ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.155 by root, Wed Nov 28 17:32:24 2007 UTC vs.
Revision 1.211 by root, Tue Feb 19 17:09:28 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 162
147#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
149#endif 165#endif
150 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
151#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
153#endif 173#endif
154 174
155#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
205#endif 225#endif
206 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
207#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 243# include <winsock.h>
209#endif 244#endif
210 245
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 246/**/
247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 257
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 261
225#if __GNUC__ >= 3 262#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 264# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 265#else
236# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
240#endif 271#endif
241 272
242#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
244 282
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 285
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
250 288
251typedef ev_watcher *W; 289typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
254 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
256 298
257#ifdef _WIN32 299#ifdef _WIN32
258# include "ev_win32.c" 300# include "ev_win32.c"
259#endif 301#endif
260 302
396{ 438{
397 return ev_rt_now; 439 return ev_rt_now;
398} 440}
399#endif 441#endif
400 442
401#define array_roundsize(type,n) (((n) | 4) & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
402 497
403#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
405 { \ 500 { \
406 int newcnt = cur; \ 501 int ocur_ = (cur); \
407 do \ 502 (base) = (type *)array_realloc \
408 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 505 }
417 506
507#if 0
418#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 510 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 514 }
515#endif
425 516
426#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 519
429/*****************************************************************************/ 520/*****************************************************************************/
430 521
431void noinline 522void noinline
432ev_feed_event (EV_P_ void *w, int revents) 523ev_feed_event (EV_P_ void *w, int revents)
433{ 524{
434 W w_ = (W)w; 525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
435 527
436 if (expect_false (w_->pending)) 528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
437 { 531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 535 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 536 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 537}
447 538
448void inline_size 539void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 540queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 541{
451 int i; 542 int i;
452 543
453 for (i = 0; i < eventcnt; ++i) 544 for (i = 0; i < eventcnt; ++i)
485} 576}
486 577
487void 578void
488ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 580{
581 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
491} 583}
492 584
493void inline_size 585void inline_size
494fd_reify (EV_P) 586fd_reify (EV_P)
495{ 587{
499 { 591 {
500 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
502 ev_io *w; 594 ev_io *w;
503 595
504 int events = 0; 596 unsigned char events = 0;
505 597
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 599 events |= (unsigned char)w->events;
508 600
509#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
510 if (events) 602 if (events)
511 { 603 {
512 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
513 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 611 }
516#endif 612#endif
517 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
518 anfd->reify = 0; 618 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
522 } 624 }
523 625
524 fdchangecnt = 0; 626 fdchangecnt = 0;
525} 627}
526 628
527void inline_size 629void inline_size
528fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
529{ 631{
530 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
534 634
635 if (expect_true (!reify))
636 {
535 ++fdchangecnt; 637 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
538} 641}
539 642
540void inline_speed 643void inline_speed
541fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
542{ 645{
589static void noinline 692static void noinline
590fd_rearm_all (EV_P) 693fd_rearm_all (EV_P)
591{ 694{
592 int fd; 695 int fd;
593 696
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 698 if (anfds [fd].events)
597 { 699 {
598 anfds [fd].events = 0; 700 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
600 } 702 }
601} 703}
602 704
603/*****************************************************************************/ 705/*****************************************************************************/
604 706
605void inline_speed 707void inline_speed
606upheap (WT *heap, int k) 708upheap (WT *heap, int k)
607{ 709{
608 WT w = heap [k]; 710 WT w = heap [k];
609 711
610 while (k && heap [k >> 1]->at > w->at) 712 while (k)
611 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
612 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
613 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
614 k >>= 1; 721 k = p;
615 } 722 }
616 723
617 heap [k] = w; 724 heap [k] = w;
618 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
619
620} 726}
621 727
622void inline_speed 728void inline_speed
623downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
624{ 730{
625 WT w = heap [k]; 731 WT w = heap [k];
626 732
627 while (k < (N >> 1)) 733 for (;;)
628 { 734 {
629 int j = k << 1; 735 int c = (k << 1) + 1;
630 736
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
632 ++j;
633
634 if (w->at <= heap [j]->at)
635 break; 738 break;
636 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
637 heap [k] = heap [j]; 746 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
639 k = j; 749 k = c;
640 } 750 }
641 751
642 heap [k] = w; 752 heap [k] = w;
643 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
644} 754}
653/*****************************************************************************/ 763/*****************************************************************************/
654 764
655typedef struct 765typedef struct
656{ 766{
657 WL head; 767 WL head;
658 sig_atomic_t volatile gotsig; 768 EV_ATOMIC_T gotsig;
659} ANSIG; 769} ANSIG;
660 770
661static ANSIG *signals; 771static ANSIG *signals;
662static int signalmax; 772static int signalmax;
663 773
664static int sigpipe [2]; 774static EV_ATOMIC_T gotsig;
665static sig_atomic_t volatile gotsig;
666static ev_io sigev;
667 775
668void inline_size 776void inline_size
669signals_init (ANSIG *base, int count) 777signals_init (ANSIG *base, int count)
670{ 778{
671 while (count--) 779 while (count--)
675 783
676 ++base; 784 ++base;
677 } 785 }
678} 786}
679 787
680static void 788/*****************************************************************************/
681sighandler (int signum)
682{
683#if _WIN32
684 signal (signum, sighandler);
685#endif
686 789
687 signals [signum - 1].gotsig = 1;
688
689 if (!gotsig)
690 {
691 int old_errno = errno;
692 gotsig = 1;
693 write (sigpipe [1], &signum, 1);
694 errno = old_errno;
695 }
696}
697
698void noinline
699ev_feed_signal_event (EV_P_ int signum)
700{
701 WL w;
702
703#if EV_MULTIPLICITY
704 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
705#endif
706
707 --signum;
708
709 if (signum < 0 || signum >= signalmax)
710 return;
711
712 signals [signum].gotsig = 0;
713
714 for (w = signals [signum].head; w; w = w->next)
715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
716}
717
718static void
719sigcb (EV_P_ ev_io *iow, int revents)
720{
721 int signum;
722
723 read (sigpipe [0], &revents, 1);
724 gotsig = 0;
725
726 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1);
729}
730
731void inline_size 790void inline_speed
732fd_intern (int fd) 791fd_intern (int fd)
733{ 792{
734#ifdef _WIN32 793#ifdef _WIN32
735 int arg = 1; 794 int arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
739 fcntl (fd, F_SETFL, O_NONBLOCK); 798 fcntl (fd, F_SETFL, O_NONBLOCK);
740#endif 799#endif
741} 800}
742 801
743static void noinline 802static void noinline
744siginit (EV_P) 803evpipe_init (EV_P)
745{ 804{
805 if (!ev_is_active (&pipeev))
806 {
807 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe");
809
746 fd_intern (sigpipe [0]); 810 fd_intern (evpipe [0]);
747 fd_intern (sigpipe [1]); 811 fd_intern (evpipe [1]);
748 812
749 ev_io_set (&sigev, sigpipe [0], EV_READ); 813 ev_io_set (&pipeev, evpipe [0], EV_READ);
750 ev_io_start (EV_A_ &sigev); 814 ev_io_start (EV_A_ &pipeev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 815 ev_unref (EV_A); /* watcher should not keep loop alive */
816
817 /* in case we received the signal before we had the chance of installing a handler */
818 ev_feed_event (EV_A_ &pipeev, 0);
819 }
820}
821
822void inline_size
823evpipe_write (EV_P_ int sig, int async)
824{
825 if (!(gotasync || gotsig))
826 {
827 int old_errno = errno; /* save errno becaue write might clobber it */
828
829 if (sig) gotsig = 1;
830 if (async) gotasync = 1;
831
832 write (evpipe [1], &old_errno, 1);
833
834 errno = old_errno;
835 }
836}
837
838static void
839pipecb (EV_P_ ev_io *iow, int revents)
840{
841 {
842 int dummy;
843 read (evpipe [0], &dummy, 1);
844 }
845
846 if (gotsig && ev_is_default_loop (EV_A))
847 {
848 int signum;
849 gotsig = 0;
850
851 for (signum = signalmax; signum--; )
852 if (signals [signum].gotsig)
853 ev_feed_signal_event (EV_A_ signum + 1);
854 }
855
856#if EV_ASYNC_ENABLE
857 if (gotasync)
858 {
859 int i;
860 gotasync = 0;
861
862 for (i = asynccnt; i--; )
863 if (asyncs [i]->sent)
864 {
865 asyncs [i]->sent = 0;
866 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
867 }
868 }
869#endif
752} 870}
753 871
754/*****************************************************************************/ 872/*****************************************************************************/
755 873
874static void
875sighandler (int signum)
876{
877#if EV_MULTIPLICITY
878 struct ev_loop *loop = &default_loop_struct;
879#endif
880
881#if _WIN32
882 signal (signum, sighandler);
883#endif
884
885 signals [signum - 1].gotsig = 1;
886 evpipe_write (EV_A_ 1, 0);
887}
888
889void noinline
890ev_feed_signal_event (EV_P_ int signum)
891{
892 WL w;
893
894#if EV_MULTIPLICITY
895 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
896#endif
897
898 --signum;
899
900 if (signum < 0 || signum >= signalmax)
901 return;
902
903 signals [signum].gotsig = 0;
904
905 for (w = signals [signum].head; w; w = w->next)
906 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
907}
908
909/*****************************************************************************/
910
756static ev_child *childs [EV_PID_HASHSIZE]; 911static WL childs [EV_PID_HASHSIZE];
757 912
758#ifndef _WIN32 913#ifndef _WIN32
759 914
760static ev_signal childev; 915static ev_signal childev;
916
917#ifndef WIFCONTINUED
918# define WIFCONTINUED(status) 0
919#endif
761 920
762void inline_speed 921void inline_speed
763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 922child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
764{ 923{
765 ev_child *w; 924 ev_child *w;
925 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
766 926
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 927 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
928 {
768 if (w->pid == pid || !w->pid) 929 if ((w->pid == pid || !w->pid)
930 && (!traced || (w->flags & 1)))
769 { 931 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 932 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
771 w->rpid = pid; 933 w->rpid = pid;
772 w->rstatus = status; 934 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 935 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 936 }
937 }
775} 938}
776 939
777#ifndef WCONTINUED 940#ifndef WCONTINUED
778# define WCONTINUED 0 941# define WCONTINUED 0
779#endif 942#endif
876} 1039}
877 1040
878unsigned int 1041unsigned int
879ev_embeddable_backends (void) 1042ev_embeddable_backends (void)
880{ 1043{
881 return EVBACKEND_EPOLL 1044 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
882 | EVBACKEND_KQUEUE 1045
883 | EVBACKEND_PORT; 1046 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1047 /* please fix it and tell me how to detect the fix */
1048 flags &= ~EVBACKEND_EPOLL;
1049
1050 return flags;
884} 1051}
885 1052
886unsigned int 1053unsigned int
887ev_backend (EV_P) 1054ev_backend (EV_P)
888{ 1055{
889 return backend; 1056 return backend;
1057}
1058
1059unsigned int
1060ev_loop_count (EV_P)
1061{
1062 return loop_count;
1063}
1064
1065void
1066ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1067{
1068 io_blocktime = interval;
1069}
1070
1071void
1072ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1073{
1074 timeout_blocktime = interval;
890} 1075}
891 1076
892static void noinline 1077static void noinline
893loop_init (EV_P_ unsigned int flags) 1078loop_init (EV_P_ unsigned int flags)
894{ 1079{
900 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1085 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
901 have_monotonic = 1; 1086 have_monotonic = 1;
902 } 1087 }
903#endif 1088#endif
904 1089
905 ev_rt_now = ev_time (); 1090 ev_rt_now = ev_time ();
906 mn_now = get_clock (); 1091 mn_now = get_clock ();
907 now_floor = mn_now; 1092 now_floor = mn_now;
908 rtmn_diff = ev_rt_now - mn_now; 1093 rtmn_diff = ev_rt_now - mn_now;
1094
1095 io_blocktime = 0.;
1096 timeout_blocktime = 0.;
1097 backend = 0;
1098 backend_fd = -1;
1099 gotasync = 0;
1100#if EV_USE_INOTIFY
1101 fs_fd = -2;
1102#endif
1103
1104 /* pid check not overridable via env */
1105#ifndef _WIN32
1106 if (flags & EVFLAG_FORKCHECK)
1107 curpid = getpid ();
1108#endif
909 1109
910 if (!(flags & EVFLAG_NOENV) 1110 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1111 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1112 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1113 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1114
915 if (!(flags & 0x0000ffffUL)) 1115 if (!(flags & 0x0000ffffUL))
916 flags |= ev_recommended_backends (); 1116 flags |= ev_recommended_backends ();
917 1117
918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY
921 fs_fd = -2;
922#endif
923
924#if EV_USE_PORT 1118#if EV_USE_PORT
925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1119 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
926#endif 1120#endif
927#if EV_USE_KQUEUE 1121#if EV_USE_KQUEUE
928 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1122 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
935#endif 1129#endif
936#if EV_USE_SELECT 1130#if EV_USE_SELECT
937 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1131 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
938#endif 1132#endif
939 1133
940 ev_init (&sigev, sigcb); 1134 ev_init (&pipeev, pipecb);
941 ev_set_priority (&sigev, EV_MAXPRI); 1135 ev_set_priority (&pipeev, EV_MAXPRI);
942 } 1136 }
943} 1137}
944 1138
945static void noinline 1139static void noinline
946loop_destroy (EV_P) 1140loop_destroy (EV_P)
947{ 1141{
948 int i; 1142 int i;
1143
1144 if (ev_is_active (&pipeev))
1145 {
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &pipeev);
1148
1149 close (evpipe [0]); evpipe [0] = 0;
1150 close (evpipe [1]); evpipe [1] = 0;
1151 }
949 1152
950#if EV_USE_INOTIFY 1153#if EV_USE_INOTIFY
951 if (fs_fd >= 0) 1154 if (fs_fd >= 0)
952 close (fs_fd); 1155 close (fs_fd);
953#endif 1156#endif
970#if EV_USE_SELECT 1173#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1174 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1175#endif
973 1176
974 for (i = NUMPRI; i--; ) 1177 for (i = NUMPRI; i--; )
1178 {
975 array_free (pending, [i]); 1179 array_free (pending, [i]);
1180#if EV_IDLE_ENABLE
1181 array_free (idle, [i]);
1182#endif
1183 }
1184
1185 ev_free (anfds); anfdmax = 0;
976 1186
977 /* have to use the microsoft-never-gets-it-right macro */ 1187 /* have to use the microsoft-never-gets-it-right macro */
978 array_free (fdchange, EMPTY0); 1188 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1189 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1190#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1191 array_free (periodic, EMPTY);
982#endif 1192#endif
1193#if EV_FORK_ENABLE
983 array_free (idle, EMPTY0); 1194 array_free (fork, EMPTY);
1195#endif
984 array_free (prepare, EMPTY0); 1196 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1197 array_free (check, EMPTY);
1198#if EV_ASYNC_ENABLE
1199 array_free (async, EMPTY);
1200#endif
986 1201
987 backend = 0; 1202 backend = 0;
988} 1203}
989 1204
990void inline_size infy_fork (EV_P); 1205void inline_size infy_fork (EV_P);
1003#endif 1218#endif
1004#if EV_USE_INOTIFY 1219#if EV_USE_INOTIFY
1005 infy_fork (EV_A); 1220 infy_fork (EV_A);
1006#endif 1221#endif
1007 1222
1008 if (ev_is_active (&sigev)) 1223 if (ev_is_active (&pipeev))
1009 { 1224 {
1010 /* default loop */ 1225 /* this "locks" the handlers against writing to the pipe */
1226 gotsig = gotasync = 1;
1011 1227
1012 ev_ref (EV_A); 1228 ev_ref (EV_A);
1013 ev_io_stop (EV_A_ &sigev); 1229 ev_io_stop (EV_A_ &pipeev);
1014 close (sigpipe [0]); 1230 close (evpipe [0]);
1015 close (sigpipe [1]); 1231 close (evpipe [1]);
1016 1232
1017 while (pipe (sigpipe))
1018 syserr ("(libev) error creating pipe");
1019
1020 siginit (EV_A); 1233 evpipe_init (EV_A);
1234 /* now iterate over everything, in case we missed something */
1235 pipecb (EV_A_ &pipeev, EV_READ);
1021 } 1236 }
1022 1237
1023 postfork = 0; 1238 postfork = 0;
1024} 1239}
1025 1240
1047} 1262}
1048 1263
1049void 1264void
1050ev_loop_fork (EV_P) 1265ev_loop_fork (EV_P)
1051{ 1266{
1052 postfork = 1; 1267 postfork = 1; /* must be in line with ev_default_fork */
1053} 1268}
1054 1269
1055#endif 1270#endif
1056 1271
1057#if EV_MULTIPLICITY 1272#if EV_MULTIPLICITY
1060#else 1275#else
1061int 1276int
1062ev_default_loop (unsigned int flags) 1277ev_default_loop (unsigned int flags)
1063#endif 1278#endif
1064{ 1279{
1065 if (sigpipe [0] == sigpipe [1])
1066 if (pipe (sigpipe))
1067 return 0;
1068
1069 if (!ev_default_loop_ptr) 1280 if (!ev_default_loop_ptr)
1070 { 1281 {
1071#if EV_MULTIPLICITY 1282#if EV_MULTIPLICITY
1072 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1283 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1073#else 1284#else
1076 1287
1077 loop_init (EV_A_ flags); 1288 loop_init (EV_A_ flags);
1078 1289
1079 if (ev_backend (EV_A)) 1290 if (ev_backend (EV_A))
1080 { 1291 {
1081 siginit (EV_A);
1082
1083#ifndef _WIN32 1292#ifndef _WIN32
1084 ev_signal_init (&childev, childcb, SIGCHLD); 1293 ev_signal_init (&childev, childcb, SIGCHLD);
1085 ev_set_priority (&childev, EV_MAXPRI); 1294 ev_set_priority (&childev, EV_MAXPRI);
1086 ev_signal_start (EV_A_ &childev); 1295 ev_signal_start (EV_A_ &childev);
1087 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1296 ev_unref (EV_A); /* child watcher should not keep loop alive */
1104#ifndef _WIN32 1313#ifndef _WIN32
1105 ev_ref (EV_A); /* child watcher */ 1314 ev_ref (EV_A); /* child watcher */
1106 ev_signal_stop (EV_A_ &childev); 1315 ev_signal_stop (EV_A_ &childev);
1107#endif 1316#endif
1108 1317
1109 ev_ref (EV_A); /* signal watcher */
1110 ev_io_stop (EV_A_ &sigev);
1111
1112 close (sigpipe [0]); sigpipe [0] = 0;
1113 close (sigpipe [1]); sigpipe [1] = 0;
1114
1115 loop_destroy (EV_A); 1318 loop_destroy (EV_A);
1116} 1319}
1117 1320
1118void 1321void
1119ev_default_fork (void) 1322ev_default_fork (void)
1121#if EV_MULTIPLICITY 1324#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr; 1325 struct ev_loop *loop = ev_default_loop_ptr;
1123#endif 1326#endif
1124 1327
1125 if (backend) 1328 if (backend)
1126 postfork = 1; 1329 postfork = 1; /* must be in line with ev_loop_fork */
1127} 1330}
1128 1331
1129/*****************************************************************************/ 1332/*****************************************************************************/
1130 1333
1131int inline_size 1334void
1132any_pending (EV_P) 1335ev_invoke (EV_P_ void *w, int revents)
1133{ 1336{
1134 int pri; 1337 EV_CB_INVOKE ((W)w, revents);
1135
1136 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri])
1138 return 1;
1139
1140 return 0;
1141} 1338}
1142 1339
1143void inline_speed 1340void inline_speed
1144call_pending (EV_P) 1341call_pending (EV_P)
1145{ 1342{
1163void inline_size 1360void inline_size
1164timers_reify (EV_P) 1361timers_reify (EV_P)
1165{ 1362{
1166 while (timercnt && ((WT)timers [0])->at <= mn_now) 1363 while (timercnt && ((WT)timers [0])->at <= mn_now)
1167 { 1364 {
1168 ev_timer *w = timers [0]; 1365 ev_timer *w = (ev_timer *)timers [0];
1169 1366
1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1367 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1171 1368
1172 /* first reschedule or stop timer */ 1369 /* first reschedule or stop timer */
1173 if (w->repeat) 1370 if (w->repeat)
1176 1373
1177 ((WT)w)->at += w->repeat; 1374 ((WT)w)->at += w->repeat;
1178 if (((WT)w)->at < mn_now) 1375 if (((WT)w)->at < mn_now)
1179 ((WT)w)->at = mn_now; 1376 ((WT)w)->at = mn_now;
1180 1377
1181 downheap ((WT *)timers, timercnt, 0); 1378 downheap (timers, timercnt, 0);
1182 } 1379 }
1183 else 1380 else
1184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1381 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1185 1382
1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1383 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1191void inline_size 1388void inline_size
1192periodics_reify (EV_P) 1389periodics_reify (EV_P)
1193{ 1390{
1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1391 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1195 { 1392 {
1196 ev_periodic *w = periodics [0]; 1393 ev_periodic *w = (ev_periodic *)periodics [0];
1197 1394
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1395 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1199 1396
1200 /* first reschedule or stop timer */ 1397 /* first reschedule or stop timer */
1201 if (w->reschedule_cb) 1398 if (w->reschedule_cb)
1202 { 1399 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1400 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1401 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1205 downheap ((WT *)periodics, periodiccnt, 0); 1402 downheap (periodics, periodiccnt, 0);
1206 } 1403 }
1207 else if (w->interval) 1404 else if (w->interval)
1208 { 1405 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1406 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1407 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1408 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1211 downheap ((WT *)periodics, periodiccnt, 0); 1409 downheap (periodics, periodiccnt, 0);
1212 } 1410 }
1213 else 1411 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1412 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1215 1413
1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1414 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1223 int i; 1421 int i;
1224 1422
1225 /* adjust periodics after time jump */ 1423 /* adjust periodics after time jump */
1226 for (i = 0; i < periodiccnt; ++i) 1424 for (i = 0; i < periodiccnt; ++i)
1227 { 1425 {
1228 ev_periodic *w = periodics [i]; 1426 ev_periodic *w = (ev_periodic *)periodics [i];
1229 1427
1230 if (w->reschedule_cb) 1428 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1429 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval) 1430 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1431 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1234 } 1432 }
1235 1433
1236 /* now rebuild the heap */ 1434 /* now rebuild the heap */
1237 for (i = periodiccnt >> 1; i--; ) 1435 for (i = periodiccnt >> 1; i--; )
1238 downheap ((WT *)periodics, periodiccnt, i); 1436 downheap (periodics, periodiccnt, i);
1239} 1437}
1240#endif 1438#endif
1241 1439
1440#if EV_IDLE_ENABLE
1242int inline_size 1441void inline_size
1243time_update_monotonic (EV_P) 1442idle_reify (EV_P)
1244{ 1443{
1444 if (expect_false (idleall))
1445 {
1446 int pri;
1447
1448 for (pri = NUMPRI; pri--; )
1449 {
1450 if (pendingcnt [pri])
1451 break;
1452
1453 if (idlecnt [pri])
1454 {
1455 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1456 break;
1457 }
1458 }
1459 }
1460}
1461#endif
1462
1463void inline_speed
1464time_update (EV_P_ ev_tstamp max_block)
1465{
1466 int i;
1467
1468#if EV_USE_MONOTONIC
1469 if (expect_true (have_monotonic))
1470 {
1471 ev_tstamp odiff = rtmn_diff;
1472
1245 mn_now = get_clock (); 1473 mn_now = get_clock ();
1246 1474
1475 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1476 /* interpolate in the meantime */
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1477 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 { 1478 {
1249 ev_rt_now = rtmn_diff + mn_now; 1479 ev_rt_now = rtmn_diff + mn_now;
1250 return 0; 1480 return;
1251 } 1481 }
1252 else 1482
1253 {
1254 now_floor = mn_now; 1483 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 1484 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 1485
1260void inline_size 1486 /* loop a few times, before making important decisions.
1261time_update (EV_P) 1487 * on the choice of "4": one iteration isn't enough,
1262{ 1488 * in case we get preempted during the calls to
1263 int i; 1489 * ev_time and get_clock. a second call is almost guaranteed
1264 1490 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 1491 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 1492 * in the unlikely event of having been preempted here.
1267 { 1493 */
1268 if (time_update_monotonic (EV_A)) 1494 for (i = 4; --i; )
1269 { 1495 {
1270 ev_tstamp odiff = rtmn_diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 1496 rtmn_diff = ev_rt_now - mn_now;
1283 1497
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1498 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1285 return; /* all is well */ 1499 return; /* all is well */
1286 1500
1287 ev_rt_now = ev_time (); 1501 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 1502 mn_now = get_clock ();
1289 now_floor = mn_now; 1503 now_floor = mn_now;
1290 } 1504 }
1291 1505
1292# if EV_PERIODIC_ENABLE 1506# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 1507 periodics_reschedule (EV_A);
1294# endif 1508# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */ 1509 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1510 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 1511 }
1299 else 1512 else
1300#endif 1513#endif
1301 { 1514 {
1302 ev_rt_now = ev_time (); 1515 ev_rt_now = ev_time ();
1303 1516
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1517 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 1518 {
1306#if EV_PERIODIC_ENABLE 1519#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 1520 periodics_reschedule (EV_A);
1308#endif 1521#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */ 1522 /* adjust timers. this is easy, as the offset is the same for all of them */
1311 for (i = 0; i < timercnt; ++i) 1523 for (i = 0; i < timercnt; ++i)
1312 ((WT)timers [i])->at += ev_rt_now - mn_now; 1524 ((WT)timers [i])->at += ev_rt_now - mn_now;
1313 } 1525 }
1314 1526
1315 mn_now = ev_rt_now; 1527 mn_now = ev_rt_now;
1335{ 1547{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1548 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1337 ? EVUNLOOP_ONE 1549 ? EVUNLOOP_ONE
1338 : EVUNLOOP_CANCEL; 1550 : EVUNLOOP_CANCEL;
1339 1551
1340 while (activecnt) 1552 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1553
1554 do
1341 { 1555 {
1342 /* we might have forked, so reify kernel state if necessary */ 1556#ifndef _WIN32
1557 if (expect_false (curpid)) /* penalise the forking check even more */
1558 if (expect_false (getpid () != curpid))
1559 {
1560 curpid = getpid ();
1561 postfork = 1;
1562 }
1563#endif
1564
1343 #if EV_FORK_ENABLE 1565#if EV_FORK_ENABLE
1566 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 1567 if (expect_false (postfork))
1345 if (forkcnt) 1568 if (forkcnt)
1346 { 1569 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1570 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 1571 call_pending (EV_A);
1349 } 1572 }
1350 #endif 1573#endif
1351 1574
1352 /* queue check watchers (and execute them) */ 1575 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 1576 if (expect_false (preparecnt))
1354 { 1577 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1578 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 1579 call_pending (EV_A);
1357 } 1580 }
1358 1581
1582 if (expect_false (!activecnt))
1583 break;
1584
1359 /* we might have forked, so reify kernel state if necessary */ 1585 /* we might have forked, so reify kernel state if necessary */
1360 if (expect_false (postfork)) 1586 if (expect_false (postfork))
1361 loop_fork (EV_A); 1587 loop_fork (EV_A);
1362 1588
1363 /* update fd-related kernel structures */ 1589 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 1590 fd_reify (EV_A);
1365 1591
1366 /* calculate blocking time */ 1592 /* calculate blocking time */
1367 { 1593 {
1368 double block; 1594 ev_tstamp waittime = 0.;
1595 ev_tstamp sleeptime = 0.;
1369 1596
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 1597 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1371 block = 0.; /* do not block at all */
1372 else
1373 { 1598 {
1374 /* update time to cancel out callback processing overhead */ 1599 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A); 1600 time_update (EV_A_ 1e100);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384 1601
1385 block = MAX_BLOCKTIME; 1602 waittime = MAX_BLOCKTIME;
1386 1603
1387 if (timercnt) 1604 if (timercnt)
1388 { 1605 {
1389 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1606 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1390 if (block > to) block = to; 1607 if (waittime > to) waittime = to;
1391 } 1608 }
1392 1609
1393#if EV_PERIODIC_ENABLE 1610#if EV_PERIODIC_ENABLE
1394 if (periodiccnt) 1611 if (periodiccnt)
1395 { 1612 {
1396 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1613 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1397 if (block > to) block = to; 1614 if (waittime > to) waittime = to;
1398 } 1615 }
1399#endif 1616#endif
1400 1617
1401 if (expect_false (block < 0.)) block = 0.; 1618 if (expect_false (waittime < timeout_blocktime))
1619 waittime = timeout_blocktime;
1620
1621 sleeptime = waittime - backend_fudge;
1622
1623 if (expect_true (sleeptime > io_blocktime))
1624 sleeptime = io_blocktime;
1625
1626 if (sleeptime)
1627 {
1628 ev_sleep (sleeptime);
1629 waittime -= sleeptime;
1630 }
1402 } 1631 }
1403 1632
1633 ++loop_count;
1404 backend_poll (EV_A_ block); 1634 backend_poll (EV_A_ waittime);
1635
1636 /* update ev_rt_now, do magic */
1637 time_update (EV_A_ waittime + sleeptime);
1405 } 1638 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 1639
1410 /* queue pending timers and reschedule them */ 1640 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 1641 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 1642#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 1643 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 1644#endif
1415 1645
1646#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 1647 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 1648 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1649#endif
1419 1650
1420 /* queue check watchers, to be executed first */ 1651 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 1652 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1653 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1423 1654
1424 call_pending (EV_A); 1655 call_pending (EV_A);
1425 1656
1426 if (expect_false (loop_done))
1427 break;
1428 } 1657 }
1658 while (expect_true (activecnt && !loop_done));
1429 1659
1430 if (loop_done == EVUNLOOP_ONE) 1660 if (loop_done == EVUNLOOP_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 1661 loop_done = EVUNLOOP_CANCEL;
1432} 1662}
1433 1663
1460 head = &(*head)->next; 1690 head = &(*head)->next;
1461 } 1691 }
1462} 1692}
1463 1693
1464void inline_speed 1694void inline_speed
1465ev_clear_pending (EV_P_ W w) 1695clear_pending (EV_P_ W w)
1466{ 1696{
1467 if (w->pending) 1697 if (w->pending)
1468 { 1698 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1699 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1470 w->pending = 0; 1700 w->pending = 0;
1471 } 1701 }
1472} 1702}
1473 1703
1704int
1705ev_clear_pending (EV_P_ void *w)
1706{
1707 W w_ = (W)w;
1708 int pending = w_->pending;
1709
1710 if (expect_true (pending))
1711 {
1712 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1713 w_->pending = 0;
1714 p->w = 0;
1715 return p->events;
1716 }
1717 else
1718 return 0;
1719}
1720
1721void inline_size
1722pri_adjust (EV_P_ W w)
1723{
1724 int pri = w->priority;
1725 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1726 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1727 w->priority = pri;
1728}
1729
1474void inline_speed 1730void inline_speed
1475ev_start (EV_P_ W w, int active) 1731ev_start (EV_P_ W w, int active)
1476{ 1732{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1733 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 1734 w->active = active;
1481 ev_ref (EV_A); 1735 ev_ref (EV_A);
1482} 1736}
1483 1737
1484void inline_size 1738void inline_size
1488 w->active = 0; 1742 w->active = 0;
1489} 1743}
1490 1744
1491/*****************************************************************************/ 1745/*****************************************************************************/
1492 1746
1493void 1747void noinline
1494ev_io_start (EV_P_ ev_io *w) 1748ev_io_start (EV_P_ ev_io *w)
1495{ 1749{
1496 int fd = w->fd; 1750 int fd = w->fd;
1497 1751
1498 if (expect_false (ev_is_active (w))) 1752 if (expect_false (ev_is_active (w)))
1500 1754
1501 assert (("ev_io_start called with negative fd", fd >= 0)); 1755 assert (("ev_io_start called with negative fd", fd >= 0));
1502 1756
1503 ev_start (EV_A_ (W)w, 1); 1757 ev_start (EV_A_ (W)w, 1);
1504 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1758 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1759 wlist_add (&anfds[fd].head, (WL)w);
1506 1760
1507 fd_change (EV_A_ fd); 1761 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1762 w->events &= ~EV_IOFDSET;
1508} 1763}
1509 1764
1510void 1765void noinline
1511ev_io_stop (EV_P_ ev_io *w) 1766ev_io_stop (EV_P_ ev_io *w)
1512{ 1767{
1513 ev_clear_pending (EV_A_ (W)w); 1768 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 1769 if (expect_false (!ev_is_active (w)))
1515 return; 1770 return;
1516 1771
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1772 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 1773
1519 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1774 wlist_del (&anfds[w->fd].head, (WL)w);
1520 ev_stop (EV_A_ (W)w); 1775 ev_stop (EV_A_ (W)w);
1521 1776
1522 fd_change (EV_A_ w->fd); 1777 fd_change (EV_A_ w->fd, 1);
1523} 1778}
1524 1779
1525void 1780void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 1781ev_timer_start (EV_P_ ev_timer *w)
1527{ 1782{
1528 if (expect_false (ev_is_active (w))) 1783 if (expect_false (ev_is_active (w)))
1529 return; 1784 return;
1530 1785
1531 ((WT)w)->at += mn_now; 1786 ((WT)w)->at += mn_now;
1532 1787
1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1788 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1534 1789
1535 ev_start (EV_A_ (W)w, ++timercnt); 1790 ev_start (EV_A_ (W)w, ++timercnt);
1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1791 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1537 timers [timercnt - 1] = w; 1792 timers [timercnt - 1] = (WT)w;
1538 upheap ((WT *)timers, timercnt - 1); 1793 upheap (timers, timercnt - 1);
1539 1794
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1795 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1541} 1796}
1542 1797
1543void 1798void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 1799ev_timer_stop (EV_P_ ev_timer *w)
1545{ 1800{
1546 ev_clear_pending (EV_A_ (W)w); 1801 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 1802 if (expect_false (!ev_is_active (w)))
1548 return; 1803 return;
1549 1804
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1805 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1551 1806
1552 { 1807 {
1553 int active = ((W)w)->active; 1808 int active = ((W)w)->active;
1554 1809
1555 if (expect_true (--active < --timercnt)) 1810 if (expect_true (--active < --timercnt))
1556 { 1811 {
1557 timers [active] = timers [timercnt]; 1812 timers [active] = timers [timercnt];
1558 adjustheap ((WT *)timers, timercnt, active); 1813 adjustheap (timers, timercnt, active);
1559 } 1814 }
1560 } 1815 }
1561 1816
1562 ((WT)w)->at -= mn_now; 1817 ((WT)w)->at -= mn_now;
1563 1818
1564 ev_stop (EV_A_ (W)w); 1819 ev_stop (EV_A_ (W)w);
1565} 1820}
1566 1821
1567void 1822void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 1823ev_timer_again (EV_P_ ev_timer *w)
1569{ 1824{
1570 if (ev_is_active (w)) 1825 if (ev_is_active (w))
1571 { 1826 {
1572 if (w->repeat) 1827 if (w->repeat)
1573 { 1828 {
1574 ((WT)w)->at = mn_now + w->repeat; 1829 ((WT)w)->at = mn_now + w->repeat;
1575 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1830 adjustheap (timers, timercnt, ((W)w)->active - 1);
1576 } 1831 }
1577 else 1832 else
1578 ev_timer_stop (EV_A_ w); 1833 ev_timer_stop (EV_A_ w);
1579 } 1834 }
1580 else if (w->repeat) 1835 else if (w->repeat)
1583 ev_timer_start (EV_A_ w); 1838 ev_timer_start (EV_A_ w);
1584 } 1839 }
1585} 1840}
1586 1841
1587#if EV_PERIODIC_ENABLE 1842#if EV_PERIODIC_ENABLE
1588void 1843void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 1844ev_periodic_start (EV_P_ ev_periodic *w)
1590{ 1845{
1591 if (expect_false (ev_is_active (w))) 1846 if (expect_false (ev_is_active (w)))
1592 return; 1847 return;
1593 1848
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1850 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 1851 else if (w->interval)
1597 { 1852 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1853 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 1854 /* this formula differs from the one in periodic_reify because we do not always round up */
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1855 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1601 } 1856 }
1857 else
1858 ((WT)w)->at = w->offset;
1602 1859
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 1860 ev_start (EV_A_ (W)w, ++periodiccnt);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1861 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 1862 periodics [periodiccnt - 1] = (WT)w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 1863 upheap (periodics, periodiccnt - 1);
1607 1864
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1865 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1609} 1866}
1610 1867
1611void 1868void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 1869ev_periodic_stop (EV_P_ ev_periodic *w)
1613{ 1870{
1614 ev_clear_pending (EV_A_ (W)w); 1871 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 1872 if (expect_false (!ev_is_active (w)))
1616 return; 1873 return;
1617 1874
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1875 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1619 1876
1620 { 1877 {
1621 int active = ((W)w)->active; 1878 int active = ((W)w)->active;
1622 1879
1623 if (expect_true (--active < --periodiccnt)) 1880 if (expect_true (--active < --periodiccnt))
1624 { 1881 {
1625 periodics [active] = periodics [periodiccnt]; 1882 periodics [active] = periodics [periodiccnt];
1626 adjustheap ((WT *)periodics, periodiccnt, active); 1883 adjustheap (periodics, periodiccnt, active);
1627 } 1884 }
1628 } 1885 }
1629 1886
1630 ev_stop (EV_A_ (W)w); 1887 ev_stop (EV_A_ (W)w);
1631} 1888}
1632 1889
1633void 1890void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 1891ev_periodic_again (EV_P_ ev_periodic *w)
1635{ 1892{
1636 /* TODO: use adjustheap and recalculation */ 1893 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 1894 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 1895 ev_periodic_start (EV_A_ w);
1641 1898
1642#ifndef SA_RESTART 1899#ifndef SA_RESTART
1643# define SA_RESTART 0 1900# define SA_RESTART 0
1644#endif 1901#endif
1645 1902
1646void 1903void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 1904ev_signal_start (EV_P_ ev_signal *w)
1648{ 1905{
1649#if EV_MULTIPLICITY 1906#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1907 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif 1908#endif
1652 if (expect_false (ev_is_active (w))) 1909 if (expect_false (ev_is_active (w)))
1653 return; 1910 return;
1654 1911
1655 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1912 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1656 1913
1914 evpipe_init (EV_A);
1915
1916 {
1917#ifndef _WIN32
1918 sigset_t full, prev;
1919 sigfillset (&full);
1920 sigprocmask (SIG_SETMASK, &full, &prev);
1921#endif
1922
1923 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1924
1925#ifndef _WIN32
1926 sigprocmask (SIG_SETMASK, &prev, 0);
1927#endif
1928 }
1929
1657 ev_start (EV_A_ (W)w, 1); 1930 ev_start (EV_A_ (W)w, 1);
1658 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1659 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1931 wlist_add (&signals [w->signum - 1].head, (WL)w);
1660 1932
1661 if (!((WL)w)->next) 1933 if (!((WL)w)->next)
1662 { 1934 {
1663#if _WIN32 1935#if _WIN32
1664 signal (w->signum, sighandler); 1936 signal (w->signum, sighandler);
1670 sigaction (w->signum, &sa, 0); 1942 sigaction (w->signum, &sa, 0);
1671#endif 1943#endif
1672 } 1944 }
1673} 1945}
1674 1946
1675void 1947void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 1948ev_signal_stop (EV_P_ ev_signal *w)
1677{ 1949{
1678 ev_clear_pending (EV_A_ (W)w); 1950 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 1951 if (expect_false (!ev_is_active (w)))
1680 return; 1952 return;
1681 1953
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1954 wlist_del (&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 1955 ev_stop (EV_A_ (W)w);
1684 1956
1685 if (!signals [w->signum - 1].head) 1957 if (!signals [w->signum - 1].head)
1686 signal (w->signum, SIG_DFL); 1958 signal (w->signum, SIG_DFL);
1687} 1959}
1694#endif 1966#endif
1695 if (expect_false (ev_is_active (w))) 1967 if (expect_false (ev_is_active (w)))
1696 return; 1968 return;
1697 1969
1698 ev_start (EV_A_ (W)w, 1); 1970 ev_start (EV_A_ (W)w, 1);
1699 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1971 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1700} 1972}
1701 1973
1702void 1974void
1703ev_child_stop (EV_P_ ev_child *w) 1975ev_child_stop (EV_P_ ev_child *w)
1704{ 1976{
1705 ev_clear_pending (EV_A_ (W)w); 1977 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 1978 if (expect_false (!ev_is_active (w)))
1707 return; 1979 return;
1708 1980
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1981 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 1982 ev_stop (EV_A_ (W)w);
1711} 1983}
1712 1984
1713#if EV_STAT_ENABLE 1985#if EV_STAT_ENABLE
1714 1986
1718# endif 1990# endif
1719 1991
1720#define DEF_STAT_INTERVAL 5.0074891 1992#define DEF_STAT_INTERVAL 5.0074891
1721#define MIN_STAT_INTERVAL 0.1074891 1993#define MIN_STAT_INTERVAL 0.1074891
1722 1994
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 1995static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 1996
1725#if EV_USE_INOTIFY 1997#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 1998# define EV_INOTIFY_BUFSIZE 8192
1727 1999
1728static void noinline 2000static void noinline
1879 w->attr.st_nlink = 0; 2151 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 2152 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 2153 w->attr.st_nlink = 1;
1882} 2154}
1883 2155
1884void noinline 2156static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2157stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 2158{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2159 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 2160
1889 /* we copy this here each the time so that */ 2161 /* we copy this here each the time so that */
1890 /* prev has the old value when the callback gets invoked */ 2162 /* prev has the old value when the callback gets invoked */
1891 w->prev = w->attr; 2163 w->prev = w->attr;
1892 ev_stat_stat (EV_A_ w); 2164 ev_stat_stat (EV_A_ w);
1893 2165
1894 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2166 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2167 if (
2168 w->prev.st_dev != w->attr.st_dev
2169 || w->prev.st_ino != w->attr.st_ino
2170 || w->prev.st_mode != w->attr.st_mode
2171 || w->prev.st_nlink != w->attr.st_nlink
2172 || w->prev.st_uid != w->attr.st_uid
2173 || w->prev.st_gid != w->attr.st_gid
2174 || w->prev.st_rdev != w->attr.st_rdev
2175 || w->prev.st_size != w->attr.st_size
2176 || w->prev.st_atime != w->attr.st_atime
2177 || w->prev.st_mtime != w->attr.st_mtime
2178 || w->prev.st_ctime != w->attr.st_ctime
1895 { 2179 ) {
1896 #if EV_USE_INOTIFY 2180 #if EV_USE_INOTIFY
1897 infy_del (EV_A_ w); 2181 infy_del (EV_A_ w);
1898 infy_add (EV_A_ w); 2182 infy_add (EV_A_ w);
1899 ev_stat_stat (EV_A_ w); /* avoid race... */ 2183 ev_stat_stat (EV_A_ w); /* avoid race... */
1900 #endif 2184 #endif
1934} 2218}
1935 2219
1936void 2220void
1937ev_stat_stop (EV_P_ ev_stat *w) 2221ev_stat_stop (EV_P_ ev_stat *w)
1938{ 2222{
1939 ev_clear_pending (EV_A_ (W)w); 2223 clear_pending (EV_A_ (W)w);
1940 if (expect_false (!ev_is_active (w))) 2224 if (expect_false (!ev_is_active (w)))
1941 return; 2225 return;
1942 2226
1943#if EV_USE_INOTIFY 2227#if EV_USE_INOTIFY
1944 infy_del (EV_A_ w); 2228 infy_del (EV_A_ w);
1947 2231
1948 ev_stop (EV_A_ (W)w); 2232 ev_stop (EV_A_ (W)w);
1949} 2233}
1950#endif 2234#endif
1951 2235
2236#if EV_IDLE_ENABLE
1952void 2237void
1953ev_idle_start (EV_P_ ev_idle *w) 2238ev_idle_start (EV_P_ ev_idle *w)
1954{ 2239{
1955 if (expect_false (ev_is_active (w))) 2240 if (expect_false (ev_is_active (w)))
1956 return; 2241 return;
1957 2242
2243 pri_adjust (EV_A_ (W)w);
2244
2245 {
2246 int active = ++idlecnt [ABSPRI (w)];
2247
2248 ++idleall;
1958 ev_start (EV_A_ (W)w, ++idlecnt); 2249 ev_start (EV_A_ (W)w, active);
2250
1959 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2251 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1960 idles [idlecnt - 1] = w; 2252 idles [ABSPRI (w)][active - 1] = w;
2253 }
1961} 2254}
1962 2255
1963void 2256void
1964ev_idle_stop (EV_P_ ev_idle *w) 2257ev_idle_stop (EV_P_ ev_idle *w)
1965{ 2258{
1966 ev_clear_pending (EV_A_ (W)w); 2259 clear_pending (EV_A_ (W)w);
1967 if (expect_false (!ev_is_active (w))) 2260 if (expect_false (!ev_is_active (w)))
1968 return; 2261 return;
1969 2262
1970 { 2263 {
1971 int active = ((W)w)->active; 2264 int active = ((W)w)->active;
1972 idles [active - 1] = idles [--idlecnt]; 2265
2266 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1973 ((W)idles [active - 1])->active = active; 2267 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2268
2269 ev_stop (EV_A_ (W)w);
2270 --idleall;
1974 } 2271 }
1975
1976 ev_stop (EV_A_ (W)w);
1977} 2272}
2273#endif
1978 2274
1979void 2275void
1980ev_prepare_start (EV_P_ ev_prepare *w) 2276ev_prepare_start (EV_P_ ev_prepare *w)
1981{ 2277{
1982 if (expect_false (ev_is_active (w))) 2278 if (expect_false (ev_is_active (w)))
1988} 2284}
1989 2285
1990void 2286void
1991ev_prepare_stop (EV_P_ ev_prepare *w) 2287ev_prepare_stop (EV_P_ ev_prepare *w)
1992{ 2288{
1993 ev_clear_pending (EV_A_ (W)w); 2289 clear_pending (EV_A_ (W)w);
1994 if (expect_false (!ev_is_active (w))) 2290 if (expect_false (!ev_is_active (w)))
1995 return; 2291 return;
1996 2292
1997 { 2293 {
1998 int active = ((W)w)->active; 2294 int active = ((W)w)->active;
2015} 2311}
2016 2312
2017void 2313void
2018ev_check_stop (EV_P_ ev_check *w) 2314ev_check_stop (EV_P_ ev_check *w)
2019{ 2315{
2020 ev_clear_pending (EV_A_ (W)w); 2316 clear_pending (EV_A_ (W)w);
2021 if (expect_false (!ev_is_active (w))) 2317 if (expect_false (!ev_is_active (w)))
2022 return; 2318 return;
2023 2319
2024 { 2320 {
2025 int active = ((W)w)->active; 2321 int active = ((W)w)->active;
2032 2328
2033#if EV_EMBED_ENABLE 2329#if EV_EMBED_ENABLE
2034void noinline 2330void noinline
2035ev_embed_sweep (EV_P_ ev_embed *w) 2331ev_embed_sweep (EV_P_ ev_embed *w)
2036{ 2332{
2037 ev_loop (w->loop, EVLOOP_NONBLOCK); 2333 ev_loop (w->other, EVLOOP_NONBLOCK);
2038} 2334}
2039 2335
2040static void 2336static void
2041embed_cb (EV_P_ ev_io *io, int revents) 2337embed_io_cb (EV_P_ ev_io *io, int revents)
2042{ 2338{
2043 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2339 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2044 2340
2045 if (ev_cb (w)) 2341 if (ev_cb (w))
2046 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2342 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2047 else 2343 else
2048 ev_embed_sweep (loop, w); 2344 ev_loop (w->other, EVLOOP_NONBLOCK);
2049} 2345}
2346
2347static void
2348embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2349{
2350 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2351
2352 {
2353 struct ev_loop *loop = w->other;
2354
2355 while (fdchangecnt)
2356 {
2357 fd_reify (EV_A);
2358 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2359 }
2360 }
2361}
2362
2363#if 0
2364static void
2365embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2366{
2367 ev_idle_stop (EV_A_ idle);
2368}
2369#endif
2050 2370
2051void 2371void
2052ev_embed_start (EV_P_ ev_embed *w) 2372ev_embed_start (EV_P_ ev_embed *w)
2053{ 2373{
2054 if (expect_false (ev_is_active (w))) 2374 if (expect_false (ev_is_active (w)))
2055 return; 2375 return;
2056 2376
2057 { 2377 {
2058 struct ev_loop *loop = w->loop; 2378 struct ev_loop *loop = w->other;
2059 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2379 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2060 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2380 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2061 } 2381 }
2062 2382
2063 ev_set_priority (&w->io, ev_priority (w)); 2383 ev_set_priority (&w->io, ev_priority (w));
2064 ev_io_start (EV_A_ &w->io); 2384 ev_io_start (EV_A_ &w->io);
2065 2385
2386 ev_prepare_init (&w->prepare, embed_prepare_cb);
2387 ev_set_priority (&w->prepare, EV_MINPRI);
2388 ev_prepare_start (EV_A_ &w->prepare);
2389
2390 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2391
2066 ev_start (EV_A_ (W)w, 1); 2392 ev_start (EV_A_ (W)w, 1);
2067} 2393}
2068 2394
2069void 2395void
2070ev_embed_stop (EV_P_ ev_embed *w) 2396ev_embed_stop (EV_P_ ev_embed *w)
2071{ 2397{
2072 ev_clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
2073 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
2074 return; 2400 return;
2075 2401
2076 ev_io_stop (EV_A_ &w->io); 2402 ev_io_stop (EV_A_ &w->io);
2403 ev_prepare_stop (EV_A_ &w->prepare);
2077 2404
2078 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2079} 2406}
2080#endif 2407#endif
2081 2408
2092} 2419}
2093 2420
2094void 2421void
2095ev_fork_stop (EV_P_ ev_fork *w) 2422ev_fork_stop (EV_P_ ev_fork *w)
2096{ 2423{
2097 ev_clear_pending (EV_A_ (W)w); 2424 clear_pending (EV_A_ (W)w);
2098 if (expect_false (!ev_is_active (w))) 2425 if (expect_false (!ev_is_active (w)))
2099 return; 2426 return;
2100 2427
2101 { 2428 {
2102 int active = ((W)w)->active; 2429 int active = ((W)w)->active;
2106 2433
2107 ev_stop (EV_A_ (W)w); 2434 ev_stop (EV_A_ (W)w);
2108} 2435}
2109#endif 2436#endif
2110 2437
2438#if EV_ASYNC_ENABLE
2439void
2440ev_async_start (EV_P_ ev_async *w)
2441{
2442 if (expect_false (ev_is_active (w)))
2443 return;
2444
2445 evpipe_init (EV_A);
2446
2447 ev_start (EV_A_ (W)w, ++asynccnt);
2448 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2449 asyncs [asynccnt - 1] = w;
2450}
2451
2452void
2453ev_async_stop (EV_P_ ev_async *w)
2454{
2455 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w)))
2457 return;
2458
2459 {
2460 int active = ((W)w)->active;
2461 asyncs [active - 1] = asyncs [--asynccnt];
2462 ((W)asyncs [active - 1])->active = active;
2463 }
2464
2465 ev_stop (EV_A_ (W)w);
2466}
2467
2468void
2469ev_async_send (EV_P_ ev_async *w)
2470{
2471 w->sent = 1;
2472 evpipe_write (EV_A_ 0, 1);
2473}
2474#endif
2475
2111/*****************************************************************************/ 2476/*****************************************************************************/
2112 2477
2113struct ev_once 2478struct ev_once
2114{ 2479{
2115 ev_io io; 2480 ev_io io;
2170 ev_timer_set (&once->to, timeout, 0.); 2535 ev_timer_set (&once->to, timeout, 0.);
2171 ev_timer_start (EV_A_ &once->to); 2536 ev_timer_start (EV_A_ &once->to);
2172 } 2537 }
2173} 2538}
2174 2539
2540#if EV_MULTIPLICITY
2541 #include "ev_wrap.h"
2542#endif
2543
2175#ifdef __cplusplus 2544#ifdef __cplusplus
2176} 2545}
2177#endif 2546#endif
2178 2547

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines