ev_unref (EV_A); /* watcher should not keep loop alive */
1365 }
1366}
1367
1368inline_size void
1369evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1370{
1371 if (!*flag)
1372 {
1373 int old_errno = errno; /* save errno because write might clobber it */
1374 char dummy;
1375
1376 *flag = 1;
1377
1378#if EV_USE_EVENTFD
1379 if (evfd >= 0)
1380 {
1381 uint64_t counter = 1;
1382 write (evfd, &counter, sizeof (uint64_t));
1383 }
1384 else
1385#endif
1386 /* win32 people keep sending patches that change this write() to send() */
1387 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1388 /* so when you think this write should be a send instead, please find out */
1389 /* where your send() is from - it's definitely not the microsoft send, and */
1390 /* tell me. thank you. */
1391 write (evpipe [1], &dummy, 1);
1392
1393 errno = old_errno;
1394 }
1395}
1396
1397/* called whenever the libev signal pipe */
1398/* got some events (signal, async) */
1399static void
1400pipecb (EV_P_ ev_io *iow, int revents)
1401{
1402 int i;
1403
1404#if EV_USE_EVENTFD
1405 if (evfd >= 0)
1406 {
1407 uint64_t counter;
1408 read (evfd, &counter, sizeof (uint64_t));
1409 }
1410 else
1411#endif
1412 {
1413 char dummy;
1414 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1415 read (evpipe [0], &dummy, 1);
1416 }
1417
1418#if EV_SIGNAL_ENABLE
1419 if (sig_pending)
1420 {
1421 sig_pending = 0;
1422
1423 for (i = EV_NSIG - 1; i--; )
1424 if (expect_false (signals [i].pending))
1425 ev_feed_signal_event (EV_A_ i + 1);
1426 }
1427#endif
1428
1429#if EV_ASYNC_ENABLE
1430 if (async_pending)
1431 {
1432 async_pending = 0;
1433
1434 for (i = asynccnt; i--; )
1435 if (asyncs [i]->sent)
1436 {
1437 asyncs [i]->sent = 0;
1438 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1439 }
1440 }
1441#endif
717} 1442}
718 1443
719/*****************************************************************************/ 1444/*****************************************************************************/
720 1445
721static ev_child *childs [EV_PID_HASHSIZE]; 1446void
1447ev_feed_signal (int signum)
1448{
1449#if EV_MULTIPLICITY
1450 EV_P = signals [signum - 1].loop;
722 1451
1452 if (!EV_A)
1453 return;
1454#endif
1455
1456 signals [signum - 1].pending = 1;
1457 evpipe_write (EV_A_ &sig_pending);
1458}
1459
1460static void
1461ev_sighandler (int signum)
1462{
723#ifndef _WIN32 1463#ifdef _WIN32
1464 signal (signum, ev_sighandler);
1465#endif
1466
1467 ev_feed_signal (signum);
1468}
1469
1470void noinline
1471ev_feed_signal_event (EV_P_ int signum)
1472{
1473 WL w;
1474
1475 if (expect_false (signum <= 0 || signum > EV_NSIG))
1476 return;
1477
1478 --signum;
1479
1480#if EV_MULTIPLICITY
1481 /* it is permissible to try to feed a signal to the wrong loop */
1482 /* or, likely more useful, feeding a signal nobody is waiting for */
1483
1484 if (expect_false (signals [signum].loop != EV_A))
1485 return;
1486#endif
1487
1488 signals [signum].pending = 0;
1489
1490 for (w = signals [signum].head; w; w = w->next)
1491 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1492}
1493
1494#if EV_USE_SIGNALFD
1495static void
1496sigfdcb (EV_P_ ev_io *iow, int revents)
1497{
1498 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1499
1500 for (;;)
1501 {
1502 ssize_t res = read (sigfd, si, sizeof (si));
1503
1504 /* not ISO-C, as res might be -1, but works with SuS */
1505 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1506 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1507
1508 if (res < (ssize_t)sizeof (si))
1509 break;
1510 }
1511}
1512#endif
1513
1514#endif
1515
1516/*****************************************************************************/
1517
1518#if EV_CHILD_ENABLE
1519static WL childs [EV_PID_HASHSIZE];
724 1520
725static ev_signal childev; 1521static ev_signal childev;
726 1522
727void inline_speed 1523#ifndef WIFCONTINUED
1524# define WIFCONTINUED(status) 0
1525#endif
1526
1527/* handle a single child status event */
1528inline_speed void
728child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1529child_reap (EV_P_ int chain, int pid, int status)
729{ 1530{
730 ev_child *w; 1531 ev_child *w;
1532 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
731 1533
732 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1534 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1535 {
733 if (w->pid == pid || !w->pid) 1536 if ((w->pid == pid || !w->pid)
1537 && (!traced || (w->flags & 1)))
734 { 1538 {
735 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1539 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
736 w->rpid = pid; 1540 w->rpid = pid;
737 w->rstatus = status; 1541 w->rstatus = status;
738 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1542 ev_feed_event (EV_A_ (W)w, EV_CHILD);
739 } 1543 }
1544 }
740} 1545}
741 1546
742#ifndef WCONTINUED 1547#ifndef WCONTINUED
743# define WCONTINUED 0 1548# define WCONTINUED 0
744#endif 1549#endif
745 1550
1551/* called on sigchld etc., calls waitpid */
746static void 1552static void
747childcb (EV_P_ ev_signal *sw, int revents) 1553childcb (EV_P_ ev_signal *sw, int revents)
748{ 1554{
749 int pid, status; 1555 int pid, status;
750 1556
753 if (!WCONTINUED 1559 if (!WCONTINUED
754 || errno != EINVAL 1560 || errno != EINVAL
755 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1561 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
756 return; 1562 return;
757 1563
758 /* make sure we are called again until all childs have been reaped */ 1564 /* make sure we are called again until all children have been reaped */
759 /* we need to do it this way so that the callback gets called before we continue */ 1565 /* we need to do it this way so that the callback gets called before we continue */
760 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1566 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
761 1567
762 child_reap (EV_A_ sw, pid, pid, status); 1568 child_reap (EV_A_ pid, pid, status);
763 if (EV_PID_HASHSIZE > 1) 1569 if ((EV_PID_HASHSIZE) > 1)
764 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1570 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
765} 1571}
766 1572
767#endif 1573#endif
768 1574
769/*****************************************************************************/ 1575/*****************************************************************************/
770 1576
1577#if EV_USE_IOCP
1578# include "ev_iocp.c"
1579#endif
771#if EV_USE_PORT 1580#if EV_USE_PORT
772# include "ev_port.c" 1581# include "ev_port.c"
773#endif 1582#endif
774#if EV_USE_KQUEUE 1583#if EV_USE_KQUEUE
775# include "ev_kqueue.c" 1584# include "ev_kqueue.c"
831 /* kqueue is borked on everything but netbsd apparently */ 1640 /* kqueue is borked on everything but netbsd apparently */
832 /* it usually doesn't work correctly on anything but sockets and pipes */ 1641 /* it usually doesn't work correctly on anything but sockets and pipes */
833 flags &= ~EVBACKEND_KQUEUE; 1642 flags &= ~EVBACKEND_KQUEUE;
834#endif 1643#endif
835#ifdef __APPLE__ 1644#ifdef __APPLE__
836 // flags &= ~EVBACKEND_KQUEUE; for documentation 1645 /* only select works correctly on that "unix-certified" platform */
837 flags &= ~EVBACKEND_POLL; 1646 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1647 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1648#endif
1649#ifdef __FreeBSD__
1650 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
838#endif 1651#endif
839 1652
840 return flags; 1653 return flags;
841} 1654}
842 1655
843unsigned int 1656unsigned int
844ev_embeddable_backends (void) 1657ev_embeddable_backends (void)
845{ 1658{
846 return EVBACKEND_EPOLL 1659 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
847 | EVBACKEND_KQUEUE 1660
848 | EVBACKEND_PORT; 1661 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1662 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1663 flags &= ~EVBACKEND_EPOLL;
1664
1665 return flags;
849} 1666}
850 1667
851unsigned int 1668unsigned int
852ev_backend (EV_P) 1669ev_backend (EV_P)
853{ 1670{
854 return backend; 1671 return backend;
855} 1672}
856 1673
857static void 1674#if EV_FEATURE_API
1675unsigned int
1676ev_iteration (EV_P)
1677{
1678 return loop_count;
1679}
1680
1681unsigned int
1682ev_depth (EV_P)
1683{
1684 return loop_depth;
1685}
1686
1687void
1688ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1689{
1690 io_blocktime = interval;
1691}
1692
1693void
1694ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1695{
1696 timeout_blocktime = interval;
1697}
1698
1699void
1700ev_set_userdata (EV_P_ void *data)
1701{
1702 userdata = data;
1703}
1704
1705void *
1706ev_userdata (EV_P)
1707{
1708 return userdata;
1709}
1710
1711void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1712{
1713 invoke_cb = invoke_pending_cb;
1714}
1715
1716void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1717{
1718 release_cb = release;
1719 acquire_cb = acquire;
1720}
1721#endif
1722
1723/* initialise a loop structure, must be zero-initialised */
1724static void noinline
858loop_init (EV_P_ unsigned int flags) 1725loop_init (EV_P_ unsigned int flags)
859{ 1726{
860 if (!backend) 1727 if (!backend)
861 { 1728 {
1729 origflags = flags;
1730
1731#if EV_USE_REALTIME
1732 if (!have_realtime)
1733 {
1734 struct timespec ts;
1735
1736 if (!clock_gettime (CLOCK_REALTIME, &ts))
1737 have_realtime = 1;
1738 }
1739#endif
1740
862#if EV_USE_MONOTONIC 1741#if EV_USE_MONOTONIC
1742 if (!have_monotonic)
863 { 1743 {
864 struct timespec ts; 1744 struct timespec ts;
1745
865 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1746 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
866 have_monotonic = 1; 1747 have_monotonic = 1;
867 } 1748 }
868#endif 1749#endif
869 1750
870 ev_rt_now = ev_time (); 1751 /* pid check not overridable via env */
871 mn_now = get_clock (); 1752#ifndef _WIN32
872 now_floor = mn_now; 1753 if (flags & EVFLAG_FORKCHECK)
873 rtmn_diff = ev_rt_now - mn_now; 1754 curpid = getpid ();
1755#endif
874 1756
875 if (!(flags & EVFLAG_NOENV) 1757 if (!(flags & EVFLAG_NOENV)
876 && !enable_secure () 1758 && !enable_secure ()
877 && getenv ("LIBEV_FLAGS")) 1759 && getenv ("LIBEV_FLAGS"))
878 flags = atoi (getenv ("LIBEV_FLAGS")); 1760 flags = atoi (getenv ("LIBEV_FLAGS"));
879 1761
880 if (!(flags & 0x0000ffffUL)) 1762 ev_rt_now = ev_time ();
1763 mn_now = get_clock ();
1764 now_floor = mn_now;
1765 rtmn_diff = ev_rt_now - mn_now;
1766#if EV_FEATURE_API
1767 invoke_cb = ev_invoke_pending;
1768#endif
1769
1770 io_blocktime = 0.;
1771 timeout_blocktime = 0.;
1772 backend = 0;
1773 backend_fd = -1;
1774 sig_pending = 0;
1775#if EV_ASYNC_ENABLE
1776 async_pending = 0;
1777#endif
1778#if EV_USE_INOTIFY
1779 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1780#endif
1781#if EV_USE_SIGNALFD
1782 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1783#endif
1784
1785 if (!(flags & EVBACKEND_MASK))
881 flags |= ev_recommended_backends (); 1786 flags |= ev_recommended_backends ();
882 1787
883 backend = 0; 1788#if EV_USE_IOCP
1789 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1790#endif
884#if EV_USE_PORT 1791#if EV_USE_PORT
885 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1792 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
886#endif 1793#endif
887#if EV_USE_KQUEUE 1794#if EV_USE_KQUEUE
888 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1795 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
895#endif 1802#endif
896#if EV_USE_SELECT 1803#if EV_USE_SELECT
897 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1804 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
898#endif 1805#endif
899 1806
1807 ev_prepare_init (&pending_w, pendingcb);
1808
1809#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
900 ev_init (&sigev, sigcb); 1810 ev_init (&pipe_w, pipecb);
901 ev_set_priority (&sigev, EV_MAXPRI); 1811 ev_set_priority (&pipe_w, EV_MAXPRI);
1812#endif
902 } 1813 }
903} 1814}
904 1815
905static void 1816/* free up a loop structure */
1817void
906loop_destroy (EV_P) 1818ev_loop_destroy (EV_P)
907{ 1819{
908 int i; 1820 int i;
909 1821
1822#if EV_MULTIPLICITY
1823 /* mimic free (0) */
1824 if (!EV_A)
1825 return;
1826#endif
1827
1828#if EV_CLEANUP_ENABLE
1829 /* queue cleanup watchers (and execute them) */
1830 if (expect_false (cleanupcnt))
1831 {
1832 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1833 EV_INVOKE_PENDING;
1834 }
1835#endif
1836
1837#if EV_CHILD_ENABLE
1838 if (ev_is_active (&childev))
1839 {
1840 ev_ref (EV_A); /* child watcher */
1841 ev_signal_stop (EV_A_ &childev);
1842 }
1843#endif
1844
1845 if (ev_is_active (&pipe_w))
1846 {
1847 /*ev_ref (EV_A);*/
1848 /*ev_io_stop (EV_A_ &pipe_w);*/
1849
1850#if EV_USE_EVENTFD
1851 if (evfd >= 0)
1852 close (evfd);
1853#endif
1854
1855 if (evpipe [0] >= 0)
1856 {
1857 EV_WIN32_CLOSE_FD (evpipe [0]);
1858 EV_WIN32_CLOSE_FD (evpipe [1]);
1859 }
1860 }
1861
1862#if EV_USE_SIGNALFD
1863 if (ev_is_active (&sigfd_w))
1864 close (sigfd);
1865#endif
1866
1867#if EV_USE_INOTIFY
1868 if (fs_fd >= 0)
1869 close (fs_fd);
1870#endif
1871
1872 if (backend_fd >= 0)
1873 close (backend_fd);
1874
1875#if EV_USE_IOCP
1876 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1877#endif
910#if EV_USE_PORT 1878#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1879 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
912#endif 1880#endif
913#if EV_USE_KQUEUE 1881#if EV_USE_KQUEUE
914 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1882 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
922#if EV_USE_SELECT 1890#if EV_USE_SELECT
923 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1891 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
924#endif 1892#endif
925 1893
926 for (i = NUMPRI; i--; ) 1894 for (i = NUMPRI; i--; )
1895 {
927 array_free (pending, [i]); 1896 array_free (pending, [i]);
1897#if EV_IDLE_ENABLE
1898 array_free (idle, [i]);
1899#endif
1900 }
1901
1902 ev_free (anfds); anfds = 0; anfdmax = 0;
928 1903
929 /* have to use the microsoft-never-gets-it-right macro */ 1904 /* have to use the microsoft-never-gets-it-right macro */
1905 array_free (rfeed, EMPTY);
930 array_free (fdchange, EMPTY0); 1906 array_free (fdchange, EMPTY);
931 array_free (timer, EMPTY0); 1907 array_free (timer, EMPTY);
932#if EV_PERIODIC_ENABLE 1908#if EV_PERIODIC_ENABLE
933 array_free (periodic, EMPTY0); 1909 array_free (periodic, EMPTY);
934#endif 1910#endif
1911#if EV_FORK_ENABLE
1912 array_free (fork, EMPTY);
1913#endif
1914#if EV_CLEANUP_ENABLE
935 array_free (idle, EMPTY0); 1915 array_free (cleanup, EMPTY);
1916#endif
936 array_free (prepare, EMPTY0); 1917 array_free (prepare, EMPTY);
937 array_free (check, EMPTY0); 1918 array_free (check, EMPTY);
1919#if EV_ASYNC_ENABLE
1920 array_free (async, EMPTY);
1921#endif
938 1922
939 backend = 0; 1923 backend = 0;
940}
941 1924
942static void 1925#if EV_MULTIPLICITY
1926 if (ev_is_default_loop (EV_A))
1927#endif
1928 ev_default_loop_ptr = 0;
1929#if EV_MULTIPLICITY
1930 else
1931 ev_free (EV_A);
1932#endif
1933}
1934
1935#if EV_USE_INOTIFY
1936inline_size void infy_fork (EV_P);
1937#endif
1938
1939inline_size void
943loop_fork (EV_P) 1940loop_fork (EV_P)
944{ 1941{
945#if EV_USE_PORT 1942#if EV_USE_PORT
946 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1943 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
947#endif 1944#endif
949 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1946 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
950#endif 1947#endif
951#if EV_USE_EPOLL 1948#if EV_USE_EPOLL
952 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1949 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
953#endif 1950#endif
1951#if EV_USE_INOTIFY
1952 infy_fork (EV_A);
1953#endif
954 1954
955 if (ev_is_active (&sigev)) 1955 if (ev_is_active (&pipe_w))
956 { 1956 {
957 /* default loop */ 1957 /* this "locks" the handlers against writing to the pipe */
1958 /* while we modify the fd vars */
1959 sig_pending = 1;
1960#if EV_ASYNC_ENABLE
1961 async_pending = 1;
1962#endif
958 1963
959 ev_ref (EV_A); 1964 ev_ref (EV_A);
960 ev_io_stop (EV_A_ &sigev); 1965 ev_io_stop (EV_A_ &pipe_w);
961 close (sigpipe [0]);
962 close (sigpipe [1]);
963 1966
964 while (pipe (sigpipe)) 1967#if EV_USE_EVENTFD
965 syserr ("(libev) error creating pipe"); 1968 if (evfd >= 0)
1969 close (evfd);
1970#endif
966 1971
1972 if (evpipe [0] >= 0)
1973 {
1974 EV_WIN32_CLOSE_FD (evpipe [0]);
1975 EV_WIN32_CLOSE_FD (evpipe [1]);
1976 }
1977
1978#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
967 siginit (EV_A); 1979 evpipe_init (EV_A);
1980 /* now iterate over everything, in case we missed something */
1981 pipecb (EV_A_ &pipe_w, EV_READ);
1982#endif
968 } 1983 }
969 1984
970 postfork = 0; 1985 postfork = 0;
971} 1986}
1987
1988#if EV_MULTIPLICITY
1989
1990struct ev_loop *
1991ev_loop_new (unsigned int flags)
1992{
1993 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1994
1995 memset (EV_A, 0, sizeof (struct ev_loop));
1996 loop_init (EV_A_ flags);
1997
1998 if (ev_backend (EV_A))
1999 return EV_A;
2000
2001 ev_free (EV_A);
2002 return 0;
2003}
2004
2005#endif /* multiplicity */
2006
2007#if EV_VERIFY
2008static void noinline
2009verify_watcher (EV_P_ W w)
2010{
2011 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2012
2013 if (w->pending)
2014 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2015}
2016
2017static void noinline
2018verify_heap (EV_P_ ANHE *heap, int N)
2019{
2020 int i;
2021
2022 for (i = HEAP0; i < N + HEAP0; ++i)
2023 {
2024 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2025 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2026 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2027
2028 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2029 }
2030}
2031
2032static void noinline
2033array_verify (EV_P_ W *ws, int cnt)
2034{
2035 while (cnt--)
2036 {
2037 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2038 verify_watcher (EV_A_ ws [cnt]);
2039 }
2040}
2041#endif
2042
2043#if EV_FEATURE_API
2044void
2045ev_verify (EV_P)
2046{
2047#if EV_VERIFY
2048 int i;
2049 WL w;
2050
2051 assert (activecnt >= -1);
2052
2053 assert (fdchangemax >= fdchangecnt);
2054 for (i = 0; i < fdchangecnt; ++i)
2055 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2056
2057 assert (anfdmax >= 0);
2058 for (i = 0; i < anfdmax; ++i)
2059 for (w = anfds [i].head; w; w = w->next)
2060 {
2061 verify_watcher (EV_A_ (W)w);
2062 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2063 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2064 }
2065
2066 assert (timermax >= timercnt);
2067 verify_heap (EV_A_ timers, timercnt);
2068
2069#if EV_PERIODIC_ENABLE
2070 assert (periodicmax >= periodiccnt);
2071 verify_heap (EV_A_ periodics, periodiccnt);
2072#endif
2073
2074 for (i = NUMPRI; i--; )
2075 {
2076 assert (pendingmax [i] >= pendingcnt [i]);
2077#if EV_IDLE_ENABLE
2078 assert (idleall >= 0);
2079 assert (idlemax [i] >= idlecnt [i]);
2080 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2081#endif
2082 }
2083
2084#if EV_FORK_ENABLE
2085 assert (forkmax >= forkcnt);
2086 array_verify (EV_A_ (W *)forks, forkcnt);
2087#endif
2088
2089#if EV_CLEANUP_ENABLE
2090 assert (cleanupmax >= cleanupcnt);
2091 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2092#endif
2093
2094#if EV_ASYNC_ENABLE
2095 assert (asyncmax >= asynccnt);
2096 array_verify (EV_A_ (W *)asyncs, asynccnt);
2097#endif
2098
2099#if EV_PREPARE_ENABLE
2100 assert (preparemax >= preparecnt);
2101 array_verify (EV_A_ (W *)prepares, preparecnt);
2102#endif
2103
2104#if EV_CHECK_ENABLE
2105 assert (checkmax >= checkcnt);
2106 array_verify (EV_A_ (W *)checks, checkcnt);
2107#endif
2108
2109# if 0
2110#if EV_CHILD_ENABLE
2111 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2112 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2113#endif
2114# endif
2115#endif
2116}
2117#endif
972 2118
973#if EV_MULTIPLICITY 2119#if EV_MULTIPLICITY
974struct ev_loop * 2120struct ev_loop *
975ev_loop_new (unsigned int flags)
976{
977 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
978
979 memset (loop, 0, sizeof (struct ev_loop));
980
981 loop_init (EV_A_ flags);
982
983 if (ev_backend (EV_A))
984 return loop;
985
986 return 0;
987}
988
989void
990ev_loop_destroy (EV_P)
991{
992 loop_destroy (EV_A);
993 ev_free (loop);
994}
995
996void
997ev_loop_fork (EV_P)
998{
999 postfork = 1;
1000}
1001
1002#endif
1003
1004#if EV_MULTIPLICITY
1005struct ev_loop *
1006ev_default_loop_init (unsigned int flags)
1007#else 2121#else
1008int 2122int
2123#endif
1009ev_default_loop (unsigned int flags) 2124ev_default_loop (unsigned int flags)
1010#endif
1011{ 2125{
1012 if (sigpipe [0] == sigpipe [1])
1013 if (pipe (sigpipe))
1014 return 0;
1015
1016 if (!ev_default_loop_ptr) 2126 if (!ev_default_loop_ptr)
1017 { 2127 {
1018#if EV_MULTIPLICITY 2128#if EV_MULTIPLICITY
1019 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2129 EV_P = ev_default_loop_ptr = &default_loop_struct;
1020#else 2130#else
1021 ev_default_loop_ptr = 1; 2131 ev_default_loop_ptr = 1;
1022#endif 2132#endif
1023 2133
1024 loop_init (EV_A_ flags); 2134 loop_init (EV_A_ flags);
1025 2135
1026 if (ev_backend (EV_A)) 2136 if (ev_backend (EV_A))
1027 { 2137 {
1028 siginit (EV_A); 2138#if EV_CHILD_ENABLE
1029
1030#ifndef _WIN32
1031 ev_signal_init (&childev, childcb, SIGCHLD); 2139 ev_signal_init (&childev, childcb, SIGCHLD);
1032 ev_set_priority (&childev, EV_MAXPRI); 2140 ev_set_priority (&childev, EV_MAXPRI);
1033 ev_signal_start (EV_A_ &childev); 2141 ev_signal_start (EV_A_ &childev);
1034 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2142 ev_unref (EV_A); /* child watcher should not keep loop alive */
1035#endif 2143#endif
1040 2148
1041 return ev_default_loop_ptr; 2149 return ev_default_loop_ptr;
1042} 2150}
1043 2151
1044void 2152void
1045ev_default_destroy (void) 2153ev_loop_fork (EV_P)
1046{ 2154{
1047#if EV_MULTIPLICITY 2155 postfork = 1; /* must be in line with ev_default_fork */
1048 struct ev_loop *loop = ev_default_loop_ptr;
1049#endif
1050
1051#ifndef _WIN32
1052 ev_ref (EV_A); /* child watcher */
1053 ev_signal_stop (EV_A_ &childev);
1054#endif
1055
1056 ev_ref (EV_A); /* signal watcher */
1057 ev_io_stop (EV_A_ &sigev);
1058
1059 close (sigpipe [0]); sigpipe [0] = 0;
1060 close (sigpipe [1]); sigpipe [1] = 0;
1061
1062 loop_destroy (EV_A);
1063}
1064
1065void
1066ev_default_fork (void)
1067{
1068#if EV_MULTIPLICITY
1069 struct ev_loop *loop = ev_default_loop_ptr;
1070#endif
1071
1072 if (backend)
1073 postfork = 1;
1074} 2156}
1075 2157
1076/*****************************************************************************/ 2158/*****************************************************************************/
1077 2159
1078int inline_size 2160void
1079any_pending (EV_P) 2161ev_invoke (EV_P_ void *w, int revents)
2162{
2163 EV_CB_INVOKE ((W)w, revents);
2164}
2165
2166unsigned int
2167ev_pending_count (EV_P)
1080{ 2168{
1081 int pri; 2169 int pri;
2170 unsigned int count = 0;
1082 2171
1083 for (pri = NUMPRI; pri--; ) 2172 for (pri = NUMPRI; pri--; )
1084 if (pendingcnt [pri]) 2173 count += pendingcnt [pri];
1085 return 1;
1086 2174
1087 return 0; 2175 return count;
1088} 2176}
1089 2177
1090void inline_speed 2178void noinline
1091call_pending (EV_P) 2179ev_invoke_pending (EV_P)
1092{ 2180{
1093 int pri; 2181 int pri;
1094 2182
1095 for (pri = NUMPRI; pri--; ) 2183 for (pri = NUMPRI; pri--; )
1096 while (pendingcnt [pri]) 2184 while (pendingcnt [pri])
1097 { 2185 {
1098 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2186 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1099 2187
1100 if (expect_true (p->w))
1101 {
1102 assert (("non-pending watcher on pending list", p->w->pending));
1103
1104 p->w->pending = 0; 2188 p->w->pending = 0;
1105 EV_CB_INVOKE (p->w, p->events); 2189 EV_CB_INVOKE (p->w, p->events);
1106 } 2190 EV_FREQUENT_CHECK;
1107 } 2191 }
1108} 2192}
1109 2193
1110void inline_size 2194#if EV_IDLE_ENABLE
2195/* make idle watchers pending. this handles the "call-idle */
2196/* only when higher priorities are idle" logic */
2197inline_size void
2198idle_reify (EV_P)
2199{
2200 if (expect_false (idleall))
2201 {
2202 int pri;
2203
2204 for (pri = NUMPRI; pri--; )
2205 {
2206 if (pendingcnt [pri])
2207 break;
2208
2209 if (idlecnt [pri])
2210 {
2211 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2212 break;
2213 }
2214 }
2215 }
2216}
2217#endif
2218
2219/* make timers pending */
2220inline_size void
1111timers_reify (EV_P) 2221timers_reify (EV_P)
1112{ 2222{
2223 EV_FREQUENT_CHECK;
2224
1113 while (timercnt && ((WT)timers [0])->at <= mn_now) 2225 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1114 { 2226 {
1115 ev_timer *w = timers [0]; 2227 do
1116
1117 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1118
1119 /* first reschedule or stop timer */
1120 if (w->repeat)
1121 { 2228 {
2229 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2230
2231 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2232
2233 /* first reschedule or stop timer */
2234 if (w->repeat)
2235 {
2236 ev_at (w) += w->repeat;
2237 if (ev_at (w) < mn_now)
2238 ev_at (w) = mn_now;
2239
1122 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2240 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1123 2241
1124 ((WT)w)->at += w->repeat; 2242 ANHE_at_cache (timers [HEAP0]);
1125 if (((WT)w)->at < mn_now)
1126 ((WT)w)->at = mn_now;
1127
1128 downheap ((WT *)timers, timercnt, 0); 2243 downheap (timers, timercnt, HEAP0);
2244 }
2245 else
2246 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2247
2248 EV_FREQUENT_CHECK;
2249 feed_reverse (EV_A_ (W)w);
1129 } 2250 }
1130 else 2251 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1131 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1132 2252
1133 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2253 feed_reverse_done (EV_A_ EV_TIMER);
1134 } 2254 }
1135} 2255}
1136 2256
1137#if EV_PERIODIC_ENABLE 2257#if EV_PERIODIC_ENABLE
1138void inline_size 2258
2259static void noinline
2260periodic_recalc (EV_P_ ev_periodic *w)
2261{
2262 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2263 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2264
2265 /* the above almost always errs on the low side */
2266 while (at <= ev_rt_now)
2267 {
2268 ev_tstamp nat = at + w->interval;
2269
2270 /* when resolution fails us, we use ev_rt_now */
2271 if (expect_false (nat == at))
2272 {
2273 at = ev_rt_now;
2274 break;
2275 }
2276
2277 at = nat;
2278 }
2279
2280 ev_at (w) = at;
2281}
2282
2283/* make periodics pending */
2284inline_size void
1139periodics_reify (EV_P) 2285periodics_reify (EV_P)
1140{ 2286{
2287 EV_FREQUENT_CHECK;
2288
1141 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2289 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1142 { 2290 {
1143 ev_periodic *w = periodics [0]; 2291 int feed_count = 0;
1144 2292
1145 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2293 do
1146
1147 /* first reschedule or stop timer */
1148 if (w->reschedule_cb)
1149 { 2294 {
2295 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2296
2297 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2298
2299 /* first reschedule or stop timer */
2300 if (w->reschedule_cb)
2301 {
1150 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2302 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2303
1151 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2304 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2305
2306 ANHE_at_cache (periodics [HEAP0]);
1152 downheap ((WT *)periodics, periodiccnt, 0); 2307 downheap (periodics, periodiccnt, HEAP0);
2308 }
2309 else if (w->interval)
2310 {
2311 periodic_recalc (EV_A_ w);
2312 ANHE_at_cache (periodics [HEAP0]);
2313 downheap (periodics, periodiccnt, HEAP0);
2314 }
2315 else
2316 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2317
2318 EV_FREQUENT_CHECK;
2319 feed_reverse (EV_A_ (W)w);
1153 } 2320 }
1154 else if (w->interval) 2321 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1155 {
1156 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1157 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1158 downheap ((WT *)periodics, periodiccnt, 0);
1159 }
1160 else
1161 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1162 2322
1163 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2323 feed_reverse_done (EV_A_ EV_PERIODIC);
1164 } 2324 }
1165} 2325}
1166 2326
2327/* simply recalculate all periodics */
2328/* TODO: maybe ensure that at least one event happens when jumping forward? */
1167static void noinline 2329static void noinline
1168periodics_reschedule (EV_P) 2330periodics_reschedule (EV_P)
1169{ 2331{
1170 int i; 2332 int i;
1171 2333
1172 /* adjust periodics after time jump */ 2334 /* adjust periodics after time jump */
1173 for (i = 0; i < periodiccnt; ++i) 2335 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1174 { 2336 {
1175 ev_periodic *w = periodics [i]; 2337 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1176 2338
1177 if (w->reschedule_cb) 2339 if (w->reschedule_cb)
1178 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2340 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1179 else if (w->interval) 2341 else if (w->interval)
1180 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2342 periodic_recalc (EV_A_ w);
2343
2344 ANHE_at_cache (periodics [i]);
2345 }
2346
2347 reheap (periodics, periodiccnt);
2348}
2349#endif
2350
2351/* adjust all timers by a given offset */
2352static void noinline
2353timers_reschedule (EV_P_ ev_tstamp adjust)
2354{
2355 int i;
2356
2357 for (i = 0; i < timercnt; ++i)
1181 } 2358 {
1182 2359 ANHE *he = timers + i + HEAP0;
1183 /* now rebuild the heap */ 2360 ANHE_w (*he)->at += adjust;
1184 for (i = periodiccnt >> 1; i--; ) 2361 ANHE_at_cache (*he);
1185 downheap ((WT *)periodics, periodiccnt, i); 2362 }
1186} 2363}
1187#endif
1188 2364
1189int inline_size 2365/* fetch new monotonic and realtime times from the kernel */
1190time_update_monotonic (EV_P) 2366/* also detect if there was a timejump, and act accordingly */
2367inline_speed void
2368time_update (EV_P_ ev_tstamp max_block)
1191{ 2369{
2370#if EV_USE_MONOTONIC
2371 if (expect_true (have_monotonic))
2372 {
2373 int i;
2374 ev_tstamp odiff = rtmn_diff;
2375
1192 mn_now = get_clock (); 2376 mn_now = get_clock ();
1193 2377
2378 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2379 /* interpolate in the meantime */
1194 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2380 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1195 { 2381 {
1196 ev_rt_now = rtmn_diff + mn_now; 2382 ev_rt_now = rtmn_diff + mn_now;
1197 return 0; 2383 return;
1198 } 2384 }
1199 else 2385
1200 {
1201 now_floor = mn_now; 2386 now_floor = mn_now;
1202 ev_rt_now = ev_time (); 2387 ev_rt_now = ev_time ();
1203 return 1;
1204 }
1205}
1206 2388
1207void inline_size 2389 /* loop a few times, before making important decisions.
1208time_update (EV_P) 2390 * on the choice of "4": one iteration isn't enough,
1209{ 2391 * in case we get preempted during the calls to
1210 int i; 2392 * ev_time and get_clock. a second call is almost guaranteed
1211 2393 * to succeed in that case, though. and looping a few more times
1212#if EV_USE_MONOTONIC 2394 * doesn't hurt either as we only do this on time-jumps or
1213 if (expect_true (have_monotonic)) 2395 * in the unlikely event of having been preempted here.
1214 { 2396 */
1215 if (time_update_monotonic (EV_A)) 2397 for (i = 4; --i; )
1216 { 2398 {
1217 ev_tstamp odiff = rtmn_diff; 2399 ev_tstamp diff;
1218
1219 /* loop a few times, before making important decisions.
1220 * on the choice of "4": one iteration isn't enough,
1221 * in case we get preempted during the calls to
1222 * ev_time and get_clock. a second call is almost guarenteed
1223 * to succeed in that case, though. and looping a few more times
1224 * doesn't hurt either as we only do this on time-jumps or
1225 * in the unlikely event of getting preempted here.
1226 */
1227 for (i = 4; --i; )
1228 {
1229 rtmn_diff = ev_rt_now - mn_now; 2400 rtmn_diff = ev_rt_now - mn_now;
1230 2401
1231 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2402 diff = odiff - rtmn_diff;
2403
2404 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1232 return; /* all is well */ 2405 return; /* all is well */
1233 2406
1234 ev_rt_now = ev_time (); 2407 ev_rt_now = ev_time ();
1235 mn_now = get_clock (); 2408 mn_now = get_clock ();
1236 now_floor = mn_now; 2409 now_floor = mn_now;
1237 } 2410 }
1238 2411
2412 /* no timer adjustment, as the monotonic clock doesn't jump */
2413 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1239# if EV_PERIODIC_ENABLE 2414# if EV_PERIODIC_ENABLE
1240 periodics_reschedule (EV_A); 2415 periodics_reschedule (EV_A);
1241# endif 2416# endif
1242 /* no timer adjustment, as the monotonic clock doesn't jump */
1243 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1244 }
1245 } 2417 }
1246 else 2418 else
1247#endif 2419#endif
1248 { 2420 {
1249 ev_rt_now = ev_time (); 2421 ev_rt_now = ev_time ();
1250 2422
1251 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2423 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1252 { 2424 {
2425 /* adjust timers. this is easy, as the offset is the same for all of them */
2426 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1253#if EV_PERIODIC_ENABLE 2427#if EV_PERIODIC_ENABLE
1254 periodics_reschedule (EV_A); 2428 periodics_reschedule (EV_A);
1255#endif 2429#endif
1256
1257 /* adjust timers. this is easy, as the offset is the same for all */
1258 for (i = 0; i < timercnt; ++i)
1259 ((WT)timers [i])->at += ev_rt_now - mn_now;
1260 } 2430 }
1261 2431
1262 mn_now = ev_rt_now; 2432 mn_now = ev_rt_now;
1263 } 2433 }
1264} 2434}
1265 2435
1266void 2436void
1267ev_ref (EV_P)
1268{
1269 ++activecnt;
1270}
1271
1272void
1273ev_unref (EV_P)
1274{
1275 --activecnt;
1276}
1277
1278static int loop_done;
1279
1280void
1281ev_loop (EV_P_ int flags) 2437ev_run (EV_P_ int flags)
1282{ 2438{
1283 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2439#if EV_FEATURE_API
1284 ? EVUNLOOP_ONE 2440 ++loop_depth;
1285 : EVUNLOOP_CANCEL; 2441#endif
1286 2442
1287 while (activecnt) 2443 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2444
2445 loop_done = EVBREAK_CANCEL;
2446
2447 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2448
2449 do
1288 { 2450 {
1289 /* we might have forked, so reify kernel state if necessary */ 2451#if EV_VERIFY >= 2
2452 ev_verify (EV_A);
2453#endif
2454
2455#ifndef _WIN32
2456 if (expect_false (curpid)) /* penalise the forking check even more */
2457 if (expect_false (getpid () != curpid))
2458 {
2459 curpid = getpid ();
2460 postfork = 1;
2461 }
2462#endif
2463
1290 #if EV_FORK_ENABLE 2464#if EV_FORK_ENABLE
2465 /* we might have forked, so queue fork handlers */
1291 if (expect_false (postfork)) 2466 if (expect_false (postfork))
1292 if (forkcnt) 2467 if (forkcnt)
1293 { 2468 {
1294 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2469 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1295 call_pending (EV_A); 2470 EV_INVOKE_PENDING;
1296 } 2471 }
1297 #endif 2472#endif
1298 2473
2474#if EV_PREPARE_ENABLE
1299 /* queue check watchers (and execute them) */ 2475 /* queue prepare watchers (and execute them) */
1300 if (expect_false (preparecnt)) 2476 if (expect_false (preparecnt))
1301 { 2477 {
1302 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2478 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1303 call_pending (EV_A); 2479 EV_INVOKE_PENDING;
1304 } 2480 }
2481#endif
2482
2483 if (expect_false (loop_done))
2484 break;
1305 2485
1306 /* we might have forked, so reify kernel state if necessary */ 2486 /* we might have forked, so reify kernel state if necessary */
1307 if (expect_false (postfork)) 2487 if (expect_false (postfork))
1308 loop_fork (EV_A); 2488 loop_fork (EV_A);
1309 2489
1310 /* update fd-related kernel structures */ 2490 /* update fd-related kernel structures */
1311 fd_reify (EV_A); 2491 fd_reify (EV_A);
1312 2492
1313 /* calculate blocking time */ 2493 /* calculate blocking time */
1314 { 2494 {
1315 double block; 2495 ev_tstamp waittime = 0.;
2496 ev_tstamp sleeptime = 0.;
1316 2497
1317 if (flags & EVLOOP_NONBLOCK || idlecnt) 2498 /* remember old timestamp for io_blocktime calculation */
1318 block = 0.; /* do not block at all */ 2499 ev_tstamp prev_mn_now = mn_now;
1319 else 2500
2501 /* update time to cancel out callback processing overhead */
2502 time_update (EV_A_ 1e100);
2503
2504 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1320 { 2505 {
1321 /* update time to cancel out callback processing overhead */
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 time_update_monotonic (EV_A);
1325 else
1326#endif
1327 {
1328 ev_rt_now = ev_time ();
1329 mn_now = ev_rt_now;
1330 }
1331
1332 block = MAX_BLOCKTIME; 2506 waittime = MAX_BLOCKTIME;
1333 2507
1334 if (timercnt) 2508 if (timercnt)
1335 { 2509 {
1336 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2510 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_mintime;
1337 if (block > to) block = to; 2511 if (waittime > to) waittime = to;
1338 } 2512 }
1339 2513
1340#if EV_PERIODIC_ENABLE 2514#if EV_PERIODIC_ENABLE
1341 if (periodiccnt) 2515 if (periodiccnt)
1342 { 2516 {
1343 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2517 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_mintime;
1344 if (block > to) block = to; 2518 if (waittime > to) waittime = to;
1345 } 2519 }
1346#endif 2520#endif
1347 2521
2522 /* don't let timeouts decrease the waittime below timeout_blocktime */
2523 if (expect_false (waittime < timeout_blocktime))
2524 waittime = timeout_blocktime;
2525
2526 /* extra check because io_blocktime is commonly 0 */
1348 if (expect_false (block < 0.)) block = 0.; 2527 if (expect_false (io_blocktime))
2528 {
2529 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2530
2531 if (sleeptime > waittime - backend_mintime)
2532 sleeptime = waittime - backend_mintime;
2533
2534 if (expect_true (sleeptime > 0.))
2535 {
2536 ev_sleep (sleeptime);
2537 waittime -= sleeptime;
2538 }
2539 }
1349 } 2540 }
1350 2541
2542#if EV_FEATURE_API
2543 ++loop_count;
2544#endif
2545 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1351 backend_poll (EV_A_ block); 2546 backend_poll (EV_A_ waittime);
2547 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2548
2549 /* update ev_rt_now, do magic */
2550 time_update (EV_A_ waittime + sleeptime);
1352 } 2551 }
1353
1354 /* update ev_rt_now, do magic */
1355 time_update (EV_A);
1356 2552
1357 /* queue pending timers and reschedule them */ 2553 /* queue pending timers and reschedule them */
1358 timers_reify (EV_A); /* relative timers called last */ 2554 timers_reify (EV_A); /* relative timers called last */
1359#if EV_PERIODIC_ENABLE 2555#if EV_PERIODIC_ENABLE
1360 periodics_reify (EV_A); /* absolute timers called first */ 2556 periodics_reify (EV_A); /* absolute timers called first */
1361#endif 2557#endif
1362 2558
2559#if EV_IDLE_ENABLE
1363 /* queue idle watchers unless other events are pending */ 2560 /* queue idle watchers unless other events are pending */
1364 if (idlecnt && !any_pending (EV_A)) 2561 idle_reify (EV_A);
1365 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2562#endif
1366 2563
2564#if EV_CHECK_ENABLE
1367 /* queue check watchers, to be executed first */ 2565 /* queue check watchers, to be executed first */
1368 if (expect_false (checkcnt)) 2566 if (expect_false (checkcnt))
1369 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2567 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2568#endif
1370 2569
1371 call_pending (EV_A); 2570 EV_INVOKE_PENDING;
1372
1373 if (expect_false (loop_done))
1374 break;
1375 } 2571 }
2572 while (expect_true (
2573 activecnt
2574 && !loop_done
2575 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2576 ));
1376 2577
1377 if (loop_done == EVUNLOOP_ONE) 2578 if (loop_done == EVBREAK_ONE)
1378 loop_done = EVUNLOOP_CANCEL; 2579 loop_done = EVBREAK_CANCEL;
1379}
1380 2580
2581#if EV_FEATURE_API
2582 --loop_depth;
2583#endif
2584}
2585
1381void 2586void
1382ev_unloop (EV_P_ int how) 2587ev_break (EV_P_ int how)
1383{ 2588{
1384 loop_done = how; 2589 loop_done = how;
1385} 2590}
1386 2591
2592void
2593ev_ref (EV_P)
2594{
2595 ++activecnt;
2596}
2597
2598void
2599ev_unref (EV_P)
2600{
2601 --activecnt;
2602}
2603
2604void
2605ev_now_update (EV_P)
2606{
2607 time_update (EV_A_ 1e100);
2608}
2609
2610void
2611ev_suspend (EV_P)
2612{
2613 ev_now_update (EV_A);
2614}
2615
2616void
2617ev_resume (EV_P)
2618{
2619 ev_tstamp mn_prev = mn_now;
2620
2621 ev_now_update (EV_A);
2622 timers_reschedule (EV_A_ mn_now - mn_prev);
2623#if EV_PERIODIC_ENABLE
2624 /* TODO: really do this? */
2625 periodics_reschedule (EV_A);
2626#endif
2627}
2628
1387/*****************************************************************************/ 2629/*****************************************************************************/
2630/* singly-linked list management, used when the expected list length is short */
1388 2631
1389void inline_size 2632inline_size void
1390wlist_add (WL *head, WL elem) 2633wlist_add (WL *head, WL elem)
1391{ 2634{
1392 elem->next = *head; 2635 elem->next = *head;
1393 *head = elem; 2636 *head = elem;
1394} 2637}
1395 2638
1396void inline_size 2639inline_size void
1397wlist_del (WL *head, WL elem) 2640wlist_del (WL *head, WL elem)
1398{ 2641{
1399 while (*head) 2642 while (*head)
1400 { 2643 {
1401 if (*head == elem) 2644 if (expect_true (*head == elem))
1402 { 2645 {
1403 *head = elem->next; 2646 *head = elem->next;
1404 return; 2647 break;
1405 } 2648 }
1406 2649
1407 head = &(*head)->next; 2650 head = &(*head)->next;
1408 } 2651 }
1409} 2652}
1410 2653
1411void inline_speed 2654/* internal, faster, version of ev_clear_pending */
2655inline_speed void
1412ev_clear_pending (EV_P_ W w) 2656clear_pending (EV_P_ W w)
1413{ 2657{
1414 if (w->pending) 2658 if (w->pending)
1415 { 2659 {
1416 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2660 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1417 w->pending = 0; 2661 w->pending = 0;
1418 } 2662 }
1419} 2663}
1420 2664
1421void inline_speed 2665int
2666ev_clear_pending (EV_P_ void *w)
2667{
2668 W w_ = (W)w;
2669 int pending = w_->pending;
2670
2671 if (expect_true (pending))
2672 {
2673 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2674 p->w = (W)&pending_w;
2675 w_->pending = 0;
2676 return p->events;
2677 }
2678 else
2679 return 0;
2680}
2681
2682inline_size void
2683pri_adjust (EV_P_ W w)
2684{
2685 int pri = ev_priority (w);
2686 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2687 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2688 ev_set_priority (w, pri);
2689}
2690
2691inline_speed void
1422ev_start (EV_P_ W w, int active) 2692ev_start (EV_P_ W w, int active)
1423{ 2693{
1424 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2694 pri_adjust (EV_A_ w);
1425 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1426
1427 w->active = active; 2695 w->active = active;
1428 ev_ref (EV_A); 2696 ev_ref (EV_A);
1429} 2697}
1430 2698
1431void inline_size 2699inline_size void
1432ev_stop (EV_P_ W w) 2700ev_stop (EV_P_ W w)
1433{ 2701{
1434 ev_unref (EV_A); 2702 ev_unref (EV_A);
1435 w->active = 0; 2703 w->active = 0;
1436} 2704}
1437 2705
1438/*****************************************************************************/ 2706/*****************************************************************************/
1439 2707
1440void 2708void noinline
1441ev_io_start (EV_P_ ev_io *w) 2709ev_io_start (EV_P_ ev_io *w)
1442{ 2710{
1443 int fd = w->fd; 2711 int fd = w->fd;
1444 2712
1445 if (expect_false (ev_is_active (w))) 2713 if (expect_false (ev_is_active (w)))
1446 return; 2714 return;
1447 2715
1448 assert (("ev_io_start called with negative fd", fd >= 0)); 2716 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2717 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2718
2719 EV_FREQUENT_CHECK;
1449 2720
1450 ev_start (EV_A_ (W)w, 1); 2721 ev_start (EV_A_ (W)w, 1);
1451 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2722 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1452 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2723 wlist_add (&anfds[fd].head, (WL)w);
1453 2724
1454 fd_change (EV_A_ fd); 2725 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1455} 2726 w->events &= ~EV__IOFDSET;
1456 2727
1457void 2728 EV_FREQUENT_CHECK;
2729}
2730
2731void noinline
1458ev_io_stop (EV_P_ ev_io *w) 2732ev_io_stop (EV_P_ ev_io *w)
1459{ 2733{
1460 ev_clear_pending (EV_A_ (W)w); 2734 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 2735 if (expect_false (!ev_is_active (w)))
1462 return; 2736 return;
1463 2737
1464 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2738 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1465 2739
2740 EV_FREQUENT_CHECK;
2741
1466 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2742 wlist_del (&anfds[w->fd].head, (WL)w);
1467 ev_stop (EV_A_ (W)w); 2743 ev_stop (EV_A_ (W)w);
1468 2744
1469 fd_change (EV_A_ w->fd); 2745 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1470}
1471 2746
1472void 2747 EV_FREQUENT_CHECK;
2748}
2749
2750void noinline
1473ev_timer_start (EV_P_ ev_timer *w) 2751ev_timer_start (EV_P_ ev_timer *w)
1474{ 2752{
1475 if (expect_false (ev_is_active (w))) 2753 if (expect_false (ev_is_active (w)))
1476 return; 2754 return;
1477 2755
1478 ((WT)w)->at += mn_now; 2756 ev_at (w) += mn_now;
1479 2757
1480 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2758 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1481 2759
2760 EV_FREQUENT_CHECK;
2761
2762 ++timercnt;
1482 ev_start (EV_A_ (W)w, ++timercnt); 2763 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1483 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2764 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1484 timers [timercnt - 1] = w; 2765 ANHE_w (timers [ev_active (w)]) = (WT)w;
1485 upheap ((WT *)timers, timercnt - 1); 2766 ANHE_at_cache (timers [ev_active (w)]);
2767 upheap (timers, ev_active (w));
1486 2768
2769 EV_FREQUENT_CHECK;
2770
1487 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2771 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1488} 2772}
1489 2773
1490void 2774void noinline
1491ev_timer_stop (EV_P_ ev_timer *w) 2775ev_timer_stop (EV_P_ ev_timer *w)
1492{ 2776{
1493 ev_clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
1494 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
1495 return; 2779 return;
1496 2780
2781 EV_FREQUENT_CHECK;
2782
2783 {
2784 int active = ev_active (w);
2785
1497 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2786 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1498 2787
2788 --timercnt;
2789
1499 if (expect_true (((W)w)->active < timercnt--)) 2790 if (expect_true (active < timercnt + HEAP0))
1500 { 2791 {
1501 timers [((W)w)->active - 1] = timers [timercnt]; 2792 timers [active] = timers [timercnt + HEAP0];
1502 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2793 adjustheap (timers, timercnt, active);
1503 } 2794 }
2795 }
1504 2796
1505 ((WT)w)->at -= mn_now; 2797 ev_at (w) -= mn_now;
1506 2798
1507 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
1508}
1509 2800
1510void 2801 EV_FREQUENT_CHECK;
2802}
2803
2804void noinline
1511ev_timer_again (EV_P_ ev_timer *w) 2805ev_timer_again (EV_P_ ev_timer *w)
1512{ 2806{
2807 EV_FREQUENT_CHECK;
2808
1513 if (ev_is_active (w)) 2809 if (ev_is_active (w))
1514 { 2810 {
1515 if (w->repeat) 2811 if (w->repeat)
1516 { 2812 {
1517 ((WT)w)->at = mn_now + w->repeat; 2813 ev_at (w) = mn_now + w->repeat;
2814 ANHE_at_cache (timers [ev_active (w)]);
1518 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2815 adjustheap (timers, timercnt, ev_active (w));
1519 } 2816 }
1520 else 2817 else
1521 ev_timer_stop (EV_A_ w); 2818 ev_timer_stop (EV_A_ w);
1522 } 2819 }
1523 else if (w->repeat) 2820 else if (w->repeat)
1524 { 2821 {
1525 w->at = w->repeat; 2822 ev_at (w) = w->repeat;
1526 ev_timer_start (EV_A_ w); 2823 ev_timer_start (EV_A_ w);
1527 } 2824 }
2825
2826 EV_FREQUENT_CHECK;
2827}
2828
2829ev_tstamp
2830ev_timer_remaining (EV_P_ ev_timer *w)
2831{
2832 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1528} 2833}
1529 2834
1530#if EV_PERIODIC_ENABLE 2835#if EV_PERIODIC_ENABLE
1531void 2836void noinline
1532ev_periodic_start (EV_P_ ev_periodic *w) 2837ev_periodic_start (EV_P_ ev_periodic *w)
1533{ 2838{
1534 if (expect_false (ev_is_active (w))) 2839 if (expect_false (ev_is_active (w)))
1535 return; 2840 return;
1536 2841
1537 if (w->reschedule_cb) 2842 if (w->reschedule_cb)
1538 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2843 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1539 else if (w->interval) 2844 else if (w->interval)
1540 { 2845 {
1541 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2846 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1542 /* this formula differs from the one in periodic_reify because we do not always round up */ 2847 periodic_recalc (EV_A_ w);
1543 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1544 } 2848 }
2849 else
2850 ev_at (w) = w->offset;
1545 2851
2852 EV_FREQUENT_CHECK;
2853
2854 ++periodiccnt;
1546 ev_start (EV_A_ (W)w, ++periodiccnt); 2855 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1547 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2856 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1548 periodics [periodiccnt - 1] = w; 2857 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1549 upheap ((WT *)periodics, periodiccnt - 1); 2858 ANHE_at_cache (periodics [ev_active (w)]);
2859 upheap (periodics, ev_active (w));
1550 2860
2861 EV_FREQUENT_CHECK;
2862
1551 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2863 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1552} 2864}
1553 2865
1554void 2866void noinline
1555ev_periodic_stop (EV_P_ ev_periodic *w) 2867ev_periodic_stop (EV_P_ ev_periodic *w)
1556{ 2868{
1557 ev_clear_pending (EV_A_ (W)w); 2869 clear_pending (EV_A_ (W)w);
1558 if (expect_false (!ev_is_active (w))) 2870 if (expect_false (!ev_is_active (w)))
1559 return; 2871 return;
1560 2872
2873 EV_FREQUENT_CHECK;
2874
2875 {
2876 int active = ev_active (w);
2877
1561 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2878 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1562 2879
2880 --periodiccnt;
2881
1563 if (expect_true (((W)w)->active < periodiccnt--)) 2882 if (expect_true (active < periodiccnt + HEAP0))
1564 { 2883 {
1565 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2884 periodics [active] = periodics [periodiccnt + HEAP0];
1566 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2885 adjustheap (periodics, periodiccnt, active);
1567 } 2886 }
2887 }
1568 2888
1569 ev_stop (EV_A_ (W)w); 2889 ev_stop (EV_A_ (W)w);
1570}
1571 2890
1572void 2891 EV_FREQUENT_CHECK;
2892}
2893
2894void noinline
1573ev_periodic_again (EV_P_ ev_periodic *w) 2895ev_periodic_again (EV_P_ ev_periodic *w)
1574{ 2896{
1575 /* TODO: use adjustheap and recalculation */ 2897 /* TODO: use adjustheap and recalculation */
1576 ev_periodic_stop (EV_A_ w); 2898 ev_periodic_stop (EV_A_ w);
1577 ev_periodic_start (EV_A_ w); 2899 ev_periodic_start (EV_A_ w);
1580 2902
1581#ifndef SA_RESTART 2903#ifndef SA_RESTART
1582# define SA_RESTART 0 2904# define SA_RESTART 0
1583#endif 2905#endif
1584 2906
1585void 2907#if EV_SIGNAL_ENABLE
2908
2909void noinline
1586ev_signal_start (EV_P_ ev_signal *w) 2910ev_signal_start (EV_P_ ev_signal *w)
1587{ 2911{
1588#if EV_MULTIPLICITY
1589 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1590#endif
1591 if (expect_false (ev_is_active (w))) 2912 if (expect_false (ev_is_active (w)))
1592 return; 2913 return;
1593 2914
1594 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2915 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2916
2917#if EV_MULTIPLICITY
2918 assert (("libev: a signal must not be attached to two different loops",
2919 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2920
2921 signals [w->signum - 1].loop = EV_A;
2922#endif
2923
2924 EV_FREQUENT_CHECK;
2925
2926#if EV_USE_SIGNALFD
2927 if (sigfd == -2)
2928 {
2929 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2930 if (sigfd < 0 && errno == EINVAL)
2931 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2932
2933 if (sigfd >= 0)
2934 {
2935 fd_intern (sigfd); /* doing it twice will not hurt */
2936
2937 sigemptyset (&sigfd_set);
2938
2939 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2940 ev_set_priority (&sigfd_w, EV_MAXPRI);
2941 ev_io_start (EV_A_ &sigfd_w);
2942 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2943 }
2944 }
2945
2946 if (sigfd >= 0)
2947 {
2948 /* TODO: check .head */
2949 sigaddset (&sigfd_set, w->signum);
2950 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2951
2952 signalfd (sigfd, &sigfd_set, 0);
2953 }
2954#endif
1595 2955
1596 ev_start (EV_A_ (W)w, 1); 2956 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1598 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2957 wlist_add (&signals [w->signum - 1].head, (WL)w);
1599 2958
1600 if (!((WL)w)->next) 2959 if (!((WL)w)->next)
2960# if EV_USE_SIGNALFD
2961 if (sigfd < 0) /*TODO*/
2962# endif
1601 { 2963 {
1602#if _WIN32 2964# ifdef _WIN32
2965 evpipe_init (EV_A);
2966
1603 signal (w->signum, sighandler); 2967 signal (w->signum, ev_sighandler);
1604#else 2968# else
1605 struct sigaction sa; 2969 struct sigaction sa;
2970
2971 evpipe_init (EV_A);
2972
1606 sa.sa_handler = sighandler; 2973 sa.sa_handler = ev_sighandler;
1607 sigfillset (&sa.sa_mask); 2974 sigfillset (&sa.sa_mask);
1608 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2975 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1609 sigaction (w->signum, &sa, 0); 2976 sigaction (w->signum, &sa, 0);
2977
2978 if (origflags & EVFLAG_NOSIGMASK)
2979 {
2980 sigemptyset (&sa.sa_mask);
2981 sigaddset (&sa.sa_mask, w->signum);
2982 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2983 }
1610#endif 2984#endif
1611 } 2985 }
1612}
1613 2986
1614void 2987 EV_FREQUENT_CHECK;
2988}
2989
2990void noinline
1615ev_signal_stop (EV_P_ ev_signal *w) 2991ev_signal_stop (EV_P_ ev_signal *w)
1616{ 2992{
1617 ev_clear_pending (EV_A_ (W)w); 2993 clear_pending (EV_A_ (W)w);
1618 if (expect_false (!ev_is_active (w))) 2994 if (expect_false (!ev_is_active (w)))
1619 return; 2995 return;
1620 2996
2997 EV_FREQUENT_CHECK;
2998
1621 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2999 wlist_del (&signals [w->signum - 1].head, (WL)w);
1622 ev_stop (EV_A_ (W)w); 3000 ev_stop (EV_A_ (W)w);
1623 3001
1624 if (!signals [w->signum - 1].head) 3002 if (!signals [w->signum - 1].head)
3003 {
3004#if EV_MULTIPLICITY
3005 signals [w->signum - 1].loop = 0; /* unattach from signal */
3006#endif
3007#if EV_USE_SIGNALFD
3008 if (sigfd >= 0)
3009 {
3010 sigset_t ss;
3011
3012 sigemptyset (&ss);
3013 sigaddset (&ss, w->signum);
3014 sigdelset (&sigfd_set, w->signum);
3015
3016 signalfd (sigfd, &sigfd_set, 0);
3017 sigprocmask (SIG_UNBLOCK, &ss, 0);
3018 }
3019 else
3020#endif
1625 signal (w->signum, SIG_DFL); 3021 signal (w->signum, SIG_DFL);
3022 }
3023
3024 EV_FREQUENT_CHECK;
1626} 3025}
3026
3027#endif
3028
3029#if EV_CHILD_ENABLE
1627 3030
1628void 3031void
1629ev_child_start (EV_P_ ev_child *w) 3032ev_child_start (EV_P_ ev_child *w)
1630{ 3033{
1631#if EV_MULTIPLICITY 3034#if EV_MULTIPLICITY
1632 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3035 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1633#endif 3036#endif
1634 if (expect_false (ev_is_active (w))) 3037 if (expect_false (ev_is_active (w)))
1635 return; 3038 return;
1636 3039
3040 EV_FREQUENT_CHECK;
3041
1637 ev_start (EV_A_ (W)w, 1); 3042 ev_start (EV_A_ (W)w, 1);
1638 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3043 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3044
3045 EV_FREQUENT_CHECK;
1639} 3046}
1640 3047
1641void 3048void
1642ev_child_stop (EV_P_ ev_child *w) 3049ev_child_stop (EV_P_ ev_child *w)
1643{ 3050{
1644 ev_clear_pending (EV_A_ (W)w); 3051 clear_pending (EV_A_ (W)w);
1645 if (expect_false (!ev_is_active (w))) 3052 if (expect_false (!ev_is_active (w)))
1646 return; 3053 return;
1647 3054
3055 EV_FREQUENT_CHECK;
3056
1648 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3057 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1649 ev_stop (EV_A_ (W)w); 3058 ev_stop (EV_A_ (W)w);
3059
3060 EV_FREQUENT_CHECK;
1650} 3061}
3062
3063#endif
1651 3064
1652#if EV_STAT_ENABLE 3065#if EV_STAT_ENABLE
1653 3066
1654# ifdef _WIN32 3067# ifdef _WIN32
1655# undef lstat 3068# undef lstat
1656# define lstat(a,b) _stati64 (a,b) 3069# define lstat(a,b) _stati64 (a,b)
1657# endif 3070# endif
1658 3071
1659#define DEF_STAT_INTERVAL 5.0074891 3072#define DEF_STAT_INTERVAL 5.0074891
3073#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1660#define MIN_STAT_INTERVAL 0.1074891 3074#define MIN_STAT_INTERVAL 0.1074891
3075
3076static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3077
3078#if EV_USE_INOTIFY
3079
3080/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3081# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3082
3083static void noinline
3084infy_add (EV_P_ ev_stat *w)
3085{
3086 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3087
3088 if (w->wd >= 0)
3089 {
3090 struct statfs sfs;
3091
3092 /* now local changes will be tracked by inotify, but remote changes won't */
3093 /* unless the filesystem is known to be local, we therefore still poll */
3094 /* also do poll on <2.6.25, but with normal frequency */
3095
3096 if (!fs_2625)
3097 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3098 else if (!statfs (w->path, &sfs)
3099 && (sfs.f_type == 0x1373 /* devfs */
3100 || sfs.f_type == 0xEF53 /* ext2/3 */
3101 || sfs.f_type == 0x3153464a /* jfs */
3102 || sfs.f_type == 0x52654973 /* reiser3 */
3103 || sfs.f_type == 0x01021994 /* tempfs */
3104 || sfs.f_type == 0x58465342 /* xfs */))
3105 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3106 else
3107 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3108 }
3109 else
3110 {
3111 /* can't use inotify, continue to stat */
3112 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3113
3114 /* if path is not there, monitor some parent directory for speedup hints */
3115 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3116 /* but an efficiency issue only */
3117 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3118 {
3119 char path [4096];
3120 strcpy (path, w->path);
3121
3122 do
3123 {
3124 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3125 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3126
3127 char *pend = strrchr (path, '/');
3128
3129 if (!pend || pend == path)
3130 break;
3131
3132 *pend = 0;
3133 w->wd = inotify_add_watch (fs_fd, path, mask);
3134 }
3135 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3136 }
3137 }
3138
3139 if (w->wd >= 0)
3140 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3141
3142 /* now re-arm timer, if required */
3143 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3144 ev_timer_again (EV_A_ &w->timer);
3145 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3146}
3147
3148static void noinline
3149infy_del (EV_P_ ev_stat *w)
3150{
3151 int slot;
3152 int wd = w->wd;
3153
3154 if (wd < 0)
3155 return;
3156
3157 w->wd = -2;
3158 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3159 wlist_del (&fs_hash [slot].head, (WL)w);
3160
3161 /* remove this watcher, if others are watching it, they will rearm */
3162 inotify_rm_watch (fs_fd, wd);
3163}
3164
3165static void noinline
3166infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3167{
3168 if (slot < 0)
3169 /* overflow, need to check for all hash slots */
3170 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3171 infy_wd (EV_A_ slot, wd, ev);
3172 else
3173 {
3174 WL w_;
3175
3176 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3177 {
3178 ev_stat *w = (ev_stat *)w_;
3179 w_ = w_->next; /* lets us remove this watcher and all before it */
3180
3181 if (w->wd == wd || wd == -1)
3182 {
3183 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3184 {
3185 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3186 w->wd = -1;
3187 infy_add (EV_A_ w); /* re-add, no matter what */
3188 }
3189
3190 stat_timer_cb (EV_A_ &w->timer, 0);
3191 }
3192 }
3193 }
3194}
3195
3196static void
3197infy_cb (EV_P_ ev_io *w, int revents)
3198{
3199 char buf [EV_INOTIFY_BUFSIZE];
3200 int ofs;
3201 int len = read (fs_fd, buf, sizeof (buf));
3202
3203 for (ofs = 0; ofs < len; )
3204 {
3205 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3206 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3207 ofs += sizeof (struct inotify_event) + ev->len;
3208 }
3209}
3210
3211inline_size void
3212ev_check_2625 (EV_P)
3213{
3214 /* kernels < 2.6.25 are borked
3215 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3216 */
3217 if (ev_linux_version () < 0x020619)
3218 return;
3219
3220 fs_2625 = 1;
3221}
3222
3223inline_size int
3224infy_newfd (void)
3225{
3226#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3227 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3228 if (fd >= 0)
3229 return fd;
3230#endif
3231 return inotify_init ();
3232}
3233
3234inline_size void
3235infy_init (EV_P)
3236{
3237 if (fs_fd != -2)
3238 return;
3239
3240 fs_fd = -1;
3241
3242 ev_check_2625 (EV_A);
3243
3244 fs_fd = infy_newfd ();
3245
3246 if (fs_fd >= 0)
3247 {
3248 fd_intern (fs_fd);
3249 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3250 ev_set_priority (&fs_w, EV_MAXPRI);
3251 ev_io_start (EV_A_ &fs_w);
3252 ev_unref (EV_A);
3253 }
3254}
3255
3256inline_size void
3257infy_fork (EV_P)
3258{
3259 int slot;
3260
3261 if (fs_fd < 0)
3262 return;
3263
3264 ev_ref (EV_A);
3265 ev_io_stop (EV_A_ &fs_w);
3266 close (fs_fd);
3267 fs_fd = infy_newfd ();
3268
3269 if (fs_fd >= 0)
3270 {
3271 fd_intern (fs_fd);
3272 ev_io_set (&fs_w, fs_fd, EV_READ);
3273 ev_io_start (EV_A_ &fs_w);
3274 ev_unref (EV_A);
3275 }
3276
3277 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3278 {
3279 WL w_ = fs_hash [slot].head;
3280 fs_hash [slot].head = 0;
3281
3282 while (w_)
3283 {
3284 ev_stat *w = (ev_stat *)w_;
3285 w_ = w_->next; /* lets us add this watcher */
3286
3287 w->wd = -1;
3288
3289 if (fs_fd >= 0)
3290 infy_add (EV_A_ w); /* re-add, no matter what */
3291 else
3292 {
3293 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3294 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3295 ev_timer_again (EV_A_ &w->timer);
3296 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3297 }
3298 }
3299 }
3300}
3301
3302#endif
3303
3304#ifdef _WIN32
3305# define EV_LSTAT(p,b) _stati64 (p, b)
3306#else
3307# define EV_LSTAT(p,b) lstat (p, b)
3308#endif
1661 3309
1662void 3310void
1663ev_stat_stat (EV_P_ ev_stat *w) 3311ev_stat_stat (EV_P_ ev_stat *w)
1664{ 3312{
1665 if (lstat (w->path, &w->attr) < 0) 3313 if (lstat (w->path, &w->attr) < 0)
1666 w->attr.st_nlink = 0; 3314 w->attr.st_nlink = 0;
1667 else if (!w->attr.st_nlink) 3315 else if (!w->attr.st_nlink)
1668 w->attr.st_nlink = 1; 3316 w->attr.st_nlink = 1;
1669} 3317}
1670 3318
1671static void 3319static void noinline
1672stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3320stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1673{ 3321{
1674 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3322 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1675 3323
1676 /* we copy this here each the time so that */ 3324 ev_statdata prev = w->attr;
1677 /* prev has the old value when the callback gets invoked */
1678 w->prev = w->attr;
1679 ev_stat_stat (EV_A_ w); 3325 ev_stat_stat (EV_A_ w);
1680 3326
1681 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 3327 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3328 if (
3329 prev.st_dev != w->attr.st_dev
3330 || prev.st_ino != w->attr.st_ino
3331 || prev.st_mode != w->attr.st_mode
3332 || prev.st_nlink != w->attr.st_nlink
3333 || prev.st_uid != w->attr.st_uid
3334 || prev.st_gid != w->attr.st_gid
3335 || prev.st_rdev != w->attr.st_rdev
3336 || prev.st_size != w->attr.st_size
3337 || prev.st_atime != w->attr.st_atime
3338 || prev.st_mtime != w->attr.st_mtime
3339 || prev.st_ctime != w->attr.st_ctime
3340 ) {
3341 /* we only update w->prev on actual differences */
3342 /* in case we test more often than invoke the callback, */
3343 /* to ensure that prev is always different to attr */
3344 w->prev = prev;
3345
3346 #if EV_USE_INOTIFY
3347 if (fs_fd >= 0)
3348 {
3349 infy_del (EV_A_ w);
3350 infy_add (EV_A_ w);
3351 ev_stat_stat (EV_A_ w); /* avoid race... */
3352 }
3353 #endif
3354
1682 ev_feed_event (EV_A_ w, EV_STAT); 3355 ev_feed_event (EV_A_ w, EV_STAT);
3356 }
1683} 3357}
1684 3358
1685void 3359void
1686ev_stat_start (EV_P_ ev_stat *w) 3360ev_stat_start (EV_P_ ev_stat *w)
1687{ 3361{
1688 if (expect_false (ev_is_active (w))) 3362 if (expect_false (ev_is_active (w)))
1689 return; 3363 return;
1690 3364
1691 /* since we use memcmp, we need to clear any padding data etc. */
1692 memset (&w->prev, 0, sizeof (ev_statdata));
1693 memset (&w->attr, 0, sizeof (ev_statdata));
1694
1695 ev_stat_stat (EV_A_ w); 3365 ev_stat_stat (EV_A_ w);
1696 3366
3367 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1697 if (w->interval < MIN_STAT_INTERVAL) 3368 w->interval = MIN_STAT_INTERVAL;
1698 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1699 3369
1700 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3370 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1701 ev_set_priority (&w->timer, ev_priority (w)); 3371 ev_set_priority (&w->timer, ev_priority (w));
3372
3373#if EV_USE_INOTIFY
3374 infy_init (EV_A);
3375
3376 if (fs_fd >= 0)
3377 infy_add (EV_A_ w);
3378 else
3379#endif
3380 {
1702 ev_timer_start (EV_A_ &w->timer); 3381 ev_timer_again (EV_A_ &w->timer);
3382 ev_unref (EV_A);
3383 }
1703 3384
1704 ev_start (EV_A_ (W)w, 1); 3385 ev_start (EV_A_ (W)w, 1);
3386
3387 EV_FREQUENT_CHECK;
1705} 3388}
1706 3389
1707void 3390void
1708ev_stat_stop (EV_P_ ev_stat *w) 3391ev_stat_stop (EV_P_ ev_stat *w)
1709{ 3392{
1710 ev_clear_pending (EV_A_ (W)w); 3393 clear_pending (EV_A_ (W)w);
1711 if (expect_false (!ev_is_active (w))) 3394 if (expect_false (!ev_is_active (w)))
1712 return; 3395 return;
1713 3396
3397 EV_FREQUENT_CHECK;
3398
3399#if EV_USE_INOTIFY
3400 infy_del (EV_A_ w);
3401#endif
3402
3403 if (ev_is_active (&w->timer))
3404 {
3405 ev_ref (EV_A);
1714 ev_timer_stop (EV_A_ &w->timer); 3406 ev_timer_stop (EV_A_ &w->timer);
3407 }
1715 3408
1716 ev_stop (EV_A_ (W)w); 3409 ev_stop (EV_A_ (W)w);
1717}
1718#endif
1719 3410
3411 EV_FREQUENT_CHECK;
3412}
3413#endif
3414
3415#if EV_IDLE_ENABLE
1720void 3416void
1721ev_idle_start (EV_P_ ev_idle *w) 3417ev_idle_start (EV_P_ ev_idle *w)
1722{ 3418{
1723 if (expect_false (ev_is_active (w))) 3419 if (expect_false (ev_is_active (w)))
1724 return; 3420 return;
1725 3421
3422 pri_adjust (EV_A_ (W)w);
3423
3424 EV_FREQUENT_CHECK;
3425
3426 {
3427 int active = ++idlecnt [ABSPRI (w)];
3428
3429 ++idleall;
1726 ev_start (EV_A_ (W)w, ++idlecnt); 3430 ev_start (EV_A_ (W)w, active);
3431
1727 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3432 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1728 idles [idlecnt - 1] = w; 3433 idles [ABSPRI (w)][active - 1] = w;
3434 }
3435
3436 EV_FREQUENT_CHECK;
1729} 3437}
1730 3438
1731void 3439void
1732ev_idle_stop (EV_P_ ev_idle *w) 3440ev_idle_stop (EV_P_ ev_idle *w)
1733{ 3441{
1734 ev_clear_pending (EV_A_ (W)w); 3442 clear_pending (EV_A_ (W)w);
1735 if (expect_false (!ev_is_active (w))) 3443 if (expect_false (!ev_is_active (w)))
1736 return; 3444 return;
1737 3445
3446 EV_FREQUENT_CHECK;
3447
1738 { 3448 {
1739 int active = ((W)w)->active; 3449 int active = ev_active (w);
1740 idles [active - 1] = idles [--idlecnt]; 3450
1741 ((W)idles [active - 1])->active = active; 3451 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3452 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3453
3454 ev_stop (EV_A_ (W)w);
3455 --idleall;
1742 } 3456 }
1743 3457
1744 ev_stop (EV_A_ (W)w); 3458 EV_FREQUENT_CHECK;
1745} 3459}
3460#endif
1746 3461
3462#if EV_PREPARE_ENABLE
1747void 3463void
1748ev_prepare_start (EV_P_ ev_prepare *w) 3464ev_prepare_start (EV_P_ ev_prepare *w)
1749{ 3465{
1750 if (expect_false (ev_is_active (w))) 3466 if (expect_false (ev_is_active (w)))
1751 return; 3467 return;
3468
3469 EV_FREQUENT_CHECK;
1752 3470
1753 ev_start (EV_A_ (W)w, ++preparecnt); 3471 ev_start (EV_A_ (W)w, ++preparecnt);
1754 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3472 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1755 prepares [preparecnt - 1] = w; 3473 prepares [preparecnt - 1] = w;
3474
3475 EV_FREQUENT_CHECK;
1756} 3476}
1757 3477
1758void 3478void
1759ev_prepare_stop (EV_P_ ev_prepare *w) 3479ev_prepare_stop (EV_P_ ev_prepare *w)
1760{ 3480{
1761 ev_clear_pending (EV_A_ (W)w); 3481 clear_pending (EV_A_ (W)w);
1762 if (expect_false (!ev_is_active (w))) 3482 if (expect_false (!ev_is_active (w)))
1763 return; 3483 return;
1764 3484
3485 EV_FREQUENT_CHECK;
3486
1765 { 3487 {
1766 int active = ((W)w)->active; 3488 int active = ev_active (w);
3489
1767 prepares [active - 1] = prepares [--preparecnt]; 3490 prepares [active - 1] = prepares [--preparecnt];
1768 ((W)prepares [active - 1])->active = active; 3491 ev_active (prepares [active - 1]) = active;
1769 } 3492 }
1770 3493
1771 ev_stop (EV_A_ (W)w); 3494 ev_stop (EV_A_ (W)w);
1772}
1773 3495
3496 EV_FREQUENT_CHECK;
3497}
3498#endif
3499
3500#if EV_CHECK_ENABLE
1774void 3501void
1775ev_check_start (EV_P_ ev_check *w) 3502ev_check_start (EV_P_ ev_check *w)
1776{ 3503{
1777 if (expect_false (ev_is_active (w))) 3504 if (expect_false (ev_is_active (w)))
1778 return; 3505 return;
3506
3507 EV_FREQUENT_CHECK;
1779 3508
1780 ev_start (EV_A_ (W)w, ++checkcnt); 3509 ev_start (EV_A_ (W)w, ++checkcnt);
1781 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3510 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1782 checks [checkcnt - 1] = w; 3511 checks [checkcnt - 1] = w;
3512
3513 EV_FREQUENT_CHECK;
1783} 3514}
1784 3515
1785void 3516void
1786ev_check_stop (EV_P_ ev_check *w) 3517ev_check_stop (EV_P_ ev_check *w)
1787{ 3518{
1788 ev_clear_pending (EV_A_ (W)w); 3519 clear_pending (EV_A_ (W)w);
1789 if (expect_false (!ev_is_active (w))) 3520 if (expect_false (!ev_is_active (w)))
1790 return; 3521 return;
1791 3522
3523 EV_FREQUENT_CHECK;
3524
1792 { 3525 {
1793 int active = ((W)w)->active; 3526 int active = ev_active (w);
3527
1794 checks [active - 1] = checks [--checkcnt]; 3528 checks [active - 1] = checks [--checkcnt];
1795 ((W)checks [active - 1])->active = active; 3529 ev_active (checks [active - 1]) = active;
1796 } 3530 }
1797 3531
1798 ev_stop (EV_A_ (W)w); 3532 ev_stop (EV_A_ (W)w);
3533
3534 EV_FREQUENT_CHECK;
1799} 3535}
3536#endif
1800 3537
1801#if EV_EMBED_ENABLE 3538#if EV_EMBED_ENABLE
1802void noinline 3539void noinline
1803ev_embed_sweep (EV_P_ ev_embed *w) 3540ev_embed_sweep (EV_P_ ev_embed *w)
1804{ 3541{
1805 ev_loop (w->loop, EVLOOP_NONBLOCK); 3542 ev_run (w->other, EVRUN_NOWAIT);
1806} 3543}
1807 3544
1808static void 3545static void
1809embed_cb (EV_P_ ev_io *io, int revents) 3546embed_io_cb (EV_P_ ev_io *io, int revents)
1810{ 3547{
1811 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3548 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1812 3549
1813 if (ev_cb (w)) 3550 if (ev_cb (w))
1814 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3551 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1815 else 3552 else
1816 ev_embed_sweep (loop, w); 3553 ev_run (w->other, EVRUN_NOWAIT);
1817} 3554}
3555
3556static void
3557embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3558{
3559 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3560
3561 {
3562 EV_P = w->other;
3563
3564 while (fdchangecnt)
3565 {
3566 fd_reify (EV_A);
3567 ev_run (EV_A_ EVRUN_NOWAIT);
3568 }
3569 }
3570}
3571
3572static void
3573embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3574{
3575 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3576
3577 ev_embed_stop (EV_A_ w);
3578
3579 {
3580 EV_P = w->other;
3581
3582 ev_loop_fork (EV_A);
3583 ev_run (EV_A_ EVRUN_NOWAIT);
3584 }
3585
3586 ev_embed_start (EV_A_ w);
3587}
3588
3589#if 0
3590static void
3591embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3592{
3593 ev_idle_stop (EV_A_ idle);
3594}
3595#endif
1818 3596
1819void 3597void
1820ev_embed_start (EV_P_ ev_embed *w) 3598ev_embed_start (EV_P_ ev_embed *w)
1821{ 3599{
1822 if (expect_false (ev_is_active (w))) 3600 if (expect_false (ev_is_active (w)))
1823 return; 3601 return;
1824 3602
1825 { 3603 {
1826 struct ev_loop *loop = w->loop; 3604 EV_P = w->other;
1827 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3605 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1828 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3606 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1829 } 3607 }
3608
3609 EV_FREQUENT_CHECK;
1830 3610
1831 ev_set_priority (&w->io, ev_priority (w)); 3611 ev_set_priority (&w->io, ev_priority (w));
1832 ev_io_start (EV_A_ &w->io); 3612 ev_io_start (EV_A_ &w->io);
1833 3613
3614 ev_prepare_init (&w->prepare, embed_prepare_cb);
3615 ev_set_priority (&w->prepare, EV_MINPRI);
3616 ev_prepare_start (EV_A_ &w->prepare);
3617
3618 ev_fork_init (&w->fork, embed_fork_cb);
3619 ev_fork_start (EV_A_ &w->fork);
3620
3621 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3622
1834 ev_start (EV_A_ (W)w, 1); 3623 ev_start (EV_A_ (W)w, 1);
3624
3625 EV_FREQUENT_CHECK;
1835} 3626}
1836 3627
1837void 3628void
1838ev_embed_stop (EV_P_ ev_embed *w) 3629ev_embed_stop (EV_P_ ev_embed *w)
1839{ 3630{
1840 ev_clear_pending (EV_A_ (W)w); 3631 clear_pending (EV_A_ (W)w);
1841 if (expect_false (!ev_is_active (w))) 3632 if (expect_false (!ev_is_active (w)))
1842 return; 3633 return;
1843 3634
3635 EV_FREQUENT_CHECK;
3636
1844 ev_io_stop (EV_A_ &w->io); 3637 ev_io_stop (EV_A_ &w->io);
3638 ev_prepare_stop (EV_A_ &w->prepare);
3639 ev_fork_stop (EV_A_ &w->fork);
1845 3640
1846 ev_stop (EV_A_ (W)w); 3641 ev_stop (EV_A_ (W)w);
3642
3643 EV_FREQUENT_CHECK;
1847} 3644}
1848#endif 3645#endif
1849 3646
1850#if EV_FORK_ENABLE 3647#if EV_FORK_ENABLE
1851void 3648void
1852ev_fork_start (EV_P_ ev_fork *w) 3649ev_fork_start (EV_P_ ev_fork *w)
1853{ 3650{
1854 if (expect_false (ev_is_active (w))) 3651 if (expect_false (ev_is_active (w)))
1855 return; 3652 return;
3653
3654 EV_FREQUENT_CHECK;
1856 3655
1857 ev_start (EV_A_ (W)w, ++forkcnt); 3656 ev_start (EV_A_ (W)w, ++forkcnt);
1858 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3657 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
1859 forks [forkcnt - 1] = w; 3658 forks [forkcnt - 1] = w;
3659
3660 EV_FREQUENT_CHECK;
1860} 3661}
1861 3662
1862void 3663void
1863ev_fork_stop (EV_P_ ev_fork *w) 3664ev_fork_stop (EV_P_ ev_fork *w)
1864{ 3665{
1865 ev_clear_pending (EV_A_ (W)w); 3666 clear_pending (EV_A_ (W)w);
1866 if (expect_false (!ev_is_active (w))) 3667 if (expect_false (!ev_is_active (w)))
1867 return; 3668 return;
1868 3669
3670 EV_FREQUENT_CHECK;
3671
1869 { 3672 {
1870 int active = ((W)w)->active; 3673 int active = ev_active (w);
3674
1871 forks [active - 1] = forks [--forkcnt]; 3675 forks [active - 1] = forks [--forkcnt];
1872 ((W)forks [active - 1])->active = active; 3676 ev_active (forks [active - 1]) = active;
1873 } 3677 }
1874 3678
1875 ev_stop (EV_A_ (W)w); 3679 ev_stop (EV_A_ (W)w);
3680
3681 EV_FREQUENT_CHECK;
3682}
3683#endif
3684
3685#if EV_CLEANUP_ENABLE
3686void
3687ev_cleanup_start (EV_P_ ev_cleanup *w)
3688{
3689 if (expect_false (ev_is_active (w)))
3690 return;
3691
3692 EV_FREQUENT_CHECK;
3693
3694 ev_start (EV_A_ (W)w, ++cleanupcnt);
3695 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3696 cleanups [cleanupcnt - 1] = w;
3697
3698 /* cleanup watchers should never keep a refcount on the loop */
3699 ev_unref (EV_A);
3700 EV_FREQUENT_CHECK;
3701}
3702
3703void
3704ev_cleanup_stop (EV_P_ ev_cleanup *w)
3705{
3706 clear_pending (EV_A_ (W)w);
3707 if (expect_false (!ev_is_active (w)))
3708 return;
3709
3710 EV_FREQUENT_CHECK;
3711 ev_ref (EV_A);
3712
3713 {
3714 int active = ev_active (w);
3715
3716 cleanups [active - 1] = cleanups [--cleanupcnt];
3717 ev_active (cleanups [active - 1]) = active;
3718 }
3719
3720 ev_stop (EV_A_ (W)w);
3721
3722 EV_FREQUENT_CHECK;
3723}
3724#endif
3725
3726#if EV_ASYNC_ENABLE
3727void
3728ev_async_start (EV_P_ ev_async *w)
3729{
3730 if (expect_false (ev_is_active (w)))
3731 return;
3732
3733 w->sent = 0;
3734
3735 evpipe_init (EV_A);
3736
3737 EV_FREQUENT_CHECK;
3738
3739 ev_start (EV_A_ (W)w, ++asynccnt);
3740 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3741 asyncs [asynccnt - 1] = w;
3742
3743 EV_FREQUENT_CHECK;
3744}
3745
3746void
3747ev_async_stop (EV_P_ ev_async *w)
3748{
3749 clear_pending (EV_A_ (W)w);
3750 if (expect_false (!ev_is_active (w)))
3751 return;
3752
3753 EV_FREQUENT_CHECK;
3754
3755 {
3756 int active = ev_active (w);
3757
3758 asyncs [active - 1] = asyncs [--asynccnt];
3759 ev_active (asyncs [active - 1]) = active;
3760 }
3761
3762 ev_stop (EV_A_ (W)w);
3763
3764 EV_FREQUENT_CHECK;
3765}
3766
3767void
3768ev_async_send (EV_P_ ev_async *w)
3769{
3770 w->sent = 1;
3771 evpipe_write (EV_A_ &async_pending);
1876} 3772}
1877#endif 3773#endif
1878 3774
1879/*****************************************************************************/ 3775/*****************************************************************************/
1880 3776
1890once_cb (EV_P_ struct ev_once *once, int revents) 3786once_cb (EV_P_ struct ev_once *once, int revents)
1891{ 3787{
1892 void (*cb)(int revents, void *arg) = once->cb; 3788 void (*cb)(int revents, void *arg) = once->cb;
1893 void *arg = once->arg; 3789 void *arg = once->arg;
1894 3790
1895 ev_io_stop (EV_A_ &once->io); 3791 ev_io_stop (EV_A_ &once->io);
1896 ev_timer_stop (EV_A_ &once->to); 3792 ev_timer_stop (EV_A_ &once->to);
1897 ev_free (once); 3793 ev_free (once);
1898 3794
1899 cb (revents, arg); 3795 cb (revents, arg);
1900} 3796}
1901 3797
1902static void 3798static void
1903once_cb_io (EV_P_ ev_io *w, int revents) 3799once_cb_io (EV_P_ ev_io *w, int revents)
1904{ 3800{
1905 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3801 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3802
3803 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1906} 3804}
1907 3805
1908static void 3806static void
1909once_cb_to (EV_P_ ev_timer *w, int revents) 3807once_cb_to (EV_P_ ev_timer *w, int revents)
1910{ 3808{
1911 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3809 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3810
3811 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1912} 3812}
1913 3813
1914void 3814void
1915ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3815ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1916{ 3816{
1917 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3817 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1918 3818
1919 if (expect_false (!once)) 3819 if (expect_false (!once))
1920 { 3820 {
1921 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3821 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1922 return; 3822 return;
1923 } 3823 }
1924 3824
1925 once->cb = cb; 3825 once->cb = cb;
1926 once->arg = arg; 3826 once->arg = arg;
1938 ev_timer_set (&once->to, timeout, 0.); 3838 ev_timer_set (&once->to, timeout, 0.);
1939 ev_timer_start (EV_A_ &once->to); 3839 ev_timer_start (EV_A_ &once->to);
1940 } 3840 }
1941} 3841}
1942 3842
1943#ifdef __cplusplus 3843/*****************************************************************************/
1944} 3844
3845#if EV_WALK_ENABLE
3846void
3847ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3848{
3849 int i, j;
3850 ev_watcher_list *wl, *wn;
3851
3852 if (types & (EV_IO | EV_EMBED))
3853 for (i = 0; i < anfdmax; ++i)
3854 for (wl = anfds [i].head; wl; )
3855 {
3856 wn = wl->next;
3857
3858#if EV_EMBED_ENABLE
3859 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3860 {
3861 if (types & EV_EMBED)
3862 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3863 }
3864 else
3865#endif
3866#if EV_USE_INOTIFY
3867 if (ev_cb ((ev_io *)wl) == infy_cb)
3868 ;
3869 else
3870#endif
3871 if ((ev_io *)wl != &pipe_w)
3872 if (types & EV_IO)
3873 cb (EV_A_ EV_IO, wl);
3874
3875 wl = wn;
3876 }
3877
3878 if (types & (EV_TIMER | EV_STAT))
3879 for (i = timercnt + HEAP0; i-- > HEAP0; )
3880#if EV_STAT_ENABLE
3881 /*TODO: timer is not always active*/
3882 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3883 {
3884 if (types & EV_STAT)
3885 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3886 }
3887 else
3888#endif
3889 if (types & EV_TIMER)
3890 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3891
3892#if EV_PERIODIC_ENABLE
3893 if (types & EV_PERIODIC)
3894 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3895 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3896#endif
3897
3898#if EV_IDLE_ENABLE
3899 if (types & EV_IDLE)
3900 for (j = NUMPRI; i--; )
3901 for (i = idlecnt [j]; i--; )
3902 cb (EV_A_ EV_IDLE, idles [j][i]);
3903#endif
3904
3905#if EV_FORK_ENABLE
3906 if (types & EV_FORK)
3907 for (i = forkcnt; i--; )
3908 if (ev_cb (forks [i]) != embed_fork_cb)
3909 cb (EV_A_ EV_FORK, forks [i]);
3910#endif
3911
3912#if EV_ASYNC_ENABLE
3913 if (types & EV_ASYNC)
3914 for (i = asynccnt; i--; )
3915 cb (EV_A_ EV_ASYNC, asyncs [i]);
3916#endif
3917
3918#if EV_PREPARE_ENABLE
3919 if (types & EV_PREPARE)
3920 for (i = preparecnt; i--; )
3921# if EV_EMBED_ENABLE
3922 if (ev_cb (prepares [i]) != embed_prepare_cb)
1945#endif 3923# endif
3924 cb (EV_A_ EV_PREPARE, prepares [i]);
3925#endif
1946 3926
3927#if EV_CHECK_ENABLE
3928 if (types & EV_CHECK)
3929 for (i = checkcnt; i--; )
3930 cb (EV_A_ EV_CHECK, checks [i]);
3931#endif
3932
3933#if EV_SIGNAL_ENABLE
3934 if (types & EV_SIGNAL)
3935 for (i = 0; i < EV_NSIG - 1; ++i)
3936 for (wl = signals [i].head; wl; )
3937 {
3938 wn = wl->next;
3939 cb (EV_A_ EV_SIGNAL, wl);
3940 wl = wn;
3941 }
3942#endif
3943
3944#if EV_CHILD_ENABLE
3945 if (types & EV_CHILD)
3946 for (i = (EV_PID_HASHSIZE); i--; )
3947 for (wl = childs [i]; wl; )
3948 {
3949 wn = wl->next;
3950 cb (EV_A_ EV_CHILD, wl);
3951 wl = wn;
3952 }
3953#endif
3954/* EV_STAT 0x00001000 /* stat data changed */
3955/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3956}
3957#endif
3958
3959#if EV_MULTIPLICITY
3960 #include "ev_wrap.h"
3961#endif
3962
3963EV_CPP(})
3964

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines