ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.131 by root, Fri Nov 23 05:43:45 2007 UTC vs.
Revision 1.153 by root, Wed Nov 28 11:41:18 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
90# else 94# else
91# define EV_USE_PORT 0 95# define EV_USE_PORT 0
92# endif 96# endif
93# endif 97# endif
94 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
95#endif 107#endif
96 108
97#include <math.h> 109#include <math.h>
98#include <stdlib.h> 110#include <stdlib.h>
99#include <fcntl.h> 111#include <fcntl.h>
106#include <sys/types.h> 118#include <sys/types.h>
107#include <time.h> 119#include <time.h>
108 120
109#include <signal.h> 121#include <signal.h>
110 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
111#ifndef _WIN32 129#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 130# include <sys/time.h>
114# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
115#else 133#else
116# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 135# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
152 170
153#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 172# define EV_USE_PORT 0
155#endif 173#endif
156 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
157/**/ 195/**/
158 196
159#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
168 206
169#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 208# include <winsock.h>
171#endif 209#endif
172 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
173/**/ 219/**/
174 220
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
179
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185 224
186#if __GNUC__ >= 3 225#if __GNUC__ >= 3
187# define expect(expr,value) __builtin_expect ((expr),(value)) 226# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
188# define inline static inline 233# define inline_speed static inline
234# endif
189#else 235#else
190# define expect(expr,value) (expr) 236# define expect(expr,value) (expr)
237# define inline_speed static
191# define inline static 238# define inline_size static
239# define noinline
192#endif 240#endif
193 241
194#define expect_false(expr) expect ((expr) != 0, 0) 242#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 243#define expect_true(expr) expect ((expr) != 0, 1)
196 244
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 246#define ABSPRI(w) ((w)->priority - EV_MINPRI)
199 247
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 249#define EMPTY2(a,b) /* used to suppress some warnings */
202 250
203typedef struct ev_watcher *W; 251typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 252typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 253typedef ev_watcher_time *WT;
206 254
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
208 256
209#ifdef _WIN32 257#ifdef _WIN32
210# include "ev_win32.c" 258# include "ev_win32.c"
212 260
213/*****************************************************************************/ 261/*****************************************************************************/
214 262
215static void (*syserr_cb)(const char *msg); 263static void (*syserr_cb)(const char *msg);
216 264
265void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 266ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 267{
219 syserr_cb = cb; 268 syserr_cb = cb;
220} 269}
221 270
222static void 271static void noinline
223syserr (const char *msg) 272syserr (const char *msg)
224{ 273{
225 if (!msg) 274 if (!msg)
226 msg = "(libev) system error"; 275 msg = "(libev) system error";
227 276
232 perror (msg); 281 perror (msg);
233 abort (); 282 abort ();
234 } 283 }
235} 284}
236 285
237static void *(*alloc)(void *ptr, long size); 286static void *(*alloc)(void *ptr, size_t size) = realloc;
238 287
288void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 289ev_set_allocator (void *(*cb)(void *ptr, size_t size))
240{ 290{
241 alloc = cb; 291 alloc = cb;
242} 292}
243 293
244static void * 294inline_speed void *
245ev_realloc (void *ptr, long size) 295ev_realloc (void *ptr, size_t size)
246{ 296{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 297 ptr = alloc (ptr, size);
248 298
249 if (!ptr && size) 299 if (!ptr && size)
250 { 300 {
251 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size);
252 abort (); 302 abort ();
253 } 303 }
254 304
255 return ptr; 305 return ptr;
256} 306}
273typedef struct 323typedef struct
274{ 324{
275 W w; 325 W w;
276 int events; 326 int events;
277} ANPENDING; 327} ANPENDING;
328
329typedef struct
330{
331#if EV_USE_INOTIFY
332 WL head;
333#endif
334} ANFS;
278 335
279#if EV_MULTIPLICITY 336#if EV_MULTIPLICITY
280 337
281 struct ev_loop 338 struct ev_loop
282 { 339 {
316 gettimeofday (&tv, 0); 373 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 374 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 375#endif
319} 376}
320 377
321inline ev_tstamp 378ev_tstamp inline_size
322get_clock (void) 379get_clock (void)
323{ 380{
324#if EV_USE_MONOTONIC 381#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 382 if (expect_true (have_monotonic))
326 { 383 {
369#define array_free(stem, idx) \ 426#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 428
372/*****************************************************************************/ 429/*****************************************************************************/
373 430
374static void 431void noinline
375anfds_init (ANFD *base, int count)
376{
377 while (count--)
378 {
379 base->head = 0;
380 base->events = EV_NONE;
381 base->reify = 0;
382
383 ++base;
384 }
385}
386
387void
388ev_feed_event (EV_P_ void *w, int revents) 432ev_feed_event (EV_P_ void *w, int revents)
389{ 433{
390 W w_ = (W)w; 434 W w_ = (W)w;
391 435
392 if (expect_false (w_->pending)) 436 if (expect_false (w_->pending))
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2); 443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402} 446}
403 447
404static void 448void inline_size
405queue_events (EV_P_ W *events, int eventcnt, int type) 449queue_events (EV_P_ W *events, int eventcnt, int type)
406{ 450{
407 int i; 451 int i;
408 452
409 for (i = 0; i < eventcnt; ++i) 453 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type); 454 ev_feed_event (EV_A_ events [i], type);
411} 455}
412 456
413inline void 457/*****************************************************************************/
458
459void inline_size
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
414fd_event (EV_P_ int fd, int revents) 473fd_event (EV_P_ int fd, int revents)
415{ 474{
416 ANFD *anfd = anfds + fd; 475 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 476 ev_io *w;
418 477
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 479 {
421 int ev = w->events & revents; 480 int ev = w->events & revents;
422 481
423 if (ev) 482 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 483 ev_feed_event (EV_A_ (W)w, ev);
429ev_feed_fd_event (EV_P_ int fd, int revents) 488ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 489{
431 fd_event (EV_A_ fd, revents); 490 fd_event (EV_A_ fd, revents);
432} 491}
433 492
434/*****************************************************************************/ 493void inline_size
435
436inline void
437fd_reify (EV_P) 494fd_reify (EV_P)
438{ 495{
439 int i; 496 int i;
440 497
441 for (i = 0; i < fdchangecnt; ++i) 498 for (i = 0; i < fdchangecnt; ++i)
442 { 499 {
443 int fd = fdchanges [i]; 500 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 501 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 502 ev_io *w;
446 503
447 int events = 0; 504 int events = 0;
448 505
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 507 events |= w->events;
451 508
452#if EV_SELECT_IS_WINSOCKET 509#if EV_SELECT_IS_WINSOCKET
453 if (events) 510 if (events)
454 { 511 {
465 } 522 }
466 523
467 fdchangecnt = 0; 524 fdchangecnt = 0;
468} 525}
469 526
470static void 527void inline_size
471fd_change (EV_P_ int fd) 528fd_change (EV_P_ int fd)
472{ 529{
473 if (expect_false (anfds [fd].reify)) 530 if (expect_false (anfds [fd].reify))
474 return; 531 return;
475 532
478 ++fdchangecnt; 535 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 537 fdchanges [fdchangecnt - 1] = fd;
481} 538}
482 539
483static void 540void inline_speed
484fd_kill (EV_P_ int fd) 541fd_kill (EV_P_ int fd)
485{ 542{
486 struct ev_io *w; 543 ev_io *w;
487 544
488 while ((w = (struct ev_io *)anfds [fd].head)) 545 while ((w = (ev_io *)anfds [fd].head))
489 { 546 {
490 ev_io_stop (EV_A_ w); 547 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 549 }
493} 550}
494 551
495inline int 552int inline_size
496fd_valid (int fd) 553fd_valid (int fd)
497{ 554{
498#ifdef _WIN32 555#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 556 return _get_osfhandle (fd) != -1;
500#else 557#else
501 return fcntl (fd, F_GETFD) != -1; 558 return fcntl (fd, F_GETFD) != -1;
502#endif 559#endif
503} 560}
504 561
505/* called on EBADF to verify fds */ 562/* called on EBADF to verify fds */
506static void 563static void noinline
507fd_ebadf (EV_P) 564fd_ebadf (EV_P)
508{ 565{
509 int fd; 566 int fd;
510 567
511 for (fd = 0; fd < anfdmax; ++fd) 568 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 570 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 571 fd_kill (EV_A_ fd);
515} 572}
516 573
517/* called on ENOMEM in select/poll to kill some fds and retry */ 574/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 575static void noinline
519fd_enomem (EV_P) 576fd_enomem (EV_P)
520{ 577{
521 int fd; 578 int fd;
522 579
523 for (fd = anfdmax; fd--; ) 580 for (fd = anfdmax; fd--; )
527 return; 584 return;
528 } 585 }
529} 586}
530 587
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 588/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 589static void noinline
533fd_rearm_all (EV_P) 590fd_rearm_all (EV_P)
534{ 591{
535 int fd; 592 int fd;
536 593
537 /* this should be highly optimised to not do anything but set a flag */ 594 /* this should be highly optimised to not do anything but set a flag */
543 } 600 }
544} 601}
545 602
546/*****************************************************************************/ 603/*****************************************************************************/
547 604
548static void 605void inline_speed
549upheap (WT *heap, int k) 606upheap (WT *heap, int k)
550{ 607{
551 WT w = heap [k]; 608 WT w = heap [k];
552 609
553 while (k && heap [k >> 1]->at > w->at) 610 while (k && heap [k >> 1]->at > w->at)
560 heap [k] = w; 617 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 618 ((W)heap [k])->active = k + 1;
562 619
563} 620}
564 621
565static void 622void inline_speed
566downheap (WT *heap, int N, int k) 623downheap (WT *heap, int N, int k)
567{ 624{
568 WT w = heap [k]; 625 WT w = heap [k];
569 626
570 while (k < (N >> 1)) 627 while (k < (N >> 1))
584 641
585 heap [k] = w; 642 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 643 ((W)heap [k])->active = k + 1;
587} 644}
588 645
589inline void 646void inline_size
590adjustheap (WT *heap, int N, int k) 647adjustheap (WT *heap, int N, int k)
591{ 648{
592 upheap (heap, k); 649 upheap (heap, k);
593 downheap (heap, N, k); 650 downheap (heap, N, k);
594} 651}
604static ANSIG *signals; 661static ANSIG *signals;
605static int signalmax; 662static int signalmax;
606 663
607static int sigpipe [2]; 664static int sigpipe [2];
608static sig_atomic_t volatile gotsig; 665static sig_atomic_t volatile gotsig;
609static struct ev_io sigev; 666static ev_io sigev;
610 667
611static void 668void inline_size
612signals_init (ANSIG *base, int count) 669signals_init (ANSIG *base, int count)
613{ 670{
614 while (count--) 671 while (count--)
615 { 672 {
616 base->head = 0; 673 base->head = 0;
636 write (sigpipe [1], &signum, 1); 693 write (sigpipe [1], &signum, 1);
637 errno = old_errno; 694 errno = old_errno;
638 } 695 }
639} 696}
640 697
641void 698void noinline
642ev_feed_signal_event (EV_P_ int signum) 699ev_feed_signal_event (EV_P_ int signum)
643{ 700{
644 WL w; 701 WL w;
645 702
646#if EV_MULTIPLICITY 703#if EV_MULTIPLICITY
657 for (w = signals [signum].head; w; w = w->next) 714 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659} 716}
660 717
661static void 718static void
662sigcb (EV_P_ struct ev_io *iow, int revents) 719sigcb (EV_P_ ev_io *iow, int revents)
663{ 720{
664 int signum; 721 int signum;
665 722
666 read (sigpipe [0], &revents, 1); 723 read (sigpipe [0], &revents, 1);
667 gotsig = 0; 724 gotsig = 0;
669 for (signum = signalmax; signum--; ) 726 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig) 727 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1); 728 ev_feed_signal_event (EV_A_ signum + 1);
672} 729}
673 730
674static void 731void inline_size
675fd_intern (int fd) 732fd_intern (int fd)
676{ 733{
677#ifdef _WIN32 734#ifdef _WIN32
678 int arg = 1; 735 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 738 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 739 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 740#endif
684} 741}
685 742
686static void 743static void noinline
687siginit (EV_P) 744siginit (EV_P)
688{ 745{
689 fd_intern (sigpipe [0]); 746 fd_intern (sigpipe [0]);
690 fd_intern (sigpipe [1]); 747 fd_intern (sigpipe [1]);
691 748
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 751 ev_unref (EV_A); /* child watcher should not keep loop alive */
695} 752}
696 753
697/*****************************************************************************/ 754/*****************************************************************************/
698 755
699static struct ev_child *childs [PID_HASHSIZE]; 756static ev_child *childs [EV_PID_HASHSIZE];
700 757
701#ifndef _WIN32 758#ifndef _WIN32
702 759
703static struct ev_signal childev; 760static ev_signal childev;
704 761
705#ifndef WCONTINUED 762void inline_speed
706# define WCONTINUED 0
707#endif
708
709static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
711{ 764{
712 struct ev_child *w; 765 ev_child *w;
713 766
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid) 768 if (w->pid == pid || !w->pid)
716 { 769 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid; 771 w->rpid = pid;
719 w->rstatus = status; 772 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD); 773 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 } 774 }
722} 775}
723 776
777#ifndef WCONTINUED
778# define WCONTINUED 0
779#endif
780
724static void 781static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 782childcb (EV_P_ ev_signal *sw, int revents)
726{ 783{
727 int pid, status; 784 int pid, status;
728 785
786 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 787 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 788 if (!WCONTINUED
789 || errno != EINVAL
790 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
791 return;
792
731 /* make sure we are called again until all childs have been reaped */ 793 /* make sure we are called again until all childs have been reaped */
794 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 795 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 796
734 child_reap (EV_A_ sw, pid, pid, status); 797 child_reap (EV_A_ sw, pid, pid, status);
798 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 799 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 800}
738 801
739#endif 802#endif
740 803
741/*****************************************************************************/ 804/*****************************************************************************/
767{ 830{
768 return EV_VERSION_MINOR; 831 return EV_VERSION_MINOR;
769} 832}
770 833
771/* return true if we are running with elevated privileges and should ignore env variables */ 834/* return true if we are running with elevated privileges and should ignore env variables */
772static int 835int inline_size
773enable_secure (void) 836enable_secure (void)
774{ 837{
775#ifdef _WIN32 838#ifdef _WIN32
776 return 0; 839 return 0;
777#else 840#else
811 874
812 return flags; 875 return flags;
813} 876}
814 877
815unsigned int 878unsigned int
879ev_embeddable_backends (void)
880{
881 return EVBACKEND_EPOLL
882 | EVBACKEND_KQUEUE
883 | EVBACKEND_PORT;
884}
885
886unsigned int
816ev_backend (EV_P) 887ev_backend (EV_P)
817{ 888{
818 return backend; 889 return backend;
819} 890}
820 891
821static void 892static void noinline
822loop_init (EV_P_ unsigned int flags) 893loop_init (EV_P_ unsigned int flags)
823{ 894{
824 if (!backend) 895 if (!backend)
825 { 896 {
826#if EV_USE_MONOTONIC 897#if EV_USE_MONOTONIC
843 914
844 if (!(flags & 0x0000ffffUL)) 915 if (!(flags & 0x0000ffffUL))
845 flags |= ev_recommended_backends (); 916 flags |= ev_recommended_backends ();
846 917
847 backend = 0; 918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY
921 fs_fd = -2;
922#endif
923
848#if EV_USE_PORT 924#if EV_USE_PORT
849 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
850#endif 926#endif
851#if EV_USE_KQUEUE 927#if EV_USE_KQUEUE
852 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 928 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
864 ev_init (&sigev, sigcb); 940 ev_init (&sigev, sigcb);
865 ev_set_priority (&sigev, EV_MAXPRI); 941 ev_set_priority (&sigev, EV_MAXPRI);
866 } 942 }
867} 943}
868 944
869static void 945static void noinline
870loop_destroy (EV_P) 946loop_destroy (EV_P)
871{ 947{
872 int i; 948 int i;
949
950#if EV_USE_INOTIFY
951 if (fs_fd >= 0)
952 close (fs_fd);
953#endif
954
955 if (backend_fd >= 0)
956 close (backend_fd);
873 957
874#if EV_USE_PORT 958#if EV_USE_PORT
875 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 959 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
876#endif 960#endif
877#if EV_USE_KQUEUE 961#if EV_USE_KQUEUE
891 array_free (pending, [i]); 975 array_free (pending, [i]);
892 976
893 /* have to use the microsoft-never-gets-it-right macro */ 977 /* have to use the microsoft-never-gets-it-right macro */
894 array_free (fdchange, EMPTY0); 978 array_free (fdchange, EMPTY0);
895 array_free (timer, EMPTY0); 979 array_free (timer, EMPTY0);
896#if EV_PERIODICS 980#if EV_PERIODIC_ENABLE
897 array_free (periodic, EMPTY0); 981 array_free (periodic, EMPTY0);
898#endif 982#endif
899 array_free (idle, EMPTY0); 983 array_free (idle, EMPTY0);
900 array_free (prepare, EMPTY0); 984 array_free (prepare, EMPTY0);
901 array_free (check, EMPTY0); 985 array_free (check, EMPTY0);
902 986
903 backend = 0; 987 backend = 0;
904} 988}
905 989
906static void 990void inline_size
907loop_fork (EV_P) 991loop_fork (EV_P)
908{ 992{
909#if EV_USE_PORT 993#if EV_USE_PORT
910 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 994 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
911#endif 995#endif
1037 postfork = 1; 1121 postfork = 1;
1038} 1122}
1039 1123
1040/*****************************************************************************/ 1124/*****************************************************************************/
1041 1125
1042static int 1126int inline_size
1043any_pending (EV_P) 1127any_pending (EV_P)
1044{ 1128{
1045 int pri; 1129 int pri;
1046 1130
1047 for (pri = NUMPRI; pri--; ) 1131 for (pri = NUMPRI; pri--; )
1049 return 1; 1133 return 1;
1050 1134
1051 return 0; 1135 return 0;
1052} 1136}
1053 1137
1054inline void 1138void inline_speed
1055call_pending (EV_P) 1139call_pending (EV_P)
1056{ 1140{
1057 int pri; 1141 int pri;
1058 1142
1059 for (pri = NUMPRI; pri--; ) 1143 for (pri = NUMPRI; pri--; )
1061 { 1145 {
1062 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1146 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1063 1147
1064 if (expect_true (p->w)) 1148 if (expect_true (p->w))
1065 { 1149 {
1150 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1151
1066 p->w->pending = 0; 1152 p->w->pending = 0;
1067 EV_CB_INVOKE (p->w, p->events); 1153 EV_CB_INVOKE (p->w, p->events);
1068 } 1154 }
1069 } 1155 }
1070} 1156}
1071 1157
1072inline void 1158void inline_size
1073timers_reify (EV_P) 1159timers_reify (EV_P)
1074{ 1160{
1075 while (timercnt && ((WT)timers [0])->at <= mn_now) 1161 while (timercnt && ((WT)timers [0])->at <= mn_now)
1076 { 1162 {
1077 struct ev_timer *w = timers [0]; 1163 ev_timer *w = timers [0];
1078 1164
1079 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1165 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1080 1166
1081 /* first reschedule or stop timer */ 1167 /* first reschedule or stop timer */
1082 if (w->repeat) 1168 if (w->repeat)
1083 { 1169 {
1084 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1170 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1094 1180
1095 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1181 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1096 } 1182 }
1097} 1183}
1098 1184
1099#if EV_PERIODICS 1185#if EV_PERIODIC_ENABLE
1100inline void 1186void inline_size
1101periodics_reify (EV_P) 1187periodics_reify (EV_P)
1102{ 1188{
1103 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1189 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1104 { 1190 {
1105 struct ev_periodic *w = periodics [0]; 1191 ev_periodic *w = periodics [0];
1106 1192
1107 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1193 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1108 1194
1109 /* first reschedule or stop timer */ 1195 /* first reschedule or stop timer */
1110 if (w->reschedule_cb) 1196 if (w->reschedule_cb)
1111 { 1197 {
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1198 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1124 1210
1125 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1211 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1126 } 1212 }
1127} 1213}
1128 1214
1129static void 1215static void noinline
1130periodics_reschedule (EV_P) 1216periodics_reschedule (EV_P)
1131{ 1217{
1132 int i; 1218 int i;
1133 1219
1134 /* adjust periodics after time jump */ 1220 /* adjust periodics after time jump */
1135 for (i = 0; i < periodiccnt; ++i) 1221 for (i = 0; i < periodiccnt; ++i)
1136 { 1222 {
1137 struct ev_periodic *w = periodics [i]; 1223 ev_periodic *w = periodics [i];
1138 1224
1139 if (w->reschedule_cb) 1225 if (w->reschedule_cb)
1140 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1226 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1141 else if (w->interval) 1227 else if (w->interval)
1142 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1228 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1146 for (i = periodiccnt >> 1; i--; ) 1232 for (i = periodiccnt >> 1; i--; )
1147 downheap ((WT *)periodics, periodiccnt, i); 1233 downheap ((WT *)periodics, periodiccnt, i);
1148} 1234}
1149#endif 1235#endif
1150 1236
1151inline int 1237int inline_size
1152time_update_monotonic (EV_P) 1238time_update_monotonic (EV_P)
1153{ 1239{
1154 mn_now = get_clock (); 1240 mn_now = get_clock ();
1155 1241
1156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1242 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1164 ev_rt_now = ev_time (); 1250 ev_rt_now = ev_time ();
1165 return 1; 1251 return 1;
1166 } 1252 }
1167} 1253}
1168 1254
1169inline void 1255void inline_size
1170time_update (EV_P) 1256time_update (EV_P)
1171{ 1257{
1172 int i; 1258 int i;
1173 1259
1174#if EV_USE_MONOTONIC 1260#if EV_USE_MONOTONIC
1176 { 1262 {
1177 if (time_update_monotonic (EV_A)) 1263 if (time_update_monotonic (EV_A))
1178 { 1264 {
1179 ev_tstamp odiff = rtmn_diff; 1265 ev_tstamp odiff = rtmn_diff;
1180 1266
1181 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1267 /* loop a few times, before making important decisions.
1268 * on the choice of "4": one iteration isn't enough,
1269 * in case we get preempted during the calls to
1270 * ev_time and get_clock. a second call is almost guarenteed
1271 * to succeed in that case, though. and looping a few more times
1272 * doesn't hurt either as we only do this on time-jumps or
1273 * in the unlikely event of getting preempted here.
1274 */
1275 for (i = 4; --i; )
1182 { 1276 {
1183 rtmn_diff = ev_rt_now - mn_now; 1277 rtmn_diff = ev_rt_now - mn_now;
1184 1278
1185 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1279 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1186 return; /* all is well */ 1280 return; /* all is well */
1188 ev_rt_now = ev_time (); 1282 ev_rt_now = ev_time ();
1189 mn_now = get_clock (); 1283 mn_now = get_clock ();
1190 now_floor = mn_now; 1284 now_floor = mn_now;
1191 } 1285 }
1192 1286
1193# if EV_PERIODICS 1287# if EV_PERIODIC_ENABLE
1194 periodics_reschedule (EV_A); 1288 periodics_reschedule (EV_A);
1195# endif 1289# endif
1196 /* no timer adjustment, as the monotonic clock doesn't jump */ 1290 /* no timer adjustment, as the monotonic clock doesn't jump */
1197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1291 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198 } 1292 }
1202 { 1296 {
1203 ev_rt_now = ev_time (); 1297 ev_rt_now = ev_time ();
1204 1298
1205 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1299 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1206 { 1300 {
1207#if EV_PERIODICS 1301#if EV_PERIODIC_ENABLE
1208 periodics_reschedule (EV_A); 1302 periodics_reschedule (EV_A);
1209#endif 1303#endif
1210 1304
1211 /* adjust timers. this is easy, as the offset is the same for all */ 1305 /* adjust timers. this is easy, as the offset is the same for all */
1212 for (i = 0; i < timercnt; ++i) 1306 for (i = 0; i < timercnt; ++i)
1232static int loop_done; 1326static int loop_done;
1233 1327
1234void 1328void
1235ev_loop (EV_P_ int flags) 1329ev_loop (EV_P_ int flags)
1236{ 1330{
1237 double block;
1238 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1331 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1332 ? EVUNLOOP_ONE
1333 : EVUNLOOP_CANCEL;
1239 1334
1240 while (activecnt) 1335 while (activecnt)
1241 { 1336 {
1337 /* we might have forked, so reify kernel state if necessary */
1338 #if EV_FORK_ENABLE
1339 if (expect_false (postfork))
1340 if (forkcnt)
1341 {
1342 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1343 call_pending (EV_A);
1344 }
1345 #endif
1346
1242 /* queue check watchers (and execute them) */ 1347 /* queue check watchers (and execute them) */
1243 if (expect_false (preparecnt)) 1348 if (expect_false (preparecnt))
1244 { 1349 {
1245 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1350 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1246 call_pending (EV_A); 1351 call_pending (EV_A);
1252 1357
1253 /* update fd-related kernel structures */ 1358 /* update fd-related kernel structures */
1254 fd_reify (EV_A); 1359 fd_reify (EV_A);
1255 1360
1256 /* calculate blocking time */ 1361 /* calculate blocking time */
1362 {
1363 double block;
1257 1364
1258 /* we only need this for !monotonic clock or timers, but as we basically 1365 if (flags & EVLOOP_NONBLOCK || idlecnt)
1259 always have timers, we just calculate it always */ 1366 block = 0.; /* do not block at all */
1367 else
1368 {
1369 /* update time to cancel out callback processing overhead */
1260#if EV_USE_MONOTONIC 1370#if EV_USE_MONOTONIC
1261 if (expect_true (have_monotonic)) 1371 if (expect_true (have_monotonic))
1262 time_update_monotonic (EV_A); 1372 time_update_monotonic (EV_A);
1263 else 1373 else
1264#endif 1374#endif
1265 { 1375 {
1266 ev_rt_now = ev_time (); 1376 ev_rt_now = ev_time ();
1267 mn_now = ev_rt_now; 1377 mn_now = ev_rt_now;
1268 } 1378 }
1269 1379
1270 if (flags & EVLOOP_NONBLOCK || idlecnt)
1271 block = 0.;
1272 else
1273 {
1274 block = MAX_BLOCKTIME; 1380 block = MAX_BLOCKTIME;
1275 1381
1276 if (timercnt) 1382 if (timercnt)
1277 { 1383 {
1278 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1384 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1279 if (block > to) block = to; 1385 if (block > to) block = to;
1280 } 1386 }
1281 1387
1282#if EV_PERIODICS 1388#if EV_PERIODIC_ENABLE
1283 if (periodiccnt) 1389 if (periodiccnt)
1284 { 1390 {
1285 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1391 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1286 if (block > to) block = to; 1392 if (block > to) block = to;
1287 } 1393 }
1288#endif 1394#endif
1289 1395
1290 if (expect_false (block < 0.)) block = 0.; 1396 if (expect_false (block < 0.)) block = 0.;
1291 } 1397 }
1292 1398
1293 backend_poll (EV_A_ block); 1399 backend_poll (EV_A_ block);
1400 }
1294 1401
1295 /* update ev_rt_now, do magic */ 1402 /* update ev_rt_now, do magic */
1296 time_update (EV_A); 1403 time_update (EV_A);
1297 1404
1298 /* queue pending timers and reschedule them */ 1405 /* queue pending timers and reschedule them */
1299 timers_reify (EV_A); /* relative timers called last */ 1406 timers_reify (EV_A); /* relative timers called last */
1300#if EV_PERIODICS 1407#if EV_PERIODIC_ENABLE
1301 periodics_reify (EV_A); /* absolute timers called first */ 1408 periodics_reify (EV_A); /* absolute timers called first */
1302#endif 1409#endif
1303 1410
1304 /* queue idle watchers unless io or timers are pending */ 1411 /* queue idle watchers unless other events are pending */
1305 if (idlecnt && !any_pending (EV_A)) 1412 if (idlecnt && !any_pending (EV_A))
1306 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1413 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1307 1414
1308 /* queue check watchers, to be executed first */ 1415 /* queue check watchers, to be executed first */
1309 if (expect_false (checkcnt)) 1416 if (expect_false (checkcnt))
1313 1420
1314 if (expect_false (loop_done)) 1421 if (expect_false (loop_done))
1315 break; 1422 break;
1316 } 1423 }
1317 1424
1318 if (loop_done != 2) 1425 if (loop_done == EVUNLOOP_ONE)
1319 loop_done = 0; 1426 loop_done = EVUNLOOP_CANCEL;
1320} 1427}
1321 1428
1322void 1429void
1323ev_unloop (EV_P_ int how) 1430ev_unloop (EV_P_ int how)
1324{ 1431{
1325 loop_done = how; 1432 loop_done = how;
1326} 1433}
1327 1434
1328/*****************************************************************************/ 1435/*****************************************************************************/
1329 1436
1330inline void 1437void inline_size
1331wlist_add (WL *head, WL elem) 1438wlist_add (WL *head, WL elem)
1332{ 1439{
1333 elem->next = *head; 1440 elem->next = *head;
1334 *head = elem; 1441 *head = elem;
1335} 1442}
1336 1443
1337inline void 1444void inline_size
1338wlist_del (WL *head, WL elem) 1445wlist_del (WL *head, WL elem)
1339{ 1446{
1340 while (*head) 1447 while (*head)
1341 { 1448 {
1342 if (*head == elem) 1449 if (*head == elem)
1347 1454
1348 head = &(*head)->next; 1455 head = &(*head)->next;
1349 } 1456 }
1350} 1457}
1351 1458
1352inline void 1459void inline_speed
1353ev_clear_pending (EV_P_ W w) 1460ev_clear_pending (EV_P_ W w)
1354{ 1461{
1355 if (w->pending) 1462 if (w->pending)
1356 { 1463 {
1357 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1464 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1358 w->pending = 0; 1465 w->pending = 0;
1359 } 1466 }
1360} 1467}
1361 1468
1362inline void 1469void inline_speed
1363ev_start (EV_P_ W w, int active) 1470ev_start (EV_P_ W w, int active)
1364{ 1471{
1365 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1472 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1366 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1473 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1367 1474
1368 w->active = active; 1475 w->active = active;
1369 ev_ref (EV_A); 1476 ev_ref (EV_A);
1370} 1477}
1371 1478
1372inline void 1479void inline_size
1373ev_stop (EV_P_ W w) 1480ev_stop (EV_P_ W w)
1374{ 1481{
1375 ev_unref (EV_A); 1482 ev_unref (EV_A);
1376 w->active = 0; 1483 w->active = 0;
1377} 1484}
1378 1485
1379/*****************************************************************************/ 1486/*****************************************************************************/
1380 1487
1381void 1488void
1382ev_io_start (EV_P_ struct ev_io *w) 1489ev_io_start (EV_P_ ev_io *w)
1383{ 1490{
1384 int fd = w->fd; 1491 int fd = w->fd;
1385 1492
1386 if (expect_false (ev_is_active (w))) 1493 if (expect_false (ev_is_active (w)))
1387 return; 1494 return;
1394 1501
1395 fd_change (EV_A_ fd); 1502 fd_change (EV_A_ fd);
1396} 1503}
1397 1504
1398void 1505void
1399ev_io_stop (EV_P_ struct ev_io *w) 1506ev_io_stop (EV_P_ ev_io *w)
1400{ 1507{
1401 ev_clear_pending (EV_A_ (W)w); 1508 ev_clear_pending (EV_A_ (W)w);
1402 if (expect_false (!ev_is_active (w))) 1509 if (expect_false (!ev_is_active (w)))
1403 return; 1510 return;
1404 1511
1409 1516
1410 fd_change (EV_A_ w->fd); 1517 fd_change (EV_A_ w->fd);
1411} 1518}
1412 1519
1413void 1520void
1414ev_timer_start (EV_P_ struct ev_timer *w) 1521ev_timer_start (EV_P_ ev_timer *w)
1415{ 1522{
1416 if (expect_false (ev_is_active (w))) 1523 if (expect_false (ev_is_active (w)))
1417 return; 1524 return;
1418 1525
1419 ((WT)w)->at += mn_now; 1526 ((WT)w)->at += mn_now;
1420 1527
1421 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1528 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1422 1529
1423 ev_start (EV_A_ (W)w, ++timercnt); 1530 ev_start (EV_A_ (W)w, ++timercnt);
1424 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1531 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1425 timers [timercnt - 1] = w; 1532 timers [timercnt - 1] = w;
1426 upheap ((WT *)timers, timercnt - 1); 1533 upheap ((WT *)timers, timercnt - 1);
1427 1534
1428 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1535 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1429} 1536}
1430 1537
1431void 1538void
1432ev_timer_stop (EV_P_ struct ev_timer *w) 1539ev_timer_stop (EV_P_ ev_timer *w)
1433{ 1540{
1434 ev_clear_pending (EV_A_ (W)w); 1541 ev_clear_pending (EV_A_ (W)w);
1435 if (expect_false (!ev_is_active (w))) 1542 if (expect_false (!ev_is_active (w)))
1436 return; 1543 return;
1437 1544
1438 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1545 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1439 1546
1547 {
1548 int active = ((W)w)->active;
1549
1440 if (expect_true (((W)w)->active < timercnt--)) 1550 if (expect_true (--active < --timercnt))
1441 { 1551 {
1442 timers [((W)w)->active - 1] = timers [timercnt]; 1552 timers [active] = timers [timercnt];
1443 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1553 adjustheap ((WT *)timers, timercnt, active);
1444 } 1554 }
1555 }
1445 1556
1446 ((WT)w)->at -= mn_now; 1557 ((WT)w)->at -= mn_now;
1447 1558
1448 ev_stop (EV_A_ (W)w); 1559 ev_stop (EV_A_ (W)w);
1449} 1560}
1450 1561
1451void 1562void
1452ev_timer_again (EV_P_ struct ev_timer *w) 1563ev_timer_again (EV_P_ ev_timer *w)
1453{ 1564{
1454 if (ev_is_active (w)) 1565 if (ev_is_active (w))
1455 { 1566 {
1456 if (w->repeat) 1567 if (w->repeat)
1457 { 1568 {
1466 w->at = w->repeat; 1577 w->at = w->repeat;
1467 ev_timer_start (EV_A_ w); 1578 ev_timer_start (EV_A_ w);
1468 } 1579 }
1469} 1580}
1470 1581
1471#if EV_PERIODICS 1582#if EV_PERIODIC_ENABLE
1472void 1583void
1473ev_periodic_start (EV_P_ struct ev_periodic *w) 1584ev_periodic_start (EV_P_ ev_periodic *w)
1474{ 1585{
1475 if (expect_false (ev_is_active (w))) 1586 if (expect_false (ev_is_active (w)))
1476 return; 1587 return;
1477 1588
1478 if (w->reschedule_cb) 1589 if (w->reschedule_cb)
1483 /* this formula differs from the one in periodic_reify because we do not always round up */ 1594 /* this formula differs from the one in periodic_reify because we do not always round up */
1484 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1595 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1485 } 1596 }
1486 1597
1487 ev_start (EV_A_ (W)w, ++periodiccnt); 1598 ev_start (EV_A_ (W)w, ++periodiccnt);
1488 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1599 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1489 periodics [periodiccnt - 1] = w; 1600 periodics [periodiccnt - 1] = w;
1490 upheap ((WT *)periodics, periodiccnt - 1); 1601 upheap ((WT *)periodics, periodiccnt - 1);
1491 1602
1492 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1603 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1493} 1604}
1494 1605
1495void 1606void
1496ev_periodic_stop (EV_P_ struct ev_periodic *w) 1607ev_periodic_stop (EV_P_ ev_periodic *w)
1497{ 1608{
1498 ev_clear_pending (EV_A_ (W)w); 1609 ev_clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 1610 if (expect_false (!ev_is_active (w)))
1500 return; 1611 return;
1501 1612
1502 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1613 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1503 1614
1615 {
1616 int active = ((W)w)->active;
1617
1504 if (expect_true (((W)w)->active < periodiccnt--)) 1618 if (expect_true (--active < --periodiccnt))
1505 { 1619 {
1506 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1620 periodics [active] = periodics [periodiccnt];
1507 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1621 adjustheap ((WT *)periodics, periodiccnt, active);
1508 } 1622 }
1623 }
1509 1624
1510 ev_stop (EV_A_ (W)w); 1625 ev_stop (EV_A_ (W)w);
1511} 1626}
1512 1627
1513void 1628void
1514ev_periodic_again (EV_P_ struct ev_periodic *w) 1629ev_periodic_again (EV_P_ ev_periodic *w)
1515{ 1630{
1516 /* TODO: use adjustheap and recalculation */ 1631 /* TODO: use adjustheap and recalculation */
1517 ev_periodic_stop (EV_A_ w); 1632 ev_periodic_stop (EV_A_ w);
1518 ev_periodic_start (EV_A_ w); 1633 ev_periodic_start (EV_A_ w);
1519} 1634}
1520#endif 1635#endif
1521 1636
1522void
1523ev_idle_start (EV_P_ struct ev_idle *w)
1524{
1525 if (expect_false (ev_is_active (w)))
1526 return;
1527
1528 ev_start (EV_A_ (W)w, ++idlecnt);
1529 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1530 idles [idlecnt - 1] = w;
1531}
1532
1533void
1534ev_idle_stop (EV_P_ struct ev_idle *w)
1535{
1536 ev_clear_pending (EV_A_ (W)w);
1537 if (expect_false (!ev_is_active (w)))
1538 return;
1539
1540 idles [((W)w)->active - 1] = idles [--idlecnt];
1541 ev_stop (EV_A_ (W)w);
1542}
1543
1544void
1545ev_prepare_start (EV_P_ struct ev_prepare *w)
1546{
1547 if (expect_false (ev_is_active (w)))
1548 return;
1549
1550 ev_start (EV_A_ (W)w, ++preparecnt);
1551 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1552 prepares [preparecnt - 1] = w;
1553}
1554
1555void
1556ev_prepare_stop (EV_P_ struct ev_prepare *w)
1557{
1558 ev_clear_pending (EV_A_ (W)w);
1559 if (expect_false (!ev_is_active (w)))
1560 return;
1561
1562 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1563 ev_stop (EV_A_ (W)w);
1564}
1565
1566void
1567ev_check_start (EV_P_ struct ev_check *w)
1568{
1569 if (expect_false (ev_is_active (w)))
1570 return;
1571
1572 ev_start (EV_A_ (W)w, ++checkcnt);
1573 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1574 checks [checkcnt - 1] = w;
1575}
1576
1577void
1578ev_check_stop (EV_P_ struct ev_check *w)
1579{
1580 ev_clear_pending (EV_A_ (W)w);
1581 if (expect_false (!ev_is_active (w)))
1582 return;
1583
1584 checks [((W)w)->active - 1] = checks [--checkcnt];
1585 ev_stop (EV_A_ (W)w);
1586}
1587
1588#ifndef SA_RESTART 1637#ifndef SA_RESTART
1589# define SA_RESTART 0 1638# define SA_RESTART 0
1590#endif 1639#endif
1591 1640
1592void 1641void
1593ev_signal_start (EV_P_ struct ev_signal *w) 1642ev_signal_start (EV_P_ ev_signal *w)
1594{ 1643{
1595#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1596 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1645 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1597#endif 1646#endif
1598 if (expect_false (ev_is_active (w))) 1647 if (expect_false (ev_is_active (w)))
1617#endif 1666#endif
1618 } 1667 }
1619} 1668}
1620 1669
1621void 1670void
1622ev_signal_stop (EV_P_ struct ev_signal *w) 1671ev_signal_stop (EV_P_ ev_signal *w)
1623{ 1672{
1624 ev_clear_pending (EV_A_ (W)w); 1673 ev_clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 1674 if (expect_false (!ev_is_active (w)))
1626 return; 1675 return;
1627 1676
1631 if (!signals [w->signum - 1].head) 1680 if (!signals [w->signum - 1].head)
1632 signal (w->signum, SIG_DFL); 1681 signal (w->signum, SIG_DFL);
1633} 1682}
1634 1683
1635void 1684void
1636ev_child_start (EV_P_ struct ev_child *w) 1685ev_child_start (EV_P_ ev_child *w)
1637{ 1686{
1638#if EV_MULTIPLICITY 1687#if EV_MULTIPLICITY
1639 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1688 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1640#endif 1689#endif
1641 if (expect_false (ev_is_active (w))) 1690 if (expect_false (ev_is_active (w)))
1642 return; 1691 return;
1643 1692
1644 ev_start (EV_A_ (W)w, 1); 1693 ev_start (EV_A_ (W)w, 1);
1645 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1694 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1646} 1695}
1647 1696
1648void 1697void
1649ev_child_stop (EV_P_ struct ev_child *w) 1698ev_child_stop (EV_P_ ev_child *w)
1650{ 1699{
1651 ev_clear_pending (EV_A_ (W)w); 1700 ev_clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 1701 if (expect_false (!ev_is_active (w)))
1653 return; 1702 return;
1654 1703
1655 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1704 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1656 ev_stop (EV_A_ (W)w); 1705 ev_stop (EV_A_ (W)w);
1657} 1706}
1658 1707
1708#if EV_STAT_ENABLE
1709
1710# ifdef _WIN32
1711# undef lstat
1712# define lstat(a,b) _stati64 (a,b)
1713# endif
1714
1715#define DEF_STAT_INTERVAL 5.0074891
1716#define MIN_STAT_INTERVAL 0.1074891
1717
1718void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1719
1720#if EV_USE_INOTIFY
1721# define EV_INOTIFY_BUFSIZE 8192
1722
1723static void noinline
1724infy_add (EV_P_ ev_stat *w)
1725{
1726 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1727
1728 if (w->wd < 0)
1729 {
1730 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1731
1732 /* monitor some parent directory for speedup hints */
1733 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1734 {
1735 char path [4096];
1736 strcpy (path, w->path);
1737
1738 do
1739 {
1740 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1741 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1742
1743 char *pend = strrchr (path, '/');
1744
1745 if (!pend)
1746 break; /* whoops, no '/', complain to your admin */
1747
1748 *pend = 0;
1749 w->wd = inotify_add_watch (fs_fd, path, mask);
1750 }
1751 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1752 }
1753 }
1754 else
1755 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1756
1757 if (w->wd >= 0)
1758 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1759}
1760
1761static void noinline
1762infy_del (EV_P_ ev_stat *w)
1763{
1764 int slot;
1765 int wd = w->wd;
1766
1767 if (wd < 0)
1768 return;
1769
1770 w->wd = -2;
1771 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1772 wlist_del (&fs_hash [slot].head, (WL)w);
1773
1774 /* remove this watcher, if others are watching it, they will rearm */
1775 inotify_rm_watch (fs_fd, wd);
1776}
1777
1778static void noinline
1779infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1780{
1781 if (slot < 0)
1782 /* overflow, need to check for all hahs slots */
1783 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1784 infy_wd (EV_A_ slot, wd, ev);
1785 else
1786 {
1787 WL w_;
1788
1789 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1790 {
1791 ev_stat *w = (ev_stat *)w_;
1792 w_ = w_->next; /* lets us remove this watcher and all before it */
1793
1794 if (w->wd == wd || wd == -1)
1795 {
1796 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1797 {
1798 w->wd = -1;
1799 infy_add (EV_A_ w); /* re-add, no matter what */
1800 }
1801
1802 stat_timer_cb (EV_A_ &w->timer, 0);
1803 }
1804 }
1805 }
1806}
1807
1808static void
1809infy_cb (EV_P_ ev_io *w, int revents)
1810{
1811 char buf [EV_INOTIFY_BUFSIZE];
1812 struct inotify_event *ev = (struct inotify_event *)buf;
1813 int ofs;
1814 int len = read (fs_fd, buf, sizeof (buf));
1815
1816 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1817 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1818}
1819
1820void inline_size
1821infy_init (EV_P)
1822{
1823 if (fs_fd != -2)
1824 return;
1825
1826 fs_fd = inotify_init ();
1827
1828 if (fs_fd >= 0)
1829 {
1830 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1831 ev_set_priority (&fs_w, EV_MAXPRI);
1832 ev_io_start (EV_A_ &fs_w);
1833 }
1834}
1835
1836#endif
1837
1838void
1839ev_stat_stat (EV_P_ ev_stat *w)
1840{
1841 if (lstat (w->path, &w->attr) < 0)
1842 w->attr.st_nlink = 0;
1843 else if (!w->attr.st_nlink)
1844 w->attr.st_nlink = 1;
1845}
1846
1847void noinline
1848stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1849{
1850 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1851
1852 /* we copy this here each the time so that */
1853 /* prev has the old value when the callback gets invoked */
1854 w->prev = w->attr;
1855 ev_stat_stat (EV_A_ w);
1856
1857 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1858 {
1859 #if EV_USE_INOTIFY
1860 infy_del (EV_A_ w);
1861 infy_add (EV_A_ w);
1862 ev_stat_stat (EV_A_ w); /* avoid race... */
1863 #endif
1864
1865 ev_feed_event (EV_A_ w, EV_STAT);
1866 }
1867}
1868
1869void
1870ev_stat_start (EV_P_ ev_stat *w)
1871{
1872 if (expect_false (ev_is_active (w)))
1873 return;
1874
1875 /* since we use memcmp, we need to clear any padding data etc. */
1876 memset (&w->prev, 0, sizeof (ev_statdata));
1877 memset (&w->attr, 0, sizeof (ev_statdata));
1878
1879 ev_stat_stat (EV_A_ w);
1880
1881 if (w->interval < MIN_STAT_INTERVAL)
1882 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1883
1884 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1885 ev_set_priority (&w->timer, ev_priority (w));
1886
1887#if EV_USE_INOTIFY
1888 infy_init (EV_A);
1889
1890 if (fs_fd >= 0)
1891 infy_add (EV_A_ w);
1892 else
1893#endif
1894 ev_timer_start (EV_A_ &w->timer);
1895
1896 ev_start (EV_A_ (W)w, 1);
1897}
1898
1899void
1900ev_stat_stop (EV_P_ ev_stat *w)
1901{
1902 ev_clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w)))
1904 return;
1905
1906#if EV_USE_INOTIFY
1907 infy_del (EV_A_ w);
1908#endif
1909 ev_timer_stop (EV_A_ &w->timer);
1910
1911 ev_stop (EV_A_ (W)w);
1912}
1913#endif
1914
1915void
1916ev_idle_start (EV_P_ ev_idle *w)
1917{
1918 if (expect_false (ev_is_active (w)))
1919 return;
1920
1921 ev_start (EV_A_ (W)w, ++idlecnt);
1922 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1923 idles [idlecnt - 1] = w;
1924}
1925
1926void
1927ev_idle_stop (EV_P_ ev_idle *w)
1928{
1929 ev_clear_pending (EV_A_ (W)w);
1930 if (expect_false (!ev_is_active (w)))
1931 return;
1932
1933 {
1934 int active = ((W)w)->active;
1935 idles [active - 1] = idles [--idlecnt];
1936 ((W)idles [active - 1])->active = active;
1937 }
1938
1939 ev_stop (EV_A_ (W)w);
1940}
1941
1942void
1943ev_prepare_start (EV_P_ ev_prepare *w)
1944{
1945 if (expect_false (ev_is_active (w)))
1946 return;
1947
1948 ev_start (EV_A_ (W)w, ++preparecnt);
1949 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1950 prepares [preparecnt - 1] = w;
1951}
1952
1953void
1954ev_prepare_stop (EV_P_ ev_prepare *w)
1955{
1956 ev_clear_pending (EV_A_ (W)w);
1957 if (expect_false (!ev_is_active (w)))
1958 return;
1959
1960 {
1961 int active = ((W)w)->active;
1962 prepares [active - 1] = prepares [--preparecnt];
1963 ((W)prepares [active - 1])->active = active;
1964 }
1965
1966 ev_stop (EV_A_ (W)w);
1967}
1968
1969void
1970ev_check_start (EV_P_ ev_check *w)
1971{
1972 if (expect_false (ev_is_active (w)))
1973 return;
1974
1975 ev_start (EV_A_ (W)w, ++checkcnt);
1976 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1977 checks [checkcnt - 1] = w;
1978}
1979
1980void
1981ev_check_stop (EV_P_ ev_check *w)
1982{
1983 ev_clear_pending (EV_A_ (W)w);
1984 if (expect_false (!ev_is_active (w)))
1985 return;
1986
1987 {
1988 int active = ((W)w)->active;
1989 checks [active - 1] = checks [--checkcnt];
1990 ((W)checks [active - 1])->active = active;
1991 }
1992
1993 ev_stop (EV_A_ (W)w);
1994}
1995
1996#if EV_EMBED_ENABLE
1997void noinline
1998ev_embed_sweep (EV_P_ ev_embed *w)
1999{
2000 ev_loop (w->loop, EVLOOP_NONBLOCK);
2001}
2002
2003static void
2004embed_cb (EV_P_ ev_io *io, int revents)
2005{
2006 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2007
2008 if (ev_cb (w))
2009 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2010 else
2011 ev_embed_sweep (loop, w);
2012}
2013
2014void
2015ev_embed_start (EV_P_ ev_embed *w)
2016{
2017 if (expect_false (ev_is_active (w)))
2018 return;
2019
2020 {
2021 struct ev_loop *loop = w->loop;
2022 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2023 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2024 }
2025
2026 ev_set_priority (&w->io, ev_priority (w));
2027 ev_io_start (EV_A_ &w->io);
2028
2029 ev_start (EV_A_ (W)w, 1);
2030}
2031
2032void
2033ev_embed_stop (EV_P_ ev_embed *w)
2034{
2035 ev_clear_pending (EV_A_ (W)w);
2036 if (expect_false (!ev_is_active (w)))
2037 return;
2038
2039 ev_io_stop (EV_A_ &w->io);
2040
2041 ev_stop (EV_A_ (W)w);
2042}
2043#endif
2044
2045#if EV_FORK_ENABLE
2046void
2047ev_fork_start (EV_P_ ev_fork *w)
2048{
2049 if (expect_false (ev_is_active (w)))
2050 return;
2051
2052 ev_start (EV_A_ (W)w, ++forkcnt);
2053 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2054 forks [forkcnt - 1] = w;
2055}
2056
2057void
2058ev_fork_stop (EV_P_ ev_fork *w)
2059{
2060 ev_clear_pending (EV_A_ (W)w);
2061 if (expect_false (!ev_is_active (w)))
2062 return;
2063
2064 {
2065 int active = ((W)w)->active;
2066 forks [active - 1] = forks [--forkcnt];
2067 ((W)forks [active - 1])->active = active;
2068 }
2069
2070 ev_stop (EV_A_ (W)w);
2071}
2072#endif
2073
1659/*****************************************************************************/ 2074/*****************************************************************************/
1660 2075
1661struct ev_once 2076struct ev_once
1662{ 2077{
1663 struct ev_io io; 2078 ev_io io;
1664 struct ev_timer to; 2079 ev_timer to;
1665 void (*cb)(int revents, void *arg); 2080 void (*cb)(int revents, void *arg);
1666 void *arg; 2081 void *arg;
1667}; 2082};
1668 2083
1669static void 2084static void
1678 2093
1679 cb (revents, arg); 2094 cb (revents, arg);
1680} 2095}
1681 2096
1682static void 2097static void
1683once_cb_io (EV_P_ struct ev_io *w, int revents) 2098once_cb_io (EV_P_ ev_io *w, int revents)
1684{ 2099{
1685 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2100 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1686} 2101}
1687 2102
1688static void 2103static void
1689once_cb_to (EV_P_ struct ev_timer *w, int revents) 2104once_cb_to (EV_P_ ev_timer *w, int revents)
1690{ 2105{
1691 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2106 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1692} 2107}
1693 2108
1694void 2109void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines