ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.151 by root, Tue Nov 27 19:59:08 2007 UTC vs.
Revision 1.245 by root, Wed May 21 00:26:01 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 111# else
95# define EV_USE_PORT 0 112# define EV_USE_PORT 0
96# endif 113# endif
97# endif 114# endif
98 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
99#endif 132#endif
100 133
101#include <math.h> 134#include <math.h>
102#include <stdlib.h> 135#include <stdlib.h>
103#include <fcntl.h> 136#include <fcntl.h>
109#include <errno.h> 142#include <errno.h>
110#include <sys/types.h> 143#include <sys/types.h>
111#include <time.h> 144#include <time.h>
112 145
113#include <signal.h> 146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
114 153
115#ifndef _WIN32 154#ifndef _WIN32
116# include <sys/time.h> 155# include <sys/time.h>
117# include <sys/wait.h> 156# include <sys/wait.h>
118# include <unistd.h> 157# include <unistd.h>
122# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
124# endif 163# endif
125#endif 164#endif
126 165
127/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
128 167
129#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
130# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
131#endif 170#endif
132 171
133#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
135#endif 178#endif
136 179
137#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
139#endif 182#endif
145# define EV_USE_POLL 1 188# define EV_USE_POLL 1
146# endif 189# endif
147#endif 190#endif
148 191
149#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
150# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
151#endif 198#endif
152 199
153#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
155#endif 202#endif
156 203
157#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
159#endif 214#endif
160 215
161#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
162# if EV_MINIMAL 217# if EV_MINIMAL
163# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
164# else 219# else
165# define EV_PID_HASHSIZE 16 220# define EV_PID_HASHSIZE 16
166# endif 221# endif
167#endif 222#endif
168 223
169/**/ 224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
170 249
171#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
172# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
173# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
174#endif 253#endif
176#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
177# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
179#endif 258#endif
180 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
181#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
182# include <winsock.h> 276# include <winsock.h>
183#endif 277#endif
184 278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
289#endif
290
185/**/ 291/**/
292
293/*
294 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
186 302
187#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
188#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
189/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
190 306
191#ifdef EV_H
192# include EV_H
193#else
194# include "ev.h"
195#endif
196
197#if __GNUC__ >= 3 307#if __GNUC__ >= 4
198# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
199# define inline_size static inline /* inline for codesize */
200# if EV_MINIMAL
201# define noinline __attribute__ ((noinline)) 309# define noinline __attribute__ ((noinline))
202# define inline_speed static noinline
203# else
204# define noinline
205# define inline_speed static inline
206# endif
207#else 310#else
208# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
209# define inline_speed static
210# define inline_size static
211# define noinline 312# define noinline
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314# define inline
315# endif
212#endif 316#endif
213 317
214#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
215#define expect_true(expr) expect ((expr) != 0, 1) 319#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline
321
322#if EV_MINIMAL
323# define inline_speed static noinline
324#else
325# define inline_speed static inline
326#endif
216 327
217#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
218#define ABSPRI(w) ((w)->priority - EV_MINPRI) 329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
219 330
220#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 331#define EMPTY /* required for microsofts broken pseudo-c compiler */
221#define EMPTY2(a,b) /* used to suppress some warnings */ 332#define EMPTY2(a,b) /* used to suppress some warnings */
222 333
223typedef ev_watcher *W; 334typedef ev_watcher *W;
224typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
225typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
226 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
341#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
227static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif
228 346
229#ifdef _WIN32 347#ifdef _WIN32
230# include "ev_win32.c" 348# include "ev_win32.c"
231#endif 349#endif
232 350
253 perror (msg); 371 perror (msg);
254 abort (); 372 abort ();
255 } 373 }
256} 374}
257 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
258static void *(*alloc)(void *ptr, size_t size) = realloc; 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
259 392
260void 393void
261ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
262{ 395{
263 alloc = cb; 396 alloc = cb;
264} 397}
265 398
266inline_speed void * 399inline_speed void *
267ev_realloc (void *ptr, size_t size) 400ev_realloc (void *ptr, long size)
268{ 401{
269 ptr = alloc (ptr, size); 402 ptr = alloc (ptr, size);
270 403
271 if (!ptr && size) 404 if (!ptr && size)
272 { 405 {
273 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
274 abort (); 407 abort ();
275 } 408 }
276 409
277 return ptr; 410 return ptr;
278} 411}
295typedef struct 428typedef struct
296{ 429{
297 W w; 430 W w;
298 int events; 431 int events;
299} ANPENDING; 432} ANPENDING;
433
434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
436typedef struct
437{
438 WL head;
439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
458#endif
300 459
301#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
302 461
303 struct ev_loop 462 struct ev_loop
304 { 463 {
361{ 520{
362 return ev_rt_now; 521 return ev_rt_now;
363} 522}
364#endif 523#endif
365 524
366#define array_roundsize(type,n) (((n) | 4) & ~3) 525void
526ev_sleep (ev_tstamp delay)
527{
528 if (delay > 0.)
529 {
530#if EV_USE_NANOSLEEP
531 struct timespec ts;
532
533 ts.tv_sec = (time_t)delay;
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0);
537#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3));
539#else
540 struct timeval tv;
541
542 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544
545 select (0, 0, 0, 0, &tv);
546#endif
547 }
548}
549
550/*****************************************************************************/
551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
554int inline_size
555array_nextsize (int elem, int cur, int cnt)
556{
557 int ncur = cur + 1;
558
559 do
560 ncur <<= 1;
561 while (cnt > ncur);
562
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 {
566 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4;
569 ncur /= elem;
570 }
571
572 return ncur;
573}
574
575static noinline void *
576array_realloc (int elem, void *base, int *cur, int cnt)
577{
578 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur);
580}
367 581
368#define array_needsize(type,base,cur,cnt,init) \ 582#define array_needsize(type,base,cur,cnt,init) \
369 if (expect_false ((cnt) > cur)) \ 583 if (expect_false ((cnt) > (cur))) \
370 { \ 584 { \
371 int newcnt = cur; \ 585 int ocur_ = (cur); \
372 do \ 586 (base) = (type *)array_realloc \
373 { \ 587 (sizeof (type), (base), &(cur), (cnt)); \
374 newcnt = array_roundsize (type, newcnt << 1); \ 588 init ((base) + (ocur_), (cur) - ocur_); \
375 } \
376 while ((cnt) > newcnt); \
377 \
378 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
379 init (base + cur, newcnt - cur); \
380 cur = newcnt; \
381 } 589 }
382 590
591#if 0
383#define array_slim(type,stem) \ 592#define array_slim(type,stem) \
384 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 593 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
385 { \ 594 { \
386 stem ## max = array_roundsize (stem ## cnt >> 1); \ 595 stem ## max = array_roundsize (stem ## cnt >> 1); \
387 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 596 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
388 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
389 } 598 }
599#endif
390 600
391#define array_free(stem, idx) \ 601#define array_free(stem, idx) \
392 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
393 603
394/*****************************************************************************/ 604/*****************************************************************************/
395 605
396void noinline 606void noinline
397ev_feed_event (EV_P_ void *w, int revents) 607ev_feed_event (EV_P_ void *w, int revents)
398{ 608{
399 W w_ = (W)w; 609 W w_ = (W)w;
610 int pri = ABSPRI (w_);
400 611
401 if (expect_false (w_->pending)) 612 if (expect_false (w_->pending))
613 pendings [pri][w_->pending - 1].events |= revents;
614 else
402 { 615 {
616 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 619 pendings [pri][w_->pending - 1].events = revents;
404 return;
405 } 620 }
406
407 w_->pending = ++pendingcnt [ABSPRI (w_)];
408 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
409 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
410 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
411} 621}
412 622
413void inline_size 623void inline_speed
414queue_events (EV_P_ W *events, int eventcnt, int type) 624queue_events (EV_P_ W *events, int eventcnt, int type)
415{ 625{
416 int i; 626 int i;
417 627
418 for (i = 0; i < eventcnt; ++i) 628 for (i = 0; i < eventcnt; ++i)
450} 660}
451 661
452void 662void
453ev_feed_fd_event (EV_P_ int fd, int revents) 663ev_feed_fd_event (EV_P_ int fd, int revents)
454{ 664{
665 if (fd >= 0 && fd < anfdmax)
455 fd_event (EV_A_ fd, revents); 666 fd_event (EV_A_ fd, revents);
456} 667}
457 668
458void inline_size 669void inline_size
459fd_reify (EV_P) 670fd_reify (EV_P)
460{ 671{
464 { 675 {
465 int fd = fdchanges [i]; 676 int fd = fdchanges [i];
466 ANFD *anfd = anfds + fd; 677 ANFD *anfd = anfds + fd;
467 ev_io *w; 678 ev_io *w;
468 679
469 int events = 0; 680 unsigned char events = 0;
470 681
471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
472 events |= w->events; 683 events |= (unsigned char)w->events;
473 684
474#if EV_SELECT_IS_WINSOCKET 685#if EV_SELECT_IS_WINSOCKET
475 if (events) 686 if (events)
476 { 687 {
477 unsigned long argp; 688 unsigned long argp;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
478 anfd->handle = _get_osfhandle (fd); 692 anfd->handle = _get_osfhandle (fd);
693 #endif
479 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
480 } 695 }
481#endif 696#endif
482 697
698 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
483 anfd->reify = 0; 702 anfd->reify = 0;
484
485 backend_modify (EV_A_ fd, anfd->events, events);
486 anfd->events = events; 703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events);
707 }
487 } 708 }
488 709
489 fdchangecnt = 0; 710 fdchangecnt = 0;
490} 711}
491 712
492void inline_size 713void inline_size
493fd_change (EV_P_ int fd) 714fd_change (EV_P_ int fd, int flags)
494{ 715{
495 if (expect_false (anfds [fd].reify)) 716 unsigned char reify = anfds [fd].reify;
496 return;
497
498 anfds [fd].reify = 1; 717 anfds [fd].reify |= flags;
499 718
719 if (expect_true (!reify))
720 {
500 ++fdchangecnt; 721 ++fdchangecnt;
501 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
502 fdchanges [fdchangecnt - 1] = fd; 723 fdchanges [fdchangecnt - 1] = fd;
724 }
503} 725}
504 726
505void inline_speed 727void inline_speed
506fd_kill (EV_P_ int fd) 728fd_kill (EV_P_ int fd)
507{ 729{
554static void noinline 776static void noinline
555fd_rearm_all (EV_P) 777fd_rearm_all (EV_P)
556{ 778{
557 int fd; 779 int fd;
558 780
559 /* this should be highly optimised to not do anything but set a flag */
560 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
561 if (anfds [fd].events) 782 if (anfds [fd].events)
562 { 783 {
563 anfds [fd].events = 0; 784 anfds [fd].events = 0;
564 fd_change (EV_A_ fd); 785 fd_change (EV_A_ fd, EV_IOFDSET | 1);
565 } 786 }
566} 787}
567 788
568/*****************************************************************************/ 789/*****************************************************************************/
569 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807
808/* towards the root */
570void inline_speed 809void inline_speed
571upheap (WT *heap, int k) 810upheap (ANHE *heap, int k)
572{ 811{
573 WT w = heap [k]; 812 ANHE he = heap [k];
574 813
575 while (k && heap [k >> 1]->at > w->at) 814 for (;;)
576 { 815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
577 heap [k] = heap [k >> 1]; 821 heap [k] = heap [p];
578 ((W)heap [k])->active = k + 1; 822 ev_active (ANHE_w (heap [k])) = k;
579 k >>= 1; 823 k = p;
580 } 824 }
581 825
826 ev_active (ANHE_w (he)) = k;
582 heap [k] = w; 827 heap [k] = he;
583 ((W)heap [k])->active = k + 1;
584
585} 828}
586 829
830/* away from the root */
587void inline_speed 831void inline_speed
588downheap (WT *heap, int N, int k) 832downheap (ANHE *heap, int N, int k)
589{ 833{
590 WT w = heap [k]; 834 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0;
591 836
592 while (k < (N >> 1)) 837 for (;;)
593 { 838 {
594 int j = k << 1; 839 ev_tstamp minat;
840 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
595 842
596 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 843 // find minimum child
844 if (expect_true (pos + DHEAP - 1 < E))
597 ++j; 845 {
598 846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
599 if (w->at <= heap [j]->at) 847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else
600 break; 859 break;
601 860
861 if (ANHE_at (he) <= minat)
862 break;
863
864 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866
867 k = minpos - heap;
868 }
869
870 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872}
873
874#else // 4HEAP
875
876#define HEAP0 1
877
878/* towards the root */
879void inline_speed
880upheap (ANHE *heap, int k)
881{
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
602 heap [k] = heap [j]; 892 heap [k] = heap [p];
603 ((W)heap [k])->active = k + 1; 893 ev_active (ANHE_w (heap [k])) = k;
604 k = j; 894 k = p;
605 } 895 }
606 896
607 heap [k] = w; 897 heap [k] = he;
608 ((W)heap [k])->active = k + 1; 898 ev_active (ANHE_w (heap [k])) = k;
609} 899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0;
916
917 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break;
919
920 heap [k] = heap [c];
921 ev_active (ANHE_w (heap [k])) = k;
922
923 k = c;
924 }
925
926 heap [k] = he;
927 ev_active (ANHE_w (he)) = k;
928}
929#endif
610 930
611void inline_size 931void inline_size
612adjustheap (WT *heap, int N, int k) 932adjustheap (ANHE *heap, int N, int k)
613{ 933{
614 upheap (heap, k); 934 upheap (heap, k);
615 downheap (heap, N, k); 935 downheap (heap, N, k);
616} 936}
617 937
618/*****************************************************************************/ 938/*****************************************************************************/
619 939
620typedef struct 940typedef struct
621{ 941{
622 WL head; 942 WL head;
623 sig_atomic_t volatile gotsig; 943 EV_ATOMIC_T gotsig;
624} ANSIG; 944} ANSIG;
625 945
626static ANSIG *signals; 946static ANSIG *signals;
627static int signalmax; 947static int signalmax;
628 948
629static int sigpipe [2]; 949static EV_ATOMIC_T gotsig;
630static sig_atomic_t volatile gotsig;
631static ev_io sigev;
632 950
633void inline_size 951void inline_size
634signals_init (ANSIG *base, int count) 952signals_init (ANSIG *base, int count)
635{ 953{
636 while (count--) 954 while (count--)
640 958
641 ++base; 959 ++base;
642 } 960 }
643} 961}
644 962
645static void 963/*****************************************************************************/
646sighandler (int signum)
647{
648#if _WIN32
649 signal (signum, sighandler);
650#endif
651 964
652 signals [signum - 1].gotsig = 1;
653
654 if (!gotsig)
655 {
656 int old_errno = errno;
657 gotsig = 1;
658 write (sigpipe [1], &signum, 1);
659 errno = old_errno;
660 }
661}
662
663void noinline
664ev_feed_signal_event (EV_P_ int signum)
665{
666 WL w;
667
668#if EV_MULTIPLICITY
669 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
670#endif
671
672 --signum;
673
674 if (signum < 0 || signum >= signalmax)
675 return;
676
677 signals [signum].gotsig = 0;
678
679 for (w = signals [signum].head; w; w = w->next)
680 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
681}
682
683static void
684sigcb (EV_P_ ev_io *iow, int revents)
685{
686 int signum;
687
688 read (sigpipe [0], &revents, 1);
689 gotsig = 0;
690
691 for (signum = signalmax; signum--; )
692 if (signals [signum].gotsig)
693 ev_feed_signal_event (EV_A_ signum + 1);
694}
695
696void inline_size 965void inline_speed
697fd_intern (int fd) 966fd_intern (int fd)
698{ 967{
699#ifdef _WIN32 968#ifdef _WIN32
700 int arg = 1; 969 int arg = 1;
701 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
704 fcntl (fd, F_SETFL, O_NONBLOCK); 973 fcntl (fd, F_SETFL, O_NONBLOCK);
705#endif 974#endif
706} 975}
707 976
708static void noinline 977static void noinline
709siginit (EV_P) 978evpipe_init (EV_P)
710{ 979{
980 if (!ev_is_active (&pipeev))
981 {
982#if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0)
984 {
985 evpipe [0] = -1;
986 fd_intern (evfd);
987 ev_io_set (&pipeev, evfd, EV_READ);
988 }
989 else
990#endif
991 {
992 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe");
994
711 fd_intern (sigpipe [0]); 995 fd_intern (evpipe [0]);
712 fd_intern (sigpipe [1]); 996 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ);
998 }
713 999
714 ev_io_set (&sigev, sigpipe [0], EV_READ);
715 ev_io_start (EV_A_ &sigev); 1000 ev_io_start (EV_A_ &pipeev);
716 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1001 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 }
1003}
1004
1005void inline_size
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{
1008 if (!*flag)
1009 {
1010 int old_errno = errno; /* save errno because write might clobber it */
1011
1012 *flag = 1;
1013
1014#if EV_USE_EVENTFD
1015 if (evfd >= 0)
1016 {
1017 uint64_t counter = 1;
1018 write (evfd, &counter, sizeof (uint64_t));
1019 }
1020 else
1021#endif
1022 write (evpipe [1], &old_errno, 1);
1023
1024 errno = old_errno;
1025 }
1026}
1027
1028static void
1029pipecb (EV_P_ ev_io *iow, int revents)
1030{
1031#if EV_USE_EVENTFD
1032 if (evfd >= 0)
1033 {
1034 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t));
1036 }
1037 else
1038#endif
1039 {
1040 char dummy;
1041 read (evpipe [0], &dummy, 1);
1042 }
1043
1044 if (gotsig && ev_is_default_loop (EV_A))
1045 {
1046 int signum;
1047 gotsig = 0;
1048
1049 for (signum = signalmax; signum--; )
1050 if (signals [signum].gotsig)
1051 ev_feed_signal_event (EV_A_ signum + 1);
1052 }
1053
1054#if EV_ASYNC_ENABLE
1055 if (gotasync)
1056 {
1057 int i;
1058 gotasync = 0;
1059
1060 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent)
1062 {
1063 asyncs [i]->sent = 0;
1064 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1065 }
1066 }
1067#endif
717} 1068}
718 1069
719/*****************************************************************************/ 1070/*****************************************************************************/
720 1071
1072static void
1073ev_sighandler (int signum)
1074{
1075#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct;
1077#endif
1078
1079#if _WIN32
1080 signal (signum, ev_sighandler);
1081#endif
1082
1083 signals [signum - 1].gotsig = 1;
1084 evpipe_write (EV_A_ &gotsig);
1085}
1086
1087void noinline
1088ev_feed_signal_event (EV_P_ int signum)
1089{
1090 WL w;
1091
1092#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094#endif
1095
1096 --signum;
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return;
1100
1101 signals [signum].gotsig = 0;
1102
1103 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105}
1106
1107/*****************************************************************************/
1108
721static ev_child *childs [EV_PID_HASHSIZE]; 1109static WL childs [EV_PID_HASHSIZE];
722 1110
723#ifndef _WIN32 1111#ifndef _WIN32
724 1112
725static ev_signal childev; 1113static ev_signal childev;
726 1114
1115#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0
1117#endif
1118
727void inline_speed 1119void inline_speed
728child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1120child_reap (EV_P_ int chain, int pid, int status)
729{ 1121{
730 ev_child *w; 1122 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
731 1124
732 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 {
733 if (w->pid == pid || !w->pid) 1127 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1)))
734 { 1129 {
735 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
736 w->rpid = pid; 1131 w->rpid = pid;
737 w->rstatus = status; 1132 w->rstatus = status;
738 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1133 ev_feed_event (EV_A_ (W)w, EV_CHILD);
739 } 1134 }
1135 }
740} 1136}
741 1137
742#ifndef WCONTINUED 1138#ifndef WCONTINUED
743# define WCONTINUED 0 1139# define WCONTINUED 0
744#endif 1140#endif
753 if (!WCONTINUED 1149 if (!WCONTINUED
754 || errno != EINVAL 1150 || errno != EINVAL
755 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1151 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
756 return; 1152 return;
757 1153
758 /* make sure we are called again until all childs have been reaped */ 1154 /* make sure we are called again until all children have been reaped */
759 /* we need to do it this way so that the callback gets called before we continue */ 1155 /* we need to do it this way so that the callback gets called before we continue */
760 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
761 1157
762 child_reap (EV_A_ sw, pid, pid, status); 1158 child_reap (EV_A_ pid, pid, status);
763 if (EV_PID_HASHSIZE > 1) 1159 if (EV_PID_HASHSIZE > 1)
764 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
765} 1161}
766 1162
767#endif 1163#endif
768 1164
769/*****************************************************************************/ 1165/*****************************************************************************/
841} 1237}
842 1238
843unsigned int 1239unsigned int
844ev_embeddable_backends (void) 1240ev_embeddable_backends (void)
845{ 1241{
846 return EVBACKEND_EPOLL 1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
847 | EVBACKEND_KQUEUE 1243
848 | EVBACKEND_PORT; 1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */
1246 flags &= ~EVBACKEND_EPOLL;
1247
1248 return flags;
849} 1249}
850 1250
851unsigned int 1251unsigned int
852ev_backend (EV_P) 1252ev_backend (EV_P)
853{ 1253{
854 return backend; 1254 return backend;
1255}
1256
1257unsigned int
1258ev_loop_count (EV_P)
1259{
1260 return loop_count;
1261}
1262
1263void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{
1266 io_blocktime = interval;
1267}
1268
1269void
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{
1272 timeout_blocktime = interval;
855} 1273}
856 1274
857static void noinline 1275static void noinline
858loop_init (EV_P_ unsigned int flags) 1276loop_init (EV_P_ unsigned int flags)
859{ 1277{
865 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
866 have_monotonic = 1; 1284 have_monotonic = 1;
867 } 1285 }
868#endif 1286#endif
869 1287
870 ev_rt_now = ev_time (); 1288 ev_rt_now = ev_time ();
871 mn_now = get_clock (); 1289 mn_now = get_clock ();
872 now_floor = mn_now; 1290 now_floor = mn_now;
873 rtmn_diff = ev_rt_now - mn_now; 1291 rtmn_diff = ev_rt_now - mn_now;
1292
1293 io_blocktime = 0.;
1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298#if EV_USE_INOTIFY
1299 fs_fd = -2;
1300#endif
1301
1302 /* pid check not overridable via env */
1303#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK)
1305 curpid = getpid ();
1306#endif
874 1307
875 if (!(flags & EVFLAG_NOENV) 1308 if (!(flags & EVFLAG_NOENV)
876 && !enable_secure () 1309 && !enable_secure ()
877 && getenv ("LIBEV_FLAGS")) 1310 && getenv ("LIBEV_FLAGS"))
878 flags = atoi (getenv ("LIBEV_FLAGS")); 1311 flags = atoi (getenv ("LIBEV_FLAGS"));
879 1312
880 if (!(flags & 0x0000ffffUL)) 1313 if (!(flags & 0x0000ffffU))
881 flags |= ev_recommended_backends (); 1314 flags |= ev_recommended_backends ();
882 1315
883 backend = 0;
884#if EV_USE_PORT 1316#if EV_USE_PORT
885 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
886#endif 1318#endif
887#if EV_USE_KQUEUE 1319#if EV_USE_KQUEUE
888 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
895#endif 1327#endif
896#if EV_USE_SELECT 1328#if EV_USE_SELECT
897 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
898#endif 1330#endif
899 1331
900 ev_init (&sigev, sigcb); 1332 ev_init (&pipeev, pipecb);
901 ev_set_priority (&sigev, EV_MAXPRI); 1333 ev_set_priority (&pipeev, EV_MAXPRI);
902 } 1334 }
903} 1335}
904 1336
905static void noinline 1337static void noinline
906loop_destroy (EV_P) 1338loop_destroy (EV_P)
907{ 1339{
908 int i; 1340 int i;
909 1341
1342 if (ev_is_active (&pipeev))
1343 {
1344 ev_ref (EV_A); /* signal watcher */
1345 ev_io_stop (EV_A_ &pipeev);
1346
1347#if EV_USE_EVENTFD
1348 if (evfd >= 0)
1349 close (evfd);
1350#endif
1351
1352 if (evpipe [0] >= 0)
1353 {
1354 close (evpipe [0]);
1355 close (evpipe [1]);
1356 }
1357 }
1358
1359#if EV_USE_INOTIFY
1360 if (fs_fd >= 0)
1361 close (fs_fd);
1362#endif
1363
1364 if (backend_fd >= 0)
1365 close (backend_fd);
1366
910#if EV_USE_PORT 1367#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1368 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
912#endif 1369#endif
913#if EV_USE_KQUEUE 1370#if EV_USE_KQUEUE
914 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1371 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
922#if EV_USE_SELECT 1379#if EV_USE_SELECT
923 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1380 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
924#endif 1381#endif
925 1382
926 for (i = NUMPRI; i--; ) 1383 for (i = NUMPRI; i--; )
1384 {
927 array_free (pending, [i]); 1385 array_free (pending, [i]);
1386#if EV_IDLE_ENABLE
1387 array_free (idle, [i]);
1388#endif
1389 }
1390
1391 ev_free (anfds); anfdmax = 0;
928 1392
929 /* have to use the microsoft-never-gets-it-right macro */ 1393 /* have to use the microsoft-never-gets-it-right macro */
930 array_free (fdchange, EMPTY0); 1394 array_free (fdchange, EMPTY);
931 array_free (timer, EMPTY0); 1395 array_free (timer, EMPTY);
932#if EV_PERIODIC_ENABLE 1396#if EV_PERIODIC_ENABLE
933 array_free (periodic, EMPTY0); 1397 array_free (periodic, EMPTY);
934#endif 1398#endif
1399#if EV_FORK_ENABLE
935 array_free (idle, EMPTY0); 1400 array_free (fork, EMPTY);
1401#endif
936 array_free (prepare, EMPTY0); 1402 array_free (prepare, EMPTY);
937 array_free (check, EMPTY0); 1403 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY);
1406#endif
938 1407
939 backend = 0; 1408 backend = 0;
940} 1409}
1410
1411#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P);
1413#endif
941 1414
942void inline_size 1415void inline_size
943loop_fork (EV_P) 1416loop_fork (EV_P)
944{ 1417{
945#if EV_USE_PORT 1418#if EV_USE_PORT
949 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1422 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
950#endif 1423#endif
951#if EV_USE_EPOLL 1424#if EV_USE_EPOLL
952 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1425 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
953#endif 1426#endif
1427#if EV_USE_INOTIFY
1428 infy_fork (EV_A);
1429#endif
954 1430
955 if (ev_is_active (&sigev)) 1431 if (ev_is_active (&pipeev))
956 { 1432 {
957 /* default loop */ 1433 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */
1435 gotsig = 1;
1436#if EV_ASYNC_ENABLE
1437 gotasync = 1;
1438#endif
958 1439
959 ev_ref (EV_A); 1440 ev_ref (EV_A);
960 ev_io_stop (EV_A_ &sigev); 1441 ev_io_stop (EV_A_ &pipeev);
1442
1443#if EV_USE_EVENTFD
1444 if (evfd >= 0)
1445 close (evfd);
1446#endif
1447
1448 if (evpipe [0] >= 0)
1449 {
961 close (sigpipe [0]); 1450 close (evpipe [0]);
962 close (sigpipe [1]); 1451 close (evpipe [1]);
1452 }
963 1453
964 while (pipe (sigpipe))
965 syserr ("(libev) error creating pipe");
966
967 siginit (EV_A); 1454 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ);
968 } 1457 }
969 1458
970 postfork = 0; 1459 postfork = 0;
971} 1460}
972 1461
994} 1483}
995 1484
996void 1485void
997ev_loop_fork (EV_P) 1486ev_loop_fork (EV_P)
998{ 1487{
999 postfork = 1; 1488 postfork = 1; /* must be in line with ev_default_fork */
1000} 1489}
1001
1002#endif 1490#endif
1003 1491
1004#if EV_MULTIPLICITY 1492#if EV_MULTIPLICITY
1005struct ev_loop * 1493struct ev_loop *
1006ev_default_loop_init (unsigned int flags) 1494ev_default_loop_init (unsigned int flags)
1007#else 1495#else
1008int 1496int
1009ev_default_loop (unsigned int flags) 1497ev_default_loop (unsigned int flags)
1010#endif 1498#endif
1011{ 1499{
1012 if (sigpipe [0] == sigpipe [1])
1013 if (pipe (sigpipe))
1014 return 0;
1015
1016 if (!ev_default_loop_ptr) 1500 if (!ev_default_loop_ptr)
1017 { 1501 {
1018#if EV_MULTIPLICITY 1502#if EV_MULTIPLICITY
1019 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1020#else 1504#else
1023 1507
1024 loop_init (EV_A_ flags); 1508 loop_init (EV_A_ flags);
1025 1509
1026 if (ev_backend (EV_A)) 1510 if (ev_backend (EV_A))
1027 { 1511 {
1028 siginit (EV_A);
1029
1030#ifndef _WIN32 1512#ifndef _WIN32
1031 ev_signal_init (&childev, childcb, SIGCHLD); 1513 ev_signal_init (&childev, childcb, SIGCHLD);
1032 ev_set_priority (&childev, EV_MAXPRI); 1514 ev_set_priority (&childev, EV_MAXPRI);
1033 ev_signal_start (EV_A_ &childev); 1515 ev_signal_start (EV_A_ &childev);
1034 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1516 ev_unref (EV_A); /* child watcher should not keep loop alive */
1051#ifndef _WIN32 1533#ifndef _WIN32
1052 ev_ref (EV_A); /* child watcher */ 1534 ev_ref (EV_A); /* child watcher */
1053 ev_signal_stop (EV_A_ &childev); 1535 ev_signal_stop (EV_A_ &childev);
1054#endif 1536#endif
1055 1537
1056 ev_ref (EV_A); /* signal watcher */
1057 ev_io_stop (EV_A_ &sigev);
1058
1059 close (sigpipe [0]); sigpipe [0] = 0;
1060 close (sigpipe [1]); sigpipe [1] = 0;
1061
1062 loop_destroy (EV_A); 1538 loop_destroy (EV_A);
1063} 1539}
1064 1540
1065void 1541void
1066ev_default_fork (void) 1542ev_default_fork (void)
1068#if EV_MULTIPLICITY 1544#if EV_MULTIPLICITY
1069 struct ev_loop *loop = ev_default_loop_ptr; 1545 struct ev_loop *loop = ev_default_loop_ptr;
1070#endif 1546#endif
1071 1547
1072 if (backend) 1548 if (backend)
1073 postfork = 1; 1549 postfork = 1; /* must be in line with ev_loop_fork */
1074} 1550}
1075 1551
1076/*****************************************************************************/ 1552/*****************************************************************************/
1077 1553
1078int inline_size 1554void
1079any_pending (EV_P) 1555ev_invoke (EV_P_ void *w, int revents)
1080{ 1556{
1081 int pri; 1557 EV_CB_INVOKE ((W)w, revents);
1082
1083 for (pri = NUMPRI; pri--; )
1084 if (pendingcnt [pri])
1085 return 1;
1086
1087 return 0;
1088} 1558}
1089 1559
1090void inline_speed 1560void inline_speed
1091call_pending (EV_P) 1561call_pending (EV_P)
1092{ 1562{
1105 EV_CB_INVOKE (p->w, p->events); 1575 EV_CB_INVOKE (p->w, p->events);
1106 } 1576 }
1107 } 1577 }
1108} 1578}
1109 1579
1580#if EV_IDLE_ENABLE
1581void inline_size
1582idle_reify (EV_P)
1583{
1584 if (expect_false (idleall))
1585 {
1586 int pri;
1587
1588 for (pri = NUMPRI; pri--; )
1589 {
1590 if (pendingcnt [pri])
1591 break;
1592
1593 if (idlecnt [pri])
1594 {
1595 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1596 break;
1597 }
1598 }
1599 }
1600}
1601#endif
1602
1110void inline_size 1603void inline_size
1111timers_reify (EV_P) 1604timers_reify (EV_P)
1112{ 1605{
1113 while (timercnt && ((WT)timers [0])->at <= mn_now) 1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1114 { 1607 {
1115 ev_timer *w = timers [0]; 1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1116 1609
1117 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1118 1611
1119 /* first reschedule or stop timer */ 1612 /* first reschedule or stop timer */
1120 if (w->repeat) 1613 if (w->repeat)
1121 { 1614 {
1615 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now;
1618
1122 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1123 1620
1124 ((WT)w)->at += w->repeat; 1621 ANHE_at_set (timers [HEAP0]);
1125 if (((WT)w)->at < mn_now)
1126 ((WT)w)->at = mn_now;
1127
1128 downheap ((WT *)timers, timercnt, 0); 1622 downheap (timers, timercnt, HEAP0);
1129 } 1623 }
1130 else 1624 else
1131 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1132 1626
1133 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1136 1630
1137#if EV_PERIODIC_ENABLE 1631#if EV_PERIODIC_ENABLE
1138void inline_size 1632void inline_size
1139periodics_reify (EV_P) 1633periodics_reify (EV_P)
1140{ 1634{
1141 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1142 { 1636 {
1143 ev_periodic *w = periodics [0]; 1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1144 1638
1145 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1146 1640
1147 /* first reschedule or stop timer */ 1641 /* first reschedule or stop timer */
1148 if (w->reschedule_cb) 1642 if (w->reschedule_cb)
1149 { 1643 {
1150 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645
1151 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
1152 downheap ((WT *)periodics, periodiccnt, 0); 1649 downheap (periodics, periodiccnt, HEAP0);
1153 } 1650 }
1154 else if (w->interval) 1651 else if (w->interval)
1155 { 1652 {
1156 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1655
1157 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1656 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) >= ev_rt_now));
1657
1658 ANHE_at_set (periodics [HEAP0]);
1158 downheap ((WT *)periodics, periodiccnt, 0); 1659 downheap (periodics, periodiccnt, HEAP0);
1159 } 1660 }
1160 else 1661 else
1161 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1662 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1162 1663
1163 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1664 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1168periodics_reschedule (EV_P) 1669periodics_reschedule (EV_P)
1169{ 1670{
1170 int i; 1671 int i;
1171 1672
1172 /* adjust periodics after time jump */ 1673 /* adjust periodics after time jump */
1674 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1675 {
1676 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1677
1678 if (w->reschedule_cb)
1679 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1680 else if (w->interval)
1681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1682
1683 ANHE_at_set (periodics [i]);
1684 }
1685
1686 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1687 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1173 for (i = 0; i < periodiccnt; ++i) 1688 for (i = 0; i < periodiccnt; ++i)
1174 { 1689 upheap (periodics, i + HEAP0);
1175 ev_periodic *w = periodics [i]; 1690}
1691#endif
1176 1692
1177 if (w->reschedule_cb) 1693void inline_speed
1178 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1694time_update (EV_P_ ev_tstamp max_block)
1179 else if (w->interval) 1695{
1180 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1696 int i;
1697
1698#if EV_USE_MONOTONIC
1699 if (expect_true (have_monotonic))
1181 } 1700 {
1701 ev_tstamp odiff = rtmn_diff;
1182 1702
1183 /* now rebuild the heap */
1184 for (i = periodiccnt >> 1; i--; )
1185 downheap ((WT *)periodics, periodiccnt, i);
1186}
1187#endif
1188
1189int inline_size
1190time_update_monotonic (EV_P)
1191{
1192 mn_now = get_clock (); 1703 mn_now = get_clock ();
1193 1704
1705 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1706 /* interpolate in the meantime */
1194 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1707 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1195 { 1708 {
1196 ev_rt_now = rtmn_diff + mn_now; 1709 ev_rt_now = rtmn_diff + mn_now;
1197 return 0; 1710 return;
1198 } 1711 }
1199 else 1712
1200 {
1201 now_floor = mn_now; 1713 now_floor = mn_now;
1202 ev_rt_now = ev_time (); 1714 ev_rt_now = ev_time ();
1203 return 1;
1204 }
1205}
1206 1715
1207void inline_size 1716 /* loop a few times, before making important decisions.
1208time_update (EV_P) 1717 * on the choice of "4": one iteration isn't enough,
1209{ 1718 * in case we get preempted during the calls to
1210 int i; 1719 * ev_time and get_clock. a second call is almost guaranteed
1211 1720 * to succeed in that case, though. and looping a few more times
1212#if EV_USE_MONOTONIC 1721 * doesn't hurt either as we only do this on time-jumps or
1213 if (expect_true (have_monotonic)) 1722 * in the unlikely event of having been preempted here.
1214 { 1723 */
1215 if (time_update_monotonic (EV_A)) 1724 for (i = 4; --i; )
1216 { 1725 {
1217 ev_tstamp odiff = rtmn_diff;
1218
1219 /* loop a few times, before making important decisions.
1220 * on the choice of "4": one iteration isn't enough,
1221 * in case we get preempted during the calls to
1222 * ev_time and get_clock. a second call is almost guarenteed
1223 * to succeed in that case, though. and looping a few more times
1224 * doesn't hurt either as we only do this on time-jumps or
1225 * in the unlikely event of getting preempted here.
1226 */
1227 for (i = 4; --i; )
1228 {
1229 rtmn_diff = ev_rt_now - mn_now; 1726 rtmn_diff = ev_rt_now - mn_now;
1230 1727
1231 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1728 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1232 return; /* all is well */ 1729 return; /* all is well */
1233 1730
1234 ev_rt_now = ev_time (); 1731 ev_rt_now = ev_time ();
1235 mn_now = get_clock (); 1732 mn_now = get_clock ();
1236 now_floor = mn_now; 1733 now_floor = mn_now;
1237 } 1734 }
1238 1735
1239# if EV_PERIODIC_ENABLE 1736# if EV_PERIODIC_ENABLE
1240 periodics_reschedule (EV_A); 1737 periodics_reschedule (EV_A);
1241# endif 1738# endif
1242 /* no timer adjustment, as the monotonic clock doesn't jump */ 1739 /* no timer adjustment, as the monotonic clock doesn't jump */
1243 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1740 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1244 }
1245 } 1741 }
1246 else 1742 else
1247#endif 1743#endif
1248 { 1744 {
1249 ev_rt_now = ev_time (); 1745 ev_rt_now = ev_time ();
1250 1746
1251 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1747 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1252 { 1748 {
1253#if EV_PERIODIC_ENABLE 1749#if EV_PERIODIC_ENABLE
1254 periodics_reschedule (EV_A); 1750 periodics_reschedule (EV_A);
1255#endif 1751#endif
1256
1257 /* adjust timers. this is easy, as the offset is the same for all */ 1752 /* adjust timers. this is easy, as the offset is the same for all of them */
1258 for (i = 0; i < timercnt; ++i) 1753 for (i = 0; i < timercnt; ++i)
1754 {
1755 ANHE *he = timers + i + HEAP0;
1259 ((WT)timers [i])->at += ev_rt_now - mn_now; 1756 ANHE_w (*he)->at += ev_rt_now - mn_now;
1757 ANHE_at_set (*he);
1758 }
1260 } 1759 }
1261 1760
1262 mn_now = ev_rt_now; 1761 mn_now = ev_rt_now;
1263 } 1762 }
1264} 1763}
1278static int loop_done; 1777static int loop_done;
1279 1778
1280void 1779void
1281ev_loop (EV_P_ int flags) 1780ev_loop (EV_P_ int flags)
1282{ 1781{
1283 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1782 loop_done = EVUNLOOP_CANCEL;
1284 ? EVUNLOOP_ONE
1285 : EVUNLOOP_CANCEL;
1286 1783
1287 while (activecnt) 1784 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1785
1786 do
1288 { 1787 {
1289 /* we might have forked, so reify kernel state if necessary */ 1788#ifndef _WIN32
1789 if (expect_false (curpid)) /* penalise the forking check even more */
1790 if (expect_false (getpid () != curpid))
1791 {
1792 curpid = getpid ();
1793 postfork = 1;
1794 }
1795#endif
1796
1290 #if EV_FORK_ENABLE 1797#if EV_FORK_ENABLE
1798 /* we might have forked, so queue fork handlers */
1291 if (expect_false (postfork)) 1799 if (expect_false (postfork))
1292 if (forkcnt) 1800 if (forkcnt)
1293 { 1801 {
1294 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1802 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1295 call_pending (EV_A); 1803 call_pending (EV_A);
1296 } 1804 }
1297 #endif 1805#endif
1298 1806
1299 /* queue check watchers (and execute them) */ 1807 /* queue prepare watchers (and execute them) */
1300 if (expect_false (preparecnt)) 1808 if (expect_false (preparecnt))
1301 { 1809 {
1302 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1303 call_pending (EV_A); 1811 call_pending (EV_A);
1304 } 1812 }
1305 1813
1814 if (expect_false (!activecnt))
1815 break;
1816
1306 /* we might have forked, so reify kernel state if necessary */ 1817 /* we might have forked, so reify kernel state if necessary */
1307 if (expect_false (postfork)) 1818 if (expect_false (postfork))
1308 loop_fork (EV_A); 1819 loop_fork (EV_A);
1309 1820
1310 /* update fd-related kernel structures */ 1821 /* update fd-related kernel structures */
1311 fd_reify (EV_A); 1822 fd_reify (EV_A);
1312 1823
1313 /* calculate blocking time */ 1824 /* calculate blocking time */
1314 { 1825 {
1315 double block; 1826 ev_tstamp waittime = 0.;
1827 ev_tstamp sleeptime = 0.;
1316 1828
1317 if (flags & EVLOOP_NONBLOCK || idlecnt) 1829 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1318 block = 0.; /* do not block at all */
1319 else
1320 { 1830 {
1321 /* update time to cancel out callback processing overhead */ 1831 /* update time to cancel out callback processing overhead */
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 time_update_monotonic (EV_A); 1832 time_update (EV_A_ 1e100);
1325 else
1326#endif
1327 {
1328 ev_rt_now = ev_time ();
1329 mn_now = ev_rt_now;
1330 }
1331 1833
1332 block = MAX_BLOCKTIME; 1834 waittime = MAX_BLOCKTIME;
1333 1835
1334 if (timercnt) 1836 if (timercnt)
1335 { 1837 {
1336 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1838 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1337 if (block > to) block = to; 1839 if (waittime > to) waittime = to;
1338 } 1840 }
1339 1841
1340#if EV_PERIODIC_ENABLE 1842#if EV_PERIODIC_ENABLE
1341 if (periodiccnt) 1843 if (periodiccnt)
1342 { 1844 {
1343 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1845 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1344 if (block > to) block = to; 1846 if (waittime > to) waittime = to;
1345 } 1847 }
1346#endif 1848#endif
1347 1849
1348 if (expect_false (block < 0.)) block = 0.; 1850 if (expect_false (waittime < timeout_blocktime))
1851 waittime = timeout_blocktime;
1852
1853 sleeptime = waittime - backend_fudge;
1854
1855 if (expect_true (sleeptime > io_blocktime))
1856 sleeptime = io_blocktime;
1857
1858 if (sleeptime)
1859 {
1860 ev_sleep (sleeptime);
1861 waittime -= sleeptime;
1862 }
1349 } 1863 }
1350 1864
1865 ++loop_count;
1351 backend_poll (EV_A_ block); 1866 backend_poll (EV_A_ waittime);
1867
1868 /* update ev_rt_now, do magic */
1869 time_update (EV_A_ waittime + sleeptime);
1352 } 1870 }
1353
1354 /* update ev_rt_now, do magic */
1355 time_update (EV_A);
1356 1871
1357 /* queue pending timers and reschedule them */ 1872 /* queue pending timers and reschedule them */
1358 timers_reify (EV_A); /* relative timers called last */ 1873 timers_reify (EV_A); /* relative timers called last */
1359#if EV_PERIODIC_ENABLE 1874#if EV_PERIODIC_ENABLE
1360 periodics_reify (EV_A); /* absolute timers called first */ 1875 periodics_reify (EV_A); /* absolute timers called first */
1361#endif 1876#endif
1362 1877
1878#if EV_IDLE_ENABLE
1363 /* queue idle watchers unless other events are pending */ 1879 /* queue idle watchers unless other events are pending */
1364 if (idlecnt && !any_pending (EV_A)) 1880 idle_reify (EV_A);
1365 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1881#endif
1366 1882
1367 /* queue check watchers, to be executed first */ 1883 /* queue check watchers, to be executed first */
1368 if (expect_false (checkcnt)) 1884 if (expect_false (checkcnt))
1369 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1885 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1370 1886
1371 call_pending (EV_A); 1887 call_pending (EV_A);
1372
1373 if (expect_false (loop_done))
1374 break;
1375 } 1888 }
1889 while (expect_true (
1890 activecnt
1891 && !loop_done
1892 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1893 ));
1376 1894
1377 if (loop_done == EVUNLOOP_ONE) 1895 if (loop_done == EVUNLOOP_ONE)
1378 loop_done = EVUNLOOP_CANCEL; 1896 loop_done = EVUNLOOP_CANCEL;
1379} 1897}
1380 1898
1407 head = &(*head)->next; 1925 head = &(*head)->next;
1408 } 1926 }
1409} 1927}
1410 1928
1411void inline_speed 1929void inline_speed
1412ev_clear_pending (EV_P_ W w) 1930clear_pending (EV_P_ W w)
1413{ 1931{
1414 if (w->pending) 1932 if (w->pending)
1415 { 1933 {
1416 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1934 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1417 w->pending = 0; 1935 w->pending = 0;
1418 } 1936 }
1419} 1937}
1420 1938
1939int
1940ev_clear_pending (EV_P_ void *w)
1941{
1942 W w_ = (W)w;
1943 int pending = w_->pending;
1944
1945 if (expect_true (pending))
1946 {
1947 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1948 w_->pending = 0;
1949 p->w = 0;
1950 return p->events;
1951 }
1952 else
1953 return 0;
1954}
1955
1956void inline_size
1957pri_adjust (EV_P_ W w)
1958{
1959 int pri = w->priority;
1960 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1961 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1962 w->priority = pri;
1963}
1964
1421void inline_speed 1965void inline_speed
1422ev_start (EV_P_ W w, int active) 1966ev_start (EV_P_ W w, int active)
1423{ 1967{
1424 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1968 pri_adjust (EV_A_ w);
1425 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1426
1427 w->active = active; 1969 w->active = active;
1428 ev_ref (EV_A); 1970 ev_ref (EV_A);
1429} 1971}
1430 1972
1431void inline_size 1973void inline_size
1435 w->active = 0; 1977 w->active = 0;
1436} 1978}
1437 1979
1438/*****************************************************************************/ 1980/*****************************************************************************/
1439 1981
1440void 1982void noinline
1441ev_io_start (EV_P_ ev_io *w) 1983ev_io_start (EV_P_ ev_io *w)
1442{ 1984{
1443 int fd = w->fd; 1985 int fd = w->fd;
1444 1986
1445 if (expect_false (ev_is_active (w))) 1987 if (expect_false (ev_is_active (w)))
1447 1989
1448 assert (("ev_io_start called with negative fd", fd >= 0)); 1990 assert (("ev_io_start called with negative fd", fd >= 0));
1449 1991
1450 ev_start (EV_A_ (W)w, 1); 1992 ev_start (EV_A_ (W)w, 1);
1451 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1993 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1452 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1994 wlist_add (&anfds[fd].head, (WL)w);
1453 1995
1454 fd_change (EV_A_ fd); 1996 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1997 w->events &= ~EV_IOFDSET;
1455} 1998}
1456 1999
1457void 2000void noinline
1458ev_io_stop (EV_P_ ev_io *w) 2001ev_io_stop (EV_P_ ev_io *w)
1459{ 2002{
1460 ev_clear_pending (EV_A_ (W)w); 2003 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 2004 if (expect_false (!ev_is_active (w)))
1462 return; 2005 return;
1463 2006
1464 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2007 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1465 2008
1466 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2009 wlist_del (&anfds[w->fd].head, (WL)w);
1467 ev_stop (EV_A_ (W)w); 2010 ev_stop (EV_A_ (W)w);
1468 2011
1469 fd_change (EV_A_ w->fd); 2012 fd_change (EV_A_ w->fd, 1);
1470} 2013}
1471 2014
1472void 2015void noinline
1473ev_timer_start (EV_P_ ev_timer *w) 2016ev_timer_start (EV_P_ ev_timer *w)
1474{ 2017{
1475 if (expect_false (ev_is_active (w))) 2018 if (expect_false (ev_is_active (w)))
1476 return; 2019 return;
1477 2020
1478 ((WT)w)->at += mn_now; 2021 ev_at (w) += mn_now;
1479 2022
1480 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2023 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1481 2024
1482 ev_start (EV_A_ (W)w, ++timercnt); 2025 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1483 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2026 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1484 timers [timercnt - 1] = w; 2027 ANHE_w (timers [ev_active (w)]) = (WT)w;
1485 upheap ((WT *)timers, timercnt - 1); 2028 ANHE_at_set (timers [ev_active (w)]);
2029 upheap (timers, ev_active (w));
1486 2030
1487 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2031 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1488} 2032}
1489 2033
1490void 2034void noinline
1491ev_timer_stop (EV_P_ ev_timer *w) 2035ev_timer_stop (EV_P_ ev_timer *w)
1492{ 2036{
1493 ev_clear_pending (EV_A_ (W)w); 2037 clear_pending (EV_A_ (W)w);
1494 if (expect_false (!ev_is_active (w))) 2038 if (expect_false (!ev_is_active (w)))
1495 return; 2039 return;
1496 2040
1497 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1498
1499 { 2041 {
1500 int active = ((W)w)->active; 2042 int active = ev_active (w);
1501 2043
2044 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2045
1502 if (expect_true (--active < --timercnt)) 2046 if (expect_true (active < timercnt + HEAP0 - 1))
1503 { 2047 {
1504 timers [active] = timers [timercnt]; 2048 timers [active] = timers [timercnt + HEAP0 - 1];
1505 adjustheap ((WT *)timers, timercnt, active); 2049 adjustheap (timers, timercnt, active);
1506 } 2050 }
2051
2052 --timercnt;
1507 } 2053 }
1508 2054
1509 ((WT)w)->at -= mn_now; 2055 ev_at (w) -= mn_now;
1510 2056
1511 ev_stop (EV_A_ (W)w); 2057 ev_stop (EV_A_ (W)w);
1512} 2058}
1513 2059
1514void 2060void noinline
1515ev_timer_again (EV_P_ ev_timer *w) 2061ev_timer_again (EV_P_ ev_timer *w)
1516{ 2062{
1517 if (ev_is_active (w)) 2063 if (ev_is_active (w))
1518 { 2064 {
1519 if (w->repeat) 2065 if (w->repeat)
1520 { 2066 {
1521 ((WT)w)->at = mn_now + w->repeat; 2067 ev_at (w) = mn_now + w->repeat;
2068 ANHE_at_set (timers [ev_active (w)]);
1522 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2069 adjustheap (timers, timercnt, ev_active (w));
1523 } 2070 }
1524 else 2071 else
1525 ev_timer_stop (EV_A_ w); 2072 ev_timer_stop (EV_A_ w);
1526 } 2073 }
1527 else if (w->repeat) 2074 else if (w->repeat)
1528 { 2075 {
1529 w->at = w->repeat; 2076 ev_at (w) = w->repeat;
1530 ev_timer_start (EV_A_ w); 2077 ev_timer_start (EV_A_ w);
1531 } 2078 }
1532} 2079}
1533 2080
1534#if EV_PERIODIC_ENABLE 2081#if EV_PERIODIC_ENABLE
1535void 2082void noinline
1536ev_periodic_start (EV_P_ ev_periodic *w) 2083ev_periodic_start (EV_P_ ev_periodic *w)
1537{ 2084{
1538 if (expect_false (ev_is_active (w))) 2085 if (expect_false (ev_is_active (w)))
1539 return; 2086 return;
1540 2087
1541 if (w->reschedule_cb) 2088 if (w->reschedule_cb)
1542 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1543 else if (w->interval) 2090 else if (w->interval)
1544 { 2091 {
1545 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2092 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1546 /* this formula differs from the one in periodic_reify because we do not always round up */ 2093 /* this formula differs from the one in periodic_reify because we do not always round up */
1547 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1548 } 2095 }
2096 else
2097 ev_at (w) = w->offset;
1549 2098
1550 ev_start (EV_A_ (W)w, ++periodiccnt); 2099 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1551 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2100 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1552 periodics [periodiccnt - 1] = w; 2101 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1553 upheap ((WT *)periodics, periodiccnt - 1); 2102 ANHE_at_set (periodics [ev_active (w)]);
2103 upheap (periodics, ev_active (w));
1554 2104
1555 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2105 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1556} 2106}
1557 2107
1558void 2108void noinline
1559ev_periodic_stop (EV_P_ ev_periodic *w) 2109ev_periodic_stop (EV_P_ ev_periodic *w)
1560{ 2110{
1561 ev_clear_pending (EV_A_ (W)w); 2111 clear_pending (EV_A_ (W)w);
1562 if (expect_false (!ev_is_active (w))) 2112 if (expect_false (!ev_is_active (w)))
1563 return; 2113 return;
1564 2114
1565 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1566
1567 { 2115 {
1568 int active = ((W)w)->active; 2116 int active = ev_active (w);
1569 2117
2118 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2119
1570 if (expect_true (--active < --periodiccnt)) 2120 if (expect_true (active < periodiccnt + HEAP0 - 1))
1571 { 2121 {
1572 periodics [active] = periodics [periodiccnt]; 2122 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1573 adjustheap ((WT *)periodics, periodiccnt, active); 2123 adjustheap (periodics, periodiccnt, active);
1574 } 2124 }
2125
2126 --periodiccnt;
1575 } 2127 }
1576 2128
1577 ev_stop (EV_A_ (W)w); 2129 ev_stop (EV_A_ (W)w);
1578} 2130}
1579 2131
1580void 2132void noinline
1581ev_periodic_again (EV_P_ ev_periodic *w) 2133ev_periodic_again (EV_P_ ev_periodic *w)
1582{ 2134{
1583 /* TODO: use adjustheap and recalculation */ 2135 /* TODO: use adjustheap and recalculation */
1584 ev_periodic_stop (EV_A_ w); 2136 ev_periodic_stop (EV_A_ w);
1585 ev_periodic_start (EV_A_ w); 2137 ev_periodic_start (EV_A_ w);
1588 2140
1589#ifndef SA_RESTART 2141#ifndef SA_RESTART
1590# define SA_RESTART 0 2142# define SA_RESTART 0
1591#endif 2143#endif
1592 2144
1593void 2145void noinline
1594ev_signal_start (EV_P_ ev_signal *w) 2146ev_signal_start (EV_P_ ev_signal *w)
1595{ 2147{
1596#if EV_MULTIPLICITY 2148#if EV_MULTIPLICITY
1597 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2149 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1598#endif 2150#endif
1599 if (expect_false (ev_is_active (w))) 2151 if (expect_false (ev_is_active (w)))
1600 return; 2152 return;
1601 2153
1602 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2154 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1603 2155
2156 evpipe_init (EV_A);
2157
2158 {
2159#ifndef _WIN32
2160 sigset_t full, prev;
2161 sigfillset (&full);
2162 sigprocmask (SIG_SETMASK, &full, &prev);
2163#endif
2164
2165 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2166
2167#ifndef _WIN32
2168 sigprocmask (SIG_SETMASK, &prev, 0);
2169#endif
2170 }
2171
1604 ev_start (EV_A_ (W)w, 1); 2172 ev_start (EV_A_ (W)w, 1);
1605 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1606 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2173 wlist_add (&signals [w->signum - 1].head, (WL)w);
1607 2174
1608 if (!((WL)w)->next) 2175 if (!((WL)w)->next)
1609 { 2176 {
1610#if _WIN32 2177#if _WIN32
1611 signal (w->signum, sighandler); 2178 signal (w->signum, ev_sighandler);
1612#else 2179#else
1613 struct sigaction sa; 2180 struct sigaction sa;
1614 sa.sa_handler = sighandler; 2181 sa.sa_handler = ev_sighandler;
1615 sigfillset (&sa.sa_mask); 2182 sigfillset (&sa.sa_mask);
1616 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2183 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1617 sigaction (w->signum, &sa, 0); 2184 sigaction (w->signum, &sa, 0);
1618#endif 2185#endif
1619 } 2186 }
1620} 2187}
1621 2188
1622void 2189void noinline
1623ev_signal_stop (EV_P_ ev_signal *w) 2190ev_signal_stop (EV_P_ ev_signal *w)
1624{ 2191{
1625 ev_clear_pending (EV_A_ (W)w); 2192 clear_pending (EV_A_ (W)w);
1626 if (expect_false (!ev_is_active (w))) 2193 if (expect_false (!ev_is_active (w)))
1627 return; 2194 return;
1628 2195
1629 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2196 wlist_del (&signals [w->signum - 1].head, (WL)w);
1630 ev_stop (EV_A_ (W)w); 2197 ev_stop (EV_A_ (W)w);
1631 2198
1632 if (!signals [w->signum - 1].head) 2199 if (!signals [w->signum - 1].head)
1633 signal (w->signum, SIG_DFL); 2200 signal (w->signum, SIG_DFL);
1634} 2201}
1641#endif 2208#endif
1642 if (expect_false (ev_is_active (w))) 2209 if (expect_false (ev_is_active (w)))
1643 return; 2210 return;
1644 2211
1645 ev_start (EV_A_ (W)w, 1); 2212 ev_start (EV_A_ (W)w, 1);
1646 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2213 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1647} 2214}
1648 2215
1649void 2216void
1650ev_child_stop (EV_P_ ev_child *w) 2217ev_child_stop (EV_P_ ev_child *w)
1651{ 2218{
1652 ev_clear_pending (EV_A_ (W)w); 2219 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 2220 if (expect_false (!ev_is_active (w)))
1654 return; 2221 return;
1655 2222
1656 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2223 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1657 ev_stop (EV_A_ (W)w); 2224 ev_stop (EV_A_ (W)w);
1658} 2225}
1659 2226
1660#if EV_STAT_ENABLE 2227#if EV_STAT_ENABLE
1661 2228
1665# endif 2232# endif
1666 2233
1667#define DEF_STAT_INTERVAL 5.0074891 2234#define DEF_STAT_INTERVAL 5.0074891
1668#define MIN_STAT_INTERVAL 0.1074891 2235#define MIN_STAT_INTERVAL 0.1074891
1669 2236
2237static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2238
2239#if EV_USE_INOTIFY
2240# define EV_INOTIFY_BUFSIZE 8192
2241
2242static void noinline
2243infy_add (EV_P_ ev_stat *w)
2244{
2245 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2246
2247 if (w->wd < 0)
2248 {
2249 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2250
2251 /* monitor some parent directory for speedup hints */
2252 /* note that exceeding the hardcoded limit is not a correctness issue, */
2253 /* but an efficiency issue only */
2254 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2255 {
2256 char path [4096];
2257 strcpy (path, w->path);
2258
2259 do
2260 {
2261 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2262 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2263
2264 char *pend = strrchr (path, '/');
2265
2266 if (!pend)
2267 break; /* whoops, no '/', complain to your admin */
2268
2269 *pend = 0;
2270 w->wd = inotify_add_watch (fs_fd, path, mask);
2271 }
2272 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2273 }
2274 }
2275 else
2276 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2277
2278 if (w->wd >= 0)
2279 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2280}
2281
2282static void noinline
2283infy_del (EV_P_ ev_stat *w)
2284{
2285 int slot;
2286 int wd = w->wd;
2287
2288 if (wd < 0)
2289 return;
2290
2291 w->wd = -2;
2292 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2293 wlist_del (&fs_hash [slot].head, (WL)w);
2294
2295 /* remove this watcher, if others are watching it, they will rearm */
2296 inotify_rm_watch (fs_fd, wd);
2297}
2298
2299static void noinline
2300infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2301{
2302 if (slot < 0)
2303 /* overflow, need to check for all hahs slots */
2304 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2305 infy_wd (EV_A_ slot, wd, ev);
2306 else
2307 {
2308 WL w_;
2309
2310 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2311 {
2312 ev_stat *w = (ev_stat *)w_;
2313 w_ = w_->next; /* lets us remove this watcher and all before it */
2314
2315 if (w->wd == wd || wd == -1)
2316 {
2317 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2318 {
2319 w->wd = -1;
2320 infy_add (EV_A_ w); /* re-add, no matter what */
2321 }
2322
2323 stat_timer_cb (EV_A_ &w->timer, 0);
2324 }
2325 }
2326 }
2327}
2328
2329static void
2330infy_cb (EV_P_ ev_io *w, int revents)
2331{
2332 char buf [EV_INOTIFY_BUFSIZE];
2333 struct inotify_event *ev = (struct inotify_event *)buf;
2334 int ofs;
2335 int len = read (fs_fd, buf, sizeof (buf));
2336
2337 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2338 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2339}
2340
2341void inline_size
2342infy_init (EV_P)
2343{
2344 if (fs_fd != -2)
2345 return;
2346
2347 fs_fd = inotify_init ();
2348
2349 if (fs_fd >= 0)
2350 {
2351 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2352 ev_set_priority (&fs_w, EV_MAXPRI);
2353 ev_io_start (EV_A_ &fs_w);
2354 }
2355}
2356
2357void inline_size
2358infy_fork (EV_P)
2359{
2360 int slot;
2361
2362 if (fs_fd < 0)
2363 return;
2364
2365 close (fs_fd);
2366 fs_fd = inotify_init ();
2367
2368 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2369 {
2370 WL w_ = fs_hash [slot].head;
2371 fs_hash [slot].head = 0;
2372
2373 while (w_)
2374 {
2375 ev_stat *w = (ev_stat *)w_;
2376 w_ = w_->next; /* lets us add this watcher */
2377
2378 w->wd = -1;
2379
2380 if (fs_fd >= 0)
2381 infy_add (EV_A_ w); /* re-add, no matter what */
2382 else
2383 ev_timer_start (EV_A_ &w->timer);
2384 }
2385
2386 }
2387}
2388
2389#endif
2390
1670void 2391void
1671ev_stat_stat (EV_P_ ev_stat *w) 2392ev_stat_stat (EV_P_ ev_stat *w)
1672{ 2393{
1673 if (lstat (w->path, &w->attr) < 0) 2394 if (lstat (w->path, &w->attr) < 0)
1674 w->attr.st_nlink = 0; 2395 w->attr.st_nlink = 0;
1675 else if (!w->attr.st_nlink) 2396 else if (!w->attr.st_nlink)
1676 w->attr.st_nlink = 1; 2397 w->attr.st_nlink = 1;
1677} 2398}
1678 2399
1679static void 2400static void noinline
1680stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2401stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1681{ 2402{
1682 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2403 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1683 2404
1684 /* we copy this here each the time so that */ 2405 /* we copy this here each the time so that */
1685 /* prev has the old value when the callback gets invoked */ 2406 /* prev has the old value when the callback gets invoked */
1686 w->prev = w->attr; 2407 w->prev = w->attr;
1687 ev_stat_stat (EV_A_ w); 2408 ev_stat_stat (EV_A_ w);
1688 2409
1689 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2410 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2411 if (
2412 w->prev.st_dev != w->attr.st_dev
2413 || w->prev.st_ino != w->attr.st_ino
2414 || w->prev.st_mode != w->attr.st_mode
2415 || w->prev.st_nlink != w->attr.st_nlink
2416 || w->prev.st_uid != w->attr.st_uid
2417 || w->prev.st_gid != w->attr.st_gid
2418 || w->prev.st_rdev != w->attr.st_rdev
2419 || w->prev.st_size != w->attr.st_size
2420 || w->prev.st_atime != w->attr.st_atime
2421 || w->prev.st_mtime != w->attr.st_mtime
2422 || w->prev.st_ctime != w->attr.st_ctime
2423 ) {
2424 #if EV_USE_INOTIFY
2425 infy_del (EV_A_ w);
2426 infy_add (EV_A_ w);
2427 ev_stat_stat (EV_A_ w); /* avoid race... */
2428 #endif
2429
1690 ev_feed_event (EV_A_ w, EV_STAT); 2430 ev_feed_event (EV_A_ w, EV_STAT);
2431 }
1691} 2432}
1692 2433
1693void 2434void
1694ev_stat_start (EV_P_ ev_stat *w) 2435ev_stat_start (EV_P_ ev_stat *w)
1695{ 2436{
1705 if (w->interval < MIN_STAT_INTERVAL) 2446 if (w->interval < MIN_STAT_INTERVAL)
1706 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL; 2447 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1707 2448
1708 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2449 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1709 ev_set_priority (&w->timer, ev_priority (w)); 2450 ev_set_priority (&w->timer, ev_priority (w));
2451
2452#if EV_USE_INOTIFY
2453 infy_init (EV_A);
2454
2455 if (fs_fd >= 0)
2456 infy_add (EV_A_ w);
2457 else
2458#endif
1710 ev_timer_start (EV_A_ &w->timer); 2459 ev_timer_start (EV_A_ &w->timer);
1711 2460
1712 ev_start (EV_A_ (W)w, 1); 2461 ev_start (EV_A_ (W)w, 1);
1713} 2462}
1714 2463
1715void 2464void
1716ev_stat_stop (EV_P_ ev_stat *w) 2465ev_stat_stop (EV_P_ ev_stat *w)
1717{ 2466{
1718 ev_clear_pending (EV_A_ (W)w); 2467 clear_pending (EV_A_ (W)w);
1719 if (expect_false (!ev_is_active (w))) 2468 if (expect_false (!ev_is_active (w)))
1720 return; 2469 return;
1721 2470
2471#if EV_USE_INOTIFY
2472 infy_del (EV_A_ w);
2473#endif
1722 ev_timer_stop (EV_A_ &w->timer); 2474 ev_timer_stop (EV_A_ &w->timer);
1723 2475
1724 ev_stop (EV_A_ (W)w); 2476 ev_stop (EV_A_ (W)w);
1725} 2477}
1726#endif 2478#endif
1727 2479
2480#if EV_IDLE_ENABLE
1728void 2481void
1729ev_idle_start (EV_P_ ev_idle *w) 2482ev_idle_start (EV_P_ ev_idle *w)
1730{ 2483{
1731 if (expect_false (ev_is_active (w))) 2484 if (expect_false (ev_is_active (w)))
1732 return; 2485 return;
1733 2486
2487 pri_adjust (EV_A_ (W)w);
2488
2489 {
2490 int active = ++idlecnt [ABSPRI (w)];
2491
2492 ++idleall;
1734 ev_start (EV_A_ (W)w, ++idlecnt); 2493 ev_start (EV_A_ (W)w, active);
2494
1735 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2495 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1736 idles [idlecnt - 1] = w; 2496 idles [ABSPRI (w)][active - 1] = w;
2497 }
1737} 2498}
1738 2499
1739void 2500void
1740ev_idle_stop (EV_P_ ev_idle *w) 2501ev_idle_stop (EV_P_ ev_idle *w)
1741{ 2502{
1742 ev_clear_pending (EV_A_ (W)w); 2503 clear_pending (EV_A_ (W)w);
1743 if (expect_false (!ev_is_active (w))) 2504 if (expect_false (!ev_is_active (w)))
1744 return; 2505 return;
1745 2506
1746 { 2507 {
1747 int active = ((W)w)->active; 2508 int active = ev_active (w);
1748 idles [active - 1] = idles [--idlecnt]; 2509
1749 ((W)idles [active - 1])->active = active; 2510 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2511 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2512
2513 ev_stop (EV_A_ (W)w);
2514 --idleall;
1750 } 2515 }
1751
1752 ev_stop (EV_A_ (W)w);
1753} 2516}
2517#endif
1754 2518
1755void 2519void
1756ev_prepare_start (EV_P_ ev_prepare *w) 2520ev_prepare_start (EV_P_ ev_prepare *w)
1757{ 2521{
1758 if (expect_false (ev_is_active (w))) 2522 if (expect_false (ev_is_active (w)))
1764} 2528}
1765 2529
1766void 2530void
1767ev_prepare_stop (EV_P_ ev_prepare *w) 2531ev_prepare_stop (EV_P_ ev_prepare *w)
1768{ 2532{
1769 ev_clear_pending (EV_A_ (W)w); 2533 clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w))) 2534 if (expect_false (!ev_is_active (w)))
1771 return; 2535 return;
1772 2536
1773 { 2537 {
1774 int active = ((W)w)->active; 2538 int active = ev_active (w);
2539
1775 prepares [active - 1] = prepares [--preparecnt]; 2540 prepares [active - 1] = prepares [--preparecnt];
1776 ((W)prepares [active - 1])->active = active; 2541 ev_active (prepares [active - 1]) = active;
1777 } 2542 }
1778 2543
1779 ev_stop (EV_A_ (W)w); 2544 ev_stop (EV_A_ (W)w);
1780} 2545}
1781 2546
1791} 2556}
1792 2557
1793void 2558void
1794ev_check_stop (EV_P_ ev_check *w) 2559ev_check_stop (EV_P_ ev_check *w)
1795{ 2560{
1796 ev_clear_pending (EV_A_ (W)w); 2561 clear_pending (EV_A_ (W)w);
1797 if (expect_false (!ev_is_active (w))) 2562 if (expect_false (!ev_is_active (w)))
1798 return; 2563 return;
1799 2564
1800 { 2565 {
1801 int active = ((W)w)->active; 2566 int active = ev_active (w);
2567
1802 checks [active - 1] = checks [--checkcnt]; 2568 checks [active - 1] = checks [--checkcnt];
1803 ((W)checks [active - 1])->active = active; 2569 ev_active (checks [active - 1]) = active;
1804 } 2570 }
1805 2571
1806 ev_stop (EV_A_ (W)w); 2572 ev_stop (EV_A_ (W)w);
1807} 2573}
1808 2574
1809#if EV_EMBED_ENABLE 2575#if EV_EMBED_ENABLE
1810void noinline 2576void noinline
1811ev_embed_sweep (EV_P_ ev_embed *w) 2577ev_embed_sweep (EV_P_ ev_embed *w)
1812{ 2578{
1813 ev_loop (w->loop, EVLOOP_NONBLOCK); 2579 ev_loop (w->other, EVLOOP_NONBLOCK);
1814} 2580}
1815 2581
1816static void 2582static void
1817embed_cb (EV_P_ ev_io *io, int revents) 2583embed_io_cb (EV_P_ ev_io *io, int revents)
1818{ 2584{
1819 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2585 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1820 2586
1821 if (ev_cb (w)) 2587 if (ev_cb (w))
1822 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2588 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1823 else 2589 else
1824 ev_embed_sweep (loop, w); 2590 ev_loop (w->other, EVLOOP_NONBLOCK);
1825} 2591}
2592
2593static void
2594embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2595{
2596 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2597
2598 {
2599 struct ev_loop *loop = w->other;
2600
2601 while (fdchangecnt)
2602 {
2603 fd_reify (EV_A);
2604 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2605 }
2606 }
2607}
2608
2609#if 0
2610static void
2611embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2612{
2613 ev_idle_stop (EV_A_ idle);
2614}
2615#endif
1826 2616
1827void 2617void
1828ev_embed_start (EV_P_ ev_embed *w) 2618ev_embed_start (EV_P_ ev_embed *w)
1829{ 2619{
1830 if (expect_false (ev_is_active (w))) 2620 if (expect_false (ev_is_active (w)))
1831 return; 2621 return;
1832 2622
1833 { 2623 {
1834 struct ev_loop *loop = w->loop; 2624 struct ev_loop *loop = w->other;
1835 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2625 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1836 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2626 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1837 } 2627 }
1838 2628
1839 ev_set_priority (&w->io, ev_priority (w)); 2629 ev_set_priority (&w->io, ev_priority (w));
1840 ev_io_start (EV_A_ &w->io); 2630 ev_io_start (EV_A_ &w->io);
1841 2631
2632 ev_prepare_init (&w->prepare, embed_prepare_cb);
2633 ev_set_priority (&w->prepare, EV_MINPRI);
2634 ev_prepare_start (EV_A_ &w->prepare);
2635
2636 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2637
1842 ev_start (EV_A_ (W)w, 1); 2638 ev_start (EV_A_ (W)w, 1);
1843} 2639}
1844 2640
1845void 2641void
1846ev_embed_stop (EV_P_ ev_embed *w) 2642ev_embed_stop (EV_P_ ev_embed *w)
1847{ 2643{
1848 ev_clear_pending (EV_A_ (W)w); 2644 clear_pending (EV_A_ (W)w);
1849 if (expect_false (!ev_is_active (w))) 2645 if (expect_false (!ev_is_active (w)))
1850 return; 2646 return;
1851 2647
1852 ev_io_stop (EV_A_ &w->io); 2648 ev_io_stop (EV_A_ &w->io);
2649 ev_prepare_stop (EV_A_ &w->prepare);
1853 2650
1854 ev_stop (EV_A_ (W)w); 2651 ev_stop (EV_A_ (W)w);
1855} 2652}
1856#endif 2653#endif
1857 2654
1868} 2665}
1869 2666
1870void 2667void
1871ev_fork_stop (EV_P_ ev_fork *w) 2668ev_fork_stop (EV_P_ ev_fork *w)
1872{ 2669{
1873 ev_clear_pending (EV_A_ (W)w); 2670 clear_pending (EV_A_ (W)w);
1874 if (expect_false (!ev_is_active (w))) 2671 if (expect_false (!ev_is_active (w)))
1875 return; 2672 return;
1876 2673
1877 { 2674 {
1878 int active = ((W)w)->active; 2675 int active = ev_active (w);
2676
1879 forks [active - 1] = forks [--forkcnt]; 2677 forks [active - 1] = forks [--forkcnt];
1880 ((W)forks [active - 1])->active = active; 2678 ev_active (forks [active - 1]) = active;
1881 } 2679 }
1882 2680
1883 ev_stop (EV_A_ (W)w); 2681 ev_stop (EV_A_ (W)w);
2682}
2683#endif
2684
2685#if EV_ASYNC_ENABLE
2686void
2687ev_async_start (EV_P_ ev_async *w)
2688{
2689 if (expect_false (ev_is_active (w)))
2690 return;
2691
2692 evpipe_init (EV_A);
2693
2694 ev_start (EV_A_ (W)w, ++asynccnt);
2695 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2696 asyncs [asynccnt - 1] = w;
2697}
2698
2699void
2700ev_async_stop (EV_P_ ev_async *w)
2701{
2702 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w)))
2704 return;
2705
2706 {
2707 int active = ev_active (w);
2708
2709 asyncs [active - 1] = asyncs [--asynccnt];
2710 ev_active (asyncs [active - 1]) = active;
2711 }
2712
2713 ev_stop (EV_A_ (W)w);
2714}
2715
2716void
2717ev_async_send (EV_P_ ev_async *w)
2718{
2719 w->sent = 1;
2720 evpipe_write (EV_A_ &gotasync);
1884} 2721}
1885#endif 2722#endif
1886 2723
1887/*****************************************************************************/ 2724/*****************************************************************************/
1888 2725
1946 ev_timer_set (&once->to, timeout, 0.); 2783 ev_timer_set (&once->to, timeout, 0.);
1947 ev_timer_start (EV_A_ &once->to); 2784 ev_timer_start (EV_A_ &once->to);
1948 } 2785 }
1949} 2786}
1950 2787
2788#if EV_MULTIPLICITY
2789 #include "ev_wrap.h"
2790#endif
2791
1951#ifdef __cplusplus 2792#ifdef __cplusplus
1952} 2793}
1953#endif 2794#endif
1954 2795

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines