ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.153 by root, Wed Nov 28 11:41:18 2007 UTC vs.
Revision 1.177 by root, Tue Dec 11 15:06:50 2007 UTC

216# include <sys/inotify.h> 216# include <sys/inotify.h>
217#endif 217#endif
218 218
219/**/ 219/**/
220 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 234
225#if __GNUC__ >= 3 235#if __GNUC__ >= 3
226# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 237# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 238#else
236# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
240#endif 244#endif
241 245
242#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
244 255
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 258
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
250 261
251typedef ev_watcher *W; 262typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
281 perror (msg); 292 perror (msg);
282 abort (); 293 abort ();
283 } 294 }
284} 295}
285 296
286static void *(*alloc)(void *ptr, size_t size) = realloc; 297static void *(*alloc)(void *ptr, long size);
287 298
288void 299void
289ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 301{
291 alloc = cb; 302 alloc = cb;
292} 303}
293 304
294inline_speed void * 305inline_speed void *
295ev_realloc (void *ptr, size_t size) 306ev_realloc (void *ptr, long size)
296{ 307{
297 ptr = alloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
298 309
299 if (!ptr && size) 310 if (!ptr && size)
300 { 311 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 313 abort ();
303 } 314 }
304 315
305 return ptr; 316 return ptr;
306} 317}
324{ 335{
325 W w; 336 W w;
326 int events; 337 int events;
327} ANPENDING; 338} ANPENDING;
328 339
340#if EV_USE_INOTIFY
329typedef struct 341typedef struct
330{ 342{
331#if EV_USE_INOTIFY
332 WL head; 343 WL head;
333#endif
334} ANFS; 344} ANFS;
345#endif
335 346
336#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
337 348
338 struct ev_loop 349 struct ev_loop
339 { 350 {
396{ 407{
397 return ev_rt_now; 408 return ev_rt_now;
398} 409}
399#endif 410#endif
400 411
401#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
402 439
403#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
405 { \ 442 { \
406 int newcnt = cur; \ 443 int ocur_ = (cur); \
407 do \ 444 (base) = (type *)array_realloc \
408 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 447 }
417 448
449#if 0
418#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 452 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 456 }
457#endif
425 458
426#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 461
429/*****************************************************************************/ 462/*****************************************************************************/
430 463
431void noinline 464void noinline
432ev_feed_event (EV_P_ void *w, int revents) 465ev_feed_event (EV_P_ void *w, int revents)
433{ 466{
434 W w_ = (W)w; 467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
435 469
436 if (expect_false (w_->pending)) 470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
437 { 473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 477 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 478 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 479}
447 480
448void inline_size 481void inline_size
449queue_events (EV_P_ W *events, int eventcnt, int type) 482queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 483{
485} 518}
486 519
487void 520void
488ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 522{
523 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
491} 525}
492 526
493void inline_size 527void inline_size
494fd_reify (EV_P) 528fd_reify (EV_P)
495{ 529{
589static void noinline 623static void noinline
590fd_rearm_all (EV_P) 624fd_rearm_all (EV_P)
591{ 625{
592 int fd; 626 int fd;
593 627
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 628 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 629 if (anfds [fd].events)
597 { 630 {
598 anfds [fd].events = 0; 631 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 632 fd_change (EV_A_ fd);
726 for (signum = signalmax; signum--; ) 759 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig) 760 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1); 761 ev_feed_signal_event (EV_A_ signum + 1);
729} 762}
730 763
731void inline_size 764void inline_speed
732fd_intern (int fd) 765fd_intern (int fd)
733{ 766{
734#ifdef _WIN32 767#ifdef _WIN32
735 int arg = 1; 768 int arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 769 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
765 ev_child *w; 798 ev_child *w;
766 799
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 800 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
768 if (w->pid == pid || !w->pid) 801 if (w->pid == pid || !w->pid)
769 { 802 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 803 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
771 w->rpid = pid; 804 w->rpid = pid;
772 w->rstatus = status; 805 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 806 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 807 }
775} 808}
776 809
777#ifndef WCONTINUED 810#ifndef WCONTINUED
887ev_backend (EV_P) 920ev_backend (EV_P)
888{ 921{
889 return backend; 922 return backend;
890} 923}
891 924
925unsigned int
926ev_loop_count (EV_P)
927{
928 return loop_count;
929}
930
892static void noinline 931static void noinline
893loop_init (EV_P_ unsigned int flags) 932loop_init (EV_P_ unsigned int flags)
894{ 933{
895 if (!backend) 934 if (!backend)
896 { 935 {
905 ev_rt_now = ev_time (); 944 ev_rt_now = ev_time ();
906 mn_now = get_clock (); 945 mn_now = get_clock ();
907 now_floor = mn_now; 946 now_floor = mn_now;
908 rtmn_diff = ev_rt_now - mn_now; 947 rtmn_diff = ev_rt_now - mn_now;
909 948
949 /* pid check not overridable via env */
950#ifndef _WIN32
951 if (flags & EVFLAG_FORKCHECK)
952 curpid = getpid ();
953#endif
954
910 if (!(flags & EVFLAG_NOENV) 955 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 956 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 957 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 958 flags = atoi (getenv ("LIBEV_FLAGS"));
914 959
970#if EV_USE_SELECT 1015#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1016 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1017#endif
973 1018
974 for (i = NUMPRI; i--; ) 1019 for (i = NUMPRI; i--; )
1020 {
975 array_free (pending, [i]); 1021 array_free (pending, [i]);
1022#if EV_IDLE_ENABLE
1023 array_free (idle, [i]);
1024#endif
1025 }
976 1026
977 /* have to use the microsoft-never-gets-it-right macro */ 1027 /* have to use the microsoft-never-gets-it-right macro */
978 array_free (fdchange, EMPTY0); 1028 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1029 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1030#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1031 array_free (periodic, EMPTY);
982#endif 1032#endif
983 array_free (idle, EMPTY0);
984 array_free (prepare, EMPTY0); 1033 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1034 array_free (check, EMPTY);
986 1035
987 backend = 0; 1036 backend = 0;
988} 1037}
1038
1039void inline_size infy_fork (EV_P);
989 1040
990void inline_size 1041void inline_size
991loop_fork (EV_P) 1042loop_fork (EV_P)
992{ 1043{
993#if EV_USE_PORT 1044#if EV_USE_PORT
996#if EV_USE_KQUEUE 1047#if EV_USE_KQUEUE
997 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1048 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
998#endif 1049#endif
999#if EV_USE_EPOLL 1050#if EV_USE_EPOLL
1000 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1051 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1052#endif
1053#if EV_USE_INOTIFY
1054 infy_fork (EV_A);
1001#endif 1055#endif
1002 1056
1003 if (ev_is_active (&sigev)) 1057 if (ev_is_active (&sigev))
1004 { 1058 {
1005 /* default loop */ 1059 /* default loop */
1121 postfork = 1; 1175 postfork = 1;
1122} 1176}
1123 1177
1124/*****************************************************************************/ 1178/*****************************************************************************/
1125 1179
1126int inline_size 1180void
1127any_pending (EV_P) 1181ev_invoke (EV_P_ void *w, int revents)
1128{ 1182{
1129 int pri; 1183 EV_CB_INVOKE ((W)w, revents);
1130
1131 for (pri = NUMPRI; pri--; )
1132 if (pendingcnt [pri])
1133 return 1;
1134
1135 return 0;
1136} 1184}
1137 1185
1138void inline_speed 1186void inline_speed
1139call_pending (EV_P) 1187call_pending (EV_P)
1140{ 1188{
1193 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1241 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1194 1242
1195 /* first reschedule or stop timer */ 1243 /* first reschedule or stop timer */
1196 if (w->reschedule_cb) 1244 if (w->reschedule_cb)
1197 { 1245 {
1198 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1246 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1199 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1247 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1200 downheap ((WT *)periodics, periodiccnt, 0); 1248 downheap ((WT *)periodics, periodiccnt, 0);
1201 } 1249 }
1202 else if (w->interval) 1250 else if (w->interval)
1203 { 1251 {
1204 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1252 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1253 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1205 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1206 downheap ((WT *)periodics, periodiccnt, 0); 1255 downheap ((WT *)periodics, periodiccnt, 0);
1207 } 1256 }
1208 else 1257 else
1209 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1223 ev_periodic *w = periodics [i]; 1272 ev_periodic *w = periodics [i];
1224 1273
1225 if (w->reschedule_cb) 1274 if (w->reschedule_cb)
1226 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1227 else if (w->interval) 1276 else if (w->interval)
1228 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1229 } 1278 }
1230 1279
1231 /* now rebuild the heap */ 1280 /* now rebuild the heap */
1232 for (i = periodiccnt >> 1; i--; ) 1281 for (i = periodiccnt >> 1; i--; )
1233 downheap ((WT *)periodics, periodiccnt, i); 1282 downheap ((WT *)periodics, periodiccnt, i);
1234} 1283}
1235#endif 1284#endif
1236 1285
1286#if EV_IDLE_ENABLE
1287void inline_size
1288idle_reify (EV_P)
1289{
1290 if (expect_false (idleall))
1291 {
1292 int pri;
1293
1294 for (pri = NUMPRI; pri--; )
1295 {
1296 if (pendingcnt [pri])
1297 break;
1298
1299 if (idlecnt [pri])
1300 {
1301 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1302 break;
1303 }
1304 }
1305 }
1306}
1307#endif
1308
1237int inline_size 1309int inline_size
1238time_update_monotonic (EV_P) 1310time_update_monotonic (EV_P)
1239{ 1311{
1240 mn_now = get_clock (); 1312 mn_now = get_clock ();
1241 1313
1265 ev_tstamp odiff = rtmn_diff; 1337 ev_tstamp odiff = rtmn_diff;
1266 1338
1267 /* loop a few times, before making important decisions. 1339 /* loop a few times, before making important decisions.
1268 * on the choice of "4": one iteration isn't enough, 1340 * on the choice of "4": one iteration isn't enough,
1269 * in case we get preempted during the calls to 1341 * in case we get preempted during the calls to
1270 * ev_time and get_clock. a second call is almost guarenteed 1342 * ev_time and get_clock. a second call is almost guaranteed
1271 * to succeed in that case, though. and looping a few more times 1343 * to succeed in that case, though. and looping a few more times
1272 * doesn't hurt either as we only do this on time-jumps or 1344 * doesn't hurt either as we only do this on time-jumps or
1273 * in the unlikely event of getting preempted here. 1345 * in the unlikely event of having been preempted here.
1274 */ 1346 */
1275 for (i = 4; --i; ) 1347 for (i = 4; --i; )
1276 { 1348 {
1277 rtmn_diff = ev_rt_now - mn_now; 1349 rtmn_diff = ev_rt_now - mn_now;
1278 1350
1299 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1300 { 1372 {
1301#if EV_PERIODIC_ENABLE 1373#if EV_PERIODIC_ENABLE
1302 periodics_reschedule (EV_A); 1374 periodics_reschedule (EV_A);
1303#endif 1375#endif
1304
1305 /* adjust timers. this is easy, as the offset is the same for all */ 1376 /* adjust timers. this is easy, as the offset is the same for all of them */
1306 for (i = 0; i < timercnt; ++i) 1377 for (i = 0; i < timercnt; ++i)
1307 ((WT)timers [i])->at += ev_rt_now - mn_now; 1378 ((WT)timers [i])->at += ev_rt_now - mn_now;
1308 } 1379 }
1309 1380
1310 mn_now = ev_rt_now; 1381 mn_now = ev_rt_now;
1330{ 1401{
1331 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1402 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1332 ? EVUNLOOP_ONE 1403 ? EVUNLOOP_ONE
1333 : EVUNLOOP_CANCEL; 1404 : EVUNLOOP_CANCEL;
1334 1405
1335 while (activecnt) 1406 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1407
1408 do
1336 { 1409 {
1337 /* we might have forked, so reify kernel state if necessary */ 1410#ifndef _WIN32
1411 if (expect_false (curpid)) /* penalise the forking check even more */
1412 if (expect_false (getpid () != curpid))
1413 {
1414 curpid = getpid ();
1415 postfork = 1;
1416 }
1417#endif
1418
1338 #if EV_FORK_ENABLE 1419#if EV_FORK_ENABLE
1420 /* we might have forked, so queue fork handlers */
1339 if (expect_false (postfork)) 1421 if (expect_false (postfork))
1340 if (forkcnt) 1422 if (forkcnt)
1341 { 1423 {
1342 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1424 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1343 call_pending (EV_A); 1425 call_pending (EV_A);
1344 } 1426 }
1345 #endif 1427#endif
1346 1428
1347 /* queue check watchers (and execute them) */ 1429 /* queue prepare watchers (and execute them) */
1348 if (expect_false (preparecnt)) 1430 if (expect_false (preparecnt))
1349 { 1431 {
1350 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1432 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1351 call_pending (EV_A); 1433 call_pending (EV_A);
1352 } 1434 }
1353 1435
1436 if (expect_false (!activecnt))
1437 break;
1438
1354 /* we might have forked, so reify kernel state if necessary */ 1439 /* we might have forked, so reify kernel state if necessary */
1355 if (expect_false (postfork)) 1440 if (expect_false (postfork))
1356 loop_fork (EV_A); 1441 loop_fork (EV_A);
1357 1442
1358 /* update fd-related kernel structures */ 1443 /* update fd-related kernel structures */
1359 fd_reify (EV_A); 1444 fd_reify (EV_A);
1360 1445
1361 /* calculate blocking time */ 1446 /* calculate blocking time */
1362 { 1447 {
1363 double block; 1448 ev_tstamp block;
1364 1449
1365 if (flags & EVLOOP_NONBLOCK || idlecnt) 1450 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1366 block = 0.; /* do not block at all */ 1451 block = 0.; /* do not block at all */
1367 else 1452 else
1368 { 1453 {
1369 /* update time to cancel out callback processing overhead */ 1454 /* update time to cancel out callback processing overhead */
1370#if EV_USE_MONOTONIC 1455#if EV_USE_MONOTONIC
1394#endif 1479#endif
1395 1480
1396 if (expect_false (block < 0.)) block = 0.; 1481 if (expect_false (block < 0.)) block = 0.;
1397 } 1482 }
1398 1483
1484 ++loop_count;
1399 backend_poll (EV_A_ block); 1485 backend_poll (EV_A_ block);
1400 } 1486 }
1401 1487
1402 /* update ev_rt_now, do magic */ 1488 /* update ev_rt_now, do magic */
1403 time_update (EV_A); 1489 time_update (EV_A);
1406 timers_reify (EV_A); /* relative timers called last */ 1492 timers_reify (EV_A); /* relative timers called last */
1407#if EV_PERIODIC_ENABLE 1493#if EV_PERIODIC_ENABLE
1408 periodics_reify (EV_A); /* absolute timers called first */ 1494 periodics_reify (EV_A); /* absolute timers called first */
1409#endif 1495#endif
1410 1496
1497#if EV_IDLE_ENABLE
1411 /* queue idle watchers unless other events are pending */ 1498 /* queue idle watchers unless other events are pending */
1412 if (idlecnt && !any_pending (EV_A)) 1499 idle_reify (EV_A);
1413 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1500#endif
1414 1501
1415 /* queue check watchers, to be executed first */ 1502 /* queue check watchers, to be executed first */
1416 if (expect_false (checkcnt)) 1503 if (expect_false (checkcnt))
1417 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1504 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1418 1505
1419 call_pending (EV_A); 1506 call_pending (EV_A);
1420 1507
1421 if (expect_false (loop_done))
1422 break;
1423 } 1508 }
1509 while (expect_true (activecnt && !loop_done));
1424 1510
1425 if (loop_done == EVUNLOOP_ONE) 1511 if (loop_done == EVUNLOOP_ONE)
1426 loop_done = EVUNLOOP_CANCEL; 1512 loop_done = EVUNLOOP_CANCEL;
1427} 1513}
1428 1514
1455 head = &(*head)->next; 1541 head = &(*head)->next;
1456 } 1542 }
1457} 1543}
1458 1544
1459void inline_speed 1545void inline_speed
1460ev_clear_pending (EV_P_ W w) 1546clear_pending (EV_P_ W w)
1461{ 1547{
1462 if (w->pending) 1548 if (w->pending)
1463 { 1549 {
1464 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1550 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1465 w->pending = 0; 1551 w->pending = 0;
1466 } 1552 }
1467} 1553}
1468 1554
1555int
1556ev_clear_pending (EV_P_ void *w)
1557{
1558 W w_ = (W)w;
1559 int pending = w_->pending;
1560
1561 if (expect_true (pending))
1562 {
1563 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1564 w_->pending = 0;
1565 p->w = 0;
1566 return p->events;
1567 }
1568 else
1569 return 0;
1570}
1571
1572void inline_size
1573pri_adjust (EV_P_ W w)
1574{
1575 int pri = w->priority;
1576 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1577 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1578 w->priority = pri;
1579}
1580
1469void inline_speed 1581void inline_speed
1470ev_start (EV_P_ W w, int active) 1582ev_start (EV_P_ W w, int active)
1471{ 1583{
1472 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1584 pri_adjust (EV_A_ w);
1473 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1474
1475 w->active = active; 1585 w->active = active;
1476 ev_ref (EV_A); 1586 ev_ref (EV_A);
1477} 1587}
1478 1588
1479void inline_size 1589void inline_size
1483 w->active = 0; 1593 w->active = 0;
1484} 1594}
1485 1595
1486/*****************************************************************************/ 1596/*****************************************************************************/
1487 1597
1488void 1598void noinline
1489ev_io_start (EV_P_ ev_io *w) 1599ev_io_start (EV_P_ ev_io *w)
1490{ 1600{
1491 int fd = w->fd; 1601 int fd = w->fd;
1492 1602
1493 if (expect_false (ev_is_active (w))) 1603 if (expect_false (ev_is_active (w)))
1500 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1610 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1501 1611
1502 fd_change (EV_A_ fd); 1612 fd_change (EV_A_ fd);
1503} 1613}
1504 1614
1505void 1615void noinline
1506ev_io_stop (EV_P_ ev_io *w) 1616ev_io_stop (EV_P_ ev_io *w)
1507{ 1617{
1508 ev_clear_pending (EV_A_ (W)w); 1618 clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w))) 1619 if (expect_false (!ev_is_active (w)))
1510 return; 1620 return;
1511 1621
1512 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1622 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1513 1623
1515 ev_stop (EV_A_ (W)w); 1625 ev_stop (EV_A_ (W)w);
1516 1626
1517 fd_change (EV_A_ w->fd); 1627 fd_change (EV_A_ w->fd);
1518} 1628}
1519 1629
1520void 1630void noinline
1521ev_timer_start (EV_P_ ev_timer *w) 1631ev_timer_start (EV_P_ ev_timer *w)
1522{ 1632{
1523 if (expect_false (ev_is_active (w))) 1633 if (expect_false (ev_is_active (w)))
1524 return; 1634 return;
1525 1635
1533 upheap ((WT *)timers, timercnt - 1); 1643 upheap ((WT *)timers, timercnt - 1);
1534 1644
1535 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1645 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1536} 1646}
1537 1647
1538void 1648void noinline
1539ev_timer_stop (EV_P_ ev_timer *w) 1649ev_timer_stop (EV_P_ ev_timer *w)
1540{ 1650{
1541 ev_clear_pending (EV_A_ (W)w); 1651 clear_pending (EV_A_ (W)w);
1542 if (expect_false (!ev_is_active (w))) 1652 if (expect_false (!ev_is_active (w)))
1543 return; 1653 return;
1544 1654
1545 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1655 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1546 1656
1557 ((WT)w)->at -= mn_now; 1667 ((WT)w)->at -= mn_now;
1558 1668
1559 ev_stop (EV_A_ (W)w); 1669 ev_stop (EV_A_ (W)w);
1560} 1670}
1561 1671
1562void 1672void noinline
1563ev_timer_again (EV_P_ ev_timer *w) 1673ev_timer_again (EV_P_ ev_timer *w)
1564{ 1674{
1565 if (ev_is_active (w)) 1675 if (ev_is_active (w))
1566 { 1676 {
1567 if (w->repeat) 1677 if (w->repeat)
1578 ev_timer_start (EV_A_ w); 1688 ev_timer_start (EV_A_ w);
1579 } 1689 }
1580} 1690}
1581 1691
1582#if EV_PERIODIC_ENABLE 1692#if EV_PERIODIC_ENABLE
1583void 1693void noinline
1584ev_periodic_start (EV_P_ ev_periodic *w) 1694ev_periodic_start (EV_P_ ev_periodic *w)
1585{ 1695{
1586 if (expect_false (ev_is_active (w))) 1696 if (expect_false (ev_is_active (w)))
1587 return; 1697 return;
1588 1698
1590 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1700 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1591 else if (w->interval) 1701 else if (w->interval)
1592 { 1702 {
1593 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1703 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1594 /* this formula differs from the one in periodic_reify because we do not always round up */ 1704 /* this formula differs from the one in periodic_reify because we do not always round up */
1595 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1705 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1596 } 1706 }
1707 else
1708 ((WT)w)->at = w->offset;
1597 1709
1598 ev_start (EV_A_ (W)w, ++periodiccnt); 1710 ev_start (EV_A_ (W)w, ++periodiccnt);
1599 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1711 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1600 periodics [periodiccnt - 1] = w; 1712 periodics [periodiccnt - 1] = w;
1601 upheap ((WT *)periodics, periodiccnt - 1); 1713 upheap ((WT *)periodics, periodiccnt - 1);
1602 1714
1603 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1715 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1604} 1716}
1605 1717
1606void 1718void noinline
1607ev_periodic_stop (EV_P_ ev_periodic *w) 1719ev_periodic_stop (EV_P_ ev_periodic *w)
1608{ 1720{
1609 ev_clear_pending (EV_A_ (W)w); 1721 clear_pending (EV_A_ (W)w);
1610 if (expect_false (!ev_is_active (w))) 1722 if (expect_false (!ev_is_active (w)))
1611 return; 1723 return;
1612 1724
1613 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1725 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1614 1726
1623 } 1735 }
1624 1736
1625 ev_stop (EV_A_ (W)w); 1737 ev_stop (EV_A_ (W)w);
1626} 1738}
1627 1739
1628void 1740void noinline
1629ev_periodic_again (EV_P_ ev_periodic *w) 1741ev_periodic_again (EV_P_ ev_periodic *w)
1630{ 1742{
1631 /* TODO: use adjustheap and recalculation */ 1743 /* TODO: use adjustheap and recalculation */
1632 ev_periodic_stop (EV_A_ w); 1744 ev_periodic_stop (EV_A_ w);
1633 ev_periodic_start (EV_A_ w); 1745 ev_periodic_start (EV_A_ w);
1636 1748
1637#ifndef SA_RESTART 1749#ifndef SA_RESTART
1638# define SA_RESTART 0 1750# define SA_RESTART 0
1639#endif 1751#endif
1640 1752
1641void 1753void noinline
1642ev_signal_start (EV_P_ ev_signal *w) 1754ev_signal_start (EV_P_ ev_signal *w)
1643{ 1755{
1644#if EV_MULTIPLICITY 1756#if EV_MULTIPLICITY
1645 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1757 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1646#endif 1758#endif
1665 sigaction (w->signum, &sa, 0); 1777 sigaction (w->signum, &sa, 0);
1666#endif 1778#endif
1667 } 1779 }
1668} 1780}
1669 1781
1670void 1782void noinline
1671ev_signal_stop (EV_P_ ev_signal *w) 1783ev_signal_stop (EV_P_ ev_signal *w)
1672{ 1784{
1673 ev_clear_pending (EV_A_ (W)w); 1785 clear_pending (EV_A_ (W)w);
1674 if (expect_false (!ev_is_active (w))) 1786 if (expect_false (!ev_is_active (w)))
1675 return; 1787 return;
1676 1788
1677 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1789 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1678 ev_stop (EV_A_ (W)w); 1790 ev_stop (EV_A_ (W)w);
1695} 1807}
1696 1808
1697void 1809void
1698ev_child_stop (EV_P_ ev_child *w) 1810ev_child_stop (EV_P_ ev_child *w)
1699{ 1811{
1700 ev_clear_pending (EV_A_ (W)w); 1812 clear_pending (EV_A_ (W)w);
1701 if (expect_false (!ev_is_active (w))) 1813 if (expect_false (!ev_is_active (w)))
1702 return; 1814 return;
1703 1815
1704 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1816 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1705 ev_stop (EV_A_ (W)w); 1817 ev_stop (EV_A_ (W)w);
1713# endif 1825# endif
1714 1826
1715#define DEF_STAT_INTERVAL 5.0074891 1827#define DEF_STAT_INTERVAL 5.0074891
1716#define MIN_STAT_INTERVAL 0.1074891 1828#define MIN_STAT_INTERVAL 0.1074891
1717 1829
1718void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 1830static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1719 1831
1720#if EV_USE_INOTIFY 1832#if EV_USE_INOTIFY
1721# define EV_INOTIFY_BUFSIZE 8192 1833# define EV_INOTIFY_BUFSIZE 8192
1722 1834
1723static void noinline 1835static void noinline
1831 ev_set_priority (&fs_w, EV_MAXPRI); 1943 ev_set_priority (&fs_w, EV_MAXPRI);
1832 ev_io_start (EV_A_ &fs_w); 1944 ev_io_start (EV_A_ &fs_w);
1833 } 1945 }
1834} 1946}
1835 1947
1948void inline_size
1949infy_fork (EV_P)
1950{
1951 int slot;
1952
1953 if (fs_fd < 0)
1954 return;
1955
1956 close (fs_fd);
1957 fs_fd = inotify_init ();
1958
1959 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1960 {
1961 WL w_ = fs_hash [slot].head;
1962 fs_hash [slot].head = 0;
1963
1964 while (w_)
1965 {
1966 ev_stat *w = (ev_stat *)w_;
1967 w_ = w_->next; /* lets us add this watcher */
1968
1969 w->wd = -1;
1970
1971 if (fs_fd >= 0)
1972 infy_add (EV_A_ w); /* re-add, no matter what */
1973 else
1974 ev_timer_start (EV_A_ &w->timer);
1975 }
1976
1977 }
1978}
1979
1836#endif 1980#endif
1837 1981
1838void 1982void
1839ev_stat_stat (EV_P_ ev_stat *w) 1983ev_stat_stat (EV_P_ ev_stat *w)
1840{ 1984{
1842 w->attr.st_nlink = 0; 1986 w->attr.st_nlink = 0;
1843 else if (!w->attr.st_nlink) 1987 else if (!w->attr.st_nlink)
1844 w->attr.st_nlink = 1; 1988 w->attr.st_nlink = 1;
1845} 1989}
1846 1990
1847void noinline 1991static void noinline
1848stat_timer_cb (EV_P_ ev_timer *w_, int revents) 1992stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1849{ 1993{
1850 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 1994 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1851 1995
1852 /* we copy this here each the time so that */ 1996 /* we copy this here each the time so that */
1853 /* prev has the old value when the callback gets invoked */ 1997 /* prev has the old value when the callback gets invoked */
1854 w->prev = w->attr; 1998 w->prev = w->attr;
1855 ev_stat_stat (EV_A_ w); 1999 ev_stat_stat (EV_A_ w);
1856 2000
1857 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2001 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2002 if (
2003 w->prev.st_dev != w->attr.st_dev
2004 || w->prev.st_ino != w->attr.st_ino
2005 || w->prev.st_mode != w->attr.st_mode
2006 || w->prev.st_nlink != w->attr.st_nlink
2007 || w->prev.st_uid != w->attr.st_uid
2008 || w->prev.st_gid != w->attr.st_gid
2009 || w->prev.st_rdev != w->attr.st_rdev
2010 || w->prev.st_size != w->attr.st_size
2011 || w->prev.st_atime != w->attr.st_atime
2012 || w->prev.st_mtime != w->attr.st_mtime
2013 || w->prev.st_ctime != w->attr.st_ctime
1858 { 2014 ) {
1859 #if EV_USE_INOTIFY 2015 #if EV_USE_INOTIFY
1860 infy_del (EV_A_ w); 2016 infy_del (EV_A_ w);
1861 infy_add (EV_A_ w); 2017 infy_add (EV_A_ w);
1862 ev_stat_stat (EV_A_ w); /* avoid race... */ 2018 ev_stat_stat (EV_A_ w); /* avoid race... */
1863 #endif 2019 #endif
1897} 2053}
1898 2054
1899void 2055void
1900ev_stat_stop (EV_P_ ev_stat *w) 2056ev_stat_stop (EV_P_ ev_stat *w)
1901{ 2057{
1902 ev_clear_pending (EV_A_ (W)w); 2058 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 2059 if (expect_false (!ev_is_active (w)))
1904 return; 2060 return;
1905 2061
1906#if EV_USE_INOTIFY 2062#if EV_USE_INOTIFY
1907 infy_del (EV_A_ w); 2063 infy_del (EV_A_ w);
1910 2066
1911 ev_stop (EV_A_ (W)w); 2067 ev_stop (EV_A_ (W)w);
1912} 2068}
1913#endif 2069#endif
1914 2070
2071#if EV_IDLE_ENABLE
1915void 2072void
1916ev_idle_start (EV_P_ ev_idle *w) 2073ev_idle_start (EV_P_ ev_idle *w)
1917{ 2074{
1918 if (expect_false (ev_is_active (w))) 2075 if (expect_false (ev_is_active (w)))
1919 return; 2076 return;
1920 2077
2078 pri_adjust (EV_A_ (W)w);
2079
2080 {
2081 int active = ++idlecnt [ABSPRI (w)];
2082
2083 ++idleall;
1921 ev_start (EV_A_ (W)w, ++idlecnt); 2084 ev_start (EV_A_ (W)w, active);
2085
1922 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2086 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1923 idles [idlecnt - 1] = w; 2087 idles [ABSPRI (w)][active - 1] = w;
2088 }
1924} 2089}
1925 2090
1926void 2091void
1927ev_idle_stop (EV_P_ ev_idle *w) 2092ev_idle_stop (EV_P_ ev_idle *w)
1928{ 2093{
1929 ev_clear_pending (EV_A_ (W)w); 2094 clear_pending (EV_A_ (W)w);
1930 if (expect_false (!ev_is_active (w))) 2095 if (expect_false (!ev_is_active (w)))
1931 return; 2096 return;
1932 2097
1933 { 2098 {
1934 int active = ((W)w)->active; 2099 int active = ((W)w)->active;
1935 idles [active - 1] = idles [--idlecnt]; 2100
2101 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1936 ((W)idles [active - 1])->active = active; 2102 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2103
2104 ev_stop (EV_A_ (W)w);
2105 --idleall;
1937 } 2106 }
1938
1939 ev_stop (EV_A_ (W)w);
1940} 2107}
2108#endif
1941 2109
1942void 2110void
1943ev_prepare_start (EV_P_ ev_prepare *w) 2111ev_prepare_start (EV_P_ ev_prepare *w)
1944{ 2112{
1945 if (expect_false (ev_is_active (w))) 2113 if (expect_false (ev_is_active (w)))
1951} 2119}
1952 2120
1953void 2121void
1954ev_prepare_stop (EV_P_ ev_prepare *w) 2122ev_prepare_stop (EV_P_ ev_prepare *w)
1955{ 2123{
1956 ev_clear_pending (EV_A_ (W)w); 2124 clear_pending (EV_A_ (W)w);
1957 if (expect_false (!ev_is_active (w))) 2125 if (expect_false (!ev_is_active (w)))
1958 return; 2126 return;
1959 2127
1960 { 2128 {
1961 int active = ((W)w)->active; 2129 int active = ((W)w)->active;
1978} 2146}
1979 2147
1980void 2148void
1981ev_check_stop (EV_P_ ev_check *w) 2149ev_check_stop (EV_P_ ev_check *w)
1982{ 2150{
1983 ev_clear_pending (EV_A_ (W)w); 2151 clear_pending (EV_A_ (W)w);
1984 if (expect_false (!ev_is_active (w))) 2152 if (expect_false (!ev_is_active (w)))
1985 return; 2153 return;
1986 2154
1987 { 2155 {
1988 int active = ((W)w)->active; 2156 int active = ((W)w)->active;
2030} 2198}
2031 2199
2032void 2200void
2033ev_embed_stop (EV_P_ ev_embed *w) 2201ev_embed_stop (EV_P_ ev_embed *w)
2034{ 2202{
2035 ev_clear_pending (EV_A_ (W)w); 2203 clear_pending (EV_A_ (W)w);
2036 if (expect_false (!ev_is_active (w))) 2204 if (expect_false (!ev_is_active (w)))
2037 return; 2205 return;
2038 2206
2039 ev_io_stop (EV_A_ &w->io); 2207 ev_io_stop (EV_A_ &w->io);
2040 2208
2055} 2223}
2056 2224
2057void 2225void
2058ev_fork_stop (EV_P_ ev_fork *w) 2226ev_fork_stop (EV_P_ ev_fork *w)
2059{ 2227{
2060 ev_clear_pending (EV_A_ (W)w); 2228 clear_pending (EV_A_ (W)w);
2061 if (expect_false (!ev_is_active (w))) 2229 if (expect_false (!ev_is_active (w)))
2062 return; 2230 return;
2063 2231
2064 { 2232 {
2065 int active = ((W)w)->active; 2233 int active = ((W)w)->active;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines