ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.151 by root, Tue Nov 27 19:59:08 2007 UTC vs.
Revision 1.481 by root, Thu Jun 1 20:25:50 2017 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
99#endif 145# endif
100 146
101#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
102#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
103#include <fcntl.h> 169#include <fcntl.h>
104#include <stddef.h> 170#include <stddef.h>
105 171
106#include <stdio.h> 172#include <stdio.h>
107 173
108#include <assert.h> 174#include <assert.h>
109#include <errno.h> 175#include <errno.h>
110#include <sys/types.h> 176#include <sys/types.h>
111#include <time.h> 177#include <time.h>
178#include <limits.h>
112 179
113#include <signal.h> 180#include <signal.h>
181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
114 198
115#ifndef _WIN32 199#ifndef _WIN32
116# include <sys/time.h> 200# include <sys/time.h>
117# include <sys/wait.h> 201# include <sys/wait.h>
118# include <unistd.h> 202# include <unistd.h>
119#else 203#else
204# include <io.h>
120# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
121# include <windows.h> 207# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
124# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
125#endif 258# endif
259#endif
126 260
127/**/ 261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
128 269
129#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272# define EV_USE_MONOTONIC EV_FEATURE_OS
273# else
130# define EV_USE_MONOTONIC 0 274# define EV_USE_MONOTONIC 0
275# endif
131#endif 276#endif
132 277
133#ifndef EV_USE_REALTIME 278#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280#endif
281
282#ifndef EV_USE_NANOSLEEP
283# if _POSIX_C_SOURCE >= 199309L
284# define EV_USE_NANOSLEEP EV_FEATURE_OS
285# else
286# define EV_USE_NANOSLEEP 0
287# endif
135#endif 288#endif
136 289
137#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
139#endif 292#endif
140 293
141#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
142# ifdef _WIN32 295# ifdef _WIN32
143# define EV_USE_POLL 0 296# define EV_USE_POLL 0
144# else 297# else
145# define EV_USE_POLL 1 298# define EV_USE_POLL EV_FEATURE_BACKENDS
146# endif 299# endif
147#endif 300#endif
148 301
149#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
305# else
150# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
307# endif
151#endif 308#endif
152 309
153#ifndef EV_USE_KQUEUE 310#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 311# define EV_USE_KQUEUE 0
155#endif 312#endif
156 313
157#ifndef EV_USE_PORT 314#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 315# define EV_USE_PORT 0
159#endif 316#endif
160 317
318#ifndef EV_USE_INOTIFY
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320# define EV_USE_INOTIFY EV_FEATURE_OS
321# else
322# define EV_USE_INOTIFY 0
323# endif
324#endif
325
161#ifndef EV_PID_HASHSIZE 326#ifndef EV_PID_HASHSIZE
162# if EV_MINIMAL 327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
163# define EV_PID_HASHSIZE 1 328#endif
329
330#ifndef EV_INOTIFY_HASHSIZE
331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332#endif
333
334#ifndef EV_USE_EVENTFD
335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336# define EV_USE_EVENTFD EV_FEATURE_OS
164# else 337# else
165# define EV_PID_HASHSIZE 16 338# define EV_USE_EVENTFD 0
166# endif 339# endif
167#endif 340#endif
168 341
169/**/ 342#ifndef EV_USE_SIGNALFD
343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344# define EV_USE_SIGNALFD EV_FEATURE_OS
345# else
346# define EV_USE_SIGNALFD 0
347# endif
348#endif
349
350#if 0 /* debugging */
351# define EV_VERIFY 3
352# define EV_USE_4HEAP 1
353# define EV_HEAP_CACHE_AT 1
354#endif
355
356#ifndef EV_VERIFY
357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358#endif
359
360#ifndef EV_USE_4HEAP
361# define EV_USE_4HEAP EV_FEATURE_DATA
362#endif
363
364#ifndef EV_HEAP_CACHE_AT
365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef __ANDROID__
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
396#endif
397
398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
170 399
171#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
172# undef EV_USE_MONOTONIC 401# undef EV_USE_MONOTONIC
173# define EV_USE_MONOTONIC 0 402# define EV_USE_MONOTONIC 0
174#endif 403#endif
176#ifndef CLOCK_REALTIME 405#ifndef CLOCK_REALTIME
177# undef EV_USE_REALTIME 406# undef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 407# define EV_USE_REALTIME 0
179#endif 408#endif
180 409
181#if EV_SELECT_IS_WINSOCKET 410#if !EV_STAT_ENABLE
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413#endif
414
415#if !EV_USE_NANOSLEEP
416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
418# include <sys/select.h>
419# endif
420#endif
421
422#if EV_USE_INOTIFY
423# include <sys/statfs.h>
424# include <sys/inotify.h>
425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426# ifndef IN_DONT_FOLLOW
427# undef EV_USE_INOTIFY
428# define EV_USE_INOTIFY 0
429# endif
430#endif
431
432#if EV_USE_EVENTFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
182# include <winsock.h> 434# include <stdint.h>
435# ifndef EFD_NONBLOCK
436# define EFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef EFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
183#endif 468#endif
184 469
185/**/ 470/**/
471
472#if EV_VERIFY >= 3
473# define EV_FREQUENT_CHECK ev_verify (EV_A)
474#else
475# define EV_FREQUENT_CHECK do { } while (0)
476#endif
477
478/*
479 * This is used to work around floating point rounding problems.
480 * This value is good at least till the year 4000.
481 */
482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
186 484
187#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
188#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
189/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
190 487
488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
191#ifdef EV_H 533#ifndef ECB_H
192# include EV_H 534#define ECB_H
193#else 535
194# include "ev.h" 536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010005
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
546 #if __GNUC__
547 typedef signed long long int64_t;
548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
195#endif 552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
562#else
563 #include <inttypes.h>
564 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
565 #define ECB_PTRSIZE 8
566 #else
567 #define ECB_PTRSIZE 4
568 #endif
569#endif
196 570
197#if __GNUC__ >= 3 571#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573
574/* work around x32 idiocy by defining proper macros */
575#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 #if _ILP32
577 #define ECB_AMD64_X32 1
578 #else
579 #define ECB_AMD64 1
580 #endif
581#endif
582
583/* many compilers define _GNUC_ to some versions but then only implement
584 * what their idiot authors think are the "more important" extensions,
585 * causing enormous grief in return for some better fake benchmark numbers.
586 * or so.
587 * we try to detect these and simply assume they are not gcc - if they have
588 * an issue with that they should have done it right in the first place.
589 */
590#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591 #define ECB_GCC_VERSION(major,minor) 0
592#else
593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594#endif
595
596#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597
598#if __clang__ && defined __has_builtin
599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600#else
601 #define ECB_CLANG_BUILTIN(x) 0
602#endif
603
604#if __clang__ && defined __has_extension
605 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606#else
607 #define ECB_CLANG_EXTENSION(x) 0
608#endif
609
610#define ECB_CPP (__cplusplus+0)
611#define ECB_CPP11 (__cplusplus >= 201103L)
612
613#if ECB_CPP
614 #define ECB_C 0
615 #define ECB_STDC_VERSION 0
616#else
617 #define ECB_C 1
618 #define ECB_STDC_VERSION __STDC_VERSION__
619#endif
620
621#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623
624#if ECB_CPP
625 #define ECB_EXTERN_C extern "C"
626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627 #define ECB_EXTERN_C_END }
628#else
629 #define ECB_EXTERN_C extern
630 #define ECB_EXTERN_C_BEG
631 #define ECB_EXTERN_C_END
632#endif
633
634/*****************************************************************************/
635
636/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638
639#if ECB_NO_THREADS
640 #define ECB_NO_SMP 1
641#endif
642
643#if ECB_NO_SMP
644 #define ECB_MEMORY_FENCE do { } while (0)
645#endif
646
647/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648#if __xlC__ && ECB_CPP
649 #include <builtins.h>
650#endif
651
652#if 1400 <= _MSC_VER
653 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
654#endif
655
656#ifndef ECB_MEMORY_FENCE
657 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
658 #if __i386 || __i386__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
660 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
661 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662 #elif ECB_GCC_AMD64
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
664 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
665 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
666 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
667 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
668 #elif defined __ARM_ARCH_2__ \
669 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
670 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
671 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
672 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
673 || defined __ARM_ARCH_5TEJ__
674 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
675 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
676 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
677 || defined __ARM_ARCH_6T2__
678 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
679 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
680 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
681 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
682 #elif __aarch64__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
684 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
686 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
687 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
688 #elif defined __s390__ || defined __s390x__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
690 #elif defined __mips__
691 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
692 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
693 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
694 #elif defined __alpha__
695 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
696 #elif defined __hppa__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
698 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
699 #elif defined __ia64__
700 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
701 #elif defined __m68k__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
703 #elif defined __m88k__
704 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
705 #elif defined __sh__
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
707 #endif
708 #endif
709#endif
710
711#ifndef ECB_MEMORY_FENCE
712 #if ECB_GCC_VERSION(4,7)
713 /* see comment below (stdatomic.h) about the C11 memory model. */
714 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
715 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
716 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
717
718 #elif ECB_CLANG_EXTENSION(c_atomic)
719 /* see comment below (stdatomic.h) about the C11 memory model. */
720 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
721 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
722 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
723
724 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
725 #define ECB_MEMORY_FENCE __sync_synchronize ()
726 #elif _MSC_VER >= 1500 /* VC++ 2008 */
727 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
728 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
729 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
730 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
731 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
732 #elif _MSC_VER >= 1400 /* VC++ 2005 */
733 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
734 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
735 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
736 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
737 #elif defined _WIN32
738 #include <WinNT.h>
739 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
740 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
741 #include <mbarrier.h>
742 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
743 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
744 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
745 #elif __xlC__
746 #define ECB_MEMORY_FENCE __sync ()
747 #endif
748#endif
749
750#ifndef ECB_MEMORY_FENCE
751 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
752 /* we assume that these memory fences work on all variables/all memory accesses, */
753 /* not just C11 atomics and atomic accesses */
754 #include <stdatomic.h>
755 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
756 /* any fence other than seq_cst, which isn't very efficient for us. */
757 /* Why that is, we don't know - either the C11 memory model is quite useless */
758 /* for most usages, or gcc and clang have a bug */
759 /* I *currently* lean towards the latter, and inefficiently implement */
760 /* all three of ecb's fences as a seq_cst fence */
761 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
762 /* for all __atomic_thread_fence's except seq_cst */
763 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
764 #endif
765#endif
766
767#ifndef ECB_MEMORY_FENCE
768 #if !ECB_AVOID_PTHREADS
769 /*
770 * if you get undefined symbol references to pthread_mutex_lock,
771 * or failure to find pthread.h, then you should implement
772 * the ECB_MEMORY_FENCE operations for your cpu/compiler
773 * OR provide pthread.h and link against the posix thread library
774 * of your system.
775 */
776 #include <pthread.h>
777 #define ECB_NEEDS_PTHREADS 1
778 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
779
780 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
781 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
782 #endif
783#endif
784
785#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
786 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
787#endif
788
789#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
790 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
791#endif
792
793/*****************************************************************************/
794
795#if ECB_CPP
796 #define ecb_inline static inline
797#elif ECB_GCC_VERSION(2,5)
798 #define ecb_inline static __inline__
799#elif ECB_C99
800 #define ecb_inline static inline
801#else
802 #define ecb_inline static
803#endif
804
805#if ECB_GCC_VERSION(3,3)
806 #define ecb_restrict __restrict__
807#elif ECB_C99
808 #define ecb_restrict restrict
809#else
810 #define ecb_restrict
811#endif
812
813typedef int ecb_bool;
814
815#define ECB_CONCAT_(a, b) a ## b
816#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
817#define ECB_STRINGIFY_(a) # a
818#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
819#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
820
821#define ecb_function_ ecb_inline
822
823#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
824 #define ecb_attribute(attrlist) __attribute__ (attrlist)
825#else
826 #define ecb_attribute(attrlist)
827#endif
828
829#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
830 #define ecb_is_constant(expr) __builtin_constant_p (expr)
831#else
832 /* possible C11 impl for integral types
833 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
834 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
835
836 #define ecb_is_constant(expr) 0
837#endif
838
839#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
198# define expect(expr,value) __builtin_expect ((expr),(value)) 840 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
199# define inline_size static inline /* inline for codesize */
200# if EV_MINIMAL
201# define noinline __attribute__ ((noinline))
202# define inline_speed static noinline
203# else 841#else
204# define noinline 842 #define ecb_expect(expr,value) (expr)
205# define inline_speed static inline
206# endif 843#endif
207#else
208# define expect(expr,value) (expr)
209# define inline_speed static
210# define inline_size static
211# define noinline
212#endif
213 844
845#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
846 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
847#else
848 #define ecb_prefetch(addr,rw,locality)
849#endif
850
851/* no emulation for ecb_decltype */
852#if ECB_CPP11
853 // older implementations might have problems with decltype(x)::type, work around it
854 template<class T> struct ecb_decltype_t { typedef T type; };
855 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
856#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
857 #define ecb_decltype(x) __typeof__ (x)
858#endif
859
860#if _MSC_VER >= 1300
861 #define ecb_deprecated __declspec (deprecated)
862#else
863 #define ecb_deprecated ecb_attribute ((__deprecated__))
864#endif
865
866#if _MSC_VER >= 1500
867 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
868#elif ECB_GCC_VERSION(4,5)
869 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
870#else
871 #define ecb_deprecated_message(msg) ecb_deprecated
872#endif
873
874#if _MSC_VER >= 1400
875 #define ecb_noinline __declspec (noinline)
876#else
877 #define ecb_noinline ecb_attribute ((__noinline__))
878#endif
879
880#define ecb_unused ecb_attribute ((__unused__))
881#define ecb_const ecb_attribute ((__const__))
882#define ecb_pure ecb_attribute ((__pure__))
883
884#if ECB_C11 || __IBMC_NORETURN
885 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
886 #define ecb_noreturn _Noreturn
887#elif ECB_CPP11
888 #define ecb_noreturn [[noreturn]]
889#elif _MSC_VER >= 1200
890 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
891 #define ecb_noreturn __declspec (noreturn)
892#else
893 #define ecb_noreturn ecb_attribute ((__noreturn__))
894#endif
895
896#if ECB_GCC_VERSION(4,3)
897 #define ecb_artificial ecb_attribute ((__artificial__))
898 #define ecb_hot ecb_attribute ((__hot__))
899 #define ecb_cold ecb_attribute ((__cold__))
900#else
901 #define ecb_artificial
902 #define ecb_hot
903 #define ecb_cold
904#endif
905
906/* put around conditional expressions if you are very sure that the */
907/* expression is mostly true or mostly false. note that these return */
908/* booleans, not the expression. */
214#define expect_false(expr) expect ((expr) != 0, 0) 909#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
215#define expect_true(expr) expect ((expr) != 0, 1) 910#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
911/* for compatibility to the rest of the world */
912#define ecb_likely(expr) ecb_expect_true (expr)
913#define ecb_unlikely(expr) ecb_expect_false (expr)
216 914
915/* count trailing zero bits and count # of one bits */
916#if ECB_GCC_VERSION(3,4) \
917 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
918 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
919 && ECB_CLANG_BUILTIN(__builtin_popcount))
920 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
921 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
922 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
923 #define ecb_ctz32(x) __builtin_ctz (x)
924 #define ecb_ctz64(x) __builtin_ctzll (x)
925 #define ecb_popcount32(x) __builtin_popcount (x)
926 /* no popcountll */
927#else
928 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
929 ecb_function_ ecb_const int
930 ecb_ctz32 (uint32_t x)
931 {
932#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
933 unsigned long r;
934 _BitScanForward (&r, x);
935 return (int)r;
936#else
937 int r = 0;
938
939 x &= ~x + 1; /* this isolates the lowest bit */
940
941#if ECB_branchless_on_i386
942 r += !!(x & 0xaaaaaaaa) << 0;
943 r += !!(x & 0xcccccccc) << 1;
944 r += !!(x & 0xf0f0f0f0) << 2;
945 r += !!(x & 0xff00ff00) << 3;
946 r += !!(x & 0xffff0000) << 4;
947#else
948 if (x & 0xaaaaaaaa) r += 1;
949 if (x & 0xcccccccc) r += 2;
950 if (x & 0xf0f0f0f0) r += 4;
951 if (x & 0xff00ff00) r += 8;
952 if (x & 0xffff0000) r += 16;
953#endif
954
955 return r;
956#endif
957 }
958
959 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
960 ecb_function_ ecb_const int
961 ecb_ctz64 (uint64_t x)
962 {
963#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
964 unsigned long r;
965 _BitScanForward64 (&r, x);
966 return (int)r;
967#else
968 int shift = x & 0xffffffff ? 0 : 32;
969 return ecb_ctz32 (x >> shift) + shift;
970#endif
971 }
972
973 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
974 ecb_function_ ecb_const int
975 ecb_popcount32 (uint32_t x)
976 {
977 x -= (x >> 1) & 0x55555555;
978 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
979 x = ((x >> 4) + x) & 0x0f0f0f0f;
980 x *= 0x01010101;
981
982 return x >> 24;
983 }
984
985 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
986 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
987 {
988#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
989 unsigned long r;
990 _BitScanReverse (&r, x);
991 return (int)r;
992#else
993 int r = 0;
994
995 if (x >> 16) { x >>= 16; r += 16; }
996 if (x >> 8) { x >>= 8; r += 8; }
997 if (x >> 4) { x >>= 4; r += 4; }
998 if (x >> 2) { x >>= 2; r += 2; }
999 if (x >> 1) { r += 1; }
1000
1001 return r;
1002#endif
1003 }
1004
1005 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1006 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1007 {
1008#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1009 unsigned long r;
1010 _BitScanReverse64 (&r, x);
1011 return (int)r;
1012#else
1013 int r = 0;
1014
1015 if (x >> 32) { x >>= 32; r += 32; }
1016
1017 return r + ecb_ld32 (x);
1018#endif
1019 }
1020#endif
1021
1022ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1023ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1024ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1025ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1026
1027ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1028ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1029{
1030 return ( (x * 0x0802U & 0x22110U)
1031 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1032}
1033
1034ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1035ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1036{
1037 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1038 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1039 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1040 x = ( x >> 8 ) | ( x << 8);
1041
1042 return x;
1043}
1044
1045ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1046ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1047{
1048 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1049 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1050 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1051 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1052 x = ( x >> 16 ) | ( x << 16);
1053
1054 return x;
1055}
1056
1057/* popcount64 is only available on 64 bit cpus as gcc builtin */
1058/* so for this version we are lazy */
1059ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1060ecb_function_ ecb_const int
1061ecb_popcount64 (uint64_t x)
1062{
1063 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1064}
1065
1066ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1067ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1068ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1069ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1070ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1071ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1072ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1073ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1074
1075ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1076ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1077ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1078ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1079ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1080ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1081ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1082ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1083
1084#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1085 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1086 #define ecb_bswap16(x) __builtin_bswap16 (x)
1087 #else
1088 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1089 #endif
1090 #define ecb_bswap32(x) __builtin_bswap32 (x)
1091 #define ecb_bswap64(x) __builtin_bswap64 (x)
1092#elif _MSC_VER
1093 #include <stdlib.h>
1094 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1095 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1096 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1097#else
1098 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1099 ecb_function_ ecb_const uint16_t
1100 ecb_bswap16 (uint16_t x)
1101 {
1102 return ecb_rotl16 (x, 8);
1103 }
1104
1105 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1106 ecb_function_ ecb_const uint32_t
1107 ecb_bswap32 (uint32_t x)
1108 {
1109 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1110 }
1111
1112 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1113 ecb_function_ ecb_const uint64_t
1114 ecb_bswap64 (uint64_t x)
1115 {
1116 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1117 }
1118#endif
1119
1120#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1121 #define ecb_unreachable() __builtin_unreachable ()
1122#else
1123 /* this seems to work fine, but gcc always emits a warning for it :/ */
1124 ecb_inline ecb_noreturn void ecb_unreachable (void);
1125 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1126#endif
1127
1128/* try to tell the compiler that some condition is definitely true */
1129#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1130
1131ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1132ecb_inline ecb_const uint32_t
1133ecb_byteorder_helper (void)
1134{
1135 /* the union code still generates code under pressure in gcc, */
1136 /* but less than using pointers, and always seems to */
1137 /* successfully return a constant. */
1138 /* the reason why we have this horrible preprocessor mess */
1139 /* is to avoid it in all cases, at least on common architectures */
1140 /* or when using a recent enough gcc version (>= 4.6) */
1141#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1142 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1143 #define ECB_LITTLE_ENDIAN 1
1144 return 0x44332211;
1145#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1146 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1147 #define ECB_BIG_ENDIAN 1
1148 return 0x11223344;
1149#else
1150 union
1151 {
1152 uint8_t c[4];
1153 uint32_t u;
1154 } u = { 0x11, 0x22, 0x33, 0x44 };
1155 return u.u;
1156#endif
1157}
1158
1159ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1160ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1161ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1162ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1163
1164#if ECB_GCC_VERSION(3,0) || ECB_C99
1165 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1166#else
1167 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1168#endif
1169
1170#if ECB_CPP
1171 template<typename T>
1172 static inline T ecb_div_rd (T val, T div)
1173 {
1174 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1175 }
1176 template<typename T>
1177 static inline T ecb_div_ru (T val, T div)
1178 {
1179 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1180 }
1181#else
1182 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1183 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1184#endif
1185
1186#if ecb_cplusplus_does_not_suck
1187 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1188 template<typename T, int N>
1189 static inline int ecb_array_length (const T (&arr)[N])
1190 {
1191 return N;
1192 }
1193#else
1194 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1195#endif
1196
1197ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1198ecb_function_ ecb_const uint32_t
1199ecb_binary16_to_binary32 (uint32_t x)
1200{
1201 unsigned int s = (x & 0x8000) << (31 - 15);
1202 int e = (x >> 10) & 0x001f;
1203 unsigned int m = x & 0x03ff;
1204
1205 if (ecb_expect_false (e == 31))
1206 /* infinity or NaN */
1207 e = 255 - (127 - 15);
1208 else if (ecb_expect_false (!e))
1209 {
1210 if (ecb_expect_true (!m))
1211 /* zero, handled by code below by forcing e to 0 */
1212 e = 0 - (127 - 15);
1213 else
1214 {
1215 /* subnormal, renormalise */
1216 unsigned int s = 10 - ecb_ld32 (m);
1217
1218 m = (m << s) & 0x3ff; /* mask implicit bit */
1219 e -= s - 1;
1220 }
1221 }
1222
1223 /* e and m now are normalised, or zero, (or inf or nan) */
1224 e += 127 - 15;
1225
1226 return s | (e << 23) | (m << (23 - 10));
1227}
1228
1229ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1230ecb_function_ ecb_const uint16_t
1231ecb_binary32_to_binary16 (uint32_t x)
1232{
1233 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1234 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1235 unsigned int m = x & 0x007fffff;
1236
1237 x &= 0x7fffffff;
1238
1239 /* if it's within range of binary16 normals, use fast path */
1240 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1241 {
1242 /* mantissa round-to-even */
1243 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1244
1245 /* handle overflow */
1246 if (ecb_expect_false (m >= 0x00800000))
1247 {
1248 m >>= 1;
1249 e += 1;
1250 }
1251
1252 return s | (e << 10) | (m >> (23 - 10));
1253 }
1254
1255 /* handle large numbers and infinity */
1256 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1257 return s | 0x7c00;
1258
1259 /* handle zero, subnormals and small numbers */
1260 if (ecb_expect_true (x < 0x38800000))
1261 {
1262 /* zero */
1263 if (ecb_expect_true (!x))
1264 return s;
1265
1266 /* handle subnormals */
1267
1268 /* too small, will be zero */
1269 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1270 return s;
1271
1272 m |= 0x00800000; /* make implicit bit explicit */
1273
1274 /* very tricky - we need to round to the nearest e (+10) bit value */
1275 {
1276 unsigned int bits = 14 - e;
1277 unsigned int half = (1 << (bits - 1)) - 1;
1278 unsigned int even = (m >> bits) & 1;
1279
1280 /* if this overflows, we will end up with a normalised number */
1281 m = (m + half + even) >> bits;
1282 }
1283
1284 return s | m;
1285 }
1286
1287 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1288 m >>= 13;
1289
1290 return s | 0x7c00 | m | !m;
1291}
1292
1293/*******************************************************************************/
1294/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1295
1296/* basically, everything uses "ieee pure-endian" floating point numbers */
1297/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1298#if 0 \
1299 || __i386 || __i386__ \
1300 || ECB_GCC_AMD64 \
1301 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1302 || defined __s390__ || defined __s390x__ \
1303 || defined __mips__ \
1304 || defined __alpha__ \
1305 || defined __hppa__ \
1306 || defined __ia64__ \
1307 || defined __m68k__ \
1308 || defined __m88k__ \
1309 || defined __sh__ \
1310 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1311 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1312 || defined __aarch64__
1313 #define ECB_STDFP 1
1314 #include <string.h> /* for memcpy */
1315#else
1316 #define ECB_STDFP 0
1317#endif
1318
1319#ifndef ECB_NO_LIBM
1320
1321 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1322
1323 /* only the oldest of old doesn't have this one. solaris. */
1324 #ifdef INFINITY
1325 #define ECB_INFINITY INFINITY
1326 #else
1327 #define ECB_INFINITY HUGE_VAL
1328 #endif
1329
1330 #ifdef NAN
1331 #define ECB_NAN NAN
1332 #else
1333 #define ECB_NAN ECB_INFINITY
1334 #endif
1335
1336 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1337 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1338 #define ecb_frexpf(x,e) frexpf ((x), (e))
1339 #else
1340 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1341 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1342 #endif
1343
1344 /* convert a float to ieee single/binary32 */
1345 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1346 ecb_function_ ecb_const uint32_t
1347 ecb_float_to_binary32 (float x)
1348 {
1349 uint32_t r;
1350
1351 #if ECB_STDFP
1352 memcpy (&r, &x, 4);
1353 #else
1354 /* slow emulation, works for anything but -0 */
1355 uint32_t m;
1356 int e;
1357
1358 if (x == 0e0f ) return 0x00000000U;
1359 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1360 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1361 if (x != x ) return 0x7fbfffffU;
1362
1363 m = ecb_frexpf (x, &e) * 0x1000000U;
1364
1365 r = m & 0x80000000U;
1366
1367 if (r)
1368 m = -m;
1369
1370 if (e <= -126)
1371 {
1372 m &= 0xffffffU;
1373 m >>= (-125 - e);
1374 e = -126;
1375 }
1376
1377 r |= (e + 126) << 23;
1378 r |= m & 0x7fffffU;
1379 #endif
1380
1381 return r;
1382 }
1383
1384 /* converts an ieee single/binary32 to a float */
1385 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1386 ecb_function_ ecb_const float
1387 ecb_binary32_to_float (uint32_t x)
1388 {
1389 float r;
1390
1391 #if ECB_STDFP
1392 memcpy (&r, &x, 4);
1393 #else
1394 /* emulation, only works for normals and subnormals and +0 */
1395 int neg = x >> 31;
1396 int e = (x >> 23) & 0xffU;
1397
1398 x &= 0x7fffffU;
1399
1400 if (e)
1401 x |= 0x800000U;
1402 else
1403 e = 1;
1404
1405 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1406 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1407
1408 r = neg ? -r : r;
1409 #endif
1410
1411 return r;
1412 }
1413
1414 /* convert a double to ieee double/binary64 */
1415 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1416 ecb_function_ ecb_const uint64_t
1417 ecb_double_to_binary64 (double x)
1418 {
1419 uint64_t r;
1420
1421 #if ECB_STDFP
1422 memcpy (&r, &x, 8);
1423 #else
1424 /* slow emulation, works for anything but -0 */
1425 uint64_t m;
1426 int e;
1427
1428 if (x == 0e0 ) return 0x0000000000000000U;
1429 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1430 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1431 if (x != x ) return 0X7ff7ffffffffffffU;
1432
1433 m = frexp (x, &e) * 0x20000000000000U;
1434
1435 r = m & 0x8000000000000000;;
1436
1437 if (r)
1438 m = -m;
1439
1440 if (e <= -1022)
1441 {
1442 m &= 0x1fffffffffffffU;
1443 m >>= (-1021 - e);
1444 e = -1022;
1445 }
1446
1447 r |= ((uint64_t)(e + 1022)) << 52;
1448 r |= m & 0xfffffffffffffU;
1449 #endif
1450
1451 return r;
1452 }
1453
1454 /* converts an ieee double/binary64 to a double */
1455 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1456 ecb_function_ ecb_const double
1457 ecb_binary64_to_double (uint64_t x)
1458 {
1459 double r;
1460
1461 #if ECB_STDFP
1462 memcpy (&r, &x, 8);
1463 #else
1464 /* emulation, only works for normals and subnormals and +0 */
1465 int neg = x >> 63;
1466 int e = (x >> 52) & 0x7ffU;
1467
1468 x &= 0xfffffffffffffU;
1469
1470 if (e)
1471 x |= 0x10000000000000U;
1472 else
1473 e = 1;
1474
1475 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1476 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1477
1478 r = neg ? -r : r;
1479 #endif
1480
1481 return r;
1482 }
1483
1484 /* convert a float to ieee half/binary16 */
1485 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1486 ecb_function_ ecb_const uint16_t
1487 ecb_float_to_binary16 (float x)
1488 {
1489 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1490 }
1491
1492 /* convert an ieee half/binary16 to float */
1493 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1494 ecb_function_ ecb_const float
1495 ecb_binary16_to_float (uint16_t x)
1496 {
1497 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1498 }
1499
1500#endif
1501
1502#endif
1503
1504/* ECB.H END */
1505
1506#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1507/* if your architecture doesn't need memory fences, e.g. because it is
1508 * single-cpu/core, or if you use libev in a project that doesn't use libev
1509 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1510 * libev, in which cases the memory fences become nops.
1511 * alternatively, you can remove this #error and link against libpthread,
1512 * which will then provide the memory fences.
1513 */
1514# error "memory fences not defined for your architecture, please report"
1515#endif
1516
1517#ifndef ECB_MEMORY_FENCE
1518# define ECB_MEMORY_FENCE do { } while (0)
1519# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1520# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1521#endif
1522
1523#define expect_false(cond) ecb_expect_false (cond)
1524#define expect_true(cond) ecb_expect_true (cond)
1525#define noinline ecb_noinline
1526
1527#define inline_size ecb_inline
1528
1529#if EV_FEATURE_CODE
1530# define inline_speed ecb_inline
1531#else
1532# define inline_speed noinline static
1533#endif
1534
217#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1535#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1536
1537#if EV_MINPRI == EV_MAXPRI
1538# define ABSPRI(w) (((W)w), 0)
1539#else
218#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1540# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1541#endif
219 1542
220#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 1543#define EMPTY /* required for microsofts broken pseudo-c compiler */
221#define EMPTY2(a,b) /* used to suppress some warnings */ 1544#define EMPTY2(a,b) /* used to suppress some warnings */
222 1545
223typedef ev_watcher *W; 1546typedef ev_watcher *W;
224typedef ev_watcher_list *WL; 1547typedef ev_watcher_list *WL;
225typedef ev_watcher_time *WT; 1548typedef ev_watcher_time *WT;
226 1549
1550#define ev_active(w) ((W)(w))->active
1551#define ev_at(w) ((WT)(w))->at
1552
1553#if EV_USE_REALTIME
1554/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1555/* giving it a reasonably high chance of working on typical architectures */
1556static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1557#endif
1558
1559#if EV_USE_MONOTONIC
227static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1560static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1561#endif
1562
1563#ifndef EV_FD_TO_WIN32_HANDLE
1564# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1565#endif
1566#ifndef EV_WIN32_HANDLE_TO_FD
1567# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1568#endif
1569#ifndef EV_WIN32_CLOSE_FD
1570# define EV_WIN32_CLOSE_FD(fd) close (fd)
1571#endif
228 1572
229#ifdef _WIN32 1573#ifdef _WIN32
230# include "ev_win32.c" 1574# include "ev_win32.c"
231#endif 1575#endif
232 1576
233/*****************************************************************************/ 1577/*****************************************************************************/
234 1578
1579/* define a suitable floor function (only used by periodics atm) */
1580
1581#if EV_USE_FLOOR
1582# include <math.h>
1583# define ev_floor(v) floor (v)
1584#else
1585
1586#include <float.h>
1587
1588/* a floor() replacement function, should be independent of ev_tstamp type */
1589noinline
1590static ev_tstamp
1591ev_floor (ev_tstamp v)
1592{
1593 /* the choice of shift factor is not terribly important */
1594#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1595 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1596#else
1597 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1598#endif
1599
1600 /* argument too large for an unsigned long? */
1601 if (expect_false (v >= shift))
1602 {
1603 ev_tstamp f;
1604
1605 if (v == v - 1.)
1606 return v; /* very large number */
1607
1608 f = shift * ev_floor (v * (1. / shift));
1609 return f + ev_floor (v - f);
1610 }
1611
1612 /* special treatment for negative args? */
1613 if (expect_false (v < 0.))
1614 {
1615 ev_tstamp f = -ev_floor (-v);
1616
1617 return f - (f == v ? 0 : 1);
1618 }
1619
1620 /* fits into an unsigned long */
1621 return (unsigned long)v;
1622}
1623
1624#endif
1625
1626/*****************************************************************************/
1627
1628#ifdef __linux
1629# include <sys/utsname.h>
1630#endif
1631
1632noinline ecb_cold
1633static unsigned int
1634ev_linux_version (void)
1635{
1636#ifdef __linux
1637 unsigned int v = 0;
1638 struct utsname buf;
1639 int i;
1640 char *p = buf.release;
1641
1642 if (uname (&buf))
1643 return 0;
1644
1645 for (i = 3+1; --i; )
1646 {
1647 unsigned int c = 0;
1648
1649 for (;;)
1650 {
1651 if (*p >= '0' && *p <= '9')
1652 c = c * 10 + *p++ - '0';
1653 else
1654 {
1655 p += *p == '.';
1656 break;
1657 }
1658 }
1659
1660 v = (v << 8) | c;
1661 }
1662
1663 return v;
1664#else
1665 return 0;
1666#endif
1667}
1668
1669/*****************************************************************************/
1670
1671#if EV_AVOID_STDIO
1672noinline ecb_cold
1673static void
1674ev_printerr (const char *msg)
1675{
1676 write (STDERR_FILENO, msg, strlen (msg));
1677}
1678#endif
1679
235static void (*syserr_cb)(const char *msg); 1680static void (*syserr_cb)(const char *msg) EV_THROW;
236 1681
1682ecb_cold
237void 1683void
238ev_set_syserr_cb (void (*cb)(const char *msg)) 1684ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
239{ 1685{
240 syserr_cb = cb; 1686 syserr_cb = cb;
241} 1687}
242 1688
243static void noinline 1689noinline ecb_cold
1690static void
244syserr (const char *msg) 1691ev_syserr (const char *msg)
245{ 1692{
246 if (!msg) 1693 if (!msg)
247 msg = "(libev) system error"; 1694 msg = "(libev) system error";
248 1695
249 if (syserr_cb) 1696 if (syserr_cb)
250 syserr_cb (msg); 1697 syserr_cb (msg);
251 else 1698 else
252 { 1699 {
1700#if EV_AVOID_STDIO
1701 ev_printerr (msg);
1702 ev_printerr (": ");
1703 ev_printerr (strerror (errno));
1704 ev_printerr ("\n");
1705#else
253 perror (msg); 1706 perror (msg);
1707#endif
254 abort (); 1708 abort ();
255 } 1709 }
256} 1710}
257 1711
1712static void *
1713ev_realloc_emul (void *ptr, long size) EV_THROW
1714{
1715 /* some systems, notably openbsd and darwin, fail to properly
1716 * implement realloc (x, 0) (as required by both ansi c-89 and
1717 * the single unix specification, so work around them here.
1718 * recently, also (at least) fedora and debian started breaking it,
1719 * despite documenting it otherwise.
1720 */
1721
1722 if (size)
1723 return realloc (ptr, size);
1724
1725 free (ptr);
1726 return 0;
1727}
1728
258static void *(*alloc)(void *ptr, size_t size) = realloc; 1729static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
259 1730
1731ecb_cold
260void 1732void
261ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 1733ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
262{ 1734{
263 alloc = cb; 1735 alloc = cb;
264} 1736}
265 1737
266inline_speed void * 1738inline_speed void *
267ev_realloc (void *ptr, size_t size) 1739ev_realloc (void *ptr, long size)
268{ 1740{
269 ptr = alloc (ptr, size); 1741 ptr = alloc (ptr, size);
270 1742
271 if (!ptr && size) 1743 if (!ptr && size)
272 { 1744 {
1745#if EV_AVOID_STDIO
1746 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1747#else
273 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 1748 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1749#endif
274 abort (); 1750 abort ();
275 } 1751 }
276 1752
277 return ptr; 1753 return ptr;
278} 1754}
280#define ev_malloc(size) ev_realloc (0, (size)) 1756#define ev_malloc(size) ev_realloc (0, (size))
281#define ev_free(ptr) ev_realloc ((ptr), 0) 1757#define ev_free(ptr) ev_realloc ((ptr), 0)
282 1758
283/*****************************************************************************/ 1759/*****************************************************************************/
284 1760
1761/* set in reify when reification needed */
1762#define EV_ANFD_REIFY 1
1763
1764/* file descriptor info structure */
285typedef struct 1765typedef struct
286{ 1766{
287 WL head; 1767 WL head;
288 unsigned char events; 1768 unsigned char events; /* the events watched for */
1769 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1770 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
289 unsigned char reify; 1771 unsigned char unused;
1772#if EV_USE_EPOLL
1773 unsigned int egen; /* generation counter to counter epoll bugs */
1774#endif
290#if EV_SELECT_IS_WINSOCKET 1775#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
291 SOCKET handle; 1776 SOCKET handle;
292#endif 1777#endif
1778#if EV_USE_IOCP
1779 OVERLAPPED or, ow;
1780#endif
293} ANFD; 1781} ANFD;
294 1782
1783/* stores the pending event set for a given watcher */
295typedef struct 1784typedef struct
296{ 1785{
297 W w; 1786 W w;
298 int events; 1787 int events; /* the pending event set for the given watcher */
299} ANPENDING; 1788} ANPENDING;
1789
1790#if EV_USE_INOTIFY
1791/* hash table entry per inotify-id */
1792typedef struct
1793{
1794 WL head;
1795} ANFS;
1796#endif
1797
1798/* Heap Entry */
1799#if EV_HEAP_CACHE_AT
1800 /* a heap element */
1801 typedef struct {
1802 ev_tstamp at;
1803 WT w;
1804 } ANHE;
1805
1806 #define ANHE_w(he) (he).w /* access watcher, read-write */
1807 #define ANHE_at(he) (he).at /* access cached at, read-only */
1808 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1809#else
1810 /* a heap element */
1811 typedef WT ANHE;
1812
1813 #define ANHE_w(he) (he)
1814 #define ANHE_at(he) (he)->at
1815 #define ANHE_at_cache(he)
1816#endif
300 1817
301#if EV_MULTIPLICITY 1818#if EV_MULTIPLICITY
302 1819
303 struct ev_loop 1820 struct ev_loop
304 { 1821 {
309 #undef VAR 1826 #undef VAR
310 }; 1827 };
311 #include "ev_wrap.h" 1828 #include "ev_wrap.h"
312 1829
313 static struct ev_loop default_loop_struct; 1830 static struct ev_loop default_loop_struct;
314 struct ev_loop *ev_default_loop_ptr; 1831 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
315 1832
316#else 1833#else
317 1834
318 ev_tstamp ev_rt_now; 1835 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
319 #define VAR(name,decl) static decl; 1836 #define VAR(name,decl) static decl;
320 #include "ev_vars.h" 1837 #include "ev_vars.h"
321 #undef VAR 1838 #undef VAR
322 1839
323 static int ev_default_loop_ptr; 1840 static int ev_default_loop_ptr;
324 1841
325#endif 1842#endif
326 1843
1844#if EV_FEATURE_API
1845# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1846# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1847# define EV_INVOKE_PENDING invoke_cb (EV_A)
1848#else
1849# define EV_RELEASE_CB (void)0
1850# define EV_ACQUIRE_CB (void)0
1851# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1852#endif
1853
1854#define EVBREAK_RECURSE 0x80
1855
327/*****************************************************************************/ 1856/*****************************************************************************/
328 1857
1858#ifndef EV_HAVE_EV_TIME
329ev_tstamp 1859ev_tstamp
330ev_time (void) 1860ev_time (void) EV_THROW
331{ 1861{
332#if EV_USE_REALTIME 1862#if EV_USE_REALTIME
1863 if (expect_true (have_realtime))
1864 {
333 struct timespec ts; 1865 struct timespec ts;
334 clock_gettime (CLOCK_REALTIME, &ts); 1866 clock_gettime (CLOCK_REALTIME, &ts);
335 return ts.tv_sec + ts.tv_nsec * 1e-9; 1867 return ts.tv_sec + ts.tv_nsec * 1e-9;
336#else 1868 }
1869#endif
1870
337 struct timeval tv; 1871 struct timeval tv;
338 gettimeofday (&tv, 0); 1872 gettimeofday (&tv, 0);
339 return tv.tv_sec + tv.tv_usec * 1e-6; 1873 return tv.tv_sec + tv.tv_usec * 1e-6;
340#endif
341} 1874}
1875#endif
342 1876
343ev_tstamp inline_size 1877inline_size ev_tstamp
344get_clock (void) 1878get_clock (void)
345{ 1879{
346#if EV_USE_MONOTONIC 1880#if EV_USE_MONOTONIC
347 if (expect_true (have_monotonic)) 1881 if (expect_true (have_monotonic))
348 { 1882 {
355 return ev_time (); 1889 return ev_time ();
356} 1890}
357 1891
358#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
359ev_tstamp 1893ev_tstamp
360ev_now (EV_P) 1894ev_now (EV_P) EV_THROW
361{ 1895{
362 return ev_rt_now; 1896 return ev_rt_now;
363} 1897}
364#endif 1898#endif
365 1899
366#define array_roundsize(type,n) (((n) | 4) & ~3) 1900void
1901ev_sleep (ev_tstamp delay) EV_THROW
1902{
1903 if (delay > 0.)
1904 {
1905#if EV_USE_NANOSLEEP
1906 struct timespec ts;
1907
1908 EV_TS_SET (ts, delay);
1909 nanosleep (&ts, 0);
1910#elif defined _WIN32
1911 Sleep ((unsigned long)(delay * 1e3));
1912#else
1913 struct timeval tv;
1914
1915 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1916 /* something not guaranteed by newer posix versions, but guaranteed */
1917 /* by older ones */
1918 EV_TV_SET (tv, delay);
1919 select (0, 0, 0, 0, &tv);
1920#endif
1921 }
1922}
1923
1924/*****************************************************************************/
1925
1926#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1927
1928/* find a suitable new size for the given array, */
1929/* hopefully by rounding to a nice-to-malloc size */
1930inline_size int
1931array_nextsize (int elem, int cur, int cnt)
1932{
1933 int ncur = cur + 1;
1934
1935 do
1936 ncur <<= 1;
1937 while (cnt > ncur);
1938
1939 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1940 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1941 {
1942 ncur *= elem;
1943 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1944 ncur = ncur - sizeof (void *) * 4;
1945 ncur /= elem;
1946 }
1947
1948 return ncur;
1949}
1950
1951noinline ecb_cold
1952static void *
1953array_realloc (int elem, void *base, int *cur, int cnt)
1954{
1955 *cur = array_nextsize (elem, *cur, cnt);
1956 return ev_realloc (base, elem * *cur);
1957}
1958
1959#define array_init_zero(base,count) \
1960 memset ((void *)(base), 0, sizeof (*(base)) * (count))
367 1961
368#define array_needsize(type,base,cur,cnt,init) \ 1962#define array_needsize(type,base,cur,cnt,init) \
369 if (expect_false ((cnt) > cur)) \ 1963 if (expect_false ((cnt) > (cur))) \
370 { \ 1964 { \
371 int newcnt = cur; \ 1965 ecb_unused int ocur_ = (cur); \
372 do \ 1966 (base) = (type *)array_realloc \
373 { \ 1967 (sizeof (type), (base), &(cur), (cnt)); \
374 newcnt = array_roundsize (type, newcnt << 1); \ 1968 init ((base) + (ocur_), (cur) - ocur_); \
375 } \
376 while ((cnt) > newcnt); \
377 \
378 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
379 init (base + cur, newcnt - cur); \
380 cur = newcnt; \
381 } 1969 }
382 1970
1971#if 0
383#define array_slim(type,stem) \ 1972#define array_slim(type,stem) \
384 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1973 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
385 { \ 1974 { \
386 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1975 stem ## max = array_roundsize (stem ## cnt >> 1); \
387 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1976 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
388 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1977 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
389 } 1978 }
1979#endif
390 1980
391#define array_free(stem, idx) \ 1981#define array_free(stem, idx) \
392 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1982 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
393 1983
394/*****************************************************************************/ 1984/*****************************************************************************/
395 1985
1986/* dummy callback for pending events */
396void noinline 1987noinline
1988static void
1989pendingcb (EV_P_ ev_prepare *w, int revents)
1990{
1991}
1992
1993noinline
1994void
397ev_feed_event (EV_P_ void *w, int revents) 1995ev_feed_event (EV_P_ void *w, int revents) EV_THROW
398{ 1996{
399 W w_ = (W)w; 1997 W w_ = (W)w;
1998 int pri = ABSPRI (w_);
400 1999
401 if (expect_false (w_->pending)) 2000 if (expect_false (w_->pending))
2001 pendings [pri][w_->pending - 1].events |= revents;
2002 else
402 { 2003 {
2004 w_->pending = ++pendingcnt [pri];
2005 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
2006 pendings [pri][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 2007 pendings [pri][w_->pending - 1].events = revents;
404 return;
405 } 2008 }
406 2009
407 w_->pending = ++pendingcnt [ABSPRI (w_)]; 2010 pendingpri = NUMPRI - 1;
408 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
409 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
410 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
411} 2011}
412 2012
413void inline_size 2013inline_speed void
2014feed_reverse (EV_P_ W w)
2015{
2016 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2017 rfeeds [rfeedcnt++] = w;
2018}
2019
2020inline_size void
2021feed_reverse_done (EV_P_ int revents)
2022{
2023 do
2024 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2025 while (rfeedcnt);
2026}
2027
2028inline_speed void
414queue_events (EV_P_ W *events, int eventcnt, int type) 2029queue_events (EV_P_ W *events, int eventcnt, int type)
415{ 2030{
416 int i; 2031 int i;
417 2032
418 for (i = 0; i < eventcnt; ++i) 2033 for (i = 0; i < eventcnt; ++i)
419 ev_feed_event (EV_A_ events [i], type); 2034 ev_feed_event (EV_A_ events [i], type);
420} 2035}
421 2036
422/*****************************************************************************/ 2037/*****************************************************************************/
423 2038
424void inline_size 2039inline_speed void
425anfds_init (ANFD *base, int count)
426{
427 while (count--)
428 {
429 base->head = 0;
430 base->events = EV_NONE;
431 base->reify = 0;
432
433 ++base;
434 }
435}
436
437void inline_speed
438fd_event (EV_P_ int fd, int revents) 2040fd_event_nocheck (EV_P_ int fd, int revents)
439{ 2041{
440 ANFD *anfd = anfds + fd; 2042 ANFD *anfd = anfds + fd;
441 ev_io *w; 2043 ev_io *w;
442 2044
443 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2045 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
447 if (ev) 2049 if (ev)
448 ev_feed_event (EV_A_ (W)w, ev); 2050 ev_feed_event (EV_A_ (W)w, ev);
449 } 2051 }
450} 2052}
451 2053
2054/* do not submit kernel events for fds that have reify set */
2055/* because that means they changed while we were polling for new events */
2056inline_speed void
2057fd_event (EV_P_ int fd, int revents)
2058{
2059 ANFD *anfd = anfds + fd;
2060
2061 if (expect_true (!anfd->reify))
2062 fd_event_nocheck (EV_A_ fd, revents);
2063}
2064
452void 2065void
453ev_feed_fd_event (EV_P_ int fd, int revents) 2066ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
454{ 2067{
2068 if (fd >= 0 && fd < anfdmax)
455 fd_event (EV_A_ fd, revents); 2069 fd_event_nocheck (EV_A_ fd, revents);
456} 2070}
457 2071
458void inline_size 2072/* make sure the external fd watch events are in-sync */
2073/* with the kernel/libev internal state */
2074inline_size void
459fd_reify (EV_P) 2075fd_reify (EV_P)
460{ 2076{
461 int i; 2077 int i;
2078
2079#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2080 for (i = 0; i < fdchangecnt; ++i)
2081 {
2082 int fd = fdchanges [i];
2083 ANFD *anfd = anfds + fd;
2084
2085 if (anfd->reify & EV__IOFDSET && anfd->head)
2086 {
2087 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2088
2089 if (handle != anfd->handle)
2090 {
2091 unsigned long arg;
2092
2093 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2094
2095 /* handle changed, but fd didn't - we need to do it in two steps */
2096 backend_modify (EV_A_ fd, anfd->events, 0);
2097 anfd->events = 0;
2098 anfd->handle = handle;
2099 }
2100 }
2101 }
2102#endif
462 2103
463 for (i = 0; i < fdchangecnt; ++i) 2104 for (i = 0; i < fdchangecnt; ++i)
464 { 2105 {
465 int fd = fdchanges [i]; 2106 int fd = fdchanges [i];
466 ANFD *anfd = anfds + fd; 2107 ANFD *anfd = anfds + fd;
467 ev_io *w; 2108 ev_io *w;
468 2109
469 int events = 0; 2110 unsigned char o_events = anfd->events;
2111 unsigned char o_reify = anfd->reify;
470 2112
471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2113 anfd->reify = 0;
472 events |= w->events;
473 2114
474#if EV_SELECT_IS_WINSOCKET 2115 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
475 if (events)
476 { 2116 {
477 unsigned long argp; 2117 anfd->events = 0;
478 anfd->handle = _get_osfhandle (fd); 2118
479 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2119 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2120 anfd->events |= (unsigned char)w->events;
2121
2122 if (o_events != anfd->events)
2123 o_reify = EV__IOFDSET; /* actually |= */
480 } 2124 }
481#endif
482 2125
483 anfd->reify = 0; 2126 if (o_reify & EV__IOFDSET)
484
485 backend_modify (EV_A_ fd, anfd->events, events); 2127 backend_modify (EV_A_ fd, o_events, anfd->events);
486 anfd->events = events;
487 } 2128 }
488 2129
489 fdchangecnt = 0; 2130 fdchangecnt = 0;
490} 2131}
491 2132
2133/* something about the given fd changed */
492void inline_size 2134inline_size
2135void
493fd_change (EV_P_ int fd) 2136fd_change (EV_P_ int fd, int flags)
494{ 2137{
495 if (expect_false (anfds [fd].reify)) 2138 unsigned char reify = anfds [fd].reify;
496 return;
497
498 anfds [fd].reify = 1; 2139 anfds [fd].reify |= flags;
499 2140
2141 if (expect_true (!reify))
2142 {
500 ++fdchangecnt; 2143 ++fdchangecnt;
501 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2144 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
502 fdchanges [fdchangecnt - 1] = fd; 2145 fdchanges [fdchangecnt - 1] = fd;
2146 }
503} 2147}
504 2148
505void inline_speed 2149/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2150inline_speed ecb_cold void
506fd_kill (EV_P_ int fd) 2151fd_kill (EV_P_ int fd)
507{ 2152{
508 ev_io *w; 2153 ev_io *w;
509 2154
510 while ((w = (ev_io *)anfds [fd].head)) 2155 while ((w = (ev_io *)anfds [fd].head))
512 ev_io_stop (EV_A_ w); 2157 ev_io_stop (EV_A_ w);
513 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2158 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
514 } 2159 }
515} 2160}
516 2161
517int inline_size 2162/* check whether the given fd is actually valid, for error recovery */
2163inline_size ecb_cold int
518fd_valid (int fd) 2164fd_valid (int fd)
519{ 2165{
520#ifdef _WIN32 2166#ifdef _WIN32
521 return _get_osfhandle (fd) != -1; 2167 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
522#else 2168#else
523 return fcntl (fd, F_GETFD) != -1; 2169 return fcntl (fd, F_GETFD) != -1;
524#endif 2170#endif
525} 2171}
526 2172
527/* called on EBADF to verify fds */ 2173/* called on EBADF to verify fds */
528static void noinline 2174noinline ecb_cold
2175static void
529fd_ebadf (EV_P) 2176fd_ebadf (EV_P)
530{ 2177{
531 int fd; 2178 int fd;
532 2179
533 for (fd = 0; fd < anfdmax; ++fd) 2180 for (fd = 0; fd < anfdmax; ++fd)
534 if (anfds [fd].events) 2181 if (anfds [fd].events)
535 if (!fd_valid (fd) == -1 && errno == EBADF) 2182 if (!fd_valid (fd) && errno == EBADF)
536 fd_kill (EV_A_ fd); 2183 fd_kill (EV_A_ fd);
537} 2184}
538 2185
539/* called on ENOMEM in select/poll to kill some fds and retry */ 2186/* called on ENOMEM in select/poll to kill some fds and retry */
540static void noinline 2187noinline ecb_cold
2188static void
541fd_enomem (EV_P) 2189fd_enomem (EV_P)
542{ 2190{
543 int fd; 2191 int fd;
544 2192
545 for (fd = anfdmax; fd--; ) 2193 for (fd = anfdmax; fd--; )
546 if (anfds [fd].events) 2194 if (anfds [fd].events)
547 { 2195 {
548 fd_kill (EV_A_ fd); 2196 fd_kill (EV_A_ fd);
549 return; 2197 break;
550 } 2198 }
551} 2199}
552 2200
553/* usually called after fork if backend needs to re-arm all fds from scratch */ 2201/* usually called after fork if backend needs to re-arm all fds from scratch */
554static void noinline 2202noinline
2203static void
555fd_rearm_all (EV_P) 2204fd_rearm_all (EV_P)
556{ 2205{
557 int fd; 2206 int fd;
558 2207
559 /* this should be highly optimised to not do anything but set a flag */
560 for (fd = 0; fd < anfdmax; ++fd) 2208 for (fd = 0; fd < anfdmax; ++fd)
561 if (anfds [fd].events) 2209 if (anfds [fd].events)
562 { 2210 {
563 anfds [fd].events = 0; 2211 anfds [fd].events = 0;
564 fd_change (EV_A_ fd); 2212 anfds [fd].emask = 0;
2213 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
565 } 2214 }
566} 2215}
567 2216
2217/* used to prepare libev internal fd's */
2218/* this is not fork-safe */
2219inline_speed void
2220fd_intern (int fd)
2221{
2222#ifdef _WIN32
2223 unsigned long arg = 1;
2224 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2225#else
2226 fcntl (fd, F_SETFD, FD_CLOEXEC);
2227 fcntl (fd, F_SETFL, O_NONBLOCK);
2228#endif
2229}
2230
568/*****************************************************************************/ 2231/*****************************************************************************/
569 2232
570void inline_speed 2233/*
571upheap (WT *heap, int k) 2234 * the heap functions want a real array index. array index 0 is guaranteed to not
572{ 2235 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
573 WT w = heap [k]; 2236 * the branching factor of the d-tree.
2237 */
574 2238
575 while (k && heap [k >> 1]->at > w->at) 2239/*
576 { 2240 * at the moment we allow libev the luxury of two heaps,
577 heap [k] = heap [k >> 1]; 2241 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
578 ((W)heap [k])->active = k + 1; 2242 * which is more cache-efficient.
579 k >>= 1; 2243 * the difference is about 5% with 50000+ watchers.
580 } 2244 */
2245#if EV_USE_4HEAP
581 2246
582 heap [k] = w; 2247#define DHEAP 4
583 ((W)heap [k])->active = k + 1; 2248#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2249#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2250#define UPHEAP_DONE(p,k) ((p) == (k))
584 2251
585} 2252/* away from the root */
586 2253inline_speed void
587void inline_speed
588downheap (WT *heap, int N, int k) 2254downheap (ANHE *heap, int N, int k)
589{ 2255{
590 WT w = heap [k]; 2256 ANHE he = heap [k];
2257 ANHE *E = heap + N + HEAP0;
591 2258
592 while (k < (N >> 1)) 2259 for (;;)
593 { 2260 {
594 int j = k << 1; 2261 ev_tstamp minat;
2262 ANHE *minpos;
2263 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
595 2264
596 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 2265 /* find minimum child */
2266 if (expect_true (pos + DHEAP - 1 < E))
597 ++j; 2267 {
598 2268 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
599 if (w->at <= heap [j]->at) 2269 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2270 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2271 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2272 }
2273 else if (pos < E)
2274 {
2275 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2276 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2277 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2278 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2279 }
2280 else
600 break; 2281 break;
601 2282
2283 if (ANHE_at (he) <= minat)
2284 break;
2285
2286 heap [k] = *minpos;
2287 ev_active (ANHE_w (*minpos)) = k;
2288
2289 k = minpos - heap;
2290 }
2291
2292 heap [k] = he;
2293 ev_active (ANHE_w (he)) = k;
2294}
2295
2296#else /* 4HEAP */
2297
2298#define HEAP0 1
2299#define HPARENT(k) ((k) >> 1)
2300#define UPHEAP_DONE(p,k) (!(p))
2301
2302/* away from the root */
2303inline_speed void
2304downheap (ANHE *heap, int N, int k)
2305{
2306 ANHE he = heap [k];
2307
2308 for (;;)
2309 {
2310 int c = k << 1;
2311
2312 if (c >= N + HEAP0)
2313 break;
2314
2315 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2316 ? 1 : 0;
2317
2318 if (ANHE_at (he) <= ANHE_at (heap [c]))
2319 break;
2320
602 heap [k] = heap [j]; 2321 heap [k] = heap [c];
603 ((W)heap [k])->active = k + 1; 2322 ev_active (ANHE_w (heap [k])) = k;
2323
604 k = j; 2324 k = c;
605 } 2325 }
606 2326
607 heap [k] = w; 2327 heap [k] = he;
608 ((W)heap [k])->active = k + 1; 2328 ev_active (ANHE_w (he)) = k;
609} 2329}
2330#endif
610 2331
611void inline_size 2332/* towards the root */
2333inline_speed void
2334upheap (ANHE *heap, int k)
2335{
2336 ANHE he = heap [k];
2337
2338 for (;;)
2339 {
2340 int p = HPARENT (k);
2341
2342 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2343 break;
2344
2345 heap [k] = heap [p];
2346 ev_active (ANHE_w (heap [k])) = k;
2347 k = p;
2348 }
2349
2350 heap [k] = he;
2351 ev_active (ANHE_w (he)) = k;
2352}
2353
2354/* move an element suitably so it is in a correct place */
2355inline_size void
612adjustheap (WT *heap, int N, int k) 2356adjustheap (ANHE *heap, int N, int k)
613{ 2357{
2358 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
614 upheap (heap, k); 2359 upheap (heap, k);
2360 else
615 downheap (heap, N, k); 2361 downheap (heap, N, k);
2362}
2363
2364/* rebuild the heap: this function is used only once and executed rarely */
2365inline_size void
2366reheap (ANHE *heap, int N)
2367{
2368 int i;
2369
2370 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2371 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2372 for (i = 0; i < N; ++i)
2373 upheap (heap, i + HEAP0);
616} 2374}
617 2375
618/*****************************************************************************/ 2376/*****************************************************************************/
619 2377
2378/* associate signal watchers to a signal signal */
620typedef struct 2379typedef struct
621{ 2380{
2381 EV_ATOMIC_T pending;
2382#if EV_MULTIPLICITY
2383 EV_P;
2384#endif
622 WL head; 2385 WL head;
623 sig_atomic_t volatile gotsig;
624} ANSIG; 2386} ANSIG;
625 2387
626static ANSIG *signals; 2388static ANSIG signals [EV_NSIG - 1];
627static int signalmax;
628 2389
629static int sigpipe [2]; 2390/*****************************************************************************/
630static sig_atomic_t volatile gotsig;
631static ev_io sigev;
632 2391
633void inline_size 2392#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
634signals_init (ANSIG *base, int count)
635{
636 while (count--)
637 {
638 base->head = 0;
639 base->gotsig = 0;
640 2393
641 ++base; 2394noinline ecb_cold
642 }
643}
644
645static void 2395static void
646sighandler (int signum) 2396evpipe_init (EV_P)
647{ 2397{
648#if _WIN32 2398 if (!ev_is_active (&pipe_w))
649 signal (signum, sighandler); 2399 {
2400 int fds [2];
2401
2402# if EV_USE_EVENTFD
2403 fds [0] = -1;
2404 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2405 if (fds [1] < 0 && errno == EINVAL)
2406 fds [1] = eventfd (0, 0);
2407
2408 if (fds [1] < 0)
650#endif 2409# endif
2410 {
2411 while (pipe (fds))
2412 ev_syserr ("(libev) error creating signal/async pipe");
651 2413
652 signals [signum - 1].gotsig = 1; 2414 fd_intern (fds [0]);
2415 }
653 2416
654 if (!gotsig) 2417 evpipe [0] = fds [0];
2418
2419 if (evpipe [1] < 0)
2420 evpipe [1] = fds [1]; /* first call, set write fd */
2421 else
2422 {
2423 /* on subsequent calls, do not change evpipe [1] */
2424 /* so that evpipe_write can always rely on its value. */
2425 /* this branch does not do anything sensible on windows, */
2426 /* so must not be executed on windows */
2427
2428 dup2 (fds [1], evpipe [1]);
2429 close (fds [1]);
2430 }
2431
2432 fd_intern (evpipe [1]);
2433
2434 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2435 ev_io_start (EV_A_ &pipe_w);
2436 ev_unref (EV_A); /* watcher should not keep loop alive */
655 { 2437 }
2438}
2439
2440inline_speed void
2441evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2442{
2443 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2444
2445 if (expect_true (*flag))
2446 return;
2447
2448 *flag = 1;
2449 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2450
2451 pipe_write_skipped = 1;
2452
2453 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2454
2455 if (pipe_write_wanted)
2456 {
656 int old_errno = errno; 2457 int old_errno;
657 gotsig = 1; 2458
658 write (sigpipe [1], &signum, 1); 2459 pipe_write_skipped = 0;
2460 ECB_MEMORY_FENCE_RELEASE;
2461
2462 old_errno = errno; /* save errno because write will clobber it */
2463
2464#if EV_USE_EVENTFD
2465 if (evpipe [0] < 0)
2466 {
2467 uint64_t counter = 1;
2468 write (evpipe [1], &counter, sizeof (uint64_t));
2469 }
2470 else
2471#endif
2472 {
2473#ifdef _WIN32
2474 WSABUF buf;
2475 DWORD sent;
2476 buf.buf = &buf;
2477 buf.len = 1;
2478 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2479#else
2480 write (evpipe [1], &(evpipe [1]), 1);
2481#endif
2482 }
2483
659 errno = old_errno; 2484 errno = old_errno;
660 } 2485 }
661} 2486}
662 2487
2488/* called whenever the libev signal pipe */
2489/* got some events (signal, async) */
2490static void
2491pipecb (EV_P_ ev_io *iow, int revents)
2492{
2493 int i;
2494
2495 if (revents & EV_READ)
2496 {
2497#if EV_USE_EVENTFD
2498 if (evpipe [0] < 0)
2499 {
2500 uint64_t counter;
2501 read (evpipe [1], &counter, sizeof (uint64_t));
2502 }
2503 else
2504#endif
2505 {
2506 char dummy[4];
2507#ifdef _WIN32
2508 WSABUF buf;
2509 DWORD recvd;
2510 DWORD flags = 0;
2511 buf.buf = dummy;
2512 buf.len = sizeof (dummy);
2513 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2514#else
2515 read (evpipe [0], &dummy, sizeof (dummy));
2516#endif
2517 }
2518 }
2519
2520 pipe_write_skipped = 0;
2521
2522 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2523
2524#if EV_SIGNAL_ENABLE
2525 if (sig_pending)
2526 {
2527 sig_pending = 0;
2528
2529 ECB_MEMORY_FENCE;
2530
2531 for (i = EV_NSIG - 1; i--; )
2532 if (expect_false (signals [i].pending))
2533 ev_feed_signal_event (EV_A_ i + 1);
2534 }
2535#endif
2536
2537#if EV_ASYNC_ENABLE
2538 if (async_pending)
2539 {
2540 async_pending = 0;
2541
2542 ECB_MEMORY_FENCE;
2543
2544 for (i = asynccnt; i--; )
2545 if (asyncs [i]->sent)
2546 {
2547 asyncs [i]->sent = 0;
2548 ECB_MEMORY_FENCE_RELEASE;
2549 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2550 }
2551 }
2552#endif
2553}
2554
2555/*****************************************************************************/
2556
2557void
2558ev_feed_signal (int signum) EV_THROW
2559{
2560#if EV_MULTIPLICITY
2561 EV_P;
2562 ECB_MEMORY_FENCE_ACQUIRE;
2563 EV_A = signals [signum - 1].loop;
2564
2565 if (!EV_A)
2566 return;
2567#endif
2568
2569 signals [signum - 1].pending = 1;
2570 evpipe_write (EV_A_ &sig_pending);
2571}
2572
2573static void
2574ev_sighandler (int signum)
2575{
2576#ifdef _WIN32
2577 signal (signum, ev_sighandler);
2578#endif
2579
2580 ev_feed_signal (signum);
2581}
2582
663void noinline 2583noinline
2584void
664ev_feed_signal_event (EV_P_ int signum) 2585ev_feed_signal_event (EV_P_ int signum) EV_THROW
665{ 2586{
666 WL w; 2587 WL w;
667 2588
2589 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2590 return;
2591
2592 --signum;
2593
668#if EV_MULTIPLICITY 2594#if EV_MULTIPLICITY
669 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 2595 /* it is permissible to try to feed a signal to the wrong loop */
670#endif 2596 /* or, likely more useful, feeding a signal nobody is waiting for */
671 2597
672 --signum; 2598 if (expect_false (signals [signum].loop != EV_A))
673
674 if (signum < 0 || signum >= signalmax)
675 return; 2599 return;
2600#endif
676 2601
677 signals [signum].gotsig = 0; 2602 signals [signum].pending = 0;
2603 ECB_MEMORY_FENCE_RELEASE;
678 2604
679 for (w = signals [signum].head; w; w = w->next) 2605 for (w = signals [signum].head; w; w = w->next)
680 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2606 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
681} 2607}
682 2608
2609#if EV_USE_SIGNALFD
683static void 2610static void
684sigcb (EV_P_ ev_io *iow, int revents) 2611sigfdcb (EV_P_ ev_io *iow, int revents)
685{ 2612{
686 int signum; 2613 struct signalfd_siginfo si[2], *sip; /* these structs are big */
687 2614
688 read (sigpipe [0], &revents, 1); 2615 for (;;)
689 gotsig = 0; 2616 {
2617 ssize_t res = read (sigfd, si, sizeof (si));
690 2618
691 for (signum = signalmax; signum--; ) 2619 /* not ISO-C, as res might be -1, but works with SuS */
692 if (signals [signum].gotsig) 2620 for (sip = si; (char *)sip < (char *)si + res; ++sip)
693 ev_feed_signal_event (EV_A_ signum + 1); 2621 ev_feed_signal_event (EV_A_ sip->ssi_signo);
694}
695 2622
696void inline_size 2623 if (res < (ssize_t)sizeof (si))
697fd_intern (int fd) 2624 break;
698{ 2625 }
699#ifdef _WIN32
700 int arg = 1;
701 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
702#else
703 fcntl (fd, F_SETFD, FD_CLOEXEC);
704 fcntl (fd, F_SETFL, O_NONBLOCK);
705#endif
706} 2626}
2627#endif
707 2628
708static void noinline 2629#endif
709siginit (EV_P)
710{
711 fd_intern (sigpipe [0]);
712 fd_intern (sigpipe [1]);
713
714 ev_io_set (&sigev, sigpipe [0], EV_READ);
715 ev_io_start (EV_A_ &sigev);
716 ev_unref (EV_A); /* child watcher should not keep loop alive */
717}
718 2630
719/*****************************************************************************/ 2631/*****************************************************************************/
720 2632
2633#if EV_CHILD_ENABLE
721static ev_child *childs [EV_PID_HASHSIZE]; 2634static WL childs [EV_PID_HASHSIZE];
722
723#ifndef _WIN32
724 2635
725static ev_signal childev; 2636static ev_signal childev;
726 2637
727void inline_speed 2638#ifndef WIFCONTINUED
2639# define WIFCONTINUED(status) 0
2640#endif
2641
2642/* handle a single child status event */
2643inline_speed void
728child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2644child_reap (EV_P_ int chain, int pid, int status)
729{ 2645{
730 ev_child *w; 2646 ev_child *w;
2647 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
731 2648
732 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2649 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2650 {
733 if (w->pid == pid || !w->pid) 2651 if ((w->pid == pid || !w->pid)
2652 && (!traced || (w->flags & 1)))
734 { 2653 {
735 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 2654 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
736 w->rpid = pid; 2655 w->rpid = pid;
737 w->rstatus = status; 2656 w->rstatus = status;
738 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2657 ev_feed_event (EV_A_ (W)w, EV_CHILD);
739 } 2658 }
2659 }
740} 2660}
741 2661
742#ifndef WCONTINUED 2662#ifndef WCONTINUED
743# define WCONTINUED 0 2663# define WCONTINUED 0
744#endif 2664#endif
745 2665
2666/* called on sigchld etc., calls waitpid */
746static void 2667static void
747childcb (EV_P_ ev_signal *sw, int revents) 2668childcb (EV_P_ ev_signal *sw, int revents)
748{ 2669{
749 int pid, status; 2670 int pid, status;
750 2671
753 if (!WCONTINUED 2674 if (!WCONTINUED
754 || errno != EINVAL 2675 || errno != EINVAL
755 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2676 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
756 return; 2677 return;
757 2678
758 /* make sure we are called again until all childs have been reaped */ 2679 /* make sure we are called again until all children have been reaped */
759 /* we need to do it this way so that the callback gets called before we continue */ 2680 /* we need to do it this way so that the callback gets called before we continue */
760 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2681 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
761 2682
762 child_reap (EV_A_ sw, pid, pid, status); 2683 child_reap (EV_A_ pid, pid, status);
763 if (EV_PID_HASHSIZE > 1) 2684 if ((EV_PID_HASHSIZE) > 1)
764 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2685 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
765} 2686}
766 2687
767#endif 2688#endif
768 2689
769/*****************************************************************************/ 2690/*****************************************************************************/
770 2691
2692#if EV_USE_IOCP
2693# include "ev_iocp.c"
2694#endif
771#if EV_USE_PORT 2695#if EV_USE_PORT
772# include "ev_port.c" 2696# include "ev_port.c"
773#endif 2697#endif
774#if EV_USE_KQUEUE 2698#if EV_USE_KQUEUE
775# include "ev_kqueue.c" 2699# include "ev_kqueue.c"
782#endif 2706#endif
783#if EV_USE_SELECT 2707#if EV_USE_SELECT
784# include "ev_select.c" 2708# include "ev_select.c"
785#endif 2709#endif
786 2710
787int 2711ecb_cold int
788ev_version_major (void) 2712ev_version_major (void) EV_THROW
789{ 2713{
790 return EV_VERSION_MAJOR; 2714 return EV_VERSION_MAJOR;
791} 2715}
792 2716
793int 2717ecb_cold int
794ev_version_minor (void) 2718ev_version_minor (void) EV_THROW
795{ 2719{
796 return EV_VERSION_MINOR; 2720 return EV_VERSION_MINOR;
797} 2721}
798 2722
799/* return true if we are running with elevated privileges and should ignore env variables */ 2723/* return true if we are running with elevated privileges and should ignore env variables */
800int inline_size 2724inline_size ecb_cold int
801enable_secure (void) 2725enable_secure (void)
802{ 2726{
803#ifdef _WIN32 2727#ifdef _WIN32
804 return 0; 2728 return 0;
805#else 2729#else
806 return getuid () != geteuid () 2730 return getuid () != geteuid ()
807 || getgid () != getegid (); 2731 || getgid () != getegid ();
808#endif 2732#endif
809} 2733}
810 2734
2735ecb_cold
811unsigned int 2736unsigned int
812ev_supported_backends (void) 2737ev_supported_backends (void) EV_THROW
813{ 2738{
814 unsigned int flags = 0; 2739 unsigned int flags = 0;
815 2740
816 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2741 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
817 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2742 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
820 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2745 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
821 2746
822 return flags; 2747 return flags;
823} 2748}
824 2749
2750ecb_cold
825unsigned int 2751unsigned int
826ev_recommended_backends (void) 2752ev_recommended_backends (void) EV_THROW
827{ 2753{
828 unsigned int flags = ev_supported_backends (); 2754 unsigned int flags = ev_supported_backends ();
829 2755
830#ifndef __NetBSD__ 2756#ifndef __NetBSD__
831 /* kqueue is borked on everything but netbsd apparently */ 2757 /* kqueue is borked on everything but netbsd apparently */
832 /* it usually doesn't work correctly on anything but sockets and pipes */ 2758 /* it usually doesn't work correctly on anything but sockets and pipes */
833 flags &= ~EVBACKEND_KQUEUE; 2759 flags &= ~EVBACKEND_KQUEUE;
834#endif 2760#endif
835#ifdef __APPLE__ 2761#ifdef __APPLE__
836 // flags &= ~EVBACKEND_KQUEUE; for documentation 2762 /* only select works correctly on that "unix-certified" platform */
837 flags &= ~EVBACKEND_POLL; 2763 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2764 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2765#endif
2766#ifdef __FreeBSD__
2767 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
838#endif 2768#endif
839 2769
840 return flags; 2770 return flags;
841} 2771}
842 2772
2773ecb_cold
843unsigned int 2774unsigned int
844ev_embeddable_backends (void) 2775ev_embeddable_backends (void) EV_THROW
845{ 2776{
846 return EVBACKEND_EPOLL 2777 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
847 | EVBACKEND_KQUEUE 2778
848 | EVBACKEND_PORT; 2779 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2780 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2781 flags &= ~EVBACKEND_EPOLL;
2782
2783 return flags;
849} 2784}
850 2785
851unsigned int 2786unsigned int
852ev_backend (EV_P) 2787ev_backend (EV_P) EV_THROW
853{ 2788{
854 return backend; 2789 return backend;
855} 2790}
856 2791
857static void noinline 2792#if EV_FEATURE_API
2793unsigned int
2794ev_iteration (EV_P) EV_THROW
2795{
2796 return loop_count;
2797}
2798
2799unsigned int
2800ev_depth (EV_P) EV_THROW
2801{
2802 return loop_depth;
2803}
2804
2805void
2806ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2807{
2808 io_blocktime = interval;
2809}
2810
2811void
2812ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2813{
2814 timeout_blocktime = interval;
2815}
2816
2817void
2818ev_set_userdata (EV_P_ void *data) EV_THROW
2819{
2820 userdata = data;
2821}
2822
2823void *
2824ev_userdata (EV_P) EV_THROW
2825{
2826 return userdata;
2827}
2828
2829void
2830ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2831{
2832 invoke_cb = invoke_pending_cb;
2833}
2834
2835void
2836ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2837{
2838 release_cb = release;
2839 acquire_cb = acquire;
2840}
2841#endif
2842
2843/* initialise a loop structure, must be zero-initialised */
2844noinline ecb_cold
2845static void
858loop_init (EV_P_ unsigned int flags) 2846loop_init (EV_P_ unsigned int flags) EV_THROW
859{ 2847{
860 if (!backend) 2848 if (!backend)
861 { 2849 {
2850 origflags = flags;
2851
2852#if EV_USE_REALTIME
2853 if (!have_realtime)
2854 {
2855 struct timespec ts;
2856
2857 if (!clock_gettime (CLOCK_REALTIME, &ts))
2858 have_realtime = 1;
2859 }
2860#endif
2861
862#if EV_USE_MONOTONIC 2862#if EV_USE_MONOTONIC
2863 if (!have_monotonic)
863 { 2864 {
864 struct timespec ts; 2865 struct timespec ts;
2866
865 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2867 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
866 have_monotonic = 1; 2868 have_monotonic = 1;
867 } 2869 }
868#endif 2870#endif
869 2871
870 ev_rt_now = ev_time (); 2872 /* pid check not overridable via env */
871 mn_now = get_clock (); 2873#ifndef _WIN32
872 now_floor = mn_now; 2874 if (flags & EVFLAG_FORKCHECK)
873 rtmn_diff = ev_rt_now - mn_now; 2875 curpid = getpid ();
2876#endif
874 2877
875 if (!(flags & EVFLAG_NOENV) 2878 if (!(flags & EVFLAG_NOENV)
876 && !enable_secure () 2879 && !enable_secure ()
877 && getenv ("LIBEV_FLAGS")) 2880 && getenv ("LIBEV_FLAGS"))
878 flags = atoi (getenv ("LIBEV_FLAGS")); 2881 flags = atoi (getenv ("LIBEV_FLAGS"));
879 2882
880 if (!(flags & 0x0000ffffUL)) 2883 ev_rt_now = ev_time ();
2884 mn_now = get_clock ();
2885 now_floor = mn_now;
2886 rtmn_diff = ev_rt_now - mn_now;
2887#if EV_FEATURE_API
2888 invoke_cb = ev_invoke_pending;
2889#endif
2890
2891 io_blocktime = 0.;
2892 timeout_blocktime = 0.;
2893 backend = 0;
2894 backend_fd = -1;
2895 sig_pending = 0;
2896#if EV_ASYNC_ENABLE
2897 async_pending = 0;
2898#endif
2899 pipe_write_skipped = 0;
2900 pipe_write_wanted = 0;
2901 evpipe [0] = -1;
2902 evpipe [1] = -1;
2903#if EV_USE_INOTIFY
2904 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2905#endif
2906#if EV_USE_SIGNALFD
2907 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2908#endif
2909
2910 if (!(flags & EVBACKEND_MASK))
881 flags |= ev_recommended_backends (); 2911 flags |= ev_recommended_backends ();
882 2912
883 backend = 0; 2913#if EV_USE_IOCP
2914 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2915#endif
884#if EV_USE_PORT 2916#if EV_USE_PORT
885 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2917 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
886#endif 2918#endif
887#if EV_USE_KQUEUE 2919#if EV_USE_KQUEUE
888 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2920 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
895#endif 2927#endif
896#if EV_USE_SELECT 2928#if EV_USE_SELECT
897 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2929 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
898#endif 2930#endif
899 2931
2932 ev_prepare_init (&pending_w, pendingcb);
2933
2934#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
900 ev_init (&sigev, sigcb); 2935 ev_init (&pipe_w, pipecb);
901 ev_set_priority (&sigev, EV_MAXPRI); 2936 ev_set_priority (&pipe_w, EV_MAXPRI);
2937#endif
902 } 2938 }
903} 2939}
904 2940
905static void noinline 2941/* free up a loop structure */
2942ecb_cold
2943void
906loop_destroy (EV_P) 2944ev_loop_destroy (EV_P)
907{ 2945{
908 int i; 2946 int i;
909 2947
2948#if EV_MULTIPLICITY
2949 /* mimic free (0) */
2950 if (!EV_A)
2951 return;
2952#endif
2953
2954#if EV_CLEANUP_ENABLE
2955 /* queue cleanup watchers (and execute them) */
2956 if (expect_false (cleanupcnt))
2957 {
2958 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2959 EV_INVOKE_PENDING;
2960 }
2961#endif
2962
2963#if EV_CHILD_ENABLE
2964 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2965 {
2966 ev_ref (EV_A); /* child watcher */
2967 ev_signal_stop (EV_A_ &childev);
2968 }
2969#endif
2970
2971 if (ev_is_active (&pipe_w))
2972 {
2973 /*ev_ref (EV_A);*/
2974 /*ev_io_stop (EV_A_ &pipe_w);*/
2975
2976 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2977 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2978 }
2979
2980#if EV_USE_SIGNALFD
2981 if (ev_is_active (&sigfd_w))
2982 close (sigfd);
2983#endif
2984
2985#if EV_USE_INOTIFY
2986 if (fs_fd >= 0)
2987 close (fs_fd);
2988#endif
2989
2990 if (backend_fd >= 0)
2991 close (backend_fd);
2992
2993#if EV_USE_IOCP
2994 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2995#endif
910#if EV_USE_PORT 2996#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2997 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
912#endif 2998#endif
913#if EV_USE_KQUEUE 2999#if EV_USE_KQUEUE
914 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3000 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
922#if EV_USE_SELECT 3008#if EV_USE_SELECT
923 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3009 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
924#endif 3010#endif
925 3011
926 for (i = NUMPRI; i--; ) 3012 for (i = NUMPRI; i--; )
3013 {
927 array_free (pending, [i]); 3014 array_free (pending, [i]);
3015#if EV_IDLE_ENABLE
3016 array_free (idle, [i]);
3017#endif
3018 }
3019
3020 ev_free (anfds); anfds = 0; anfdmax = 0;
928 3021
929 /* have to use the microsoft-never-gets-it-right macro */ 3022 /* have to use the microsoft-never-gets-it-right macro */
3023 array_free (rfeed, EMPTY);
930 array_free (fdchange, EMPTY0); 3024 array_free (fdchange, EMPTY);
931 array_free (timer, EMPTY0); 3025 array_free (timer, EMPTY);
932#if EV_PERIODIC_ENABLE 3026#if EV_PERIODIC_ENABLE
933 array_free (periodic, EMPTY0); 3027 array_free (periodic, EMPTY);
934#endif 3028#endif
3029#if EV_FORK_ENABLE
3030 array_free (fork, EMPTY);
3031#endif
3032#if EV_CLEANUP_ENABLE
935 array_free (idle, EMPTY0); 3033 array_free (cleanup, EMPTY);
3034#endif
936 array_free (prepare, EMPTY0); 3035 array_free (prepare, EMPTY);
937 array_free (check, EMPTY0); 3036 array_free (check, EMPTY);
3037#if EV_ASYNC_ENABLE
3038 array_free (async, EMPTY);
3039#endif
938 3040
939 backend = 0; 3041 backend = 0;
940}
941 3042
942void inline_size 3043#if EV_MULTIPLICITY
3044 if (ev_is_default_loop (EV_A))
3045#endif
3046 ev_default_loop_ptr = 0;
3047#if EV_MULTIPLICITY
3048 else
3049 ev_free (EV_A);
3050#endif
3051}
3052
3053#if EV_USE_INOTIFY
3054inline_size void infy_fork (EV_P);
3055#endif
3056
3057inline_size void
943loop_fork (EV_P) 3058loop_fork (EV_P)
944{ 3059{
945#if EV_USE_PORT 3060#if EV_USE_PORT
946 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3061 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
947#endif 3062#endif
949 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3064 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
950#endif 3065#endif
951#if EV_USE_EPOLL 3066#if EV_USE_EPOLL
952 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3067 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
953#endif 3068#endif
3069#if EV_USE_INOTIFY
3070 infy_fork (EV_A);
3071#endif
954 3072
955 if (ev_is_active (&sigev)) 3073#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3074 if (ev_is_active (&pipe_w) && postfork != 2)
956 { 3075 {
957 /* default loop */ 3076 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
958 3077
959 ev_ref (EV_A); 3078 ev_ref (EV_A);
960 ev_io_stop (EV_A_ &sigev); 3079 ev_io_stop (EV_A_ &pipe_w);
961 close (sigpipe [0]);
962 close (sigpipe [1]);
963 3080
964 while (pipe (sigpipe)) 3081 if (evpipe [0] >= 0)
965 syserr ("(libev) error creating pipe"); 3082 EV_WIN32_CLOSE_FD (evpipe [0]);
966 3083
967 siginit (EV_A); 3084 evpipe_init (EV_A);
3085 /* iterate over everything, in case we missed something before */
3086 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
968 } 3087 }
3088#endif
969 3089
970 postfork = 0; 3090 postfork = 0;
971} 3091}
972 3092
973#if EV_MULTIPLICITY 3093#if EV_MULTIPLICITY
3094
3095ecb_cold
974struct ev_loop * 3096struct ev_loop *
975ev_loop_new (unsigned int flags) 3097ev_loop_new (unsigned int flags) EV_THROW
976{ 3098{
977 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3099 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
978 3100
979 memset (loop, 0, sizeof (struct ev_loop)); 3101 memset (EV_A, 0, sizeof (struct ev_loop));
980
981 loop_init (EV_A_ flags); 3102 loop_init (EV_A_ flags);
982 3103
983 if (ev_backend (EV_A)) 3104 if (ev_backend (EV_A))
984 return loop; 3105 return EV_A;
985 3106
3107 ev_free (EV_A);
986 return 0; 3108 return 0;
987} 3109}
988 3110
989void 3111#endif /* multiplicity */
990ev_loop_destroy (EV_P)
991{
992 loop_destroy (EV_A);
993 ev_free (loop);
994}
995 3112
996void 3113#if EV_VERIFY
997ev_loop_fork (EV_P) 3114noinline ecb_cold
3115static void
3116verify_watcher (EV_P_ W w)
998{ 3117{
999 postfork = 1; 3118 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1000}
1001 3119
3120 if (w->pending)
3121 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3122}
3123
3124noinline ecb_cold
3125static void
3126verify_heap (EV_P_ ANHE *heap, int N)
3127{
3128 int i;
3129
3130 for (i = HEAP0; i < N + HEAP0; ++i)
3131 {
3132 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3133 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3134 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3135
3136 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3137 }
3138}
3139
3140noinline ecb_cold
3141static void
3142array_verify (EV_P_ W *ws, int cnt)
3143{
3144 while (cnt--)
3145 {
3146 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3147 verify_watcher (EV_A_ ws [cnt]);
3148 }
3149}
3150#endif
3151
3152#if EV_FEATURE_API
3153void ecb_cold
3154ev_verify (EV_P) EV_THROW
3155{
3156#if EV_VERIFY
3157 int i;
3158 WL w, w2;
3159
3160 assert (activecnt >= -1);
3161
3162 assert (fdchangemax >= fdchangecnt);
3163 for (i = 0; i < fdchangecnt; ++i)
3164 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3165
3166 assert (anfdmax >= 0);
3167 for (i = 0; i < anfdmax; ++i)
3168 {
3169 int j = 0;
3170
3171 for (w = w2 = anfds [i].head; w; w = w->next)
3172 {
3173 verify_watcher (EV_A_ (W)w);
3174
3175 if (j++ & 1)
3176 {
3177 assert (("libev: io watcher list contains a loop", w != w2));
3178 w2 = w2->next;
3179 }
3180
3181 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3182 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3183 }
3184 }
3185
3186 assert (timermax >= timercnt);
3187 verify_heap (EV_A_ timers, timercnt);
3188
3189#if EV_PERIODIC_ENABLE
3190 assert (periodicmax >= periodiccnt);
3191 verify_heap (EV_A_ periodics, periodiccnt);
3192#endif
3193
3194 for (i = NUMPRI; i--; )
3195 {
3196 assert (pendingmax [i] >= pendingcnt [i]);
3197#if EV_IDLE_ENABLE
3198 assert (idleall >= 0);
3199 assert (idlemax [i] >= idlecnt [i]);
3200 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3201#endif
3202 }
3203
3204#if EV_FORK_ENABLE
3205 assert (forkmax >= forkcnt);
3206 array_verify (EV_A_ (W *)forks, forkcnt);
3207#endif
3208
3209#if EV_CLEANUP_ENABLE
3210 assert (cleanupmax >= cleanupcnt);
3211 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3212#endif
3213
3214#if EV_ASYNC_ENABLE
3215 assert (asyncmax >= asynccnt);
3216 array_verify (EV_A_ (W *)asyncs, asynccnt);
3217#endif
3218
3219#if EV_PREPARE_ENABLE
3220 assert (preparemax >= preparecnt);
3221 array_verify (EV_A_ (W *)prepares, preparecnt);
3222#endif
3223
3224#if EV_CHECK_ENABLE
3225 assert (checkmax >= checkcnt);
3226 array_verify (EV_A_ (W *)checks, checkcnt);
3227#endif
3228
3229# if 0
3230#if EV_CHILD_ENABLE
3231 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3232 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3233#endif
3234# endif
3235#endif
3236}
1002#endif 3237#endif
1003 3238
1004#if EV_MULTIPLICITY 3239#if EV_MULTIPLICITY
3240ecb_cold
1005struct ev_loop * 3241struct ev_loop *
1006ev_default_loop_init (unsigned int flags)
1007#else 3242#else
1008int 3243int
3244#endif
1009ev_default_loop (unsigned int flags) 3245ev_default_loop (unsigned int flags) EV_THROW
1010#endif
1011{ 3246{
1012 if (sigpipe [0] == sigpipe [1])
1013 if (pipe (sigpipe))
1014 return 0;
1015
1016 if (!ev_default_loop_ptr) 3247 if (!ev_default_loop_ptr)
1017 { 3248 {
1018#if EV_MULTIPLICITY 3249#if EV_MULTIPLICITY
1019 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3250 EV_P = ev_default_loop_ptr = &default_loop_struct;
1020#else 3251#else
1021 ev_default_loop_ptr = 1; 3252 ev_default_loop_ptr = 1;
1022#endif 3253#endif
1023 3254
1024 loop_init (EV_A_ flags); 3255 loop_init (EV_A_ flags);
1025 3256
1026 if (ev_backend (EV_A)) 3257 if (ev_backend (EV_A))
1027 { 3258 {
1028 siginit (EV_A); 3259#if EV_CHILD_ENABLE
1029
1030#ifndef _WIN32
1031 ev_signal_init (&childev, childcb, SIGCHLD); 3260 ev_signal_init (&childev, childcb, SIGCHLD);
1032 ev_set_priority (&childev, EV_MAXPRI); 3261 ev_set_priority (&childev, EV_MAXPRI);
1033 ev_signal_start (EV_A_ &childev); 3262 ev_signal_start (EV_A_ &childev);
1034 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3263 ev_unref (EV_A); /* child watcher should not keep loop alive */
1035#endif 3264#endif
1040 3269
1041 return ev_default_loop_ptr; 3270 return ev_default_loop_ptr;
1042} 3271}
1043 3272
1044void 3273void
1045ev_default_destroy (void) 3274ev_loop_fork (EV_P) EV_THROW
1046{ 3275{
1047#if EV_MULTIPLICITY
1048 struct ev_loop *loop = ev_default_loop_ptr;
1049#endif
1050
1051#ifndef _WIN32
1052 ev_ref (EV_A); /* child watcher */
1053 ev_signal_stop (EV_A_ &childev);
1054#endif
1055
1056 ev_ref (EV_A); /* signal watcher */
1057 ev_io_stop (EV_A_ &sigev);
1058
1059 close (sigpipe [0]); sigpipe [0] = 0;
1060 close (sigpipe [1]); sigpipe [1] = 0;
1061
1062 loop_destroy (EV_A);
1063}
1064
1065void
1066ev_default_fork (void)
1067{
1068#if EV_MULTIPLICITY
1069 struct ev_loop *loop = ev_default_loop_ptr;
1070#endif
1071
1072 if (backend)
1073 postfork = 1; 3276 postfork = 1;
1074} 3277}
1075 3278
1076/*****************************************************************************/ 3279/*****************************************************************************/
1077 3280
1078int inline_size 3281void
1079any_pending (EV_P) 3282ev_invoke (EV_P_ void *w, int revents)
3283{
3284 EV_CB_INVOKE ((W)w, revents);
3285}
3286
3287unsigned int
3288ev_pending_count (EV_P) EV_THROW
1080{ 3289{
1081 int pri; 3290 int pri;
3291 unsigned int count = 0;
1082 3292
1083 for (pri = NUMPRI; pri--; ) 3293 for (pri = NUMPRI; pri--; )
1084 if (pendingcnt [pri]) 3294 count += pendingcnt [pri];
1085 return 1;
1086 3295
1087 return 0; 3296 return count;
1088} 3297}
1089 3298
1090void inline_speed 3299noinline
1091call_pending (EV_P) 3300void
3301ev_invoke_pending (EV_P)
1092{ 3302{
1093 int pri; 3303 pendingpri = NUMPRI;
1094 3304
1095 for (pri = NUMPRI; pri--; ) 3305 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3306 {
3307 --pendingpri;
3308
1096 while (pendingcnt [pri]) 3309 while (pendingcnt [pendingpri])
1097 {
1098 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1099
1100 if (expect_true (p->w))
1101 { 3310 {
1102 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3311 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1103 3312
1104 p->w->pending = 0; 3313 p->w->pending = 0;
1105 EV_CB_INVOKE (p->w, p->events); 3314 EV_CB_INVOKE (p->w, p->events);
3315 EV_FREQUENT_CHECK;
3316 }
3317 }
3318}
3319
3320#if EV_IDLE_ENABLE
3321/* make idle watchers pending. this handles the "call-idle */
3322/* only when higher priorities are idle" logic */
3323inline_size void
3324idle_reify (EV_P)
3325{
3326 if (expect_false (idleall))
3327 {
3328 int pri;
3329
3330 for (pri = NUMPRI; pri--; )
3331 {
3332 if (pendingcnt [pri])
3333 break;
3334
3335 if (idlecnt [pri])
3336 {
3337 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3338 break;
1106 } 3339 }
1107 } 3340 }
3341 }
1108} 3342}
3343#endif
1109 3344
1110void inline_size 3345/* make timers pending */
3346inline_size void
1111timers_reify (EV_P) 3347timers_reify (EV_P)
1112{ 3348{
3349 EV_FREQUENT_CHECK;
3350
1113 while (timercnt && ((WT)timers [0])->at <= mn_now) 3351 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1114 { 3352 {
1115 ev_timer *w = timers [0]; 3353 do
1116
1117 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1118
1119 /* first reschedule or stop timer */
1120 if (w->repeat)
1121 { 3354 {
3355 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3356
3357 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3358
3359 /* first reschedule or stop timer */
3360 if (w->repeat)
3361 {
3362 ev_at (w) += w->repeat;
3363 if (ev_at (w) < mn_now)
3364 ev_at (w) = mn_now;
3365
1122 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3366 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1123 3367
1124 ((WT)w)->at += w->repeat; 3368 ANHE_at_cache (timers [HEAP0]);
1125 if (((WT)w)->at < mn_now)
1126 ((WT)w)->at = mn_now;
1127
1128 downheap ((WT *)timers, timercnt, 0); 3369 downheap (timers, timercnt, HEAP0);
3370 }
3371 else
3372 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3373
3374 EV_FREQUENT_CHECK;
3375 feed_reverse (EV_A_ (W)w);
1129 } 3376 }
1130 else 3377 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1131 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1132 3378
1133 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3379 feed_reverse_done (EV_A_ EV_TIMER);
1134 } 3380 }
1135} 3381}
1136 3382
1137#if EV_PERIODIC_ENABLE 3383#if EV_PERIODIC_ENABLE
1138void inline_size 3384
3385noinline
3386static void
3387periodic_recalc (EV_P_ ev_periodic *w)
3388{
3389 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3390 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3391
3392 /* the above almost always errs on the low side */
3393 while (at <= ev_rt_now)
3394 {
3395 ev_tstamp nat = at + w->interval;
3396
3397 /* when resolution fails us, we use ev_rt_now */
3398 if (expect_false (nat == at))
3399 {
3400 at = ev_rt_now;
3401 break;
3402 }
3403
3404 at = nat;
3405 }
3406
3407 ev_at (w) = at;
3408}
3409
3410/* make periodics pending */
3411inline_size void
1139periodics_reify (EV_P) 3412periodics_reify (EV_P)
1140{ 3413{
3414 EV_FREQUENT_CHECK;
3415
1141 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 3416 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1142 { 3417 {
1143 ev_periodic *w = periodics [0]; 3418 do
3419 {
3420 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1144 3421
1145 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 3422 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1146 3423
1147 /* first reschedule or stop timer */ 3424 /* first reschedule or stop timer */
3425 if (w->reschedule_cb)
3426 {
3427 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3428
3429 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3430
3431 ANHE_at_cache (periodics [HEAP0]);
3432 downheap (periodics, periodiccnt, HEAP0);
3433 }
3434 else if (w->interval)
3435 {
3436 periodic_recalc (EV_A_ w);
3437 ANHE_at_cache (periodics [HEAP0]);
3438 downheap (periodics, periodiccnt, HEAP0);
3439 }
3440 else
3441 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3442
3443 EV_FREQUENT_CHECK;
3444 feed_reverse (EV_A_ (W)w);
3445 }
3446 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3447
3448 feed_reverse_done (EV_A_ EV_PERIODIC);
3449 }
3450}
3451
3452/* simply recalculate all periodics */
3453/* TODO: maybe ensure that at least one event happens when jumping forward? */
3454noinline ecb_cold
3455static void
3456periodics_reschedule (EV_P)
3457{
3458 int i;
3459
3460 /* adjust periodics after time jump */
3461 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3462 {
3463 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3464
1148 if (w->reschedule_cb) 3465 if (w->reschedule_cb)
3466 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3467 else if (w->interval)
3468 periodic_recalc (EV_A_ w);
3469
3470 ANHE_at_cache (periodics [i]);
3471 }
3472
3473 reheap (periodics, periodiccnt);
3474}
3475#endif
3476
3477/* adjust all timers by a given offset */
3478noinline ecb_cold
3479static void
3480timers_reschedule (EV_P_ ev_tstamp adjust)
3481{
3482 int i;
3483
3484 for (i = 0; i < timercnt; ++i)
3485 {
3486 ANHE *he = timers + i + HEAP0;
3487 ANHE_w (*he)->at += adjust;
3488 ANHE_at_cache (*he);
3489 }
3490}
3491
3492/* fetch new monotonic and realtime times from the kernel */
3493/* also detect if there was a timejump, and act accordingly */
3494inline_speed void
3495time_update (EV_P_ ev_tstamp max_block)
3496{
3497#if EV_USE_MONOTONIC
3498 if (expect_true (have_monotonic))
3499 {
3500 int i;
3501 ev_tstamp odiff = rtmn_diff;
3502
3503 mn_now = get_clock ();
3504
3505 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3506 /* interpolate in the meantime */
3507 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1149 { 3508 {
1150 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 3509 ev_rt_now = rtmn_diff + mn_now;
1151 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 3510 return;
1152 downheap ((WT *)periodics, periodiccnt, 0);
1153 } 3511 }
1154 else if (w->interval)
1155 {
1156 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1157 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1158 downheap ((WT *)periodics, periodiccnt, 0);
1159 }
1160 else
1161 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1162 3512
1163 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1164 }
1165}
1166
1167static void noinline
1168periodics_reschedule (EV_P)
1169{
1170 int i;
1171
1172 /* adjust periodics after time jump */
1173 for (i = 0; i < periodiccnt; ++i)
1174 {
1175 ev_periodic *w = periodics [i];
1176
1177 if (w->reschedule_cb)
1178 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1179 else if (w->interval)
1180 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1181 }
1182
1183 /* now rebuild the heap */
1184 for (i = periodiccnt >> 1; i--; )
1185 downheap ((WT *)periodics, periodiccnt, i);
1186}
1187#endif
1188
1189int inline_size
1190time_update_monotonic (EV_P)
1191{
1192 mn_now = get_clock ();
1193
1194 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1195 {
1196 ev_rt_now = rtmn_diff + mn_now;
1197 return 0;
1198 }
1199 else
1200 {
1201 now_floor = mn_now; 3513 now_floor = mn_now;
1202 ev_rt_now = ev_time (); 3514 ev_rt_now = ev_time ();
1203 return 1;
1204 }
1205}
1206 3515
1207void inline_size 3516 /* loop a few times, before making important decisions.
1208time_update (EV_P) 3517 * on the choice of "4": one iteration isn't enough,
1209{ 3518 * in case we get preempted during the calls to
1210 int i; 3519 * ev_time and get_clock. a second call is almost guaranteed
1211 3520 * to succeed in that case, though. and looping a few more times
1212#if EV_USE_MONOTONIC 3521 * doesn't hurt either as we only do this on time-jumps or
1213 if (expect_true (have_monotonic)) 3522 * in the unlikely event of having been preempted here.
1214 { 3523 */
1215 if (time_update_monotonic (EV_A)) 3524 for (i = 4; --i; )
1216 { 3525 {
1217 ev_tstamp odiff = rtmn_diff; 3526 ev_tstamp diff;
1218
1219 /* loop a few times, before making important decisions.
1220 * on the choice of "4": one iteration isn't enough,
1221 * in case we get preempted during the calls to
1222 * ev_time and get_clock. a second call is almost guarenteed
1223 * to succeed in that case, though. and looping a few more times
1224 * doesn't hurt either as we only do this on time-jumps or
1225 * in the unlikely event of getting preempted here.
1226 */
1227 for (i = 4; --i; )
1228 {
1229 rtmn_diff = ev_rt_now - mn_now; 3527 rtmn_diff = ev_rt_now - mn_now;
1230 3528
1231 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3529 diff = odiff - rtmn_diff;
3530
3531 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1232 return; /* all is well */ 3532 return; /* all is well */
1233 3533
1234 ev_rt_now = ev_time (); 3534 ev_rt_now = ev_time ();
1235 mn_now = get_clock (); 3535 mn_now = get_clock ();
1236 now_floor = mn_now; 3536 now_floor = mn_now;
1237 } 3537 }
1238 3538
3539 /* no timer adjustment, as the monotonic clock doesn't jump */
3540 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1239# if EV_PERIODIC_ENABLE 3541# if EV_PERIODIC_ENABLE
1240 periodics_reschedule (EV_A); 3542 periodics_reschedule (EV_A);
1241# endif 3543# endif
1242 /* no timer adjustment, as the monotonic clock doesn't jump */
1243 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1244 }
1245 } 3544 }
1246 else 3545 else
1247#endif 3546#endif
1248 { 3547 {
1249 ev_rt_now = ev_time (); 3548 ev_rt_now = ev_time ();
1250 3549
1251 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 3550 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1252 { 3551 {
3552 /* adjust timers. this is easy, as the offset is the same for all of them */
3553 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1253#if EV_PERIODIC_ENABLE 3554#if EV_PERIODIC_ENABLE
1254 periodics_reschedule (EV_A); 3555 periodics_reschedule (EV_A);
1255#endif 3556#endif
1256
1257 /* adjust timers. this is easy, as the offset is the same for all */
1258 for (i = 0; i < timercnt; ++i)
1259 ((WT)timers [i])->at += ev_rt_now - mn_now;
1260 } 3557 }
1261 3558
1262 mn_now = ev_rt_now; 3559 mn_now = ev_rt_now;
1263 } 3560 }
1264} 3561}
1265 3562
1266void 3563int
1267ev_ref (EV_P)
1268{
1269 ++activecnt;
1270}
1271
1272void
1273ev_unref (EV_P)
1274{
1275 --activecnt;
1276}
1277
1278static int loop_done;
1279
1280void
1281ev_loop (EV_P_ int flags) 3564ev_run (EV_P_ int flags)
1282{ 3565{
1283 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3566#if EV_FEATURE_API
1284 ? EVUNLOOP_ONE 3567 ++loop_depth;
1285 : EVUNLOOP_CANCEL; 3568#endif
1286 3569
1287 while (activecnt) 3570 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3571
3572 loop_done = EVBREAK_CANCEL;
3573
3574 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3575
3576 do
1288 { 3577 {
1289 /* we might have forked, so reify kernel state if necessary */ 3578#if EV_VERIFY >= 2
3579 ev_verify (EV_A);
3580#endif
3581
3582#ifndef _WIN32
3583 if (expect_false (curpid)) /* penalise the forking check even more */
3584 if (expect_false (getpid () != curpid))
3585 {
3586 curpid = getpid ();
3587 postfork = 1;
3588 }
3589#endif
3590
1290 #if EV_FORK_ENABLE 3591#if EV_FORK_ENABLE
3592 /* we might have forked, so queue fork handlers */
1291 if (expect_false (postfork)) 3593 if (expect_false (postfork))
1292 if (forkcnt) 3594 if (forkcnt)
1293 { 3595 {
1294 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3596 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1295 call_pending (EV_A); 3597 EV_INVOKE_PENDING;
1296 } 3598 }
1297 #endif 3599#endif
1298 3600
3601#if EV_PREPARE_ENABLE
1299 /* queue check watchers (and execute them) */ 3602 /* queue prepare watchers (and execute them) */
1300 if (expect_false (preparecnt)) 3603 if (expect_false (preparecnt))
1301 { 3604 {
1302 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3605 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1303 call_pending (EV_A); 3606 EV_INVOKE_PENDING;
1304 } 3607 }
3608#endif
3609
3610 if (expect_false (loop_done))
3611 break;
1305 3612
1306 /* we might have forked, so reify kernel state if necessary */ 3613 /* we might have forked, so reify kernel state if necessary */
1307 if (expect_false (postfork)) 3614 if (expect_false (postfork))
1308 loop_fork (EV_A); 3615 loop_fork (EV_A);
1309 3616
1310 /* update fd-related kernel structures */ 3617 /* update fd-related kernel structures */
1311 fd_reify (EV_A); 3618 fd_reify (EV_A);
1312 3619
1313 /* calculate blocking time */ 3620 /* calculate blocking time */
1314 { 3621 {
1315 double block; 3622 ev_tstamp waittime = 0.;
3623 ev_tstamp sleeptime = 0.;
1316 3624
1317 if (flags & EVLOOP_NONBLOCK || idlecnt) 3625 /* remember old timestamp for io_blocktime calculation */
1318 block = 0.; /* do not block at all */ 3626 ev_tstamp prev_mn_now = mn_now;
1319 else 3627
3628 /* update time to cancel out callback processing overhead */
3629 time_update (EV_A_ 1e100);
3630
3631 /* from now on, we want a pipe-wake-up */
3632 pipe_write_wanted = 1;
3633
3634 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3635
3636 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1320 { 3637 {
1321 /* update time to cancel out callback processing overhead */
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 time_update_monotonic (EV_A);
1325 else
1326#endif
1327 {
1328 ev_rt_now = ev_time ();
1329 mn_now = ev_rt_now;
1330 }
1331
1332 block = MAX_BLOCKTIME; 3638 waittime = MAX_BLOCKTIME;
1333 3639
1334 if (timercnt) 3640 if (timercnt)
1335 { 3641 {
1336 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3642 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1337 if (block > to) block = to; 3643 if (waittime > to) waittime = to;
1338 } 3644 }
1339 3645
1340#if EV_PERIODIC_ENABLE 3646#if EV_PERIODIC_ENABLE
1341 if (periodiccnt) 3647 if (periodiccnt)
1342 { 3648 {
1343 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3649 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1344 if (block > to) block = to; 3650 if (waittime > to) waittime = to;
1345 } 3651 }
1346#endif 3652#endif
1347 3653
3654 /* don't let timeouts decrease the waittime below timeout_blocktime */
3655 if (expect_false (waittime < timeout_blocktime))
3656 waittime = timeout_blocktime;
3657
3658 /* at this point, we NEED to wait, so we have to ensure */
3659 /* to pass a minimum nonzero value to the backend */
3660 if (expect_false (waittime < backend_mintime))
3661 waittime = backend_mintime;
3662
3663 /* extra check because io_blocktime is commonly 0 */
1348 if (expect_false (block < 0.)) block = 0.; 3664 if (expect_false (io_blocktime))
3665 {
3666 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3667
3668 if (sleeptime > waittime - backend_mintime)
3669 sleeptime = waittime - backend_mintime;
3670
3671 if (expect_true (sleeptime > 0.))
3672 {
3673 ev_sleep (sleeptime);
3674 waittime -= sleeptime;
3675 }
3676 }
1349 } 3677 }
1350 3678
3679#if EV_FEATURE_API
3680 ++loop_count;
3681#endif
3682 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1351 backend_poll (EV_A_ block); 3683 backend_poll (EV_A_ waittime);
3684 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3685
3686 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3687
3688 ECB_MEMORY_FENCE_ACQUIRE;
3689 if (pipe_write_skipped)
3690 {
3691 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3692 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3693 }
3694
3695
3696 /* update ev_rt_now, do magic */
3697 time_update (EV_A_ waittime + sleeptime);
1352 } 3698 }
1353
1354 /* update ev_rt_now, do magic */
1355 time_update (EV_A);
1356 3699
1357 /* queue pending timers and reschedule them */ 3700 /* queue pending timers and reschedule them */
1358 timers_reify (EV_A); /* relative timers called last */ 3701 timers_reify (EV_A); /* relative timers called last */
1359#if EV_PERIODIC_ENABLE 3702#if EV_PERIODIC_ENABLE
1360 periodics_reify (EV_A); /* absolute timers called first */ 3703 periodics_reify (EV_A); /* absolute timers called first */
1361#endif 3704#endif
1362 3705
3706#if EV_IDLE_ENABLE
1363 /* queue idle watchers unless other events are pending */ 3707 /* queue idle watchers unless other events are pending */
1364 if (idlecnt && !any_pending (EV_A)) 3708 idle_reify (EV_A);
1365 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3709#endif
1366 3710
3711#if EV_CHECK_ENABLE
1367 /* queue check watchers, to be executed first */ 3712 /* queue check watchers, to be executed first */
1368 if (expect_false (checkcnt)) 3713 if (expect_false (checkcnt))
1369 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3714 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3715#endif
1370 3716
1371 call_pending (EV_A); 3717 EV_INVOKE_PENDING;
1372
1373 if (expect_false (loop_done))
1374 break;
1375 } 3718 }
3719 while (expect_true (
3720 activecnt
3721 && !loop_done
3722 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3723 ));
1376 3724
1377 if (loop_done == EVUNLOOP_ONE) 3725 if (loop_done == EVBREAK_ONE)
1378 loop_done = EVUNLOOP_CANCEL; 3726 loop_done = EVBREAK_CANCEL;
1379}
1380 3727
3728#if EV_FEATURE_API
3729 --loop_depth;
3730#endif
3731
3732 return activecnt;
3733}
3734
1381void 3735void
1382ev_unloop (EV_P_ int how) 3736ev_break (EV_P_ int how) EV_THROW
1383{ 3737{
1384 loop_done = how; 3738 loop_done = how;
1385} 3739}
1386 3740
3741void
3742ev_ref (EV_P) EV_THROW
3743{
3744 ++activecnt;
3745}
3746
3747void
3748ev_unref (EV_P) EV_THROW
3749{
3750 --activecnt;
3751}
3752
3753void
3754ev_now_update (EV_P) EV_THROW
3755{
3756 time_update (EV_A_ 1e100);
3757}
3758
3759void
3760ev_suspend (EV_P) EV_THROW
3761{
3762 ev_now_update (EV_A);
3763}
3764
3765void
3766ev_resume (EV_P) EV_THROW
3767{
3768 ev_tstamp mn_prev = mn_now;
3769
3770 ev_now_update (EV_A);
3771 timers_reschedule (EV_A_ mn_now - mn_prev);
3772#if EV_PERIODIC_ENABLE
3773 /* TODO: really do this? */
3774 periodics_reschedule (EV_A);
3775#endif
3776}
3777
1387/*****************************************************************************/ 3778/*****************************************************************************/
3779/* singly-linked list management, used when the expected list length is short */
1388 3780
1389void inline_size 3781inline_size void
1390wlist_add (WL *head, WL elem) 3782wlist_add (WL *head, WL elem)
1391{ 3783{
1392 elem->next = *head; 3784 elem->next = *head;
1393 *head = elem; 3785 *head = elem;
1394} 3786}
1395 3787
1396void inline_size 3788inline_size void
1397wlist_del (WL *head, WL elem) 3789wlist_del (WL *head, WL elem)
1398{ 3790{
1399 while (*head) 3791 while (*head)
1400 { 3792 {
1401 if (*head == elem) 3793 if (expect_true (*head == elem))
1402 { 3794 {
1403 *head = elem->next; 3795 *head = elem->next;
1404 return; 3796 break;
1405 } 3797 }
1406 3798
1407 head = &(*head)->next; 3799 head = &(*head)->next;
1408 } 3800 }
1409} 3801}
1410 3802
1411void inline_speed 3803/* internal, faster, version of ev_clear_pending */
3804inline_speed void
1412ev_clear_pending (EV_P_ W w) 3805clear_pending (EV_P_ W w)
1413{ 3806{
1414 if (w->pending) 3807 if (w->pending)
1415 { 3808 {
1416 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3809 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1417 w->pending = 0; 3810 w->pending = 0;
1418 } 3811 }
1419} 3812}
1420 3813
1421void inline_speed 3814int
3815ev_clear_pending (EV_P_ void *w) EV_THROW
3816{
3817 W w_ = (W)w;
3818 int pending = w_->pending;
3819
3820 if (expect_true (pending))
3821 {
3822 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3823 p->w = (W)&pending_w;
3824 w_->pending = 0;
3825 return p->events;
3826 }
3827 else
3828 return 0;
3829}
3830
3831inline_size void
3832pri_adjust (EV_P_ W w)
3833{
3834 int pri = ev_priority (w);
3835 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3836 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3837 ev_set_priority (w, pri);
3838}
3839
3840inline_speed void
1422ev_start (EV_P_ W w, int active) 3841ev_start (EV_P_ W w, int active)
1423{ 3842{
1424 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3843 pri_adjust (EV_A_ w);
1425 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1426
1427 w->active = active; 3844 w->active = active;
1428 ev_ref (EV_A); 3845 ev_ref (EV_A);
1429} 3846}
1430 3847
1431void inline_size 3848inline_size void
1432ev_stop (EV_P_ W w) 3849ev_stop (EV_P_ W w)
1433{ 3850{
1434 ev_unref (EV_A); 3851 ev_unref (EV_A);
1435 w->active = 0; 3852 w->active = 0;
1436} 3853}
1437 3854
1438/*****************************************************************************/ 3855/*****************************************************************************/
1439 3856
3857noinline
1440void 3858void
1441ev_io_start (EV_P_ ev_io *w) 3859ev_io_start (EV_P_ ev_io *w) EV_THROW
1442{ 3860{
1443 int fd = w->fd; 3861 int fd = w->fd;
1444 3862
1445 if (expect_false (ev_is_active (w))) 3863 if (expect_false (ev_is_active (w)))
1446 return; 3864 return;
1447 3865
1448 assert (("ev_io_start called with negative fd", fd >= 0)); 3866 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3867 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3868
3869 EV_FREQUENT_CHECK;
1449 3870
1450 ev_start (EV_A_ (W)w, 1); 3871 ev_start (EV_A_ (W)w, 1);
1451 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3872 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1452 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3873 wlist_add (&anfds[fd].head, (WL)w);
1453 3874
1454 fd_change (EV_A_ fd); 3875 /* common bug, apparently */
1455} 3876 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1456 3877
3878 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3879 w->events &= ~EV__IOFDSET;
3880
3881 EV_FREQUENT_CHECK;
3882}
3883
3884noinline
1457void 3885void
1458ev_io_stop (EV_P_ ev_io *w) 3886ev_io_stop (EV_P_ ev_io *w) EV_THROW
1459{ 3887{
1460 ev_clear_pending (EV_A_ (W)w); 3888 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 3889 if (expect_false (!ev_is_active (w)))
1462 return; 3890 return;
1463 3891
1464 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3892 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1465 3893
3894 EV_FREQUENT_CHECK;
3895
1466 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3896 wlist_del (&anfds[w->fd].head, (WL)w);
1467 ev_stop (EV_A_ (W)w); 3897 ev_stop (EV_A_ (W)w);
1468 3898
1469 fd_change (EV_A_ w->fd); 3899 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1470}
1471 3900
3901 EV_FREQUENT_CHECK;
3902}
3903
3904noinline
1472void 3905void
1473ev_timer_start (EV_P_ ev_timer *w) 3906ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1474{ 3907{
1475 if (expect_false (ev_is_active (w))) 3908 if (expect_false (ev_is_active (w)))
1476 return; 3909 return;
1477 3910
1478 ((WT)w)->at += mn_now; 3911 ev_at (w) += mn_now;
1479 3912
1480 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3913 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1481 3914
3915 EV_FREQUENT_CHECK;
3916
3917 ++timercnt;
1482 ev_start (EV_A_ (W)w, ++timercnt); 3918 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1483 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 3919 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1484 timers [timercnt - 1] = w; 3920 ANHE_w (timers [ev_active (w)]) = (WT)w;
1485 upheap ((WT *)timers, timercnt - 1); 3921 ANHE_at_cache (timers [ev_active (w)]);
3922 upheap (timers, ev_active (w));
1486 3923
3924 EV_FREQUENT_CHECK;
3925
1487 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3926 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1488} 3927}
1489 3928
3929noinline
1490void 3930void
1491ev_timer_stop (EV_P_ ev_timer *w) 3931ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1492{ 3932{
1493 ev_clear_pending (EV_A_ (W)w); 3933 clear_pending (EV_A_ (W)w);
1494 if (expect_false (!ev_is_active (w))) 3934 if (expect_false (!ev_is_active (w)))
1495 return; 3935 return;
1496 3936
1497 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3937 EV_FREQUENT_CHECK;
1498 3938
1499 { 3939 {
1500 int active = ((W)w)->active; 3940 int active = ev_active (w);
1501 3941
3942 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3943
3944 --timercnt;
3945
1502 if (expect_true (--active < --timercnt)) 3946 if (expect_true (active < timercnt + HEAP0))
1503 { 3947 {
1504 timers [active] = timers [timercnt]; 3948 timers [active] = timers [timercnt + HEAP0];
1505 adjustheap ((WT *)timers, timercnt, active); 3949 adjustheap (timers, timercnt, active);
1506 } 3950 }
1507 } 3951 }
1508 3952
1509 ((WT)w)->at -= mn_now; 3953 ev_at (w) -= mn_now;
1510 3954
1511 ev_stop (EV_A_ (W)w); 3955 ev_stop (EV_A_ (W)w);
1512}
1513 3956
3957 EV_FREQUENT_CHECK;
3958}
3959
3960noinline
1514void 3961void
1515ev_timer_again (EV_P_ ev_timer *w) 3962ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1516{ 3963{
3964 EV_FREQUENT_CHECK;
3965
3966 clear_pending (EV_A_ (W)w);
3967
1517 if (ev_is_active (w)) 3968 if (ev_is_active (w))
1518 { 3969 {
1519 if (w->repeat) 3970 if (w->repeat)
1520 { 3971 {
1521 ((WT)w)->at = mn_now + w->repeat; 3972 ev_at (w) = mn_now + w->repeat;
3973 ANHE_at_cache (timers [ev_active (w)]);
1522 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3974 adjustheap (timers, timercnt, ev_active (w));
1523 } 3975 }
1524 else 3976 else
1525 ev_timer_stop (EV_A_ w); 3977 ev_timer_stop (EV_A_ w);
1526 } 3978 }
1527 else if (w->repeat) 3979 else if (w->repeat)
1528 { 3980 {
1529 w->at = w->repeat; 3981 ev_at (w) = w->repeat;
1530 ev_timer_start (EV_A_ w); 3982 ev_timer_start (EV_A_ w);
1531 } 3983 }
3984
3985 EV_FREQUENT_CHECK;
3986}
3987
3988ev_tstamp
3989ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3990{
3991 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1532} 3992}
1533 3993
1534#if EV_PERIODIC_ENABLE 3994#if EV_PERIODIC_ENABLE
3995noinline
1535void 3996void
1536ev_periodic_start (EV_P_ ev_periodic *w) 3997ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1537{ 3998{
1538 if (expect_false (ev_is_active (w))) 3999 if (expect_false (ev_is_active (w)))
1539 return; 4000 return;
1540 4001
1541 if (w->reschedule_cb) 4002 if (w->reschedule_cb)
1542 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4003 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1543 else if (w->interval) 4004 else if (w->interval)
1544 { 4005 {
1545 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4006 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1546 /* this formula differs from the one in periodic_reify because we do not always round up */ 4007 periodic_recalc (EV_A_ w);
1547 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1548 } 4008 }
4009 else
4010 ev_at (w) = w->offset;
1549 4011
4012 EV_FREQUENT_CHECK;
4013
4014 ++periodiccnt;
1550 ev_start (EV_A_ (W)w, ++periodiccnt); 4015 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1551 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 4016 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1552 periodics [periodiccnt - 1] = w; 4017 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1553 upheap ((WT *)periodics, periodiccnt - 1); 4018 ANHE_at_cache (periodics [ev_active (w)]);
4019 upheap (periodics, ev_active (w));
1554 4020
4021 EV_FREQUENT_CHECK;
4022
1555 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 4023 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1556} 4024}
1557 4025
4026noinline
1558void 4027void
1559ev_periodic_stop (EV_P_ ev_periodic *w) 4028ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1560{ 4029{
1561 ev_clear_pending (EV_A_ (W)w); 4030 clear_pending (EV_A_ (W)w);
1562 if (expect_false (!ev_is_active (w))) 4031 if (expect_false (!ev_is_active (w)))
1563 return; 4032 return;
1564 4033
1565 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4034 EV_FREQUENT_CHECK;
1566 4035
1567 { 4036 {
1568 int active = ((W)w)->active; 4037 int active = ev_active (w);
1569 4038
4039 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4040
4041 --periodiccnt;
4042
1570 if (expect_true (--active < --periodiccnt)) 4043 if (expect_true (active < periodiccnt + HEAP0))
1571 { 4044 {
1572 periodics [active] = periodics [periodiccnt]; 4045 periodics [active] = periodics [periodiccnt + HEAP0];
1573 adjustheap ((WT *)periodics, periodiccnt, active); 4046 adjustheap (periodics, periodiccnt, active);
1574 } 4047 }
1575 } 4048 }
1576 4049
1577 ev_stop (EV_A_ (W)w); 4050 ev_stop (EV_A_ (W)w);
1578}
1579 4051
4052 EV_FREQUENT_CHECK;
4053}
4054
4055noinline
1580void 4056void
1581ev_periodic_again (EV_P_ ev_periodic *w) 4057ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1582{ 4058{
1583 /* TODO: use adjustheap and recalculation */ 4059 /* TODO: use adjustheap and recalculation */
1584 ev_periodic_stop (EV_A_ w); 4060 ev_periodic_stop (EV_A_ w);
1585 ev_periodic_start (EV_A_ w); 4061 ev_periodic_start (EV_A_ w);
1586} 4062}
1588 4064
1589#ifndef SA_RESTART 4065#ifndef SA_RESTART
1590# define SA_RESTART 0 4066# define SA_RESTART 0
1591#endif 4067#endif
1592 4068
4069#if EV_SIGNAL_ENABLE
4070
4071noinline
1593void 4072void
1594ev_signal_start (EV_P_ ev_signal *w) 4073ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1595{ 4074{
1596#if EV_MULTIPLICITY
1597 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1598#endif
1599 if (expect_false (ev_is_active (w))) 4075 if (expect_false (ev_is_active (w)))
1600 return; 4076 return;
1601 4077
1602 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4078 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4079
4080#if EV_MULTIPLICITY
4081 assert (("libev: a signal must not be attached to two different loops",
4082 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4083
4084 signals [w->signum - 1].loop = EV_A;
4085 ECB_MEMORY_FENCE_RELEASE;
4086#endif
4087
4088 EV_FREQUENT_CHECK;
4089
4090#if EV_USE_SIGNALFD
4091 if (sigfd == -2)
4092 {
4093 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4094 if (sigfd < 0 && errno == EINVAL)
4095 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4096
4097 if (sigfd >= 0)
4098 {
4099 fd_intern (sigfd); /* doing it twice will not hurt */
4100
4101 sigemptyset (&sigfd_set);
4102
4103 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4104 ev_set_priority (&sigfd_w, EV_MAXPRI);
4105 ev_io_start (EV_A_ &sigfd_w);
4106 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4107 }
4108 }
4109
4110 if (sigfd >= 0)
4111 {
4112 /* TODO: check .head */
4113 sigaddset (&sigfd_set, w->signum);
4114 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4115
4116 signalfd (sigfd, &sigfd_set, 0);
4117 }
4118#endif
1603 4119
1604 ev_start (EV_A_ (W)w, 1); 4120 ev_start (EV_A_ (W)w, 1);
1605 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1606 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 4121 wlist_add (&signals [w->signum - 1].head, (WL)w);
1607 4122
1608 if (!((WL)w)->next) 4123 if (!((WL)w)->next)
4124# if EV_USE_SIGNALFD
4125 if (sigfd < 0) /*TODO*/
4126# endif
1609 { 4127 {
1610#if _WIN32 4128# ifdef _WIN32
4129 evpipe_init (EV_A);
4130
1611 signal (w->signum, sighandler); 4131 signal (w->signum, ev_sighandler);
1612#else 4132# else
1613 struct sigaction sa; 4133 struct sigaction sa;
4134
4135 evpipe_init (EV_A);
4136
1614 sa.sa_handler = sighandler; 4137 sa.sa_handler = ev_sighandler;
1615 sigfillset (&sa.sa_mask); 4138 sigfillset (&sa.sa_mask);
1616 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4139 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1617 sigaction (w->signum, &sa, 0); 4140 sigaction (w->signum, &sa, 0);
4141
4142 if (origflags & EVFLAG_NOSIGMASK)
4143 {
4144 sigemptyset (&sa.sa_mask);
4145 sigaddset (&sa.sa_mask, w->signum);
4146 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4147 }
1618#endif 4148#endif
1619 } 4149 }
1620}
1621 4150
4151 EV_FREQUENT_CHECK;
4152}
4153
4154noinline
1622void 4155void
1623ev_signal_stop (EV_P_ ev_signal *w) 4156ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1624{ 4157{
1625 ev_clear_pending (EV_A_ (W)w); 4158 clear_pending (EV_A_ (W)w);
1626 if (expect_false (!ev_is_active (w))) 4159 if (expect_false (!ev_is_active (w)))
1627 return; 4160 return;
1628 4161
4162 EV_FREQUENT_CHECK;
4163
1629 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4164 wlist_del (&signals [w->signum - 1].head, (WL)w);
1630 ev_stop (EV_A_ (W)w); 4165 ev_stop (EV_A_ (W)w);
1631 4166
1632 if (!signals [w->signum - 1].head) 4167 if (!signals [w->signum - 1].head)
1633 signal (w->signum, SIG_DFL); 4168 {
1634}
1635
1636void
1637ev_child_start (EV_P_ ev_child *w)
1638{
1639#if EV_MULTIPLICITY 4169#if EV_MULTIPLICITY
4170 signals [w->signum - 1].loop = 0; /* unattach from signal */
4171#endif
4172#if EV_USE_SIGNALFD
4173 if (sigfd >= 0)
4174 {
4175 sigset_t ss;
4176
4177 sigemptyset (&ss);
4178 sigaddset (&ss, w->signum);
4179 sigdelset (&sigfd_set, w->signum);
4180
4181 signalfd (sigfd, &sigfd_set, 0);
4182 sigprocmask (SIG_UNBLOCK, &ss, 0);
4183 }
4184 else
4185#endif
4186 signal (w->signum, SIG_DFL);
4187 }
4188
4189 EV_FREQUENT_CHECK;
4190}
4191
4192#endif
4193
4194#if EV_CHILD_ENABLE
4195
4196void
4197ev_child_start (EV_P_ ev_child *w) EV_THROW
4198{
4199#if EV_MULTIPLICITY
1640 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4200 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1641#endif 4201#endif
1642 if (expect_false (ev_is_active (w))) 4202 if (expect_false (ev_is_active (w)))
1643 return; 4203 return;
1644 4204
4205 EV_FREQUENT_CHECK;
4206
1645 ev_start (EV_A_ (W)w, 1); 4207 ev_start (EV_A_ (W)w, 1);
1646 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4208 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1647}
1648 4209
4210 EV_FREQUENT_CHECK;
4211}
4212
1649void 4213void
1650ev_child_stop (EV_P_ ev_child *w) 4214ev_child_stop (EV_P_ ev_child *w) EV_THROW
1651{ 4215{
1652 ev_clear_pending (EV_A_ (W)w); 4216 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 4217 if (expect_false (!ev_is_active (w)))
1654 return; 4218 return;
1655 4219
4220 EV_FREQUENT_CHECK;
4221
1656 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4222 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1657 ev_stop (EV_A_ (W)w); 4223 ev_stop (EV_A_ (W)w);
4224
4225 EV_FREQUENT_CHECK;
1658} 4226}
4227
4228#endif
1659 4229
1660#if EV_STAT_ENABLE 4230#if EV_STAT_ENABLE
1661 4231
1662# ifdef _WIN32 4232# ifdef _WIN32
1663# undef lstat 4233# undef lstat
1664# define lstat(a,b) _stati64 (a,b) 4234# define lstat(a,b) _stati64 (a,b)
1665# endif 4235# endif
1666 4236
1667#define DEF_STAT_INTERVAL 5.0074891 4237#define DEF_STAT_INTERVAL 5.0074891
4238#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1668#define MIN_STAT_INTERVAL 0.1074891 4239#define MIN_STAT_INTERVAL 0.1074891
1669 4240
4241noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4242
4243#if EV_USE_INOTIFY
4244
4245/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4246# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4247
4248noinline
4249static void
4250infy_add (EV_P_ ev_stat *w)
4251{
4252 w->wd = inotify_add_watch (fs_fd, w->path,
4253 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4254 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4255 | IN_DONT_FOLLOW | IN_MASK_ADD);
4256
4257 if (w->wd >= 0)
4258 {
4259 struct statfs sfs;
4260
4261 /* now local changes will be tracked by inotify, but remote changes won't */
4262 /* unless the filesystem is known to be local, we therefore still poll */
4263 /* also do poll on <2.6.25, but with normal frequency */
4264
4265 if (!fs_2625)
4266 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4267 else if (!statfs (w->path, &sfs)
4268 && (sfs.f_type == 0x1373 /* devfs */
4269 || sfs.f_type == 0x4006 /* fat */
4270 || sfs.f_type == 0x4d44 /* msdos */
4271 || sfs.f_type == 0xEF53 /* ext2/3 */
4272 || sfs.f_type == 0x72b6 /* jffs2 */
4273 || sfs.f_type == 0x858458f6 /* ramfs */
4274 || sfs.f_type == 0x5346544e /* ntfs */
4275 || sfs.f_type == 0x3153464a /* jfs */
4276 || sfs.f_type == 0x9123683e /* btrfs */
4277 || sfs.f_type == 0x52654973 /* reiser3 */
4278 || sfs.f_type == 0x01021994 /* tmpfs */
4279 || sfs.f_type == 0x58465342 /* xfs */))
4280 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4281 else
4282 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4283 }
4284 else
4285 {
4286 /* can't use inotify, continue to stat */
4287 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4288
4289 /* if path is not there, monitor some parent directory for speedup hints */
4290 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4291 /* but an efficiency issue only */
4292 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4293 {
4294 char path [4096];
4295 strcpy (path, w->path);
4296
4297 do
4298 {
4299 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4300 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4301
4302 char *pend = strrchr (path, '/');
4303
4304 if (!pend || pend == path)
4305 break;
4306
4307 *pend = 0;
4308 w->wd = inotify_add_watch (fs_fd, path, mask);
4309 }
4310 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4311 }
4312 }
4313
4314 if (w->wd >= 0)
4315 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4316
4317 /* now re-arm timer, if required */
4318 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4319 ev_timer_again (EV_A_ &w->timer);
4320 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4321}
4322
4323noinline
4324static void
4325infy_del (EV_P_ ev_stat *w)
4326{
4327 int slot;
4328 int wd = w->wd;
4329
4330 if (wd < 0)
4331 return;
4332
4333 w->wd = -2;
4334 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4335 wlist_del (&fs_hash [slot].head, (WL)w);
4336
4337 /* remove this watcher, if others are watching it, they will rearm */
4338 inotify_rm_watch (fs_fd, wd);
4339}
4340
4341noinline
4342static void
4343infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4344{
4345 if (slot < 0)
4346 /* overflow, need to check for all hash slots */
4347 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4348 infy_wd (EV_A_ slot, wd, ev);
4349 else
4350 {
4351 WL w_;
4352
4353 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4354 {
4355 ev_stat *w = (ev_stat *)w_;
4356 w_ = w_->next; /* lets us remove this watcher and all before it */
4357
4358 if (w->wd == wd || wd == -1)
4359 {
4360 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4361 {
4362 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4363 w->wd = -1;
4364 infy_add (EV_A_ w); /* re-add, no matter what */
4365 }
4366
4367 stat_timer_cb (EV_A_ &w->timer, 0);
4368 }
4369 }
4370 }
4371}
4372
4373static void
4374infy_cb (EV_P_ ev_io *w, int revents)
4375{
4376 char buf [EV_INOTIFY_BUFSIZE];
4377 int ofs;
4378 int len = read (fs_fd, buf, sizeof (buf));
4379
4380 for (ofs = 0; ofs < len; )
4381 {
4382 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4383 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4384 ofs += sizeof (struct inotify_event) + ev->len;
4385 }
4386}
4387
4388inline_size ecb_cold
1670void 4389void
4390ev_check_2625 (EV_P)
4391{
4392 /* kernels < 2.6.25 are borked
4393 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4394 */
4395 if (ev_linux_version () < 0x020619)
4396 return;
4397
4398 fs_2625 = 1;
4399}
4400
4401inline_size int
4402infy_newfd (void)
4403{
4404#if defined IN_CLOEXEC && defined IN_NONBLOCK
4405 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4406 if (fd >= 0)
4407 return fd;
4408#endif
4409 return inotify_init ();
4410}
4411
4412inline_size void
4413infy_init (EV_P)
4414{
4415 if (fs_fd != -2)
4416 return;
4417
4418 fs_fd = -1;
4419
4420 ev_check_2625 (EV_A);
4421
4422 fs_fd = infy_newfd ();
4423
4424 if (fs_fd >= 0)
4425 {
4426 fd_intern (fs_fd);
4427 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4428 ev_set_priority (&fs_w, EV_MAXPRI);
4429 ev_io_start (EV_A_ &fs_w);
4430 ev_unref (EV_A);
4431 }
4432}
4433
4434inline_size void
4435infy_fork (EV_P)
4436{
4437 int slot;
4438
4439 if (fs_fd < 0)
4440 return;
4441
4442 ev_ref (EV_A);
4443 ev_io_stop (EV_A_ &fs_w);
4444 close (fs_fd);
4445 fs_fd = infy_newfd ();
4446
4447 if (fs_fd >= 0)
4448 {
4449 fd_intern (fs_fd);
4450 ev_io_set (&fs_w, fs_fd, EV_READ);
4451 ev_io_start (EV_A_ &fs_w);
4452 ev_unref (EV_A);
4453 }
4454
4455 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4456 {
4457 WL w_ = fs_hash [slot].head;
4458 fs_hash [slot].head = 0;
4459
4460 while (w_)
4461 {
4462 ev_stat *w = (ev_stat *)w_;
4463 w_ = w_->next; /* lets us add this watcher */
4464
4465 w->wd = -1;
4466
4467 if (fs_fd >= 0)
4468 infy_add (EV_A_ w); /* re-add, no matter what */
4469 else
4470 {
4471 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4472 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4473 ev_timer_again (EV_A_ &w->timer);
4474 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4475 }
4476 }
4477 }
4478}
4479
4480#endif
4481
4482#ifdef _WIN32
4483# define EV_LSTAT(p,b) _stati64 (p, b)
4484#else
4485# define EV_LSTAT(p,b) lstat (p, b)
4486#endif
4487
4488void
1671ev_stat_stat (EV_P_ ev_stat *w) 4489ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1672{ 4490{
1673 if (lstat (w->path, &w->attr) < 0) 4491 if (lstat (w->path, &w->attr) < 0)
1674 w->attr.st_nlink = 0; 4492 w->attr.st_nlink = 0;
1675 else if (!w->attr.st_nlink) 4493 else if (!w->attr.st_nlink)
1676 w->attr.st_nlink = 1; 4494 w->attr.st_nlink = 1;
1677} 4495}
1678 4496
4497noinline
1679static void 4498static void
1680stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4499stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1681{ 4500{
1682 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4501 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1683 4502
1684 /* we copy this here each the time so that */ 4503 ev_statdata prev = w->attr;
1685 /* prev has the old value when the callback gets invoked */
1686 w->prev = w->attr;
1687 ev_stat_stat (EV_A_ w); 4504 ev_stat_stat (EV_A_ w);
1688 4505
1689 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 4506 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4507 if (
4508 prev.st_dev != w->attr.st_dev
4509 || prev.st_ino != w->attr.st_ino
4510 || prev.st_mode != w->attr.st_mode
4511 || prev.st_nlink != w->attr.st_nlink
4512 || prev.st_uid != w->attr.st_uid
4513 || prev.st_gid != w->attr.st_gid
4514 || prev.st_rdev != w->attr.st_rdev
4515 || prev.st_size != w->attr.st_size
4516 || prev.st_atime != w->attr.st_atime
4517 || prev.st_mtime != w->attr.st_mtime
4518 || prev.st_ctime != w->attr.st_ctime
4519 ) {
4520 /* we only update w->prev on actual differences */
4521 /* in case we test more often than invoke the callback, */
4522 /* to ensure that prev is always different to attr */
4523 w->prev = prev;
4524
4525 #if EV_USE_INOTIFY
4526 if (fs_fd >= 0)
4527 {
4528 infy_del (EV_A_ w);
4529 infy_add (EV_A_ w);
4530 ev_stat_stat (EV_A_ w); /* avoid race... */
4531 }
4532 #endif
4533
1690 ev_feed_event (EV_A_ w, EV_STAT); 4534 ev_feed_event (EV_A_ w, EV_STAT);
4535 }
1691} 4536}
1692 4537
1693void 4538void
1694ev_stat_start (EV_P_ ev_stat *w) 4539ev_stat_start (EV_P_ ev_stat *w) EV_THROW
1695{ 4540{
1696 if (expect_false (ev_is_active (w))) 4541 if (expect_false (ev_is_active (w)))
1697 return; 4542 return;
1698 4543
1699 /* since we use memcmp, we need to clear any padding data etc. */
1700 memset (&w->prev, 0, sizeof (ev_statdata));
1701 memset (&w->attr, 0, sizeof (ev_statdata));
1702
1703 ev_stat_stat (EV_A_ w); 4544 ev_stat_stat (EV_A_ w);
1704 4545
4546 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1705 if (w->interval < MIN_STAT_INTERVAL) 4547 w->interval = MIN_STAT_INTERVAL;
1706 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1707 4548
1708 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4549 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1709 ev_set_priority (&w->timer, ev_priority (w)); 4550 ev_set_priority (&w->timer, ev_priority (w));
4551
4552#if EV_USE_INOTIFY
4553 infy_init (EV_A);
4554
4555 if (fs_fd >= 0)
4556 infy_add (EV_A_ w);
4557 else
4558#endif
4559 {
1710 ev_timer_start (EV_A_ &w->timer); 4560 ev_timer_again (EV_A_ &w->timer);
4561 ev_unref (EV_A);
4562 }
1711 4563
1712 ev_start (EV_A_ (W)w, 1); 4564 ev_start (EV_A_ (W)w, 1);
1713}
1714 4565
4566 EV_FREQUENT_CHECK;
4567}
4568
1715void 4569void
1716ev_stat_stop (EV_P_ ev_stat *w) 4570ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
1717{ 4571{
1718 ev_clear_pending (EV_A_ (W)w); 4572 clear_pending (EV_A_ (W)w);
1719 if (expect_false (!ev_is_active (w))) 4573 if (expect_false (!ev_is_active (w)))
1720 return; 4574 return;
1721 4575
4576 EV_FREQUENT_CHECK;
4577
4578#if EV_USE_INOTIFY
4579 infy_del (EV_A_ w);
4580#endif
4581
4582 if (ev_is_active (&w->timer))
4583 {
4584 ev_ref (EV_A);
1722 ev_timer_stop (EV_A_ &w->timer); 4585 ev_timer_stop (EV_A_ &w->timer);
4586 }
1723 4587
1724 ev_stop (EV_A_ (W)w); 4588 ev_stop (EV_A_ (W)w);
1725}
1726#endif
1727 4589
4590 EV_FREQUENT_CHECK;
4591}
4592#endif
4593
4594#if EV_IDLE_ENABLE
1728void 4595void
1729ev_idle_start (EV_P_ ev_idle *w) 4596ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1730{ 4597{
1731 if (expect_false (ev_is_active (w))) 4598 if (expect_false (ev_is_active (w)))
1732 return; 4599 return;
1733 4600
4601 pri_adjust (EV_A_ (W)w);
4602
4603 EV_FREQUENT_CHECK;
4604
4605 {
4606 int active = ++idlecnt [ABSPRI (w)];
4607
4608 ++idleall;
1734 ev_start (EV_A_ (W)w, ++idlecnt); 4609 ev_start (EV_A_ (W)w, active);
4610
1735 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 4611 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1736 idles [idlecnt - 1] = w; 4612 idles [ABSPRI (w)][active - 1] = w;
1737} 4613 }
1738 4614
4615 EV_FREQUENT_CHECK;
4616}
4617
1739void 4618void
1740ev_idle_stop (EV_P_ ev_idle *w) 4619ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
1741{ 4620{
1742 ev_clear_pending (EV_A_ (W)w); 4621 clear_pending (EV_A_ (W)w);
1743 if (expect_false (!ev_is_active (w))) 4622 if (expect_false (!ev_is_active (w)))
1744 return; 4623 return;
1745 4624
4625 EV_FREQUENT_CHECK;
4626
1746 { 4627 {
1747 int active = ((W)w)->active; 4628 int active = ev_active (w);
1748 idles [active - 1] = idles [--idlecnt]; 4629
1749 ((W)idles [active - 1])->active = active; 4630 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4631 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4632
4633 ev_stop (EV_A_ (W)w);
4634 --idleall;
1750 } 4635 }
1751 4636
1752 ev_stop (EV_A_ (W)w); 4637 EV_FREQUENT_CHECK;
1753} 4638}
4639#endif
1754 4640
4641#if EV_PREPARE_ENABLE
1755void 4642void
1756ev_prepare_start (EV_P_ ev_prepare *w) 4643ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
1757{ 4644{
1758 if (expect_false (ev_is_active (w))) 4645 if (expect_false (ev_is_active (w)))
1759 return; 4646 return;
4647
4648 EV_FREQUENT_CHECK;
1760 4649
1761 ev_start (EV_A_ (W)w, ++preparecnt); 4650 ev_start (EV_A_ (W)w, ++preparecnt);
1762 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4651 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1763 prepares [preparecnt - 1] = w; 4652 prepares [preparecnt - 1] = w;
1764}
1765 4653
4654 EV_FREQUENT_CHECK;
4655}
4656
1766void 4657void
1767ev_prepare_stop (EV_P_ ev_prepare *w) 4658ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
1768{ 4659{
1769 ev_clear_pending (EV_A_ (W)w); 4660 clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w))) 4661 if (expect_false (!ev_is_active (w)))
1771 return; 4662 return;
1772 4663
4664 EV_FREQUENT_CHECK;
4665
1773 { 4666 {
1774 int active = ((W)w)->active; 4667 int active = ev_active (w);
4668
1775 prepares [active - 1] = prepares [--preparecnt]; 4669 prepares [active - 1] = prepares [--preparecnt];
1776 ((W)prepares [active - 1])->active = active; 4670 ev_active (prepares [active - 1]) = active;
1777 } 4671 }
1778 4672
1779 ev_stop (EV_A_ (W)w); 4673 ev_stop (EV_A_ (W)w);
1780}
1781 4674
4675 EV_FREQUENT_CHECK;
4676}
4677#endif
4678
4679#if EV_CHECK_ENABLE
1782void 4680void
1783ev_check_start (EV_P_ ev_check *w) 4681ev_check_start (EV_P_ ev_check *w) EV_THROW
1784{ 4682{
1785 if (expect_false (ev_is_active (w))) 4683 if (expect_false (ev_is_active (w)))
1786 return; 4684 return;
4685
4686 EV_FREQUENT_CHECK;
1787 4687
1788 ev_start (EV_A_ (W)w, ++checkcnt); 4688 ev_start (EV_A_ (W)w, ++checkcnt);
1789 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4689 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1790 checks [checkcnt - 1] = w; 4690 checks [checkcnt - 1] = w;
1791}
1792 4691
4692 EV_FREQUENT_CHECK;
4693}
4694
1793void 4695void
1794ev_check_stop (EV_P_ ev_check *w) 4696ev_check_stop (EV_P_ ev_check *w) EV_THROW
1795{ 4697{
1796 ev_clear_pending (EV_A_ (W)w); 4698 clear_pending (EV_A_ (W)w);
1797 if (expect_false (!ev_is_active (w))) 4699 if (expect_false (!ev_is_active (w)))
1798 return; 4700 return;
1799 4701
4702 EV_FREQUENT_CHECK;
4703
1800 { 4704 {
1801 int active = ((W)w)->active; 4705 int active = ev_active (w);
4706
1802 checks [active - 1] = checks [--checkcnt]; 4707 checks [active - 1] = checks [--checkcnt];
1803 ((W)checks [active - 1])->active = active; 4708 ev_active (checks [active - 1]) = active;
1804 } 4709 }
1805 4710
1806 ev_stop (EV_A_ (W)w); 4711 ev_stop (EV_A_ (W)w);
4712
4713 EV_FREQUENT_CHECK;
1807} 4714}
4715#endif
1808 4716
1809#if EV_EMBED_ENABLE 4717#if EV_EMBED_ENABLE
1810void noinline 4718noinline
4719void
1811ev_embed_sweep (EV_P_ ev_embed *w) 4720ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
1812{ 4721{
1813 ev_loop (w->loop, EVLOOP_NONBLOCK); 4722 ev_run (w->other, EVRUN_NOWAIT);
1814} 4723}
1815 4724
1816static void 4725static void
1817embed_cb (EV_P_ ev_io *io, int revents) 4726embed_io_cb (EV_P_ ev_io *io, int revents)
1818{ 4727{
1819 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4728 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1820 4729
1821 if (ev_cb (w)) 4730 if (ev_cb (w))
1822 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4731 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1823 else 4732 else
1824 ev_embed_sweep (loop, w); 4733 ev_run (w->other, EVRUN_NOWAIT);
1825} 4734}
1826 4735
4736static void
4737embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4738{
4739 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4740
4741 {
4742 EV_P = w->other;
4743
4744 while (fdchangecnt)
4745 {
4746 fd_reify (EV_A);
4747 ev_run (EV_A_ EVRUN_NOWAIT);
4748 }
4749 }
4750}
4751
4752static void
4753embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4754{
4755 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4756
4757 ev_embed_stop (EV_A_ w);
4758
4759 {
4760 EV_P = w->other;
4761
4762 ev_loop_fork (EV_A);
4763 ev_run (EV_A_ EVRUN_NOWAIT);
4764 }
4765
4766 ev_embed_start (EV_A_ w);
4767}
4768
4769#if 0
4770static void
4771embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4772{
4773 ev_idle_stop (EV_A_ idle);
4774}
4775#endif
4776
1827void 4777void
1828ev_embed_start (EV_P_ ev_embed *w) 4778ev_embed_start (EV_P_ ev_embed *w) EV_THROW
1829{ 4779{
1830 if (expect_false (ev_is_active (w))) 4780 if (expect_false (ev_is_active (w)))
1831 return; 4781 return;
1832 4782
1833 { 4783 {
1834 struct ev_loop *loop = w->loop; 4784 EV_P = w->other;
1835 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4785 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1836 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 4786 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1837 } 4787 }
4788
4789 EV_FREQUENT_CHECK;
1838 4790
1839 ev_set_priority (&w->io, ev_priority (w)); 4791 ev_set_priority (&w->io, ev_priority (w));
1840 ev_io_start (EV_A_ &w->io); 4792 ev_io_start (EV_A_ &w->io);
1841 4793
4794 ev_prepare_init (&w->prepare, embed_prepare_cb);
4795 ev_set_priority (&w->prepare, EV_MINPRI);
4796 ev_prepare_start (EV_A_ &w->prepare);
4797
4798 ev_fork_init (&w->fork, embed_fork_cb);
4799 ev_fork_start (EV_A_ &w->fork);
4800
4801 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4802
1842 ev_start (EV_A_ (W)w, 1); 4803 ev_start (EV_A_ (W)w, 1);
1843}
1844 4804
4805 EV_FREQUENT_CHECK;
4806}
4807
1845void 4808void
1846ev_embed_stop (EV_P_ ev_embed *w) 4809ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
1847{ 4810{
1848 ev_clear_pending (EV_A_ (W)w); 4811 clear_pending (EV_A_ (W)w);
1849 if (expect_false (!ev_is_active (w))) 4812 if (expect_false (!ev_is_active (w)))
1850 return; 4813 return;
1851 4814
4815 EV_FREQUENT_CHECK;
4816
1852 ev_io_stop (EV_A_ &w->io); 4817 ev_io_stop (EV_A_ &w->io);
4818 ev_prepare_stop (EV_A_ &w->prepare);
4819 ev_fork_stop (EV_A_ &w->fork);
1853 4820
1854 ev_stop (EV_A_ (W)w); 4821 ev_stop (EV_A_ (W)w);
4822
4823 EV_FREQUENT_CHECK;
1855} 4824}
1856#endif 4825#endif
1857 4826
1858#if EV_FORK_ENABLE 4827#if EV_FORK_ENABLE
1859void 4828void
1860ev_fork_start (EV_P_ ev_fork *w) 4829ev_fork_start (EV_P_ ev_fork *w) EV_THROW
1861{ 4830{
1862 if (expect_false (ev_is_active (w))) 4831 if (expect_false (ev_is_active (w)))
1863 return; 4832 return;
4833
4834 EV_FREQUENT_CHECK;
1864 4835
1865 ev_start (EV_A_ (W)w, ++forkcnt); 4836 ev_start (EV_A_ (W)w, ++forkcnt);
1866 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4837 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
1867 forks [forkcnt - 1] = w; 4838 forks [forkcnt - 1] = w;
1868}
1869 4839
4840 EV_FREQUENT_CHECK;
4841}
4842
1870void 4843void
1871ev_fork_stop (EV_P_ ev_fork *w) 4844ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
1872{ 4845{
1873 ev_clear_pending (EV_A_ (W)w); 4846 clear_pending (EV_A_ (W)w);
1874 if (expect_false (!ev_is_active (w))) 4847 if (expect_false (!ev_is_active (w)))
1875 return; 4848 return;
1876 4849
4850 EV_FREQUENT_CHECK;
4851
1877 { 4852 {
1878 int active = ((W)w)->active; 4853 int active = ev_active (w);
4854
1879 forks [active - 1] = forks [--forkcnt]; 4855 forks [active - 1] = forks [--forkcnt];
1880 ((W)forks [active - 1])->active = active; 4856 ev_active (forks [active - 1]) = active;
1881 } 4857 }
1882 4858
1883 ev_stop (EV_A_ (W)w); 4859 ev_stop (EV_A_ (W)w);
4860
4861 EV_FREQUENT_CHECK;
4862}
4863#endif
4864
4865#if EV_CLEANUP_ENABLE
4866void
4867ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4868{
4869 if (expect_false (ev_is_active (w)))
4870 return;
4871
4872 EV_FREQUENT_CHECK;
4873
4874 ev_start (EV_A_ (W)w, ++cleanupcnt);
4875 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4876 cleanups [cleanupcnt - 1] = w;
4877
4878 /* cleanup watchers should never keep a refcount on the loop */
4879 ev_unref (EV_A);
4880 EV_FREQUENT_CHECK;
4881}
4882
4883void
4884ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4885{
4886 clear_pending (EV_A_ (W)w);
4887 if (expect_false (!ev_is_active (w)))
4888 return;
4889
4890 EV_FREQUENT_CHECK;
4891 ev_ref (EV_A);
4892
4893 {
4894 int active = ev_active (w);
4895
4896 cleanups [active - 1] = cleanups [--cleanupcnt];
4897 ev_active (cleanups [active - 1]) = active;
4898 }
4899
4900 ev_stop (EV_A_ (W)w);
4901
4902 EV_FREQUENT_CHECK;
4903}
4904#endif
4905
4906#if EV_ASYNC_ENABLE
4907void
4908ev_async_start (EV_P_ ev_async *w) EV_THROW
4909{
4910 if (expect_false (ev_is_active (w)))
4911 return;
4912
4913 w->sent = 0;
4914
4915 evpipe_init (EV_A);
4916
4917 EV_FREQUENT_CHECK;
4918
4919 ev_start (EV_A_ (W)w, ++asynccnt);
4920 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4921 asyncs [asynccnt - 1] = w;
4922
4923 EV_FREQUENT_CHECK;
4924}
4925
4926void
4927ev_async_stop (EV_P_ ev_async *w) EV_THROW
4928{
4929 clear_pending (EV_A_ (W)w);
4930 if (expect_false (!ev_is_active (w)))
4931 return;
4932
4933 EV_FREQUENT_CHECK;
4934
4935 {
4936 int active = ev_active (w);
4937
4938 asyncs [active - 1] = asyncs [--asynccnt];
4939 ev_active (asyncs [active - 1]) = active;
4940 }
4941
4942 ev_stop (EV_A_ (W)w);
4943
4944 EV_FREQUENT_CHECK;
4945}
4946
4947void
4948ev_async_send (EV_P_ ev_async *w) EV_THROW
4949{
4950 w->sent = 1;
4951 evpipe_write (EV_A_ &async_pending);
1884} 4952}
1885#endif 4953#endif
1886 4954
1887/*****************************************************************************/ 4955/*****************************************************************************/
1888 4956
1898once_cb (EV_P_ struct ev_once *once, int revents) 4966once_cb (EV_P_ struct ev_once *once, int revents)
1899{ 4967{
1900 void (*cb)(int revents, void *arg) = once->cb; 4968 void (*cb)(int revents, void *arg) = once->cb;
1901 void *arg = once->arg; 4969 void *arg = once->arg;
1902 4970
1903 ev_io_stop (EV_A_ &once->io); 4971 ev_io_stop (EV_A_ &once->io);
1904 ev_timer_stop (EV_A_ &once->to); 4972 ev_timer_stop (EV_A_ &once->to);
1905 ev_free (once); 4973 ev_free (once);
1906 4974
1907 cb (revents, arg); 4975 cb (revents, arg);
1908} 4976}
1909 4977
1910static void 4978static void
1911once_cb_io (EV_P_ ev_io *w, int revents) 4979once_cb_io (EV_P_ ev_io *w, int revents)
1912{ 4980{
1913 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4981 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4982
4983 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1914} 4984}
1915 4985
1916static void 4986static void
1917once_cb_to (EV_P_ ev_timer *w, int revents) 4987once_cb_to (EV_P_ ev_timer *w, int revents)
1918{ 4988{
1919 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4989 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1920}
1921 4990
4991 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4992}
4993
1922void 4994void
1923ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4995ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1924{ 4996{
1925 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4997 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1926 4998
1927 if (expect_false (!once)) 4999 if (expect_false (!once))
1928 { 5000 {
1929 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 5001 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1930 return; 5002 return;
1931 } 5003 }
1932 5004
1933 once->cb = cb; 5005 once->cb = cb;
1934 once->arg = arg; 5006 once->arg = arg;
1946 ev_timer_set (&once->to, timeout, 0.); 5018 ev_timer_set (&once->to, timeout, 0.);
1947 ev_timer_start (EV_A_ &once->to); 5019 ev_timer_start (EV_A_ &once->to);
1948 } 5020 }
1949} 5021}
1950 5022
1951#ifdef __cplusplus 5023/*****************************************************************************/
1952} 5024
5025#if EV_WALK_ENABLE
5026ecb_cold
5027void
5028ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
5029{
5030 int i, j;
5031 ev_watcher_list *wl, *wn;
5032
5033 if (types & (EV_IO | EV_EMBED))
5034 for (i = 0; i < anfdmax; ++i)
5035 for (wl = anfds [i].head; wl; )
5036 {
5037 wn = wl->next;
5038
5039#if EV_EMBED_ENABLE
5040 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5041 {
5042 if (types & EV_EMBED)
5043 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5044 }
5045 else
5046#endif
5047#if EV_USE_INOTIFY
5048 if (ev_cb ((ev_io *)wl) == infy_cb)
5049 ;
5050 else
5051#endif
5052 if ((ev_io *)wl != &pipe_w)
5053 if (types & EV_IO)
5054 cb (EV_A_ EV_IO, wl);
5055
5056 wl = wn;
5057 }
5058
5059 if (types & (EV_TIMER | EV_STAT))
5060 for (i = timercnt + HEAP0; i-- > HEAP0; )
5061#if EV_STAT_ENABLE
5062 /*TODO: timer is not always active*/
5063 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5064 {
5065 if (types & EV_STAT)
5066 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5067 }
5068 else
5069#endif
5070 if (types & EV_TIMER)
5071 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5072
5073#if EV_PERIODIC_ENABLE
5074 if (types & EV_PERIODIC)
5075 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5076 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5077#endif
5078
5079#if EV_IDLE_ENABLE
5080 if (types & EV_IDLE)
5081 for (j = NUMPRI; j--; )
5082 for (i = idlecnt [j]; i--; )
5083 cb (EV_A_ EV_IDLE, idles [j][i]);
5084#endif
5085
5086#if EV_FORK_ENABLE
5087 if (types & EV_FORK)
5088 for (i = forkcnt; i--; )
5089 if (ev_cb (forks [i]) != embed_fork_cb)
5090 cb (EV_A_ EV_FORK, forks [i]);
5091#endif
5092
5093#if EV_ASYNC_ENABLE
5094 if (types & EV_ASYNC)
5095 for (i = asynccnt; i--; )
5096 cb (EV_A_ EV_ASYNC, asyncs [i]);
5097#endif
5098
5099#if EV_PREPARE_ENABLE
5100 if (types & EV_PREPARE)
5101 for (i = preparecnt; i--; )
5102# if EV_EMBED_ENABLE
5103 if (ev_cb (prepares [i]) != embed_prepare_cb)
1953#endif 5104# endif
5105 cb (EV_A_ EV_PREPARE, prepares [i]);
5106#endif
1954 5107
5108#if EV_CHECK_ENABLE
5109 if (types & EV_CHECK)
5110 for (i = checkcnt; i--; )
5111 cb (EV_A_ EV_CHECK, checks [i]);
5112#endif
5113
5114#if EV_SIGNAL_ENABLE
5115 if (types & EV_SIGNAL)
5116 for (i = 0; i < EV_NSIG - 1; ++i)
5117 for (wl = signals [i].head; wl; )
5118 {
5119 wn = wl->next;
5120 cb (EV_A_ EV_SIGNAL, wl);
5121 wl = wn;
5122 }
5123#endif
5124
5125#if EV_CHILD_ENABLE
5126 if (types & EV_CHILD)
5127 for (i = (EV_PID_HASHSIZE); i--; )
5128 for (wl = childs [i]; wl; )
5129 {
5130 wn = wl->next;
5131 cb (EV_A_ EV_CHILD, wl);
5132 wl = wn;
5133 }
5134#endif
5135/* EV_STAT 0x00001000 /* stat data changed */
5136/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5137}
5138#endif
5139
5140#if EV_MULTIPLICITY
5141 #include "ev_wrap.h"
5142#endif
5143

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines