ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.151 by root, Tue Nov 27 19:59:08 2007 UTC vs.
Revision 1.185 by root, Fri Dec 14 18:22:30 2007 UTC

94# else 94# else
95# define EV_USE_PORT 0 95# define EV_USE_PORT 0
96# endif 96# endif
97# endif 97# endif
98 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
99#endif 107#endif
100 108
101#include <math.h> 109#include <math.h>
102#include <stdlib.h> 110#include <stdlib.h>
103#include <fcntl.h> 111#include <fcntl.h>
109#include <errno.h> 117#include <errno.h>
110#include <sys/types.h> 118#include <sys/types.h>
111#include <time.h> 119#include <time.h>
112 120
113#include <signal.h> 121#include <signal.h>
122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
114 128
115#ifndef _WIN32 129#ifndef _WIN32
116# include <sys/time.h> 130# include <sys/time.h>
117# include <sys/wait.h> 131# include <sys/wait.h>
118# include <unistd.h> 132# include <unistd.h>
156 170
157#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 172# define EV_USE_PORT 0
159#endif 173#endif
160 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
161#ifndef EV_PID_HASHSIZE 179#ifndef EV_PID_HASHSIZE
162# if EV_MINIMAL 180# if EV_MINIMAL
163# define EV_PID_HASHSIZE 1 181# define EV_PID_HASHSIZE 1
164# else 182# else
165# define EV_PID_HASHSIZE 16 183# define EV_PID_HASHSIZE 16
166# endif 184# endif
167#endif 185#endif
168 186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
169/**/ 195/**/
170 196
171#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
172# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
173# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
176#ifndef CLOCK_REALTIME 202#ifndef CLOCK_REALTIME
177# undef EV_USE_REALTIME 203# undef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 204# define EV_USE_REALTIME 0
179#endif 205#endif
180 206
207#if !EV_STAT_ENABLE
208# undef EV_USE_INOTIFY
209# define EV_USE_INOTIFY 0
210#endif
211
212#if EV_USE_INOTIFY
213# include <sys/inotify.h>
214#endif
215
181#if EV_SELECT_IS_WINSOCKET 216#if EV_SELECT_IS_WINSOCKET
182# include <winsock.h> 217# include <winsock.h>
183#endif 218#endif
184 219
185/**/ 220/**/
186 221
222/*
223 * This is used to avoid floating point rounding problems.
224 * It is added to ev_rt_now when scheduling periodics
225 * to ensure progress, time-wise, even when rounding
226 * errors are against us.
227 * This value is good at least till the year 4000.
228 * Better solutions welcome.
229 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231
187#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
188#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
189/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
190 235
191#ifdef EV_H
192# include EV_H
193#else
194# include "ev.h"
195#endif
196
197#if __GNUC__ >= 3 236#if __GNUC__ >= 4
198# define expect(expr,value) __builtin_expect ((expr),(value)) 237# define expect(expr,value) __builtin_expect ((expr),(value))
199# define inline_size static inline /* inline for codesize */
200# if EV_MINIMAL
201# define noinline __attribute__ ((noinline)) 238# define noinline __attribute__ ((noinline))
202# define inline_speed static noinline
203# else
204# define noinline
205# define inline_speed static inline
206# endif
207#else 239#else
208# define expect(expr,value) (expr) 240# define expect(expr,value) (expr)
209# define inline_speed static
210# define inline_size static
211# define noinline 241# define noinline
242# if __STDC_VERSION__ < 199901L
243# define inline
244# endif
212#endif 245#endif
213 246
214#define expect_false(expr) expect ((expr) != 0, 0) 247#define expect_false(expr) expect ((expr) != 0, 0)
215#define expect_true(expr) expect ((expr) != 0, 1) 248#define expect_true(expr) expect ((expr) != 0, 1)
249#define inline_size static inline
250
251#if EV_MINIMAL
252# define inline_speed static noinline
253#else
254# define inline_speed static inline
255#endif
216 256
217#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
218#define ABSPRI(w) ((w)->priority - EV_MINPRI) 258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
219 259
220#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 260#define EMPTY /* required for microsofts broken pseudo-c compiler */
221#define EMPTY2(a,b) /* used to suppress some warnings */ 261#define EMPTY2(a,b) /* used to suppress some warnings */
222 262
223typedef ev_watcher *W; 263typedef ev_watcher *W;
224typedef ev_watcher_list *WL; 264typedef ev_watcher_list *WL;
225typedef ev_watcher_time *WT; 265typedef ev_watcher_time *WT;
253 perror (msg); 293 perror (msg);
254 abort (); 294 abort ();
255 } 295 }
256} 296}
257 297
258static void *(*alloc)(void *ptr, size_t size) = realloc; 298static void *(*alloc)(void *ptr, long size);
259 299
260void 300void
261ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 301ev_set_allocator (void *(*cb)(void *ptr, long size))
262{ 302{
263 alloc = cb; 303 alloc = cb;
264} 304}
265 305
266inline_speed void * 306inline_speed void *
267ev_realloc (void *ptr, size_t size) 307ev_realloc (void *ptr, long size)
268{ 308{
269 ptr = alloc (ptr, size); 309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
270 310
271 if (!ptr && size) 311 if (!ptr && size)
272 { 312 {
273 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
274 abort (); 314 abort ();
275 } 315 }
276 316
277 return ptr; 317 return ptr;
278} 318}
295typedef struct 335typedef struct
296{ 336{
297 W w; 337 W w;
298 int events; 338 int events;
299} ANPENDING; 339} ANPENDING;
340
341#if EV_USE_INOTIFY
342typedef struct
343{
344 WL head;
345} ANFS;
346#endif
300 347
301#if EV_MULTIPLICITY 348#if EV_MULTIPLICITY
302 349
303 struct ev_loop 350 struct ev_loop
304 { 351 {
361{ 408{
362 return ev_rt_now; 409 return ev_rt_now;
363} 410}
364#endif 411#endif
365 412
366#define array_roundsize(type,n) (((n) | 4) & ~3) 413int inline_size
414array_nextsize (int elem, int cur, int cnt)
415{
416 int ncur = cur + 1;
417
418 do
419 ncur <<= 1;
420 while (cnt > ncur);
421
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096)
424 {
425 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
427 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem;
429 }
430
431 return ncur;
432}
433
434static noinline void *
435array_realloc (int elem, void *base, int *cur, int cnt)
436{
437 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur);
439}
367 440
368#define array_needsize(type,base,cur,cnt,init) \ 441#define array_needsize(type,base,cur,cnt,init) \
369 if (expect_false ((cnt) > cur)) \ 442 if (expect_false ((cnt) > (cur))) \
370 { \ 443 { \
371 int newcnt = cur; \ 444 int ocur_ = (cur); \
372 do \ 445 (base) = (type *)array_realloc \
373 { \ 446 (sizeof (type), (base), &(cur), (cnt)); \
374 newcnt = array_roundsize (type, newcnt << 1); \ 447 init ((base) + (ocur_), (cur) - ocur_); \
375 } \
376 while ((cnt) > newcnt); \
377 \
378 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
379 init (base + cur, newcnt - cur); \
380 cur = newcnt; \
381 } 448 }
382 449
450#if 0
383#define array_slim(type,stem) \ 451#define array_slim(type,stem) \
384 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 452 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
385 { \ 453 { \
386 stem ## max = array_roundsize (stem ## cnt >> 1); \ 454 stem ## max = array_roundsize (stem ## cnt >> 1); \
387 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 455 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
388 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
389 } 457 }
458#endif
390 459
391#define array_free(stem, idx) \ 460#define array_free(stem, idx) \
392 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
393 462
394/*****************************************************************************/ 463/*****************************************************************************/
395 464
396void noinline 465void noinline
397ev_feed_event (EV_P_ void *w, int revents) 466ev_feed_event (EV_P_ void *w, int revents)
398{ 467{
399 W w_ = (W)w; 468 W w_ = (W)w;
469 int pri = ABSPRI (w_);
400 470
401 if (expect_false (w_->pending)) 471 if (expect_false (w_->pending))
472 pendings [pri][w_->pending - 1].events |= revents;
473 else
402 { 474 {
475 w_->pending = ++pendingcnt [pri];
476 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
477 pendings [pri][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 478 pendings [pri][w_->pending - 1].events = revents;
404 return;
405 } 479 }
406
407 w_->pending = ++pendingcnt [ABSPRI (w_)];
408 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
409 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
410 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
411} 480}
412 481
413void inline_size 482void inline_speed
414queue_events (EV_P_ W *events, int eventcnt, int type) 483queue_events (EV_P_ W *events, int eventcnt, int type)
415{ 484{
416 int i; 485 int i;
417 486
418 for (i = 0; i < eventcnt; ++i) 487 for (i = 0; i < eventcnt; ++i)
450} 519}
451 520
452void 521void
453ev_feed_fd_event (EV_P_ int fd, int revents) 522ev_feed_fd_event (EV_P_ int fd, int revents)
454{ 523{
524 if (fd >= 0 && fd < anfdmax)
455 fd_event (EV_A_ fd, revents); 525 fd_event (EV_A_ fd, revents);
456} 526}
457 527
458void inline_size 528void inline_size
459fd_reify (EV_P) 529fd_reify (EV_P)
460{ 530{
464 { 534 {
465 int fd = fdchanges [i]; 535 int fd = fdchanges [i];
466 ANFD *anfd = anfds + fd; 536 ANFD *anfd = anfds + fd;
467 ev_io *w; 537 ev_io *w;
468 538
469 int events = 0; 539 unsigned char events = 0;
470 540
471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
472 events |= w->events; 542 events |= (unsigned char)w->events;
473 543
474#if EV_SELECT_IS_WINSOCKET 544#if EV_SELECT_IS_WINSOCKET
475 if (events) 545 if (events)
476 { 546 {
477 unsigned long argp; 547 unsigned long argp;
478 anfd->handle = _get_osfhandle (fd); 548 anfd->handle = _get_osfhandle (fd);
479 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
480 } 550 }
481#endif 551#endif
482 552
553 {
554 unsigned char o_events = anfd->events;
555 unsigned char o_reify = anfd->reify;
556
483 anfd->reify = 0; 557 anfd->reify = 0;
484
485 backend_modify (EV_A_ fd, anfd->events, events);
486 anfd->events = events; 558 anfd->events = events;
559
560 if (o_events != events || o_reify & EV_IOFDSET)
561 backend_modify (EV_A_ fd, o_events, events);
562 }
487 } 563 }
488 564
489 fdchangecnt = 0; 565 fdchangecnt = 0;
490} 566}
491 567
492void inline_size 568void inline_size
493fd_change (EV_P_ int fd) 569fd_change (EV_P_ int fd, int flags)
494{ 570{
495 if (expect_false (anfds [fd].reify)) 571 unsigned char reify = anfds [fd].reify;
496 return;
497
498 anfds [fd].reify = 1; 572 anfds [fd].reify |= flags;
499 573
574 if (expect_true (!reify))
575 {
500 ++fdchangecnt; 576 ++fdchangecnt;
501 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 577 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
502 fdchanges [fdchangecnt - 1] = fd; 578 fdchanges [fdchangecnt - 1] = fd;
579 }
503} 580}
504 581
505void inline_speed 582void inline_speed
506fd_kill (EV_P_ int fd) 583fd_kill (EV_P_ int fd)
507{ 584{
554static void noinline 631static void noinline
555fd_rearm_all (EV_P) 632fd_rearm_all (EV_P)
556{ 633{
557 int fd; 634 int fd;
558 635
559 /* this should be highly optimised to not do anything but set a flag */
560 for (fd = 0; fd < anfdmax; ++fd) 636 for (fd = 0; fd < anfdmax; ++fd)
561 if (anfds [fd].events) 637 if (anfds [fd].events)
562 { 638 {
563 anfds [fd].events = 0; 639 anfds [fd].events = 0;
564 fd_change (EV_A_ fd); 640 fd_change (EV_A_ fd, EV_IOFDSET | 1);
565 } 641 }
566} 642}
567 643
568/*****************************************************************************/ 644/*****************************************************************************/
569 645
570void inline_speed 646void inline_speed
571upheap (WT *heap, int k) 647upheap (WT *heap, int k)
572{ 648{
573 WT w = heap [k]; 649 WT w = heap [k];
574 650
575 while (k && heap [k >> 1]->at > w->at) 651 while (k)
576 { 652 {
653 int p = (k - 1) >> 1;
654
655 if (heap [p]->at <= w->at)
656 break;
657
577 heap [k] = heap [k >> 1]; 658 heap [k] = heap [p];
578 ((W)heap [k])->active = k + 1; 659 ((W)heap [k])->active = k + 1;
579 k >>= 1; 660 k = p;
580 } 661 }
581 662
582 heap [k] = w; 663 heap [k] = w;
583 ((W)heap [k])->active = k + 1; 664 ((W)heap [k])->active = k + 1;
584
585} 665}
586 666
587void inline_speed 667void inline_speed
588downheap (WT *heap, int N, int k) 668downheap (WT *heap, int N, int k)
589{ 669{
590 WT w = heap [k]; 670 WT w = heap [k];
591 671
592 while (k < (N >> 1)) 672 for (;;)
593 { 673 {
594 int j = k << 1; 674 int c = (k << 1) + 1;
595 675
596 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 676 if (c >= N)
597 ++j;
598
599 if (w->at <= heap [j]->at)
600 break; 677 break;
601 678
679 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
680 ? 1 : 0;
681
682 if (w->at <= heap [c]->at)
683 break;
684
602 heap [k] = heap [j]; 685 heap [k] = heap [c];
603 ((W)heap [k])->active = k + 1; 686 ((W)heap [k])->active = k + 1;
687
604 k = j; 688 k = c;
605 } 689 }
606 690
607 heap [k] = w; 691 heap [k] = w;
608 ((W)heap [k])->active = k + 1; 692 ((W)heap [k])->active = k + 1;
609} 693}
691 for (signum = signalmax; signum--; ) 775 for (signum = signalmax; signum--; )
692 if (signals [signum].gotsig) 776 if (signals [signum].gotsig)
693 ev_feed_signal_event (EV_A_ signum + 1); 777 ev_feed_signal_event (EV_A_ signum + 1);
694} 778}
695 779
696void inline_size 780void inline_speed
697fd_intern (int fd) 781fd_intern (int fd)
698{ 782{
699#ifdef _WIN32 783#ifdef _WIN32
700 int arg = 1; 784 int arg = 1;
701 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 785 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
716 ev_unref (EV_A); /* child watcher should not keep loop alive */ 800 ev_unref (EV_A); /* child watcher should not keep loop alive */
717} 801}
718 802
719/*****************************************************************************/ 803/*****************************************************************************/
720 804
721static ev_child *childs [EV_PID_HASHSIZE]; 805static WL childs [EV_PID_HASHSIZE];
722 806
723#ifndef _WIN32 807#ifndef _WIN32
724 808
725static ev_signal childev; 809static ev_signal childev;
726 810
730 ev_child *w; 814 ev_child *w;
731 815
732 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 816 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
733 if (w->pid == pid || !w->pid) 817 if (w->pid == pid || !w->pid)
734 { 818 {
735 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 819 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
736 w->rpid = pid; 820 w->rpid = pid;
737 w->rstatus = status; 821 w->rstatus = status;
738 ev_feed_event (EV_A_ (W)w, EV_CHILD); 822 ev_feed_event (EV_A_ (W)w, EV_CHILD);
739 } 823 }
740} 824}
741 825
742#ifndef WCONTINUED 826#ifndef WCONTINUED
852ev_backend (EV_P) 936ev_backend (EV_P)
853{ 937{
854 return backend; 938 return backend;
855} 939}
856 940
941unsigned int
942ev_loop_count (EV_P)
943{
944 return loop_count;
945}
946
857static void noinline 947static void noinline
858loop_init (EV_P_ unsigned int flags) 948loop_init (EV_P_ unsigned int flags)
859{ 949{
860 if (!backend) 950 if (!backend)
861 { 951 {
870 ev_rt_now = ev_time (); 960 ev_rt_now = ev_time ();
871 mn_now = get_clock (); 961 mn_now = get_clock ();
872 now_floor = mn_now; 962 now_floor = mn_now;
873 rtmn_diff = ev_rt_now - mn_now; 963 rtmn_diff = ev_rt_now - mn_now;
874 964
965 /* pid check not overridable via env */
966#ifndef _WIN32
967 if (flags & EVFLAG_FORKCHECK)
968 curpid = getpid ();
969#endif
970
875 if (!(flags & EVFLAG_NOENV) 971 if (!(flags & EVFLAG_NOENV)
876 && !enable_secure () 972 && !enable_secure ()
877 && getenv ("LIBEV_FLAGS")) 973 && getenv ("LIBEV_FLAGS"))
878 flags = atoi (getenv ("LIBEV_FLAGS")); 974 flags = atoi (getenv ("LIBEV_FLAGS"));
879 975
880 if (!(flags & 0x0000ffffUL)) 976 if (!(flags & 0x0000ffffUL))
881 flags |= ev_recommended_backends (); 977 flags |= ev_recommended_backends ();
882 978
883 backend = 0; 979 backend = 0;
980 backend_fd = -1;
981#if EV_USE_INOTIFY
982 fs_fd = -2;
983#endif
984
884#if EV_USE_PORT 985#if EV_USE_PORT
885 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 986 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
886#endif 987#endif
887#if EV_USE_KQUEUE 988#if EV_USE_KQUEUE
888 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 989 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
905static void noinline 1006static void noinline
906loop_destroy (EV_P) 1007loop_destroy (EV_P)
907{ 1008{
908 int i; 1009 int i;
909 1010
1011#if EV_USE_INOTIFY
1012 if (fs_fd >= 0)
1013 close (fs_fd);
1014#endif
1015
1016 if (backend_fd >= 0)
1017 close (backend_fd);
1018
910#if EV_USE_PORT 1019#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1020 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
912#endif 1021#endif
913#if EV_USE_KQUEUE 1022#if EV_USE_KQUEUE
914 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1023 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
922#if EV_USE_SELECT 1031#if EV_USE_SELECT
923 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1032 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
924#endif 1033#endif
925 1034
926 for (i = NUMPRI; i--; ) 1035 for (i = NUMPRI; i--; )
1036 {
927 array_free (pending, [i]); 1037 array_free (pending, [i]);
1038#if EV_IDLE_ENABLE
1039 array_free (idle, [i]);
1040#endif
1041 }
928 1042
929 /* have to use the microsoft-never-gets-it-right macro */ 1043 /* have to use the microsoft-never-gets-it-right macro */
930 array_free (fdchange, EMPTY0); 1044 array_free (fdchange, EMPTY);
931 array_free (timer, EMPTY0); 1045 array_free (timer, EMPTY);
932#if EV_PERIODIC_ENABLE 1046#if EV_PERIODIC_ENABLE
933 array_free (periodic, EMPTY0); 1047 array_free (periodic, EMPTY);
934#endif 1048#endif
935 array_free (idle, EMPTY0);
936 array_free (prepare, EMPTY0); 1049 array_free (prepare, EMPTY);
937 array_free (check, EMPTY0); 1050 array_free (check, EMPTY);
938 1051
939 backend = 0; 1052 backend = 0;
940} 1053}
1054
1055void inline_size infy_fork (EV_P);
941 1056
942void inline_size 1057void inline_size
943loop_fork (EV_P) 1058loop_fork (EV_P)
944{ 1059{
945#if EV_USE_PORT 1060#if EV_USE_PORT
948#if EV_USE_KQUEUE 1063#if EV_USE_KQUEUE
949 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1064 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
950#endif 1065#endif
951#if EV_USE_EPOLL 1066#if EV_USE_EPOLL
952 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1067 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1068#endif
1069#if EV_USE_INOTIFY
1070 infy_fork (EV_A);
953#endif 1071#endif
954 1072
955 if (ev_is_active (&sigev)) 1073 if (ev_is_active (&sigev))
956 { 1074 {
957 /* default loop */ 1075 /* default loop */
1073 postfork = 1; 1191 postfork = 1;
1074} 1192}
1075 1193
1076/*****************************************************************************/ 1194/*****************************************************************************/
1077 1195
1078int inline_size 1196void
1079any_pending (EV_P) 1197ev_invoke (EV_P_ void *w, int revents)
1080{ 1198{
1081 int pri; 1199 EV_CB_INVOKE ((W)w, revents);
1082
1083 for (pri = NUMPRI; pri--; )
1084 if (pendingcnt [pri])
1085 return 1;
1086
1087 return 0;
1088} 1200}
1089 1201
1090void inline_speed 1202void inline_speed
1091call_pending (EV_P) 1203call_pending (EV_P)
1092{ 1204{
1110void inline_size 1222void inline_size
1111timers_reify (EV_P) 1223timers_reify (EV_P)
1112{ 1224{
1113 while (timercnt && ((WT)timers [0])->at <= mn_now) 1225 while (timercnt && ((WT)timers [0])->at <= mn_now)
1114 { 1226 {
1115 ev_timer *w = timers [0]; 1227 ev_timer *w = (ev_timer *)timers [0];
1116 1228
1117 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1229 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1118 1230
1119 /* first reschedule or stop timer */ 1231 /* first reschedule or stop timer */
1120 if (w->repeat) 1232 if (w->repeat)
1123 1235
1124 ((WT)w)->at += w->repeat; 1236 ((WT)w)->at += w->repeat;
1125 if (((WT)w)->at < mn_now) 1237 if (((WT)w)->at < mn_now)
1126 ((WT)w)->at = mn_now; 1238 ((WT)w)->at = mn_now;
1127 1239
1128 downheap ((WT *)timers, timercnt, 0); 1240 downheap (timers, timercnt, 0);
1129 } 1241 }
1130 else 1242 else
1131 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1243 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1132 1244
1133 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1245 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1138void inline_size 1250void inline_size
1139periodics_reify (EV_P) 1251periodics_reify (EV_P)
1140{ 1252{
1141 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1253 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1142 { 1254 {
1143 ev_periodic *w = periodics [0]; 1255 ev_periodic *w = (ev_periodic *)periodics [0];
1144 1256
1145 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1257 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1146 1258
1147 /* first reschedule or stop timer */ 1259 /* first reschedule or stop timer */
1148 if (w->reschedule_cb) 1260 if (w->reschedule_cb)
1149 { 1261 {
1150 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1262 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1151 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1263 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1152 downheap ((WT *)periodics, periodiccnt, 0); 1264 downheap (periodics, periodiccnt, 0);
1153 } 1265 }
1154 else if (w->interval) 1266 else if (w->interval)
1155 { 1267 {
1156 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1268 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1269 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1157 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1270 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1158 downheap ((WT *)periodics, periodiccnt, 0); 1271 downheap (periodics, periodiccnt, 0);
1159 } 1272 }
1160 else 1273 else
1161 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1274 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1162 1275
1163 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1276 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1170 int i; 1283 int i;
1171 1284
1172 /* adjust periodics after time jump */ 1285 /* adjust periodics after time jump */
1173 for (i = 0; i < periodiccnt; ++i) 1286 for (i = 0; i < periodiccnt; ++i)
1174 { 1287 {
1175 ev_periodic *w = periodics [i]; 1288 ev_periodic *w = (ev_periodic *)periodics [i];
1176 1289
1177 if (w->reschedule_cb) 1290 if (w->reschedule_cb)
1178 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1291 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1179 else if (w->interval) 1292 else if (w->interval)
1180 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1293 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1181 } 1294 }
1182 1295
1183 /* now rebuild the heap */ 1296 /* now rebuild the heap */
1184 for (i = periodiccnt >> 1; i--; ) 1297 for (i = periodiccnt >> 1; i--; )
1185 downheap ((WT *)periodics, periodiccnt, i); 1298 downheap (periodics, periodiccnt, i);
1186} 1299}
1187#endif 1300#endif
1188 1301
1302#if EV_IDLE_ENABLE
1189int inline_size 1303void inline_size
1190time_update_monotonic (EV_P) 1304idle_reify (EV_P)
1191{ 1305{
1306 if (expect_false (idleall))
1307 {
1308 int pri;
1309
1310 for (pri = NUMPRI; pri--; )
1311 {
1312 if (pendingcnt [pri])
1313 break;
1314
1315 if (idlecnt [pri])
1316 {
1317 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1318 break;
1319 }
1320 }
1321 }
1322}
1323#endif
1324
1325void inline_speed
1326time_update (EV_P_ ev_tstamp max_block)
1327{
1328 int i;
1329
1330#if EV_USE_MONOTONIC
1331 if (expect_true (have_monotonic))
1332 {
1333 ev_tstamp odiff = rtmn_diff;
1334
1192 mn_now = get_clock (); 1335 mn_now = get_clock ();
1193 1336
1337 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1338 /* interpolate in the meantime */
1194 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1339 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1195 { 1340 {
1196 ev_rt_now = rtmn_diff + mn_now; 1341 ev_rt_now = rtmn_diff + mn_now;
1197 return 0; 1342 return;
1198 } 1343 }
1199 else 1344
1200 {
1201 now_floor = mn_now; 1345 now_floor = mn_now;
1202 ev_rt_now = ev_time (); 1346 ev_rt_now = ev_time ();
1203 return 1;
1204 }
1205}
1206 1347
1207void inline_size 1348 /* loop a few times, before making important decisions.
1208time_update (EV_P) 1349 * on the choice of "4": one iteration isn't enough,
1209{ 1350 * in case we get preempted during the calls to
1210 int i; 1351 * ev_time and get_clock. a second call is almost guaranteed
1211 1352 * to succeed in that case, though. and looping a few more times
1212#if EV_USE_MONOTONIC 1353 * doesn't hurt either as we only do this on time-jumps or
1213 if (expect_true (have_monotonic)) 1354 * in the unlikely event of having been preempted here.
1214 { 1355 */
1215 if (time_update_monotonic (EV_A)) 1356 for (i = 4; --i; )
1216 { 1357 {
1217 ev_tstamp odiff = rtmn_diff;
1218
1219 /* loop a few times, before making important decisions.
1220 * on the choice of "4": one iteration isn't enough,
1221 * in case we get preempted during the calls to
1222 * ev_time and get_clock. a second call is almost guarenteed
1223 * to succeed in that case, though. and looping a few more times
1224 * doesn't hurt either as we only do this on time-jumps or
1225 * in the unlikely event of getting preempted here.
1226 */
1227 for (i = 4; --i; )
1228 {
1229 rtmn_diff = ev_rt_now - mn_now; 1358 rtmn_diff = ev_rt_now - mn_now;
1230 1359
1231 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1360 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1232 return; /* all is well */ 1361 return; /* all is well */
1233 1362
1234 ev_rt_now = ev_time (); 1363 ev_rt_now = ev_time ();
1235 mn_now = get_clock (); 1364 mn_now = get_clock ();
1236 now_floor = mn_now; 1365 now_floor = mn_now;
1237 } 1366 }
1238 1367
1239# if EV_PERIODIC_ENABLE 1368# if EV_PERIODIC_ENABLE
1240 periodics_reschedule (EV_A); 1369 periodics_reschedule (EV_A);
1241# endif 1370# endif
1242 /* no timer adjustment, as the monotonic clock doesn't jump */ 1371 /* no timer adjustment, as the monotonic clock doesn't jump */
1243 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1372 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1244 }
1245 } 1373 }
1246 else 1374 else
1247#endif 1375#endif
1248 { 1376 {
1249 ev_rt_now = ev_time (); 1377 ev_rt_now = ev_time ();
1250 1378
1251 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1379 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1252 { 1380 {
1253#if EV_PERIODIC_ENABLE 1381#if EV_PERIODIC_ENABLE
1254 periodics_reschedule (EV_A); 1382 periodics_reschedule (EV_A);
1255#endif 1383#endif
1256
1257 /* adjust timers. this is easy, as the offset is the same for all */ 1384 /* adjust timers. this is easy, as the offset is the same for all of them */
1258 for (i = 0; i < timercnt; ++i) 1385 for (i = 0; i < timercnt; ++i)
1259 ((WT)timers [i])->at += ev_rt_now - mn_now; 1386 ((WT)timers [i])->at += ev_rt_now - mn_now;
1260 } 1387 }
1261 1388
1262 mn_now = ev_rt_now; 1389 mn_now = ev_rt_now;
1282{ 1409{
1283 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1410 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1284 ? EVUNLOOP_ONE 1411 ? EVUNLOOP_ONE
1285 : EVUNLOOP_CANCEL; 1412 : EVUNLOOP_CANCEL;
1286 1413
1287 while (activecnt) 1414 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1415
1416 do
1288 { 1417 {
1289 /* we might have forked, so reify kernel state if necessary */ 1418#ifndef _WIN32
1419 if (expect_false (curpid)) /* penalise the forking check even more */
1420 if (expect_false (getpid () != curpid))
1421 {
1422 curpid = getpid ();
1423 postfork = 1;
1424 }
1425#endif
1426
1290 #if EV_FORK_ENABLE 1427#if EV_FORK_ENABLE
1428 /* we might have forked, so queue fork handlers */
1291 if (expect_false (postfork)) 1429 if (expect_false (postfork))
1292 if (forkcnt) 1430 if (forkcnt)
1293 { 1431 {
1294 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1432 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1295 call_pending (EV_A); 1433 call_pending (EV_A);
1296 } 1434 }
1297 #endif 1435#endif
1298 1436
1299 /* queue check watchers (and execute them) */ 1437 /* queue prepare watchers (and execute them) */
1300 if (expect_false (preparecnt)) 1438 if (expect_false (preparecnt))
1301 { 1439 {
1302 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1440 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1303 call_pending (EV_A); 1441 call_pending (EV_A);
1304 } 1442 }
1305 1443
1444 if (expect_false (!activecnt))
1445 break;
1446
1306 /* we might have forked, so reify kernel state if necessary */ 1447 /* we might have forked, so reify kernel state if necessary */
1307 if (expect_false (postfork)) 1448 if (expect_false (postfork))
1308 loop_fork (EV_A); 1449 loop_fork (EV_A);
1309 1450
1310 /* update fd-related kernel structures */ 1451 /* update fd-related kernel structures */
1311 fd_reify (EV_A); 1452 fd_reify (EV_A);
1312 1453
1313 /* calculate blocking time */ 1454 /* calculate blocking time */
1314 { 1455 {
1315 double block; 1456 ev_tstamp block;
1316 1457
1317 if (flags & EVLOOP_NONBLOCK || idlecnt) 1458 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1318 block = 0.; /* do not block at all */ 1459 block = 0.; /* do not block at all */
1319 else 1460 else
1320 { 1461 {
1321 /* update time to cancel out callback processing overhead */ 1462 /* update time to cancel out callback processing overhead */
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 time_update_monotonic (EV_A); 1463 time_update (EV_A_ 1e100);
1325 else
1326#endif
1327 {
1328 ev_rt_now = ev_time ();
1329 mn_now = ev_rt_now;
1330 }
1331 1464
1332 block = MAX_BLOCKTIME; 1465 block = MAX_BLOCKTIME;
1333 1466
1334 if (timercnt) 1467 if (timercnt)
1335 { 1468 {
1346#endif 1479#endif
1347 1480
1348 if (expect_false (block < 0.)) block = 0.; 1481 if (expect_false (block < 0.)) block = 0.;
1349 } 1482 }
1350 1483
1484 ++loop_count;
1351 backend_poll (EV_A_ block); 1485 backend_poll (EV_A_ block);
1486
1487 /* update ev_rt_now, do magic */
1488 time_update (EV_A_ block);
1352 } 1489 }
1353
1354 /* update ev_rt_now, do magic */
1355 time_update (EV_A);
1356 1490
1357 /* queue pending timers and reschedule them */ 1491 /* queue pending timers and reschedule them */
1358 timers_reify (EV_A); /* relative timers called last */ 1492 timers_reify (EV_A); /* relative timers called last */
1359#if EV_PERIODIC_ENABLE 1493#if EV_PERIODIC_ENABLE
1360 periodics_reify (EV_A); /* absolute timers called first */ 1494 periodics_reify (EV_A); /* absolute timers called first */
1361#endif 1495#endif
1362 1496
1497#if EV_IDLE_ENABLE
1363 /* queue idle watchers unless other events are pending */ 1498 /* queue idle watchers unless other events are pending */
1364 if (idlecnt && !any_pending (EV_A)) 1499 idle_reify (EV_A);
1365 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1500#endif
1366 1501
1367 /* queue check watchers, to be executed first */ 1502 /* queue check watchers, to be executed first */
1368 if (expect_false (checkcnt)) 1503 if (expect_false (checkcnt))
1369 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1504 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1370 1505
1371 call_pending (EV_A); 1506 call_pending (EV_A);
1372 1507
1373 if (expect_false (loop_done))
1374 break;
1375 } 1508 }
1509 while (expect_true (activecnt && !loop_done));
1376 1510
1377 if (loop_done == EVUNLOOP_ONE) 1511 if (loop_done == EVUNLOOP_ONE)
1378 loop_done = EVUNLOOP_CANCEL; 1512 loop_done = EVUNLOOP_CANCEL;
1379} 1513}
1380 1514
1407 head = &(*head)->next; 1541 head = &(*head)->next;
1408 } 1542 }
1409} 1543}
1410 1544
1411void inline_speed 1545void inline_speed
1412ev_clear_pending (EV_P_ W w) 1546clear_pending (EV_P_ W w)
1413{ 1547{
1414 if (w->pending) 1548 if (w->pending)
1415 { 1549 {
1416 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1550 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1417 w->pending = 0; 1551 w->pending = 0;
1418 } 1552 }
1419} 1553}
1420 1554
1555int
1556ev_clear_pending (EV_P_ void *w)
1557{
1558 W w_ = (W)w;
1559 int pending = w_->pending;
1560
1561 if (expect_true (pending))
1562 {
1563 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1564 w_->pending = 0;
1565 p->w = 0;
1566 return p->events;
1567 }
1568 else
1569 return 0;
1570}
1571
1572void inline_size
1573pri_adjust (EV_P_ W w)
1574{
1575 int pri = w->priority;
1576 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1577 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1578 w->priority = pri;
1579}
1580
1421void inline_speed 1581void inline_speed
1422ev_start (EV_P_ W w, int active) 1582ev_start (EV_P_ W w, int active)
1423{ 1583{
1424 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1584 pri_adjust (EV_A_ w);
1425 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1426
1427 w->active = active; 1585 w->active = active;
1428 ev_ref (EV_A); 1586 ev_ref (EV_A);
1429} 1587}
1430 1588
1431void inline_size 1589void inline_size
1435 w->active = 0; 1593 w->active = 0;
1436} 1594}
1437 1595
1438/*****************************************************************************/ 1596/*****************************************************************************/
1439 1597
1440void 1598void noinline
1441ev_io_start (EV_P_ ev_io *w) 1599ev_io_start (EV_P_ ev_io *w)
1442{ 1600{
1443 int fd = w->fd; 1601 int fd = w->fd;
1444 1602
1445 if (expect_false (ev_is_active (w))) 1603 if (expect_false (ev_is_active (w)))
1447 1605
1448 assert (("ev_io_start called with negative fd", fd >= 0)); 1606 assert (("ev_io_start called with negative fd", fd >= 0));
1449 1607
1450 ev_start (EV_A_ (W)w, 1); 1608 ev_start (EV_A_ (W)w, 1);
1451 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1609 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1452 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1610 wlist_add (&anfds[fd].head, (WL)w);
1453 1611
1454 fd_change (EV_A_ fd); 1612 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1613 w->events &= ~EV_IOFDSET;
1455} 1614}
1456 1615
1457void 1616void noinline
1458ev_io_stop (EV_P_ ev_io *w) 1617ev_io_stop (EV_P_ ev_io *w)
1459{ 1618{
1460 ev_clear_pending (EV_A_ (W)w); 1619 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 1620 if (expect_false (!ev_is_active (w)))
1462 return; 1621 return;
1463 1622
1464 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1465 1624
1466 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1625 wlist_del (&anfds[w->fd].head, (WL)w);
1467 ev_stop (EV_A_ (W)w); 1626 ev_stop (EV_A_ (W)w);
1468 1627
1469 fd_change (EV_A_ w->fd); 1628 fd_change (EV_A_ w->fd, 1);
1470} 1629}
1471 1630
1472void 1631void noinline
1473ev_timer_start (EV_P_ ev_timer *w) 1632ev_timer_start (EV_P_ ev_timer *w)
1474{ 1633{
1475 if (expect_false (ev_is_active (w))) 1634 if (expect_false (ev_is_active (w)))
1476 return; 1635 return;
1477 1636
1478 ((WT)w)->at += mn_now; 1637 ((WT)w)->at += mn_now;
1479 1638
1480 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1481 1640
1482 ev_start (EV_A_ (W)w, ++timercnt); 1641 ev_start (EV_A_ (W)w, ++timercnt);
1483 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1642 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1484 timers [timercnt - 1] = w; 1643 timers [timercnt - 1] = (WT)w;
1485 upheap ((WT *)timers, timercnt - 1); 1644 upheap (timers, timercnt - 1);
1486 1645
1487 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1488} 1647}
1489 1648
1490void 1649void noinline
1491ev_timer_stop (EV_P_ ev_timer *w) 1650ev_timer_stop (EV_P_ ev_timer *w)
1492{ 1651{
1493 ev_clear_pending (EV_A_ (W)w); 1652 clear_pending (EV_A_ (W)w);
1494 if (expect_false (!ev_is_active (w))) 1653 if (expect_false (!ev_is_active (w)))
1495 return; 1654 return;
1496 1655
1497 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1498 1657
1499 { 1658 {
1500 int active = ((W)w)->active; 1659 int active = ((W)w)->active;
1501 1660
1502 if (expect_true (--active < --timercnt)) 1661 if (expect_true (--active < --timercnt))
1503 { 1662 {
1504 timers [active] = timers [timercnt]; 1663 timers [active] = timers [timercnt];
1505 adjustheap ((WT *)timers, timercnt, active); 1664 adjustheap (timers, timercnt, active);
1506 } 1665 }
1507 } 1666 }
1508 1667
1509 ((WT)w)->at -= mn_now; 1668 ((WT)w)->at -= mn_now;
1510 1669
1511 ev_stop (EV_A_ (W)w); 1670 ev_stop (EV_A_ (W)w);
1512} 1671}
1513 1672
1514void 1673void noinline
1515ev_timer_again (EV_P_ ev_timer *w) 1674ev_timer_again (EV_P_ ev_timer *w)
1516{ 1675{
1517 if (ev_is_active (w)) 1676 if (ev_is_active (w))
1518 { 1677 {
1519 if (w->repeat) 1678 if (w->repeat)
1520 { 1679 {
1521 ((WT)w)->at = mn_now + w->repeat; 1680 ((WT)w)->at = mn_now + w->repeat;
1522 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1681 adjustheap (timers, timercnt, ((W)w)->active - 1);
1523 } 1682 }
1524 else 1683 else
1525 ev_timer_stop (EV_A_ w); 1684 ev_timer_stop (EV_A_ w);
1526 } 1685 }
1527 else if (w->repeat) 1686 else if (w->repeat)
1530 ev_timer_start (EV_A_ w); 1689 ev_timer_start (EV_A_ w);
1531 } 1690 }
1532} 1691}
1533 1692
1534#if EV_PERIODIC_ENABLE 1693#if EV_PERIODIC_ENABLE
1535void 1694void noinline
1536ev_periodic_start (EV_P_ ev_periodic *w) 1695ev_periodic_start (EV_P_ ev_periodic *w)
1537{ 1696{
1538 if (expect_false (ev_is_active (w))) 1697 if (expect_false (ev_is_active (w)))
1539 return; 1698 return;
1540 1699
1542 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1543 else if (w->interval) 1702 else if (w->interval)
1544 { 1703 {
1545 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1546 /* this formula differs from the one in periodic_reify because we do not always round up */ 1705 /* this formula differs from the one in periodic_reify because we do not always round up */
1547 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1548 } 1707 }
1708 else
1709 ((WT)w)->at = w->offset;
1549 1710
1550 ev_start (EV_A_ (W)w, ++periodiccnt); 1711 ev_start (EV_A_ (W)w, ++periodiccnt);
1551 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1712 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1552 periodics [periodiccnt - 1] = w; 1713 periodics [periodiccnt - 1] = (WT)w;
1553 upheap ((WT *)periodics, periodiccnt - 1); 1714 upheap (periodics, periodiccnt - 1);
1554 1715
1555 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1556} 1717}
1557 1718
1558void 1719void noinline
1559ev_periodic_stop (EV_P_ ev_periodic *w) 1720ev_periodic_stop (EV_P_ ev_periodic *w)
1560{ 1721{
1561 ev_clear_pending (EV_A_ (W)w); 1722 clear_pending (EV_A_ (W)w);
1562 if (expect_false (!ev_is_active (w))) 1723 if (expect_false (!ev_is_active (w)))
1563 return; 1724 return;
1564 1725
1565 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1566 1727
1567 { 1728 {
1568 int active = ((W)w)->active; 1729 int active = ((W)w)->active;
1569 1730
1570 if (expect_true (--active < --periodiccnt)) 1731 if (expect_true (--active < --periodiccnt))
1571 { 1732 {
1572 periodics [active] = periodics [periodiccnt]; 1733 periodics [active] = periodics [periodiccnt];
1573 adjustheap ((WT *)periodics, periodiccnt, active); 1734 adjustheap (periodics, periodiccnt, active);
1574 } 1735 }
1575 } 1736 }
1576 1737
1577 ev_stop (EV_A_ (W)w); 1738 ev_stop (EV_A_ (W)w);
1578} 1739}
1579 1740
1580void 1741void noinline
1581ev_periodic_again (EV_P_ ev_periodic *w) 1742ev_periodic_again (EV_P_ ev_periodic *w)
1582{ 1743{
1583 /* TODO: use adjustheap and recalculation */ 1744 /* TODO: use adjustheap and recalculation */
1584 ev_periodic_stop (EV_A_ w); 1745 ev_periodic_stop (EV_A_ w);
1585 ev_periodic_start (EV_A_ w); 1746 ev_periodic_start (EV_A_ w);
1588 1749
1589#ifndef SA_RESTART 1750#ifndef SA_RESTART
1590# define SA_RESTART 0 1751# define SA_RESTART 0
1591#endif 1752#endif
1592 1753
1593void 1754void noinline
1594ev_signal_start (EV_P_ ev_signal *w) 1755ev_signal_start (EV_P_ ev_signal *w)
1595{ 1756{
1596#if EV_MULTIPLICITY 1757#if EV_MULTIPLICITY
1597 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1758 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1598#endif 1759#endif
1599 if (expect_false (ev_is_active (w))) 1760 if (expect_false (ev_is_active (w)))
1600 return; 1761 return;
1601 1762
1602 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1603 1764
1765 {
1766#ifndef _WIN32
1767 sigset_t full, prev;
1768 sigfillset (&full);
1769 sigprocmask (SIG_SETMASK, &full, &prev);
1770#endif
1771
1772 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1773
1774#ifndef _WIN32
1775 sigprocmask (SIG_SETMASK, &prev, 0);
1776#endif
1777 }
1778
1604 ev_start (EV_A_ (W)w, 1); 1779 ev_start (EV_A_ (W)w, 1);
1605 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1606 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1780 wlist_add (&signals [w->signum - 1].head, (WL)w);
1607 1781
1608 if (!((WL)w)->next) 1782 if (!((WL)w)->next)
1609 { 1783 {
1610#if _WIN32 1784#if _WIN32
1611 signal (w->signum, sighandler); 1785 signal (w->signum, sighandler);
1617 sigaction (w->signum, &sa, 0); 1791 sigaction (w->signum, &sa, 0);
1618#endif 1792#endif
1619 } 1793 }
1620} 1794}
1621 1795
1622void 1796void noinline
1623ev_signal_stop (EV_P_ ev_signal *w) 1797ev_signal_stop (EV_P_ ev_signal *w)
1624{ 1798{
1625 ev_clear_pending (EV_A_ (W)w); 1799 clear_pending (EV_A_ (W)w);
1626 if (expect_false (!ev_is_active (w))) 1800 if (expect_false (!ev_is_active (w)))
1627 return; 1801 return;
1628 1802
1629 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1803 wlist_del (&signals [w->signum - 1].head, (WL)w);
1630 ev_stop (EV_A_ (W)w); 1804 ev_stop (EV_A_ (W)w);
1631 1805
1632 if (!signals [w->signum - 1].head) 1806 if (!signals [w->signum - 1].head)
1633 signal (w->signum, SIG_DFL); 1807 signal (w->signum, SIG_DFL);
1634} 1808}
1641#endif 1815#endif
1642 if (expect_false (ev_is_active (w))) 1816 if (expect_false (ev_is_active (w)))
1643 return; 1817 return;
1644 1818
1645 ev_start (EV_A_ (W)w, 1); 1819 ev_start (EV_A_ (W)w, 1);
1646 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1820 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1647} 1821}
1648 1822
1649void 1823void
1650ev_child_stop (EV_P_ ev_child *w) 1824ev_child_stop (EV_P_ ev_child *w)
1651{ 1825{
1652 ev_clear_pending (EV_A_ (W)w); 1826 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 1827 if (expect_false (!ev_is_active (w)))
1654 return; 1828 return;
1655 1829
1656 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1830 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1657 ev_stop (EV_A_ (W)w); 1831 ev_stop (EV_A_ (W)w);
1658} 1832}
1659 1833
1660#if EV_STAT_ENABLE 1834#if EV_STAT_ENABLE
1661 1835
1665# endif 1839# endif
1666 1840
1667#define DEF_STAT_INTERVAL 5.0074891 1841#define DEF_STAT_INTERVAL 5.0074891
1668#define MIN_STAT_INTERVAL 0.1074891 1842#define MIN_STAT_INTERVAL 0.1074891
1669 1843
1844static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1845
1846#if EV_USE_INOTIFY
1847# define EV_INOTIFY_BUFSIZE 8192
1848
1849static void noinline
1850infy_add (EV_P_ ev_stat *w)
1851{
1852 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1853
1854 if (w->wd < 0)
1855 {
1856 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1857
1858 /* monitor some parent directory for speedup hints */
1859 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1860 {
1861 char path [4096];
1862 strcpy (path, w->path);
1863
1864 do
1865 {
1866 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1867 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1868
1869 char *pend = strrchr (path, '/');
1870
1871 if (!pend)
1872 break; /* whoops, no '/', complain to your admin */
1873
1874 *pend = 0;
1875 w->wd = inotify_add_watch (fs_fd, path, mask);
1876 }
1877 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1878 }
1879 }
1880 else
1881 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1882
1883 if (w->wd >= 0)
1884 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1885}
1886
1887static void noinline
1888infy_del (EV_P_ ev_stat *w)
1889{
1890 int slot;
1891 int wd = w->wd;
1892
1893 if (wd < 0)
1894 return;
1895
1896 w->wd = -2;
1897 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1898 wlist_del (&fs_hash [slot].head, (WL)w);
1899
1900 /* remove this watcher, if others are watching it, they will rearm */
1901 inotify_rm_watch (fs_fd, wd);
1902}
1903
1904static void noinline
1905infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1906{
1907 if (slot < 0)
1908 /* overflow, need to check for all hahs slots */
1909 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1910 infy_wd (EV_A_ slot, wd, ev);
1911 else
1912 {
1913 WL w_;
1914
1915 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1916 {
1917 ev_stat *w = (ev_stat *)w_;
1918 w_ = w_->next; /* lets us remove this watcher and all before it */
1919
1920 if (w->wd == wd || wd == -1)
1921 {
1922 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1923 {
1924 w->wd = -1;
1925 infy_add (EV_A_ w); /* re-add, no matter what */
1926 }
1927
1928 stat_timer_cb (EV_A_ &w->timer, 0);
1929 }
1930 }
1931 }
1932}
1933
1934static void
1935infy_cb (EV_P_ ev_io *w, int revents)
1936{
1937 char buf [EV_INOTIFY_BUFSIZE];
1938 struct inotify_event *ev = (struct inotify_event *)buf;
1939 int ofs;
1940 int len = read (fs_fd, buf, sizeof (buf));
1941
1942 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1943 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1944}
1945
1946void inline_size
1947infy_init (EV_P)
1948{
1949 if (fs_fd != -2)
1950 return;
1951
1952 fs_fd = inotify_init ();
1953
1954 if (fs_fd >= 0)
1955 {
1956 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1957 ev_set_priority (&fs_w, EV_MAXPRI);
1958 ev_io_start (EV_A_ &fs_w);
1959 }
1960}
1961
1962void inline_size
1963infy_fork (EV_P)
1964{
1965 int slot;
1966
1967 if (fs_fd < 0)
1968 return;
1969
1970 close (fs_fd);
1971 fs_fd = inotify_init ();
1972
1973 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1974 {
1975 WL w_ = fs_hash [slot].head;
1976 fs_hash [slot].head = 0;
1977
1978 while (w_)
1979 {
1980 ev_stat *w = (ev_stat *)w_;
1981 w_ = w_->next; /* lets us add this watcher */
1982
1983 w->wd = -1;
1984
1985 if (fs_fd >= 0)
1986 infy_add (EV_A_ w); /* re-add, no matter what */
1987 else
1988 ev_timer_start (EV_A_ &w->timer);
1989 }
1990
1991 }
1992}
1993
1994#endif
1995
1670void 1996void
1671ev_stat_stat (EV_P_ ev_stat *w) 1997ev_stat_stat (EV_P_ ev_stat *w)
1672{ 1998{
1673 if (lstat (w->path, &w->attr) < 0) 1999 if (lstat (w->path, &w->attr) < 0)
1674 w->attr.st_nlink = 0; 2000 w->attr.st_nlink = 0;
1675 else if (!w->attr.st_nlink) 2001 else if (!w->attr.st_nlink)
1676 w->attr.st_nlink = 1; 2002 w->attr.st_nlink = 1;
1677} 2003}
1678 2004
1679static void 2005static void noinline
1680stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2006stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1681{ 2007{
1682 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2008 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1683 2009
1684 /* we copy this here each the time so that */ 2010 /* we copy this here each the time so that */
1685 /* prev has the old value when the callback gets invoked */ 2011 /* prev has the old value when the callback gets invoked */
1686 w->prev = w->attr; 2012 w->prev = w->attr;
1687 ev_stat_stat (EV_A_ w); 2013 ev_stat_stat (EV_A_ w);
1688 2014
1689 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2015 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2016 if (
2017 w->prev.st_dev != w->attr.st_dev
2018 || w->prev.st_ino != w->attr.st_ino
2019 || w->prev.st_mode != w->attr.st_mode
2020 || w->prev.st_nlink != w->attr.st_nlink
2021 || w->prev.st_uid != w->attr.st_uid
2022 || w->prev.st_gid != w->attr.st_gid
2023 || w->prev.st_rdev != w->attr.st_rdev
2024 || w->prev.st_size != w->attr.st_size
2025 || w->prev.st_atime != w->attr.st_atime
2026 || w->prev.st_mtime != w->attr.st_mtime
2027 || w->prev.st_ctime != w->attr.st_ctime
2028 ) {
2029 #if EV_USE_INOTIFY
2030 infy_del (EV_A_ w);
2031 infy_add (EV_A_ w);
2032 ev_stat_stat (EV_A_ w); /* avoid race... */
2033 #endif
2034
1690 ev_feed_event (EV_A_ w, EV_STAT); 2035 ev_feed_event (EV_A_ w, EV_STAT);
2036 }
1691} 2037}
1692 2038
1693void 2039void
1694ev_stat_start (EV_P_ ev_stat *w) 2040ev_stat_start (EV_P_ ev_stat *w)
1695{ 2041{
1705 if (w->interval < MIN_STAT_INTERVAL) 2051 if (w->interval < MIN_STAT_INTERVAL)
1706 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL; 2052 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1707 2053
1708 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2054 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1709 ev_set_priority (&w->timer, ev_priority (w)); 2055 ev_set_priority (&w->timer, ev_priority (w));
2056
2057#if EV_USE_INOTIFY
2058 infy_init (EV_A);
2059
2060 if (fs_fd >= 0)
2061 infy_add (EV_A_ w);
2062 else
2063#endif
1710 ev_timer_start (EV_A_ &w->timer); 2064 ev_timer_start (EV_A_ &w->timer);
1711 2065
1712 ev_start (EV_A_ (W)w, 1); 2066 ev_start (EV_A_ (W)w, 1);
1713} 2067}
1714 2068
1715void 2069void
1716ev_stat_stop (EV_P_ ev_stat *w) 2070ev_stat_stop (EV_P_ ev_stat *w)
1717{ 2071{
1718 ev_clear_pending (EV_A_ (W)w); 2072 clear_pending (EV_A_ (W)w);
1719 if (expect_false (!ev_is_active (w))) 2073 if (expect_false (!ev_is_active (w)))
1720 return; 2074 return;
1721 2075
2076#if EV_USE_INOTIFY
2077 infy_del (EV_A_ w);
2078#endif
1722 ev_timer_stop (EV_A_ &w->timer); 2079 ev_timer_stop (EV_A_ &w->timer);
1723 2080
1724 ev_stop (EV_A_ (W)w); 2081 ev_stop (EV_A_ (W)w);
1725} 2082}
1726#endif 2083#endif
1727 2084
2085#if EV_IDLE_ENABLE
1728void 2086void
1729ev_idle_start (EV_P_ ev_idle *w) 2087ev_idle_start (EV_P_ ev_idle *w)
1730{ 2088{
1731 if (expect_false (ev_is_active (w))) 2089 if (expect_false (ev_is_active (w)))
1732 return; 2090 return;
1733 2091
2092 pri_adjust (EV_A_ (W)w);
2093
2094 {
2095 int active = ++idlecnt [ABSPRI (w)];
2096
2097 ++idleall;
1734 ev_start (EV_A_ (W)w, ++idlecnt); 2098 ev_start (EV_A_ (W)w, active);
2099
1735 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2100 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1736 idles [idlecnt - 1] = w; 2101 idles [ABSPRI (w)][active - 1] = w;
2102 }
1737} 2103}
1738 2104
1739void 2105void
1740ev_idle_stop (EV_P_ ev_idle *w) 2106ev_idle_stop (EV_P_ ev_idle *w)
1741{ 2107{
1742 ev_clear_pending (EV_A_ (W)w); 2108 clear_pending (EV_A_ (W)w);
1743 if (expect_false (!ev_is_active (w))) 2109 if (expect_false (!ev_is_active (w)))
1744 return; 2110 return;
1745 2111
1746 { 2112 {
1747 int active = ((W)w)->active; 2113 int active = ((W)w)->active;
1748 idles [active - 1] = idles [--idlecnt]; 2114
2115 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1749 ((W)idles [active - 1])->active = active; 2116 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2117
2118 ev_stop (EV_A_ (W)w);
2119 --idleall;
1750 } 2120 }
1751
1752 ev_stop (EV_A_ (W)w);
1753} 2121}
2122#endif
1754 2123
1755void 2124void
1756ev_prepare_start (EV_P_ ev_prepare *w) 2125ev_prepare_start (EV_P_ ev_prepare *w)
1757{ 2126{
1758 if (expect_false (ev_is_active (w))) 2127 if (expect_false (ev_is_active (w)))
1764} 2133}
1765 2134
1766void 2135void
1767ev_prepare_stop (EV_P_ ev_prepare *w) 2136ev_prepare_stop (EV_P_ ev_prepare *w)
1768{ 2137{
1769 ev_clear_pending (EV_A_ (W)w); 2138 clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w))) 2139 if (expect_false (!ev_is_active (w)))
1771 return; 2140 return;
1772 2141
1773 { 2142 {
1774 int active = ((W)w)->active; 2143 int active = ((W)w)->active;
1791} 2160}
1792 2161
1793void 2162void
1794ev_check_stop (EV_P_ ev_check *w) 2163ev_check_stop (EV_P_ ev_check *w)
1795{ 2164{
1796 ev_clear_pending (EV_A_ (W)w); 2165 clear_pending (EV_A_ (W)w);
1797 if (expect_false (!ev_is_active (w))) 2166 if (expect_false (!ev_is_active (w)))
1798 return; 2167 return;
1799 2168
1800 { 2169 {
1801 int active = ((W)w)->active; 2170 int active = ((W)w)->active;
1843} 2212}
1844 2213
1845void 2214void
1846ev_embed_stop (EV_P_ ev_embed *w) 2215ev_embed_stop (EV_P_ ev_embed *w)
1847{ 2216{
1848 ev_clear_pending (EV_A_ (W)w); 2217 clear_pending (EV_A_ (W)w);
1849 if (expect_false (!ev_is_active (w))) 2218 if (expect_false (!ev_is_active (w)))
1850 return; 2219 return;
1851 2220
1852 ev_io_stop (EV_A_ &w->io); 2221 ev_io_stop (EV_A_ &w->io);
1853 2222
1868} 2237}
1869 2238
1870void 2239void
1871ev_fork_stop (EV_P_ ev_fork *w) 2240ev_fork_stop (EV_P_ ev_fork *w)
1872{ 2241{
1873 ev_clear_pending (EV_A_ (W)w); 2242 clear_pending (EV_A_ (W)w);
1874 if (expect_false (!ev_is_active (w))) 2243 if (expect_false (!ev_is_active (w)))
1875 return; 2244 return;
1876 2245
1877 { 2246 {
1878 int active = ((W)w)->active; 2247 int active = ((W)w)->active;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines