ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.133 by root, Fri Nov 23 11:32:22 2007 UTC vs.
Revision 1.151 by root, Tue Nov 27 19:59:08 2007 UTC

111#include <time.h> 111#include <time.h>
112 112
113#include <signal.h> 113#include <signal.h>
114 114
115#ifndef _WIN32 115#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 116# include <sys/time.h>
118# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
119#else 119#else
120# define WIN32_LEAN_AND_MEAN 120# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 123# define EV_SELECT_IS_WINSOCKET 1
156 156
157#ifndef EV_USE_PORT 157#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 158# define EV_USE_PORT 0
159#endif 159#endif
160 160
161#ifndef EV_PID_HASHSIZE
162# if EV_MINIMAL
163# define EV_PID_HASHSIZE 1
164# else
165# define EV_PID_HASHSIZE 16
166# endif
167#endif
168
161/**/ 169/**/
162 170
163#ifndef CLOCK_MONOTONIC 171#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 172# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
176 184
177/**/ 185/**/
178 186
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 187#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 188#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 189/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
183 190
184#ifdef EV_H 191#ifdef EV_H
185# include EV_H 192# include EV_H
186#else 193#else
187# include "ev.h" 194# include "ev.h"
188#endif 195#endif
189 196
190#if __GNUC__ >= 3 197#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value)) 198# define expect(expr,value) __builtin_expect ((expr),(value))
199# define inline_size static inline /* inline for codesize */
200# if EV_MINIMAL
201# define noinline __attribute__ ((noinline))
202# define inline_speed static noinline
203# else
204# define noinline
192# define inline static inline 205# define inline_speed static inline
206# endif
193#else 207#else
194# define expect(expr,value) (expr) 208# define expect(expr,value) (expr)
209# define inline_speed static
195# define inline static 210# define inline_size static
211# define noinline
196#endif 212#endif
197 213
198#define expect_false(expr) expect ((expr) != 0, 0) 214#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 215#define expect_true(expr) expect ((expr) != 0, 1)
200 216
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 218#define ABSPRI(w) ((w)->priority - EV_MINPRI)
203 219
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 220#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 221#define EMPTY2(a,b) /* used to suppress some warnings */
206 222
207typedef struct ev_watcher *W; 223typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 224typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 225typedef ev_watcher_time *WT;
210 226
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 227static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
212 228
213#ifdef _WIN32 229#ifdef _WIN32
214# include "ev_win32.c" 230# include "ev_win32.c"
216 232
217/*****************************************************************************/ 233/*****************************************************************************/
218 234
219static void (*syserr_cb)(const char *msg); 235static void (*syserr_cb)(const char *msg);
220 236
237void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 238ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 239{
223 syserr_cb = cb; 240 syserr_cb = cb;
224} 241}
225 242
226static void 243static void noinline
227syserr (const char *msg) 244syserr (const char *msg)
228{ 245{
229 if (!msg) 246 if (!msg)
230 msg = "(libev) system error"; 247 msg = "(libev) system error";
231 248
236 perror (msg); 253 perror (msg);
237 abort (); 254 abort ();
238 } 255 }
239} 256}
240 257
241static void *(*alloc)(void *ptr, long size); 258static void *(*alloc)(void *ptr, size_t size) = realloc;
242 259
260void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 261ev_set_allocator (void *(*cb)(void *ptr, size_t size))
244{ 262{
245 alloc = cb; 263 alloc = cb;
246} 264}
247 265
248static void * 266inline_speed void *
249ev_realloc (void *ptr, long size) 267ev_realloc (void *ptr, size_t size)
250{ 268{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 269 ptr = alloc (ptr, size);
252 270
253 if (!ptr && size) 271 if (!ptr && size)
254 { 272 {
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 273 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size);
256 abort (); 274 abort ();
257 } 275 }
258 276
259 return ptr; 277 return ptr;
260} 278}
320 gettimeofday (&tv, 0); 338 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 339 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 340#endif
323} 341}
324 342
325inline ev_tstamp 343ev_tstamp inline_size
326get_clock (void) 344get_clock (void)
327{ 345{
328#if EV_USE_MONOTONIC 346#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 347 if (expect_true (have_monotonic))
330 { 348 {
373#define array_free(stem, idx) \ 391#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 392 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 393
376/*****************************************************************************/ 394/*****************************************************************************/
377 395
378static void 396void noinline
379anfds_init (ANFD *base, int count)
380{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389}
390
391void
392ev_feed_event (EV_P_ void *w, int revents) 397ev_feed_event (EV_P_ void *w, int revents)
393{ 398{
394 W w_ = (W)w; 399 W w_ = (W)w;
395 400
396 if (expect_false (w_->pending)) 401 if (expect_false (w_->pending))
403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2); 408 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 409 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 410 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
406} 411}
407 412
408static void 413void inline_size
409queue_events (EV_P_ W *events, int eventcnt, int type) 414queue_events (EV_P_ W *events, int eventcnt, int type)
410{ 415{
411 int i; 416 int i;
412 417
413 for (i = 0; i < eventcnt; ++i) 418 for (i = 0; i < eventcnt; ++i)
414 ev_feed_event (EV_A_ events [i], type); 419 ev_feed_event (EV_A_ events [i], type);
415} 420}
416 421
417inline void 422/*****************************************************************************/
423
424void inline_size
425anfds_init (ANFD *base, int count)
426{
427 while (count--)
428 {
429 base->head = 0;
430 base->events = EV_NONE;
431 base->reify = 0;
432
433 ++base;
434 }
435}
436
437void inline_speed
418fd_event (EV_P_ int fd, int revents) 438fd_event (EV_P_ int fd, int revents)
419{ 439{
420 ANFD *anfd = anfds + fd; 440 ANFD *anfd = anfds + fd;
421 struct ev_io *w; 441 ev_io *w;
422 442
423 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 443 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
424 { 444 {
425 int ev = w->events & revents; 445 int ev = w->events & revents;
426 446
427 if (ev) 447 if (ev)
428 ev_feed_event (EV_A_ (W)w, ev); 448 ev_feed_event (EV_A_ (W)w, ev);
433ev_feed_fd_event (EV_P_ int fd, int revents) 453ev_feed_fd_event (EV_P_ int fd, int revents)
434{ 454{
435 fd_event (EV_A_ fd, revents); 455 fd_event (EV_A_ fd, revents);
436} 456}
437 457
438/*****************************************************************************/ 458void inline_size
439
440inline void
441fd_reify (EV_P) 459fd_reify (EV_P)
442{ 460{
443 int i; 461 int i;
444 462
445 for (i = 0; i < fdchangecnt; ++i) 463 for (i = 0; i < fdchangecnt; ++i)
446 { 464 {
447 int fd = fdchanges [i]; 465 int fd = fdchanges [i];
448 ANFD *anfd = anfds + fd; 466 ANFD *anfd = anfds + fd;
449 struct ev_io *w; 467 ev_io *w;
450 468
451 int events = 0; 469 int events = 0;
452 470
453 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
454 events |= w->events; 472 events |= w->events;
455 473
456#if EV_SELECT_IS_WINSOCKET 474#if EV_SELECT_IS_WINSOCKET
457 if (events) 475 if (events)
458 { 476 {
469 } 487 }
470 488
471 fdchangecnt = 0; 489 fdchangecnt = 0;
472} 490}
473 491
474static void 492void inline_size
475fd_change (EV_P_ int fd) 493fd_change (EV_P_ int fd)
476{ 494{
477 if (expect_false (anfds [fd].reify)) 495 if (expect_false (anfds [fd].reify))
478 return; 496 return;
479 497
482 ++fdchangecnt; 500 ++fdchangecnt;
483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 501 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
484 fdchanges [fdchangecnt - 1] = fd; 502 fdchanges [fdchangecnt - 1] = fd;
485} 503}
486 504
487static void 505void inline_speed
488fd_kill (EV_P_ int fd) 506fd_kill (EV_P_ int fd)
489{ 507{
490 struct ev_io *w; 508 ev_io *w;
491 509
492 while ((w = (struct ev_io *)anfds [fd].head)) 510 while ((w = (ev_io *)anfds [fd].head))
493 { 511 {
494 ev_io_stop (EV_A_ w); 512 ev_io_stop (EV_A_ w);
495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 513 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
496 } 514 }
497} 515}
498 516
499inline int 517int inline_size
500fd_valid (int fd) 518fd_valid (int fd)
501{ 519{
502#ifdef _WIN32 520#ifdef _WIN32
503 return _get_osfhandle (fd) != -1; 521 return _get_osfhandle (fd) != -1;
504#else 522#else
505 return fcntl (fd, F_GETFD) != -1; 523 return fcntl (fd, F_GETFD) != -1;
506#endif 524#endif
507} 525}
508 526
509/* called on EBADF to verify fds */ 527/* called on EBADF to verify fds */
510static void 528static void noinline
511fd_ebadf (EV_P) 529fd_ebadf (EV_P)
512{ 530{
513 int fd; 531 int fd;
514 532
515 for (fd = 0; fd < anfdmax; ++fd) 533 for (fd = 0; fd < anfdmax; ++fd)
517 if (!fd_valid (fd) == -1 && errno == EBADF) 535 if (!fd_valid (fd) == -1 && errno == EBADF)
518 fd_kill (EV_A_ fd); 536 fd_kill (EV_A_ fd);
519} 537}
520 538
521/* called on ENOMEM in select/poll to kill some fds and retry */ 539/* called on ENOMEM in select/poll to kill some fds and retry */
522static void 540static void noinline
523fd_enomem (EV_P) 541fd_enomem (EV_P)
524{ 542{
525 int fd; 543 int fd;
526 544
527 for (fd = anfdmax; fd--; ) 545 for (fd = anfdmax; fd--; )
531 return; 549 return;
532 } 550 }
533} 551}
534 552
535/* usually called after fork if backend needs to re-arm all fds from scratch */ 553/* usually called after fork if backend needs to re-arm all fds from scratch */
536static void 554static void noinline
537fd_rearm_all (EV_P) 555fd_rearm_all (EV_P)
538{ 556{
539 int fd; 557 int fd;
540 558
541 /* this should be highly optimised to not do anything but set a flag */ 559 /* this should be highly optimised to not do anything but set a flag */
547 } 565 }
548} 566}
549 567
550/*****************************************************************************/ 568/*****************************************************************************/
551 569
552static void 570void inline_speed
553upheap (WT *heap, int k) 571upheap (WT *heap, int k)
554{ 572{
555 WT w = heap [k]; 573 WT w = heap [k];
556 574
557 while (k && heap [k >> 1]->at > w->at) 575 while (k && heap [k >> 1]->at > w->at)
564 heap [k] = w; 582 heap [k] = w;
565 ((W)heap [k])->active = k + 1; 583 ((W)heap [k])->active = k + 1;
566 584
567} 585}
568 586
569static void 587void inline_speed
570downheap (WT *heap, int N, int k) 588downheap (WT *heap, int N, int k)
571{ 589{
572 WT w = heap [k]; 590 WT w = heap [k];
573 591
574 while (k < (N >> 1)) 592 while (k < (N >> 1))
588 606
589 heap [k] = w; 607 heap [k] = w;
590 ((W)heap [k])->active = k + 1; 608 ((W)heap [k])->active = k + 1;
591} 609}
592 610
593inline void 611void inline_size
594adjustheap (WT *heap, int N, int k) 612adjustheap (WT *heap, int N, int k)
595{ 613{
596 upheap (heap, k); 614 upheap (heap, k);
597 downheap (heap, N, k); 615 downheap (heap, N, k);
598} 616}
608static ANSIG *signals; 626static ANSIG *signals;
609static int signalmax; 627static int signalmax;
610 628
611static int sigpipe [2]; 629static int sigpipe [2];
612static sig_atomic_t volatile gotsig; 630static sig_atomic_t volatile gotsig;
613static struct ev_io sigev; 631static ev_io sigev;
614 632
615static void 633void inline_size
616signals_init (ANSIG *base, int count) 634signals_init (ANSIG *base, int count)
617{ 635{
618 while (count--) 636 while (count--)
619 { 637 {
620 base->head = 0; 638 base->head = 0;
640 write (sigpipe [1], &signum, 1); 658 write (sigpipe [1], &signum, 1);
641 errno = old_errno; 659 errno = old_errno;
642 } 660 }
643} 661}
644 662
645void 663void noinline
646ev_feed_signal_event (EV_P_ int signum) 664ev_feed_signal_event (EV_P_ int signum)
647{ 665{
648 WL w; 666 WL w;
649 667
650#if EV_MULTIPLICITY 668#if EV_MULTIPLICITY
661 for (w = signals [signum].head; w; w = w->next) 679 for (w = signals [signum].head; w; w = w->next)
662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 680 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
663} 681}
664 682
665static void 683static void
666sigcb (EV_P_ struct ev_io *iow, int revents) 684sigcb (EV_P_ ev_io *iow, int revents)
667{ 685{
668 int signum; 686 int signum;
669 687
670 read (sigpipe [0], &revents, 1); 688 read (sigpipe [0], &revents, 1);
671 gotsig = 0; 689 gotsig = 0;
673 for (signum = signalmax; signum--; ) 691 for (signum = signalmax; signum--; )
674 if (signals [signum].gotsig) 692 if (signals [signum].gotsig)
675 ev_feed_signal_event (EV_A_ signum + 1); 693 ev_feed_signal_event (EV_A_ signum + 1);
676} 694}
677 695
678static void 696void inline_size
679fd_intern (int fd) 697fd_intern (int fd)
680{ 698{
681#ifdef _WIN32 699#ifdef _WIN32
682 int arg = 1; 700 int arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 701 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
685 fcntl (fd, F_SETFD, FD_CLOEXEC); 703 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK); 704 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif 705#endif
688} 706}
689 707
690static void 708static void noinline
691siginit (EV_P) 709siginit (EV_P)
692{ 710{
693 fd_intern (sigpipe [0]); 711 fd_intern (sigpipe [0]);
694 fd_intern (sigpipe [1]); 712 fd_intern (sigpipe [1]);
695 713
698 ev_unref (EV_A); /* child watcher should not keep loop alive */ 716 ev_unref (EV_A); /* child watcher should not keep loop alive */
699} 717}
700 718
701/*****************************************************************************/ 719/*****************************************************************************/
702 720
703static struct ev_child *childs [PID_HASHSIZE]; 721static ev_child *childs [EV_PID_HASHSIZE];
704 722
705#ifndef _WIN32 723#ifndef _WIN32
706 724
707static struct ev_signal childev; 725static ev_signal childev;
708 726
709#ifndef WCONTINUED 727void inline_speed
710# define WCONTINUED 0
711#endif
712
713static void
714child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 728child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
715{ 729{
716 struct ev_child *w; 730 ev_child *w;
717 731
718 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 732 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
719 if (w->pid == pid || !w->pid) 733 if (w->pid == pid || !w->pid)
720 { 734 {
721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 735 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
722 w->rpid = pid; 736 w->rpid = pid;
723 w->rstatus = status; 737 w->rstatus = status;
724 ev_feed_event (EV_A_ (W)w, EV_CHILD); 738 ev_feed_event (EV_A_ (W)w, EV_CHILD);
725 } 739 }
726} 740}
727 741
742#ifndef WCONTINUED
743# define WCONTINUED 0
744#endif
745
728static void 746static void
729childcb (EV_P_ struct ev_signal *sw, int revents) 747childcb (EV_P_ ev_signal *sw, int revents)
730{ 748{
731 int pid, status; 749 int pid, status;
732 750
751 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 752 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
734 { 753 if (!WCONTINUED
754 || errno != EINVAL
755 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
756 return;
757
735 /* make sure we are called again until all childs have been reaped */ 758 /* make sure we are called again until all childs have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */ 759 /* we need to do it this way so that the callback gets called before we continue */
737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 760 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
738 761
739 child_reap (EV_A_ sw, pid, pid, status); 762 child_reap (EV_A_ sw, pid, pid, status);
763 if (EV_PID_HASHSIZE > 1)
740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 764 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
741 }
742} 765}
743 766
744#endif 767#endif
745 768
746/*****************************************************************************/ 769/*****************************************************************************/
772{ 795{
773 return EV_VERSION_MINOR; 796 return EV_VERSION_MINOR;
774} 797}
775 798
776/* return true if we are running with elevated privileges and should ignore env variables */ 799/* return true if we are running with elevated privileges and should ignore env variables */
777static int 800int inline_size
778enable_secure (void) 801enable_secure (void)
779{ 802{
780#ifdef _WIN32 803#ifdef _WIN32
781 return 0; 804 return 0;
782#else 805#else
816 839
817 return flags; 840 return flags;
818} 841}
819 842
820unsigned int 843unsigned int
844ev_embeddable_backends (void)
845{
846 return EVBACKEND_EPOLL
847 | EVBACKEND_KQUEUE
848 | EVBACKEND_PORT;
849}
850
851unsigned int
821ev_backend (EV_P) 852ev_backend (EV_P)
822{ 853{
823 return backend; 854 return backend;
824} 855}
825 856
826static void 857static void noinline
827loop_init (EV_P_ unsigned int flags) 858loop_init (EV_P_ unsigned int flags)
828{ 859{
829 if (!backend) 860 if (!backend)
830 { 861 {
831#if EV_USE_MONOTONIC 862#if EV_USE_MONOTONIC
869 ev_init (&sigev, sigcb); 900 ev_init (&sigev, sigcb);
870 ev_set_priority (&sigev, EV_MAXPRI); 901 ev_set_priority (&sigev, EV_MAXPRI);
871 } 902 }
872} 903}
873 904
874static void 905static void noinline
875loop_destroy (EV_P) 906loop_destroy (EV_P)
876{ 907{
877 int i; 908 int i;
878 909
879#if EV_USE_PORT 910#if EV_USE_PORT
896 array_free (pending, [i]); 927 array_free (pending, [i]);
897 928
898 /* have to use the microsoft-never-gets-it-right macro */ 929 /* have to use the microsoft-never-gets-it-right macro */
899 array_free (fdchange, EMPTY0); 930 array_free (fdchange, EMPTY0);
900 array_free (timer, EMPTY0); 931 array_free (timer, EMPTY0);
901#if EV_PERIODICS 932#if EV_PERIODIC_ENABLE
902 array_free (periodic, EMPTY0); 933 array_free (periodic, EMPTY0);
903#endif 934#endif
904 array_free (idle, EMPTY0); 935 array_free (idle, EMPTY0);
905 array_free (prepare, EMPTY0); 936 array_free (prepare, EMPTY0);
906 array_free (check, EMPTY0); 937 array_free (check, EMPTY0);
907 938
908 backend = 0; 939 backend = 0;
909} 940}
910 941
911static void 942void inline_size
912loop_fork (EV_P) 943loop_fork (EV_P)
913{ 944{
914#if EV_USE_PORT 945#if EV_USE_PORT
915 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 946 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
916#endif 947#endif
1042 postfork = 1; 1073 postfork = 1;
1043} 1074}
1044 1075
1045/*****************************************************************************/ 1076/*****************************************************************************/
1046 1077
1047static int 1078int inline_size
1048any_pending (EV_P) 1079any_pending (EV_P)
1049{ 1080{
1050 int pri; 1081 int pri;
1051 1082
1052 for (pri = NUMPRI; pri--; ) 1083 for (pri = NUMPRI; pri--; )
1054 return 1; 1085 return 1;
1055 1086
1056 return 0; 1087 return 0;
1057} 1088}
1058 1089
1059inline void 1090void inline_speed
1060call_pending (EV_P) 1091call_pending (EV_P)
1061{ 1092{
1062 int pri; 1093 int pri;
1063 1094
1064 for (pri = NUMPRI; pri--; ) 1095 for (pri = NUMPRI; pri--; )
1066 { 1097 {
1067 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1098 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1068 1099
1069 if (expect_true (p->w)) 1100 if (expect_true (p->w))
1070 { 1101 {
1102 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1103
1071 p->w->pending = 0; 1104 p->w->pending = 0;
1072 EV_CB_INVOKE (p->w, p->events); 1105 EV_CB_INVOKE (p->w, p->events);
1073 } 1106 }
1074 } 1107 }
1075} 1108}
1076 1109
1077inline void 1110void inline_size
1078timers_reify (EV_P) 1111timers_reify (EV_P)
1079{ 1112{
1080 while (timercnt && ((WT)timers [0])->at <= mn_now) 1113 while (timercnt && ((WT)timers [0])->at <= mn_now)
1081 { 1114 {
1082 struct ev_timer *w = timers [0]; 1115 ev_timer *w = timers [0];
1083 1116
1084 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1117 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1085 1118
1086 /* first reschedule or stop timer */ 1119 /* first reschedule or stop timer */
1087 if (w->repeat) 1120 if (w->repeat)
1088 { 1121 {
1089 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1122 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1099 1132
1100 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1133 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1101 } 1134 }
1102} 1135}
1103 1136
1104#if EV_PERIODICS 1137#if EV_PERIODIC_ENABLE
1105inline void 1138void inline_size
1106periodics_reify (EV_P) 1139periodics_reify (EV_P)
1107{ 1140{
1108 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1141 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1109 { 1142 {
1110 struct ev_periodic *w = periodics [0]; 1143 ev_periodic *w = periodics [0];
1111 1144
1112 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1145 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1113 1146
1114 /* first reschedule or stop timer */ 1147 /* first reschedule or stop timer */
1115 if (w->reschedule_cb) 1148 if (w->reschedule_cb)
1116 { 1149 {
1117 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1150 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1129 1162
1130 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1163 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1131 } 1164 }
1132} 1165}
1133 1166
1134static void 1167static void noinline
1135periodics_reschedule (EV_P) 1168periodics_reschedule (EV_P)
1136{ 1169{
1137 int i; 1170 int i;
1138 1171
1139 /* adjust periodics after time jump */ 1172 /* adjust periodics after time jump */
1140 for (i = 0; i < periodiccnt; ++i) 1173 for (i = 0; i < periodiccnt; ++i)
1141 { 1174 {
1142 struct ev_periodic *w = periodics [i]; 1175 ev_periodic *w = periodics [i];
1143 1176
1144 if (w->reschedule_cb) 1177 if (w->reschedule_cb)
1145 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1178 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1146 else if (w->interval) 1179 else if (w->interval)
1147 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1180 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1151 for (i = periodiccnt >> 1; i--; ) 1184 for (i = periodiccnt >> 1; i--; )
1152 downheap ((WT *)periodics, periodiccnt, i); 1185 downheap ((WT *)periodics, periodiccnt, i);
1153} 1186}
1154#endif 1187#endif
1155 1188
1156inline int 1189int inline_size
1157time_update_monotonic (EV_P) 1190time_update_monotonic (EV_P)
1158{ 1191{
1159 mn_now = get_clock (); 1192 mn_now = get_clock ();
1160 1193
1161 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1194 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1169 ev_rt_now = ev_time (); 1202 ev_rt_now = ev_time ();
1170 return 1; 1203 return 1;
1171 } 1204 }
1172} 1205}
1173 1206
1174inline void 1207void inline_size
1175time_update (EV_P) 1208time_update (EV_P)
1176{ 1209{
1177 int i; 1210 int i;
1178 1211
1179#if EV_USE_MONOTONIC 1212#if EV_USE_MONOTONIC
1181 { 1214 {
1182 if (time_update_monotonic (EV_A)) 1215 if (time_update_monotonic (EV_A))
1183 { 1216 {
1184 ev_tstamp odiff = rtmn_diff; 1217 ev_tstamp odiff = rtmn_diff;
1185 1218
1186 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1219 /* loop a few times, before making important decisions.
1220 * on the choice of "4": one iteration isn't enough,
1221 * in case we get preempted during the calls to
1222 * ev_time and get_clock. a second call is almost guarenteed
1223 * to succeed in that case, though. and looping a few more times
1224 * doesn't hurt either as we only do this on time-jumps or
1225 * in the unlikely event of getting preempted here.
1226 */
1227 for (i = 4; --i; )
1187 { 1228 {
1188 rtmn_diff = ev_rt_now - mn_now; 1229 rtmn_diff = ev_rt_now - mn_now;
1189 1230
1190 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1231 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1191 return; /* all is well */ 1232 return; /* all is well */
1193 ev_rt_now = ev_time (); 1234 ev_rt_now = ev_time ();
1194 mn_now = get_clock (); 1235 mn_now = get_clock ();
1195 now_floor = mn_now; 1236 now_floor = mn_now;
1196 } 1237 }
1197 1238
1198# if EV_PERIODICS 1239# if EV_PERIODIC_ENABLE
1199 periodics_reschedule (EV_A); 1240 periodics_reschedule (EV_A);
1200# endif 1241# endif
1201 /* no timer adjustment, as the monotonic clock doesn't jump */ 1242 /* no timer adjustment, as the monotonic clock doesn't jump */
1202 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1243 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1203 } 1244 }
1207 { 1248 {
1208 ev_rt_now = ev_time (); 1249 ev_rt_now = ev_time ();
1209 1250
1210 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1251 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1211 { 1252 {
1212#if EV_PERIODICS 1253#if EV_PERIODIC_ENABLE
1213 periodics_reschedule (EV_A); 1254 periodics_reschedule (EV_A);
1214#endif 1255#endif
1215 1256
1216 /* adjust timers. this is easy, as the offset is the same for all */ 1257 /* adjust timers. this is easy, as the offset is the same for all */
1217 for (i = 0; i < timercnt; ++i) 1258 for (i = 0; i < timercnt; ++i)
1237static int loop_done; 1278static int loop_done;
1238 1279
1239void 1280void
1240ev_loop (EV_P_ int flags) 1281ev_loop (EV_P_ int flags)
1241{ 1282{
1242 double block;
1243 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1283 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1284 ? EVUNLOOP_ONE
1285 : EVUNLOOP_CANCEL;
1244 1286
1245 while (activecnt) 1287 while (activecnt)
1246 { 1288 {
1289 /* we might have forked, so reify kernel state if necessary */
1290 #if EV_FORK_ENABLE
1291 if (expect_false (postfork))
1292 if (forkcnt)
1293 {
1294 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1295 call_pending (EV_A);
1296 }
1297 #endif
1298
1247 /* queue check watchers (and execute them) */ 1299 /* queue check watchers (and execute them) */
1248 if (expect_false (preparecnt)) 1300 if (expect_false (preparecnt))
1249 { 1301 {
1250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1302 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1251 call_pending (EV_A); 1303 call_pending (EV_A);
1257 1309
1258 /* update fd-related kernel structures */ 1310 /* update fd-related kernel structures */
1259 fd_reify (EV_A); 1311 fd_reify (EV_A);
1260 1312
1261 /* calculate blocking time */ 1313 /* calculate blocking time */
1314 {
1315 double block;
1262 1316
1263 /* we only need this for !monotonic clock or timers, but as we basically 1317 if (flags & EVLOOP_NONBLOCK || idlecnt)
1264 always have timers, we just calculate it always */ 1318 block = 0.; /* do not block at all */
1319 else
1320 {
1321 /* update time to cancel out callback processing overhead */
1265#if EV_USE_MONOTONIC 1322#if EV_USE_MONOTONIC
1266 if (expect_true (have_monotonic)) 1323 if (expect_true (have_monotonic))
1267 time_update_monotonic (EV_A); 1324 time_update_monotonic (EV_A);
1268 else 1325 else
1269#endif 1326#endif
1270 { 1327 {
1271 ev_rt_now = ev_time (); 1328 ev_rt_now = ev_time ();
1272 mn_now = ev_rt_now; 1329 mn_now = ev_rt_now;
1273 } 1330 }
1274 1331
1275 if (flags & EVLOOP_NONBLOCK || idlecnt)
1276 block = 0.;
1277 else
1278 {
1279 block = MAX_BLOCKTIME; 1332 block = MAX_BLOCKTIME;
1280 1333
1281 if (timercnt) 1334 if (timercnt)
1282 { 1335 {
1283 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1336 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1284 if (block > to) block = to; 1337 if (block > to) block = to;
1285 } 1338 }
1286 1339
1287#if EV_PERIODICS 1340#if EV_PERIODIC_ENABLE
1288 if (periodiccnt) 1341 if (periodiccnt)
1289 { 1342 {
1290 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1343 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1291 if (block > to) block = to; 1344 if (block > to) block = to;
1292 } 1345 }
1293#endif 1346#endif
1294 1347
1295 if (expect_false (block < 0.)) block = 0.; 1348 if (expect_false (block < 0.)) block = 0.;
1296 } 1349 }
1297 1350
1298 backend_poll (EV_A_ block); 1351 backend_poll (EV_A_ block);
1352 }
1299 1353
1300 /* update ev_rt_now, do magic */ 1354 /* update ev_rt_now, do magic */
1301 time_update (EV_A); 1355 time_update (EV_A);
1302 1356
1303 /* queue pending timers and reschedule them */ 1357 /* queue pending timers and reschedule them */
1304 timers_reify (EV_A); /* relative timers called last */ 1358 timers_reify (EV_A); /* relative timers called last */
1305#if EV_PERIODICS 1359#if EV_PERIODIC_ENABLE
1306 periodics_reify (EV_A); /* absolute timers called first */ 1360 periodics_reify (EV_A); /* absolute timers called first */
1307#endif 1361#endif
1308 1362
1309 /* queue idle watchers unless io or timers are pending */ 1363 /* queue idle watchers unless other events are pending */
1310 if (idlecnt && !any_pending (EV_A)) 1364 if (idlecnt && !any_pending (EV_A))
1311 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1365 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1312 1366
1313 /* queue check watchers, to be executed first */ 1367 /* queue check watchers, to be executed first */
1314 if (expect_false (checkcnt)) 1368 if (expect_false (checkcnt))
1318 1372
1319 if (expect_false (loop_done)) 1373 if (expect_false (loop_done))
1320 break; 1374 break;
1321 } 1375 }
1322 1376
1323 if (loop_done != 2) 1377 if (loop_done == EVUNLOOP_ONE)
1324 loop_done = 0; 1378 loop_done = EVUNLOOP_CANCEL;
1325} 1379}
1326 1380
1327void 1381void
1328ev_unloop (EV_P_ int how) 1382ev_unloop (EV_P_ int how)
1329{ 1383{
1330 loop_done = how; 1384 loop_done = how;
1331} 1385}
1332 1386
1333/*****************************************************************************/ 1387/*****************************************************************************/
1334 1388
1335inline void 1389void inline_size
1336wlist_add (WL *head, WL elem) 1390wlist_add (WL *head, WL elem)
1337{ 1391{
1338 elem->next = *head; 1392 elem->next = *head;
1339 *head = elem; 1393 *head = elem;
1340} 1394}
1341 1395
1342inline void 1396void inline_size
1343wlist_del (WL *head, WL elem) 1397wlist_del (WL *head, WL elem)
1344{ 1398{
1345 while (*head) 1399 while (*head)
1346 { 1400 {
1347 if (*head == elem) 1401 if (*head == elem)
1352 1406
1353 head = &(*head)->next; 1407 head = &(*head)->next;
1354 } 1408 }
1355} 1409}
1356 1410
1357inline void 1411void inline_speed
1358ev_clear_pending (EV_P_ W w) 1412ev_clear_pending (EV_P_ W w)
1359{ 1413{
1360 if (w->pending) 1414 if (w->pending)
1361 { 1415 {
1362 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1416 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1363 w->pending = 0; 1417 w->pending = 0;
1364 } 1418 }
1365} 1419}
1366 1420
1367inline void 1421void inline_speed
1368ev_start (EV_P_ W w, int active) 1422ev_start (EV_P_ W w, int active)
1369{ 1423{
1370 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1424 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1371 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1425 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1372 1426
1373 w->active = active; 1427 w->active = active;
1374 ev_ref (EV_A); 1428 ev_ref (EV_A);
1375} 1429}
1376 1430
1377inline void 1431void inline_size
1378ev_stop (EV_P_ W w) 1432ev_stop (EV_P_ W w)
1379{ 1433{
1380 ev_unref (EV_A); 1434 ev_unref (EV_A);
1381 w->active = 0; 1435 w->active = 0;
1382} 1436}
1383 1437
1384/*****************************************************************************/ 1438/*****************************************************************************/
1385 1439
1386void 1440void
1387ev_io_start (EV_P_ struct ev_io *w) 1441ev_io_start (EV_P_ ev_io *w)
1388{ 1442{
1389 int fd = w->fd; 1443 int fd = w->fd;
1390 1444
1391 if (expect_false (ev_is_active (w))) 1445 if (expect_false (ev_is_active (w)))
1392 return; 1446 return;
1399 1453
1400 fd_change (EV_A_ fd); 1454 fd_change (EV_A_ fd);
1401} 1455}
1402 1456
1403void 1457void
1404ev_io_stop (EV_P_ struct ev_io *w) 1458ev_io_stop (EV_P_ ev_io *w)
1405{ 1459{
1406 ev_clear_pending (EV_A_ (W)w); 1460 ev_clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 1461 if (expect_false (!ev_is_active (w)))
1408 return; 1462 return;
1409 1463
1414 1468
1415 fd_change (EV_A_ w->fd); 1469 fd_change (EV_A_ w->fd);
1416} 1470}
1417 1471
1418void 1472void
1419ev_timer_start (EV_P_ struct ev_timer *w) 1473ev_timer_start (EV_P_ ev_timer *w)
1420{ 1474{
1421 if (expect_false (ev_is_active (w))) 1475 if (expect_false (ev_is_active (w)))
1422 return; 1476 return;
1423 1477
1424 ((WT)w)->at += mn_now; 1478 ((WT)w)->at += mn_now;
1425 1479
1426 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1480 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1427 1481
1428 ev_start (EV_A_ (W)w, ++timercnt); 1482 ev_start (EV_A_ (W)w, ++timercnt);
1429 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1483 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1430 timers [timercnt - 1] = w; 1484 timers [timercnt - 1] = w;
1431 upheap ((WT *)timers, timercnt - 1); 1485 upheap ((WT *)timers, timercnt - 1);
1432 1486
1433 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1487 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1434} 1488}
1435 1489
1436void 1490void
1437ev_timer_stop (EV_P_ struct ev_timer *w) 1491ev_timer_stop (EV_P_ ev_timer *w)
1438{ 1492{
1439 ev_clear_pending (EV_A_ (W)w); 1493 ev_clear_pending (EV_A_ (W)w);
1440 if (expect_false (!ev_is_active (w))) 1494 if (expect_false (!ev_is_active (w)))
1441 return; 1495 return;
1442 1496
1443 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1497 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1444 1498
1499 {
1500 int active = ((W)w)->active;
1501
1445 if (expect_true (((W)w)->active < timercnt--)) 1502 if (expect_true (--active < --timercnt))
1446 { 1503 {
1447 timers [((W)w)->active - 1] = timers [timercnt]; 1504 timers [active] = timers [timercnt];
1448 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1505 adjustheap ((WT *)timers, timercnt, active);
1449 } 1506 }
1507 }
1450 1508
1451 ((WT)w)->at -= mn_now; 1509 ((WT)w)->at -= mn_now;
1452 1510
1453 ev_stop (EV_A_ (W)w); 1511 ev_stop (EV_A_ (W)w);
1454} 1512}
1455 1513
1456void 1514void
1457ev_timer_again (EV_P_ struct ev_timer *w) 1515ev_timer_again (EV_P_ ev_timer *w)
1458{ 1516{
1459 if (ev_is_active (w)) 1517 if (ev_is_active (w))
1460 { 1518 {
1461 if (w->repeat) 1519 if (w->repeat)
1462 { 1520 {
1471 w->at = w->repeat; 1529 w->at = w->repeat;
1472 ev_timer_start (EV_A_ w); 1530 ev_timer_start (EV_A_ w);
1473 } 1531 }
1474} 1532}
1475 1533
1476#if EV_PERIODICS 1534#if EV_PERIODIC_ENABLE
1477void 1535void
1478ev_periodic_start (EV_P_ struct ev_periodic *w) 1536ev_periodic_start (EV_P_ ev_periodic *w)
1479{ 1537{
1480 if (expect_false (ev_is_active (w))) 1538 if (expect_false (ev_is_active (w)))
1481 return; 1539 return;
1482 1540
1483 if (w->reschedule_cb) 1541 if (w->reschedule_cb)
1488 /* this formula differs from the one in periodic_reify because we do not always round up */ 1546 /* this formula differs from the one in periodic_reify because we do not always round up */
1489 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1547 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1490 } 1548 }
1491 1549
1492 ev_start (EV_A_ (W)w, ++periodiccnt); 1550 ev_start (EV_A_ (W)w, ++periodiccnt);
1493 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1551 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1494 periodics [periodiccnt - 1] = w; 1552 periodics [periodiccnt - 1] = w;
1495 upheap ((WT *)periodics, periodiccnt - 1); 1553 upheap ((WT *)periodics, periodiccnt - 1);
1496 1554
1497 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1555 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1498} 1556}
1499 1557
1500void 1558void
1501ev_periodic_stop (EV_P_ struct ev_periodic *w) 1559ev_periodic_stop (EV_P_ ev_periodic *w)
1502{ 1560{
1503 ev_clear_pending (EV_A_ (W)w); 1561 ev_clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w))) 1562 if (expect_false (!ev_is_active (w)))
1505 return; 1563 return;
1506 1564
1507 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1565 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1508 1566
1567 {
1568 int active = ((W)w)->active;
1569
1509 if (expect_true (((W)w)->active < periodiccnt--)) 1570 if (expect_true (--active < --periodiccnt))
1510 { 1571 {
1511 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1572 periodics [active] = periodics [periodiccnt];
1512 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1573 adjustheap ((WT *)periodics, periodiccnt, active);
1513 } 1574 }
1575 }
1514 1576
1515 ev_stop (EV_A_ (W)w); 1577 ev_stop (EV_A_ (W)w);
1516} 1578}
1517 1579
1518void 1580void
1519ev_periodic_again (EV_P_ struct ev_periodic *w) 1581ev_periodic_again (EV_P_ ev_periodic *w)
1520{ 1582{
1521 /* TODO: use adjustheap and recalculation */ 1583 /* TODO: use adjustheap and recalculation */
1522 ev_periodic_stop (EV_A_ w); 1584 ev_periodic_stop (EV_A_ w);
1523 ev_periodic_start (EV_A_ w); 1585 ev_periodic_start (EV_A_ w);
1524} 1586}
1525#endif 1587#endif
1526 1588
1527void
1528ev_idle_start (EV_P_ struct ev_idle *w)
1529{
1530 if (expect_false (ev_is_active (w)))
1531 return;
1532
1533 ev_start (EV_A_ (W)w, ++idlecnt);
1534 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1535 idles [idlecnt - 1] = w;
1536}
1537
1538void
1539ev_idle_stop (EV_P_ struct ev_idle *w)
1540{
1541 ev_clear_pending (EV_A_ (W)w);
1542 if (expect_false (!ev_is_active (w)))
1543 return;
1544
1545 idles [((W)w)->active - 1] = idles [--idlecnt];
1546 ev_stop (EV_A_ (W)w);
1547}
1548
1549void
1550ev_prepare_start (EV_P_ struct ev_prepare *w)
1551{
1552 if (expect_false (ev_is_active (w)))
1553 return;
1554
1555 ev_start (EV_A_ (W)w, ++preparecnt);
1556 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1557 prepares [preparecnt - 1] = w;
1558}
1559
1560void
1561ev_prepare_stop (EV_P_ struct ev_prepare *w)
1562{
1563 ev_clear_pending (EV_A_ (W)w);
1564 if (expect_false (!ev_is_active (w)))
1565 return;
1566
1567 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1568 ev_stop (EV_A_ (W)w);
1569}
1570
1571void
1572ev_check_start (EV_P_ struct ev_check *w)
1573{
1574 if (expect_false (ev_is_active (w)))
1575 return;
1576
1577 ev_start (EV_A_ (W)w, ++checkcnt);
1578 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1579 checks [checkcnt - 1] = w;
1580}
1581
1582void
1583ev_check_stop (EV_P_ struct ev_check *w)
1584{
1585 ev_clear_pending (EV_A_ (W)w);
1586 if (expect_false (!ev_is_active (w)))
1587 return;
1588
1589 checks [((W)w)->active - 1] = checks [--checkcnt];
1590 ev_stop (EV_A_ (W)w);
1591}
1592
1593#ifndef SA_RESTART 1589#ifndef SA_RESTART
1594# define SA_RESTART 0 1590# define SA_RESTART 0
1595#endif 1591#endif
1596 1592
1597void 1593void
1598ev_signal_start (EV_P_ struct ev_signal *w) 1594ev_signal_start (EV_P_ ev_signal *w)
1599{ 1595{
1600#if EV_MULTIPLICITY 1596#if EV_MULTIPLICITY
1601 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1597 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif 1598#endif
1603 if (expect_false (ev_is_active (w))) 1599 if (expect_false (ev_is_active (w)))
1622#endif 1618#endif
1623 } 1619 }
1624} 1620}
1625 1621
1626void 1622void
1627ev_signal_stop (EV_P_ struct ev_signal *w) 1623ev_signal_stop (EV_P_ ev_signal *w)
1628{ 1624{
1629 ev_clear_pending (EV_A_ (W)w); 1625 ev_clear_pending (EV_A_ (W)w);
1630 if (expect_false (!ev_is_active (w))) 1626 if (expect_false (!ev_is_active (w)))
1631 return; 1627 return;
1632 1628
1636 if (!signals [w->signum - 1].head) 1632 if (!signals [w->signum - 1].head)
1637 signal (w->signum, SIG_DFL); 1633 signal (w->signum, SIG_DFL);
1638} 1634}
1639 1635
1640void 1636void
1641ev_child_start (EV_P_ struct ev_child *w) 1637ev_child_start (EV_P_ ev_child *w)
1642{ 1638{
1643#if EV_MULTIPLICITY 1639#if EV_MULTIPLICITY
1644 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1640 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1645#endif 1641#endif
1646 if (expect_false (ev_is_active (w))) 1642 if (expect_false (ev_is_active (w)))
1647 return; 1643 return;
1648 1644
1649 ev_start (EV_A_ (W)w, 1); 1645 ev_start (EV_A_ (W)w, 1);
1650 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1646 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1651} 1647}
1652 1648
1653void 1649void
1654ev_child_stop (EV_P_ struct ev_child *w) 1650ev_child_stop (EV_P_ ev_child *w)
1655{ 1651{
1656 ev_clear_pending (EV_A_ (W)w); 1652 ev_clear_pending (EV_A_ (W)w);
1657 if (expect_false (!ev_is_active (w))) 1653 if (expect_false (!ev_is_active (w)))
1658 return; 1654 return;
1659 1655
1660 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1656 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1661 ev_stop (EV_A_ (W)w); 1657 ev_stop (EV_A_ (W)w);
1662} 1658}
1663 1659
1660#if EV_STAT_ENABLE
1661
1662# ifdef _WIN32
1663# undef lstat
1664# define lstat(a,b) _stati64 (a,b)
1665# endif
1666
1667#define DEF_STAT_INTERVAL 5.0074891
1668#define MIN_STAT_INTERVAL 0.1074891
1669
1670void
1671ev_stat_stat (EV_P_ ev_stat *w)
1672{
1673 if (lstat (w->path, &w->attr) < 0)
1674 w->attr.st_nlink = 0;
1675 else if (!w->attr.st_nlink)
1676 w->attr.st_nlink = 1;
1677}
1678
1679static void
1680stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1681{
1682 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1683
1684 /* we copy this here each the time so that */
1685 /* prev has the old value when the callback gets invoked */
1686 w->prev = w->attr;
1687 ev_stat_stat (EV_A_ w);
1688
1689 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1690 ev_feed_event (EV_A_ w, EV_STAT);
1691}
1692
1693void
1694ev_stat_start (EV_P_ ev_stat *w)
1695{
1696 if (expect_false (ev_is_active (w)))
1697 return;
1698
1699 /* since we use memcmp, we need to clear any padding data etc. */
1700 memset (&w->prev, 0, sizeof (ev_statdata));
1701 memset (&w->attr, 0, sizeof (ev_statdata));
1702
1703 ev_stat_stat (EV_A_ w);
1704
1705 if (w->interval < MIN_STAT_INTERVAL)
1706 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1707
1708 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1709 ev_set_priority (&w->timer, ev_priority (w));
1710 ev_timer_start (EV_A_ &w->timer);
1711
1712 ev_start (EV_A_ (W)w, 1);
1713}
1714
1715void
1716ev_stat_stop (EV_P_ ev_stat *w)
1717{
1718 ev_clear_pending (EV_A_ (W)w);
1719 if (expect_false (!ev_is_active (w)))
1720 return;
1721
1722 ev_timer_stop (EV_A_ &w->timer);
1723
1724 ev_stop (EV_A_ (W)w);
1725}
1726#endif
1727
1728void
1729ev_idle_start (EV_P_ ev_idle *w)
1730{
1731 if (expect_false (ev_is_active (w)))
1732 return;
1733
1734 ev_start (EV_A_ (W)w, ++idlecnt);
1735 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1736 idles [idlecnt - 1] = w;
1737}
1738
1739void
1740ev_idle_stop (EV_P_ ev_idle *w)
1741{
1742 ev_clear_pending (EV_A_ (W)w);
1743 if (expect_false (!ev_is_active (w)))
1744 return;
1745
1746 {
1747 int active = ((W)w)->active;
1748 idles [active - 1] = idles [--idlecnt];
1749 ((W)idles [active - 1])->active = active;
1750 }
1751
1752 ev_stop (EV_A_ (W)w);
1753}
1754
1755void
1756ev_prepare_start (EV_P_ ev_prepare *w)
1757{
1758 if (expect_false (ev_is_active (w)))
1759 return;
1760
1761 ev_start (EV_A_ (W)w, ++preparecnt);
1762 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1763 prepares [preparecnt - 1] = w;
1764}
1765
1766void
1767ev_prepare_stop (EV_P_ ev_prepare *w)
1768{
1769 ev_clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w)))
1771 return;
1772
1773 {
1774 int active = ((W)w)->active;
1775 prepares [active - 1] = prepares [--preparecnt];
1776 ((W)prepares [active - 1])->active = active;
1777 }
1778
1779 ev_stop (EV_A_ (W)w);
1780}
1781
1782void
1783ev_check_start (EV_P_ ev_check *w)
1784{
1785 if (expect_false (ev_is_active (w)))
1786 return;
1787
1788 ev_start (EV_A_ (W)w, ++checkcnt);
1789 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1790 checks [checkcnt - 1] = w;
1791}
1792
1793void
1794ev_check_stop (EV_P_ ev_check *w)
1795{
1796 ev_clear_pending (EV_A_ (W)w);
1797 if (expect_false (!ev_is_active (w)))
1798 return;
1799
1800 {
1801 int active = ((W)w)->active;
1802 checks [active - 1] = checks [--checkcnt];
1803 ((W)checks [active - 1])->active = active;
1804 }
1805
1806 ev_stop (EV_A_ (W)w);
1807}
1808
1809#if EV_EMBED_ENABLE
1810void noinline
1811ev_embed_sweep (EV_P_ ev_embed *w)
1812{
1813 ev_loop (w->loop, EVLOOP_NONBLOCK);
1814}
1815
1816static void
1817embed_cb (EV_P_ ev_io *io, int revents)
1818{
1819 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1820
1821 if (ev_cb (w))
1822 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1823 else
1824 ev_embed_sweep (loop, w);
1825}
1826
1827void
1828ev_embed_start (EV_P_ ev_embed *w)
1829{
1830 if (expect_false (ev_is_active (w)))
1831 return;
1832
1833 {
1834 struct ev_loop *loop = w->loop;
1835 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1836 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1837 }
1838
1839 ev_set_priority (&w->io, ev_priority (w));
1840 ev_io_start (EV_A_ &w->io);
1841
1842 ev_start (EV_A_ (W)w, 1);
1843}
1844
1845void
1846ev_embed_stop (EV_P_ ev_embed *w)
1847{
1848 ev_clear_pending (EV_A_ (W)w);
1849 if (expect_false (!ev_is_active (w)))
1850 return;
1851
1852 ev_io_stop (EV_A_ &w->io);
1853
1854 ev_stop (EV_A_ (W)w);
1855}
1856#endif
1857
1858#if EV_FORK_ENABLE
1859void
1860ev_fork_start (EV_P_ ev_fork *w)
1861{
1862 if (expect_false (ev_is_active (w)))
1863 return;
1864
1865 ev_start (EV_A_ (W)w, ++forkcnt);
1866 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
1867 forks [forkcnt - 1] = w;
1868}
1869
1870void
1871ev_fork_stop (EV_P_ ev_fork *w)
1872{
1873 ev_clear_pending (EV_A_ (W)w);
1874 if (expect_false (!ev_is_active (w)))
1875 return;
1876
1877 {
1878 int active = ((W)w)->active;
1879 forks [active - 1] = forks [--forkcnt];
1880 ((W)forks [active - 1])->active = active;
1881 }
1882
1883 ev_stop (EV_A_ (W)w);
1884}
1885#endif
1886
1664/*****************************************************************************/ 1887/*****************************************************************************/
1665 1888
1666struct ev_once 1889struct ev_once
1667{ 1890{
1668 struct ev_io io; 1891 ev_io io;
1669 struct ev_timer to; 1892 ev_timer to;
1670 void (*cb)(int revents, void *arg); 1893 void (*cb)(int revents, void *arg);
1671 void *arg; 1894 void *arg;
1672}; 1895};
1673 1896
1674static void 1897static void
1683 1906
1684 cb (revents, arg); 1907 cb (revents, arg);
1685} 1908}
1686 1909
1687static void 1910static void
1688once_cb_io (EV_P_ struct ev_io *w, int revents) 1911once_cb_io (EV_P_ ev_io *w, int revents)
1689{ 1912{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1913 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1691} 1914}
1692 1915
1693static void 1916static void
1694once_cb_to (EV_P_ struct ev_timer *w, int revents) 1917once_cb_to (EV_P_ ev_timer *w, int revents)
1695{ 1918{
1696 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1919 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1697} 1920}
1698 1921
1699void 1922void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines