ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.155 by root, Wed Nov 28 17:32:24 2007 UTC vs.
Revision 1.269 by root, Wed Oct 29 06:32:48 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
202#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
205#endif 277#endif
206 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
298#endif
299
207#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 301# include <winsock.h>
209#endif 302#endif
210 303
211#if !EV_STAT_ENABLE 304#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
213#endif 309# endif
214 310int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 311# ifdef __cplusplus
216# include <sys/inotify.h> 312}
313# endif
217#endif 314#endif
218 315
219/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
323
324/*
325 * This is used to avoid floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 333
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 337
225#if __GNUC__ >= 3 338#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 340# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 341#else
236# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif
240#endif 347#endif
241 348
242#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 350#define expect_true(expr) expect ((expr) != 0, 1)
351#define inline_size static inline
352
353#if EV_MINIMAL
354# define inline_speed static noinline
355#else
356# define inline_speed static inline
357#endif
244 358
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 361
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 362#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 363#define EMPTY2(a,b) /* used to suppress some warnings */
250 364
251typedef ev_watcher *W; 365typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
254 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
256 377
257#ifdef _WIN32 378#ifdef _WIN32
258# include "ev_win32.c" 379# include "ev_win32.c"
259#endif 380#endif
260 381
267{ 388{
268 syserr_cb = cb; 389 syserr_cb = cb;
269} 390}
270 391
271static void noinline 392static void noinline
272syserr (const char *msg) 393ev_syserr (const char *msg)
273{ 394{
274 if (!msg) 395 if (!msg)
275 msg = "(libev) system error"; 396 msg = "(libev) system error";
276 397
277 if (syserr_cb) 398 if (syserr_cb)
281 perror (msg); 402 perror (msg);
282 abort (); 403 abort ();
283 } 404 }
284} 405}
285 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
286static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 423
288void 424void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 426{
291 alloc = cb; 427 alloc = cb;
292} 428}
293 429
294inline_speed void * 430inline_speed void *
295ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
296{ 432{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
298 434
299 if (!ptr && size) 435 if (!ptr && size)
300 { 436 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 438 abort ();
313typedef struct 449typedef struct
314{ 450{
315 WL head; 451 WL head;
316 unsigned char events; 452 unsigned char events;
317 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char unused;
456#if EV_USE_EPOLL
457 unsigned int egen; /* generation counter to counter epoll bugs */
458#endif
318#if EV_SELECT_IS_WINSOCKET 459#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 460 SOCKET handle;
320#endif 461#endif
321} ANFD; 462} ANFD;
322 463
325 W w; 466 W w;
326 int events; 467 int events;
327} ANPENDING; 468} ANPENDING;
328 469
329#if EV_USE_INOTIFY 470#if EV_USE_INOTIFY
471/* hash table entry per inotify-id */
330typedef struct 472typedef struct
331{ 473{
332 WL head; 474 WL head;
333} ANFS; 475} ANFS;
476#endif
477
478/* Heap Entry */
479#if EV_HEAP_CACHE_AT
480 typedef struct {
481 ev_tstamp at;
482 WT w;
483 } ANHE;
484
485 #define ANHE_w(he) (he).w /* access watcher, read-write */
486 #define ANHE_at(he) (he).at /* access cached at, read-only */
487 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
488#else
489 typedef WT ANHE;
490
491 #define ANHE_w(he) (he)
492 #define ANHE_at(he) (he)->at
493 #define ANHE_at_cache(he)
334#endif 494#endif
335 495
336#if EV_MULTIPLICITY 496#if EV_MULTIPLICITY
337 497
338 struct ev_loop 498 struct ev_loop
396{ 556{
397 return ev_rt_now; 557 return ev_rt_now;
398} 558}
399#endif 559#endif
400 560
401#define array_roundsize(type,n) (((n) | 4) & ~3) 561void
562ev_sleep (ev_tstamp delay)
563{
564 if (delay > 0.)
565 {
566#if EV_USE_NANOSLEEP
567 struct timespec ts;
568
569 ts.tv_sec = (time_t)delay;
570 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
571
572 nanosleep (&ts, 0);
573#elif defined(_WIN32)
574 Sleep ((unsigned long)(delay * 1e3));
575#else
576 struct timeval tv;
577
578 tv.tv_sec = (time_t)delay;
579 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
580
581 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
582 /* somehting nto guaranteed by newer posix versions, but guaranteed */
583 /* by older ones */
584 select (0, 0, 0, 0, &tv);
585#endif
586 }
587}
588
589/*****************************************************************************/
590
591#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
592
593int inline_size
594array_nextsize (int elem, int cur, int cnt)
595{
596 int ncur = cur + 1;
597
598 do
599 ncur <<= 1;
600 while (cnt > ncur);
601
602 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
603 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
604 {
605 ncur *= elem;
606 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
607 ncur = ncur - sizeof (void *) * 4;
608 ncur /= elem;
609 }
610
611 return ncur;
612}
613
614static noinline void *
615array_realloc (int elem, void *base, int *cur, int cnt)
616{
617 *cur = array_nextsize (elem, *cur, cnt);
618 return ev_realloc (base, elem * *cur);
619}
620
621#define array_init_zero(base,count) \
622 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 623
403#define array_needsize(type,base,cur,cnt,init) \ 624#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 625 if (expect_false ((cnt) > (cur))) \
405 { \ 626 { \
406 int newcnt = cur; \ 627 int ocur_ = (cur); \
407 do \ 628 (base) = (type *)array_realloc \
408 { \ 629 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 630 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 631 }
417 632
633#if 0
418#define array_slim(type,stem) \ 634#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 635 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 636 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 637 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 638 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 639 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 640 }
641#endif
425 642
426#define array_free(stem, idx) \ 643#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 644 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 645
429/*****************************************************************************/ 646/*****************************************************************************/
430 647
431void noinline 648void noinline
432ev_feed_event (EV_P_ void *w, int revents) 649ev_feed_event (EV_P_ void *w, int revents)
433{ 650{
434 W w_ = (W)w; 651 W w_ = (W)w;
652 int pri = ABSPRI (w_);
435 653
436 if (expect_false (w_->pending)) 654 if (expect_false (w_->pending))
655 pendings [pri][w_->pending - 1].events |= revents;
656 else
437 { 657 {
658 w_->pending = ++pendingcnt [pri];
659 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
660 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 661 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 662 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 663}
447 664
448void inline_size 665void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 666queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 667{
451 int i; 668 int i;
452 669
453 for (i = 0; i < eventcnt; ++i) 670 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 671 ev_feed_event (EV_A_ events [i], type);
455} 672}
456 673
457/*****************************************************************************/ 674/*****************************************************************************/
458 675
459void inline_size
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed 676void inline_speed
473fd_event (EV_P_ int fd, int revents) 677fd_event (EV_P_ int fd, int revents)
474{ 678{
475 ANFD *anfd = anfds + fd; 679 ANFD *anfd = anfds + fd;
476 ev_io *w; 680 ev_io *w;
485} 689}
486 690
487void 691void
488ev_feed_fd_event (EV_P_ int fd, int revents) 692ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 693{
694 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 695 fd_event (EV_A_ fd, revents);
491} 696}
492 697
493void inline_size 698void inline_size
494fd_reify (EV_P) 699fd_reify (EV_P)
495{ 700{
499 { 704 {
500 int fd = fdchanges [i]; 705 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 706 ANFD *anfd = anfds + fd;
502 ev_io *w; 707 ev_io *w;
503 708
504 int events = 0; 709 unsigned char events = 0;
505 710
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 711 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 712 events |= (unsigned char)w->events;
508 713
509#if EV_SELECT_IS_WINSOCKET 714#if EV_SELECT_IS_WINSOCKET
510 if (events) 715 if (events)
511 { 716 {
512 unsigned long argp; 717 unsigned long arg;
718 #ifdef EV_FD_TO_WIN32_HANDLE
719 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
720 #else
513 anfd->handle = _get_osfhandle (fd); 721 anfd->handle = _get_osfhandle (fd);
722 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 723 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 724 }
516#endif 725#endif
517 726
727 {
728 unsigned char o_events = anfd->events;
729 unsigned char o_reify = anfd->reify;
730
518 anfd->reify = 0; 731 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 732 anfd->events = events;
733
734 if (o_events != events || o_reify & EV_IOFDSET)
735 backend_modify (EV_A_ fd, o_events, events);
736 }
522 } 737 }
523 738
524 fdchangecnt = 0; 739 fdchangecnt = 0;
525} 740}
526 741
527void inline_size 742void inline_size
528fd_change (EV_P_ int fd) 743fd_change (EV_P_ int fd, int flags)
529{ 744{
530 if (expect_false (anfds [fd].reify)) 745 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 746 anfds [fd].reify |= flags;
534 747
748 if (expect_true (!reify))
749 {
535 ++fdchangecnt; 750 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 751 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 752 fdchanges [fdchangecnt - 1] = fd;
753 }
538} 754}
539 755
540void inline_speed 756void inline_speed
541fd_kill (EV_P_ int fd) 757fd_kill (EV_P_ int fd)
542{ 758{
565{ 781{
566 int fd; 782 int fd;
567 783
568 for (fd = 0; fd < anfdmax; ++fd) 784 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 785 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 786 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 787 fd_kill (EV_A_ fd);
572} 788}
573 789
574/* called on ENOMEM in select/poll to kill some fds and retry */ 790/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 791static void noinline
589static void noinline 805static void noinline
590fd_rearm_all (EV_P) 806fd_rearm_all (EV_P)
591{ 807{
592 int fd; 808 int fd;
593 809
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 810 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 811 if (anfds [fd].events)
597 { 812 {
598 anfds [fd].events = 0; 813 anfds [fd].events = 0;
814 anfds [fd].emask = 0;
599 fd_change (EV_A_ fd); 815 fd_change (EV_A_ fd, EV_IOFDSET | 1);
600 } 816 }
601} 817}
602 818
603/*****************************************************************************/ 819/*****************************************************************************/
604 820
821/*
822 * the heap functions want a real array index. array index 0 uis guaranteed to not
823 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
824 * the branching factor of the d-tree.
825 */
826
827/*
828 * at the moment we allow libev the luxury of two heaps,
829 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
830 * which is more cache-efficient.
831 * the difference is about 5% with 50000+ watchers.
832 */
833#if EV_USE_4HEAP
834
835#define DHEAP 4
836#define HEAP0 (DHEAP - 1) /* index of first element in heap */
837#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
838#define UPHEAP_DONE(p,k) ((p) == (k))
839
840/* away from the root */
605void inline_speed 841void inline_speed
606upheap (WT *heap, int k) 842downheap (ANHE *heap, int N, int k)
607{ 843{
608 WT w = heap [k]; 844 ANHE he = heap [k];
845 ANHE *E = heap + N + HEAP0;
609 846
610 while (k && heap [k >> 1]->at > w->at) 847 for (;;)
611 {
612 heap [k] = heap [k >> 1];
613 ((W)heap [k])->active = k + 1;
614 k >>= 1;
615 } 848 {
849 ev_tstamp minat;
850 ANHE *minpos;
851 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
616 852
853 /* find minimum child */
854 if (expect_true (pos + DHEAP - 1 < E))
855 {
856 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
858 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
860 }
861 else if (pos < E)
862 {
863 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
864 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
865 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
866 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
867 }
868 else
869 break;
870
871 if (ANHE_at (he) <= minat)
872 break;
873
874 heap [k] = *minpos;
875 ev_active (ANHE_w (*minpos)) = k;
876
877 k = minpos - heap;
878 }
879
617 heap [k] = w; 880 heap [k] = he;
618 ((W)heap [k])->active = k + 1; 881 ev_active (ANHE_w (he)) = k;
619
620} 882}
621 883
884#else /* 4HEAP */
885
886#define HEAP0 1
887#define HPARENT(k) ((k) >> 1)
888#define UPHEAP_DONE(p,k) (!(p))
889
890/* away from the root */
622void inline_speed 891void inline_speed
623downheap (WT *heap, int N, int k) 892downheap (ANHE *heap, int N, int k)
624{ 893{
625 WT w = heap [k]; 894 ANHE he = heap [k];
626 895
627 while (k < (N >> 1)) 896 for (;;)
628 { 897 {
629 int j = k << 1; 898 int c = k << 1;
630 899
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 900 if (c > N + HEAP0 - 1)
632 ++j;
633
634 if (w->at <= heap [j]->at)
635 break; 901 break;
636 902
903 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
904 ? 1 : 0;
905
906 if (ANHE_at (he) <= ANHE_at (heap [c]))
907 break;
908
637 heap [k] = heap [j]; 909 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 910 ev_active (ANHE_w (heap [k])) = k;
911
639 k = j; 912 k = c;
640 } 913 }
641 914
642 heap [k] = w; 915 heap [k] = he;
643 ((W)heap [k])->active = k + 1; 916 ev_active (ANHE_w (he)) = k;
917}
918#endif
919
920/* towards the root */
921void inline_speed
922upheap (ANHE *heap, int k)
923{
924 ANHE he = heap [k];
925
926 for (;;)
927 {
928 int p = HPARENT (k);
929
930 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
931 break;
932
933 heap [k] = heap [p];
934 ev_active (ANHE_w (heap [k])) = k;
935 k = p;
936 }
937
938 heap [k] = he;
939 ev_active (ANHE_w (he)) = k;
644} 940}
645 941
646void inline_size 942void inline_size
647adjustheap (WT *heap, int N, int k) 943adjustheap (ANHE *heap, int N, int k)
648{ 944{
945 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
649 upheap (heap, k); 946 upheap (heap, k);
947 else
650 downheap (heap, N, k); 948 downheap (heap, N, k);
949}
950
951/* rebuild the heap: this function is used only once and executed rarely */
952void inline_size
953reheap (ANHE *heap, int N)
954{
955 int i;
956
957 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
958 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
959 for (i = 0; i < N; ++i)
960 upheap (heap, i + HEAP0);
651} 961}
652 962
653/*****************************************************************************/ 963/*****************************************************************************/
654 964
655typedef struct 965typedef struct
656{ 966{
657 WL head; 967 WL head;
658 sig_atomic_t volatile gotsig; 968 EV_ATOMIC_T gotsig;
659} ANSIG; 969} ANSIG;
660 970
661static ANSIG *signals; 971static ANSIG *signals;
662static int signalmax; 972static int signalmax;
663 973
664static int sigpipe [2]; 974static EV_ATOMIC_T gotsig;
665static sig_atomic_t volatile gotsig;
666static ev_io sigev;
667 975
976/*****************************************************************************/
977
668void inline_size 978void inline_speed
669signals_init (ANSIG *base, int count)
670{
671 while (count--)
672 {
673 base->head = 0;
674 base->gotsig = 0;
675
676 ++base;
677 }
678}
679
680static void
681sighandler (int signum)
682{
683#if _WIN32
684 signal (signum, sighandler);
685#endif
686
687 signals [signum - 1].gotsig = 1;
688
689 if (!gotsig)
690 {
691 int old_errno = errno;
692 gotsig = 1;
693 write (sigpipe [1], &signum, 1);
694 errno = old_errno;
695 }
696}
697
698void noinline
699ev_feed_signal_event (EV_P_ int signum)
700{
701 WL w;
702
703#if EV_MULTIPLICITY
704 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
705#endif
706
707 --signum;
708
709 if (signum < 0 || signum >= signalmax)
710 return;
711
712 signals [signum].gotsig = 0;
713
714 for (w = signals [signum].head; w; w = w->next)
715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
716}
717
718static void
719sigcb (EV_P_ ev_io *iow, int revents)
720{
721 int signum;
722
723 read (sigpipe [0], &revents, 1);
724 gotsig = 0;
725
726 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1);
729}
730
731void inline_size
732fd_intern (int fd) 979fd_intern (int fd)
733{ 980{
734#ifdef _WIN32 981#ifdef _WIN32
735 int arg = 1; 982 unsigned long arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 983 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
737#else 984#else
738 fcntl (fd, F_SETFD, FD_CLOEXEC); 985 fcntl (fd, F_SETFD, FD_CLOEXEC);
739 fcntl (fd, F_SETFL, O_NONBLOCK); 986 fcntl (fd, F_SETFL, O_NONBLOCK);
740#endif 987#endif
741} 988}
742 989
743static void noinline 990static void noinline
744siginit (EV_P) 991evpipe_init (EV_P)
745{ 992{
993 if (!ev_is_active (&pipeev))
994 {
995#if EV_USE_EVENTFD
996 if ((evfd = eventfd (0, 0)) >= 0)
997 {
998 evpipe [0] = -1;
999 fd_intern (evfd);
1000 ev_io_set (&pipeev, evfd, EV_READ);
1001 }
1002 else
1003#endif
1004 {
1005 while (pipe (evpipe))
1006 ev_syserr ("(libev) error creating signal/async pipe");
1007
746 fd_intern (sigpipe [0]); 1008 fd_intern (evpipe [0]);
747 fd_intern (sigpipe [1]); 1009 fd_intern (evpipe [1]);
1010 ev_io_set (&pipeev, evpipe [0], EV_READ);
1011 }
748 1012
749 ev_io_set (&sigev, sigpipe [0], EV_READ);
750 ev_io_start (EV_A_ &sigev); 1013 ev_io_start (EV_A_ &pipeev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1014 ev_unref (EV_A); /* watcher should not keep loop alive */
1015 }
1016}
1017
1018void inline_size
1019evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1020{
1021 if (!*flag)
1022 {
1023 int old_errno = errno; /* save errno because write might clobber it */
1024
1025 *flag = 1;
1026
1027#if EV_USE_EVENTFD
1028 if (evfd >= 0)
1029 {
1030 uint64_t counter = 1;
1031 write (evfd, &counter, sizeof (uint64_t));
1032 }
1033 else
1034#endif
1035 write (evpipe [1], &old_errno, 1);
1036
1037 errno = old_errno;
1038 }
1039}
1040
1041static void
1042pipecb (EV_P_ ev_io *iow, int revents)
1043{
1044#if EV_USE_EVENTFD
1045 if (evfd >= 0)
1046 {
1047 uint64_t counter;
1048 read (evfd, &counter, sizeof (uint64_t));
1049 }
1050 else
1051#endif
1052 {
1053 char dummy;
1054 read (evpipe [0], &dummy, 1);
1055 }
1056
1057 if (gotsig && ev_is_default_loop (EV_A))
1058 {
1059 int signum;
1060 gotsig = 0;
1061
1062 for (signum = signalmax; signum--; )
1063 if (signals [signum].gotsig)
1064 ev_feed_signal_event (EV_A_ signum + 1);
1065 }
1066
1067#if EV_ASYNC_ENABLE
1068 if (gotasync)
1069 {
1070 int i;
1071 gotasync = 0;
1072
1073 for (i = asynccnt; i--; )
1074 if (asyncs [i]->sent)
1075 {
1076 asyncs [i]->sent = 0;
1077 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1078 }
1079 }
1080#endif
752} 1081}
753 1082
754/*****************************************************************************/ 1083/*****************************************************************************/
755 1084
1085static void
1086ev_sighandler (int signum)
1087{
1088#if EV_MULTIPLICITY
1089 struct ev_loop *loop = &default_loop_struct;
1090#endif
1091
1092#if _WIN32
1093 signal (signum, ev_sighandler);
1094#endif
1095
1096 signals [signum - 1].gotsig = 1;
1097 evpipe_write (EV_A_ &gotsig);
1098}
1099
1100void noinline
1101ev_feed_signal_event (EV_P_ int signum)
1102{
1103 WL w;
1104
1105#if EV_MULTIPLICITY
1106 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1107#endif
1108
1109 --signum;
1110
1111 if (signum < 0 || signum >= signalmax)
1112 return;
1113
1114 signals [signum].gotsig = 0;
1115
1116 for (w = signals [signum].head; w; w = w->next)
1117 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1118}
1119
1120/*****************************************************************************/
1121
756static ev_child *childs [EV_PID_HASHSIZE]; 1122static WL childs [EV_PID_HASHSIZE];
757 1123
758#ifndef _WIN32 1124#ifndef _WIN32
759 1125
760static ev_signal childev; 1126static ev_signal childev;
761 1127
1128#ifndef WIFCONTINUED
1129# define WIFCONTINUED(status) 0
1130#endif
1131
762void inline_speed 1132void inline_speed
763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1133child_reap (EV_P_ int chain, int pid, int status)
764{ 1134{
765 ev_child *w; 1135 ev_child *w;
1136 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
766 1137
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1138 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1139 {
768 if (w->pid == pid || !w->pid) 1140 if ((w->pid == pid || !w->pid)
1141 && (!traced || (w->flags & 1)))
769 { 1142 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1143 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
771 w->rpid = pid; 1144 w->rpid = pid;
772 w->rstatus = status; 1145 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1146 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 1147 }
1148 }
775} 1149}
776 1150
777#ifndef WCONTINUED 1151#ifndef WCONTINUED
778# define WCONTINUED 0 1152# define WCONTINUED 0
779#endif 1153#endif
788 if (!WCONTINUED 1162 if (!WCONTINUED
789 || errno != EINVAL 1163 || errno != EINVAL
790 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1164 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
791 return; 1165 return;
792 1166
793 /* make sure we are called again until all childs have been reaped */ 1167 /* make sure we are called again until all children have been reaped */
794 /* we need to do it this way so that the callback gets called before we continue */ 1168 /* we need to do it this way so that the callback gets called before we continue */
795 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1169 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
796 1170
797 child_reap (EV_A_ sw, pid, pid, status); 1171 child_reap (EV_A_ pid, pid, status);
798 if (EV_PID_HASHSIZE > 1) 1172 if (EV_PID_HASHSIZE > 1)
799 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1173 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
800} 1174}
801 1175
802#endif 1176#endif
803 1177
804/*****************************************************************************/ 1178/*****************************************************************************/
876} 1250}
877 1251
878unsigned int 1252unsigned int
879ev_embeddable_backends (void) 1253ev_embeddable_backends (void)
880{ 1254{
881 return EVBACKEND_EPOLL 1255 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
882 | EVBACKEND_KQUEUE 1256
883 | EVBACKEND_PORT; 1257 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1258 /* please fix it and tell me how to detect the fix */
1259 flags &= ~EVBACKEND_EPOLL;
1260
1261 return flags;
884} 1262}
885 1263
886unsigned int 1264unsigned int
887ev_backend (EV_P) 1265ev_backend (EV_P)
888{ 1266{
889 return backend; 1267 return backend;
1268}
1269
1270unsigned int
1271ev_loop_count (EV_P)
1272{
1273 return loop_count;
1274}
1275
1276void
1277ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1278{
1279 io_blocktime = interval;
1280}
1281
1282void
1283ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1284{
1285 timeout_blocktime = interval;
890} 1286}
891 1287
892static void noinline 1288static void noinline
893loop_init (EV_P_ unsigned int flags) 1289loop_init (EV_P_ unsigned int flags)
894{ 1290{
900 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1296 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
901 have_monotonic = 1; 1297 have_monotonic = 1;
902 } 1298 }
903#endif 1299#endif
904 1300
905 ev_rt_now = ev_time (); 1301 ev_rt_now = ev_time ();
906 mn_now = get_clock (); 1302 mn_now = get_clock ();
907 now_floor = mn_now; 1303 now_floor = mn_now;
908 rtmn_diff = ev_rt_now - mn_now; 1304 rtmn_diff = ev_rt_now - mn_now;
1305
1306 io_blocktime = 0.;
1307 timeout_blocktime = 0.;
1308 backend = 0;
1309 backend_fd = -1;
1310 gotasync = 0;
1311#if EV_USE_INOTIFY
1312 fs_fd = -2;
1313#endif
1314
1315 /* pid check not overridable via env */
1316#ifndef _WIN32
1317 if (flags & EVFLAG_FORKCHECK)
1318 curpid = getpid ();
1319#endif
909 1320
910 if (!(flags & EVFLAG_NOENV) 1321 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1322 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1323 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1324 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1325
915 if (!(flags & 0x0000ffffUL)) 1326 if (!(flags & 0x0000ffffU))
916 flags |= ev_recommended_backends (); 1327 flags |= ev_recommended_backends ();
917
918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY
921 fs_fd = -2;
922#endif
923 1328
924#if EV_USE_PORT 1329#if EV_USE_PORT
925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1330 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
926#endif 1331#endif
927#if EV_USE_KQUEUE 1332#if EV_USE_KQUEUE
935#endif 1340#endif
936#if EV_USE_SELECT 1341#if EV_USE_SELECT
937 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1342 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
938#endif 1343#endif
939 1344
940 ev_init (&sigev, sigcb); 1345 ev_init (&pipeev, pipecb);
941 ev_set_priority (&sigev, EV_MAXPRI); 1346 ev_set_priority (&pipeev, EV_MAXPRI);
942 } 1347 }
943} 1348}
944 1349
945static void noinline 1350static void noinline
946loop_destroy (EV_P) 1351loop_destroy (EV_P)
947{ 1352{
948 int i; 1353 int i;
1354
1355 if (ev_is_active (&pipeev))
1356 {
1357 ev_ref (EV_A); /* signal watcher */
1358 ev_io_stop (EV_A_ &pipeev);
1359
1360#if EV_USE_EVENTFD
1361 if (evfd >= 0)
1362 close (evfd);
1363#endif
1364
1365 if (evpipe [0] >= 0)
1366 {
1367 close (evpipe [0]);
1368 close (evpipe [1]);
1369 }
1370 }
949 1371
950#if EV_USE_INOTIFY 1372#if EV_USE_INOTIFY
951 if (fs_fd >= 0) 1373 if (fs_fd >= 0)
952 close (fs_fd); 1374 close (fs_fd);
953#endif 1375#endif
970#if EV_USE_SELECT 1392#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1393 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1394#endif
973 1395
974 for (i = NUMPRI; i--; ) 1396 for (i = NUMPRI; i--; )
1397 {
975 array_free (pending, [i]); 1398 array_free (pending, [i]);
1399#if EV_IDLE_ENABLE
1400 array_free (idle, [i]);
1401#endif
1402 }
1403
1404 ev_free (anfds); anfdmax = 0;
976 1405
977 /* have to use the microsoft-never-gets-it-right macro */ 1406 /* have to use the microsoft-never-gets-it-right macro */
978 array_free (fdchange, EMPTY0); 1407 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1408 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1409#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1410 array_free (periodic, EMPTY);
982#endif 1411#endif
1412#if EV_FORK_ENABLE
983 array_free (idle, EMPTY0); 1413 array_free (fork, EMPTY);
1414#endif
984 array_free (prepare, EMPTY0); 1415 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1416 array_free (check, EMPTY);
1417#if EV_ASYNC_ENABLE
1418 array_free (async, EMPTY);
1419#endif
986 1420
987 backend = 0; 1421 backend = 0;
988} 1422}
989 1423
1424#if EV_USE_INOTIFY
990void inline_size infy_fork (EV_P); 1425void inline_size infy_fork (EV_P);
1426#endif
991 1427
992void inline_size 1428void inline_size
993loop_fork (EV_P) 1429loop_fork (EV_P)
994{ 1430{
995#if EV_USE_PORT 1431#if EV_USE_PORT
1003#endif 1439#endif
1004#if EV_USE_INOTIFY 1440#if EV_USE_INOTIFY
1005 infy_fork (EV_A); 1441 infy_fork (EV_A);
1006#endif 1442#endif
1007 1443
1008 if (ev_is_active (&sigev)) 1444 if (ev_is_active (&pipeev))
1009 { 1445 {
1010 /* default loop */ 1446 /* this "locks" the handlers against writing to the pipe */
1447 /* while we modify the fd vars */
1448 gotsig = 1;
1449#if EV_ASYNC_ENABLE
1450 gotasync = 1;
1451#endif
1011 1452
1012 ev_ref (EV_A); 1453 ev_ref (EV_A);
1013 ev_io_stop (EV_A_ &sigev); 1454 ev_io_stop (EV_A_ &pipeev);
1455
1456#if EV_USE_EVENTFD
1457 if (evfd >= 0)
1458 close (evfd);
1459#endif
1460
1461 if (evpipe [0] >= 0)
1462 {
1014 close (sigpipe [0]); 1463 close (evpipe [0]);
1015 close (sigpipe [1]); 1464 close (evpipe [1]);
1465 }
1016 1466
1017 while (pipe (sigpipe))
1018 syserr ("(libev) error creating pipe");
1019
1020 siginit (EV_A); 1467 evpipe_init (EV_A);
1468 /* now iterate over everything, in case we missed something */
1469 pipecb (EV_A_ &pipeev, EV_READ);
1021 } 1470 }
1022 1471
1023 postfork = 0; 1472 postfork = 0;
1024} 1473}
1025 1474
1026#if EV_MULTIPLICITY 1475#if EV_MULTIPLICITY
1476
1027struct ev_loop * 1477struct ev_loop *
1028ev_loop_new (unsigned int flags) 1478ev_loop_new (unsigned int flags)
1029{ 1479{
1030 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1480 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1031 1481
1047} 1497}
1048 1498
1049void 1499void
1050ev_loop_fork (EV_P) 1500ev_loop_fork (EV_P)
1051{ 1501{
1052 postfork = 1; 1502 postfork = 1; /* must be in line with ev_default_fork */
1053} 1503}
1054 1504
1505#if EV_VERIFY
1506static void noinline
1507verify_watcher (EV_P_ W w)
1508{
1509 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1510
1511 if (w->pending)
1512 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1513}
1514
1515static void noinline
1516verify_heap (EV_P_ ANHE *heap, int N)
1517{
1518 int i;
1519
1520 for (i = HEAP0; i < N + HEAP0; ++i)
1521 {
1522 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1523 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1524 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1525
1526 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1527 }
1528}
1529
1530static void noinline
1531array_verify (EV_P_ W *ws, int cnt)
1532{
1533 while (cnt--)
1534 {
1535 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1536 verify_watcher (EV_A_ ws [cnt]);
1537 }
1538}
1539#endif
1540
1541void
1542ev_loop_verify (EV_P)
1543{
1544#if EV_VERIFY
1545 int i;
1546 WL w;
1547
1548 assert (activecnt >= -1);
1549
1550 assert (fdchangemax >= fdchangecnt);
1551 for (i = 0; i < fdchangecnt; ++i)
1552 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1553
1554 assert (anfdmax >= 0);
1555 for (i = 0; i < anfdmax; ++i)
1556 for (w = anfds [i].head; w; w = w->next)
1557 {
1558 verify_watcher (EV_A_ (W)w);
1559 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1560 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1561 }
1562
1563 assert (timermax >= timercnt);
1564 verify_heap (EV_A_ timers, timercnt);
1565
1566#if EV_PERIODIC_ENABLE
1567 assert (periodicmax >= periodiccnt);
1568 verify_heap (EV_A_ periodics, periodiccnt);
1569#endif
1570
1571 for (i = NUMPRI; i--; )
1572 {
1573 assert (pendingmax [i] >= pendingcnt [i]);
1574#if EV_IDLE_ENABLE
1575 assert (idleall >= 0);
1576 assert (idlemax [i] >= idlecnt [i]);
1577 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1578#endif
1579 }
1580
1581#if EV_FORK_ENABLE
1582 assert (forkmax >= forkcnt);
1583 array_verify (EV_A_ (W *)forks, forkcnt);
1584#endif
1585
1586#if EV_ASYNC_ENABLE
1587 assert (asyncmax >= asynccnt);
1588 array_verify (EV_A_ (W *)asyncs, asynccnt);
1589#endif
1590
1591 assert (preparemax >= preparecnt);
1592 array_verify (EV_A_ (W *)prepares, preparecnt);
1593
1594 assert (checkmax >= checkcnt);
1595 array_verify (EV_A_ (W *)checks, checkcnt);
1596
1597# if 0
1598 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1599 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1055#endif 1600# endif
1601#endif
1602}
1603
1604#endif /* multiplicity */
1056 1605
1057#if EV_MULTIPLICITY 1606#if EV_MULTIPLICITY
1058struct ev_loop * 1607struct ev_loop *
1059ev_default_loop_init (unsigned int flags) 1608ev_default_loop_init (unsigned int flags)
1060#else 1609#else
1061int 1610int
1062ev_default_loop (unsigned int flags) 1611ev_default_loop (unsigned int flags)
1063#endif 1612#endif
1064{ 1613{
1065 if (sigpipe [0] == sigpipe [1])
1066 if (pipe (sigpipe))
1067 return 0;
1068
1069 if (!ev_default_loop_ptr) 1614 if (!ev_default_loop_ptr)
1070 { 1615 {
1071#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1072 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1617 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1073#else 1618#else
1076 1621
1077 loop_init (EV_A_ flags); 1622 loop_init (EV_A_ flags);
1078 1623
1079 if (ev_backend (EV_A)) 1624 if (ev_backend (EV_A))
1080 { 1625 {
1081 siginit (EV_A);
1082
1083#ifndef _WIN32 1626#ifndef _WIN32
1084 ev_signal_init (&childev, childcb, SIGCHLD); 1627 ev_signal_init (&childev, childcb, SIGCHLD);
1085 ev_set_priority (&childev, EV_MAXPRI); 1628 ev_set_priority (&childev, EV_MAXPRI);
1086 ev_signal_start (EV_A_ &childev); 1629 ev_signal_start (EV_A_ &childev);
1087 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1630 ev_unref (EV_A); /* child watcher should not keep loop alive */
1099{ 1642{
1100#if EV_MULTIPLICITY 1643#if EV_MULTIPLICITY
1101 struct ev_loop *loop = ev_default_loop_ptr; 1644 struct ev_loop *loop = ev_default_loop_ptr;
1102#endif 1645#endif
1103 1646
1647 ev_default_loop_ptr = 0;
1648
1104#ifndef _WIN32 1649#ifndef _WIN32
1105 ev_ref (EV_A); /* child watcher */ 1650 ev_ref (EV_A); /* child watcher */
1106 ev_signal_stop (EV_A_ &childev); 1651 ev_signal_stop (EV_A_ &childev);
1107#endif 1652#endif
1108 1653
1109 ev_ref (EV_A); /* signal watcher */
1110 ev_io_stop (EV_A_ &sigev);
1111
1112 close (sigpipe [0]); sigpipe [0] = 0;
1113 close (sigpipe [1]); sigpipe [1] = 0;
1114
1115 loop_destroy (EV_A); 1654 loop_destroy (EV_A);
1116} 1655}
1117 1656
1118void 1657void
1119ev_default_fork (void) 1658ev_default_fork (void)
1120{ 1659{
1121#if EV_MULTIPLICITY 1660#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr; 1661 struct ev_loop *loop = ev_default_loop_ptr;
1123#endif 1662#endif
1124 1663
1125 if (backend) 1664 ev_loop_fork (EV_A);
1126 postfork = 1;
1127} 1665}
1128 1666
1129/*****************************************************************************/ 1667/*****************************************************************************/
1130 1668
1131int inline_size 1669void
1132any_pending (EV_P) 1670ev_invoke (EV_P_ void *w, int revents)
1133{ 1671{
1134 int pri; 1672 EV_CB_INVOKE ((W)w, revents);
1135
1136 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri])
1138 return 1;
1139
1140 return 0;
1141} 1673}
1142 1674
1143void inline_speed 1675void inline_speed
1144call_pending (EV_P) 1676call_pending (EV_P)
1145{ 1677{
1154 { 1686 {
1155 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1687 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1156 1688
1157 p->w->pending = 0; 1689 p->w->pending = 0;
1158 EV_CB_INVOKE (p->w, p->events); 1690 EV_CB_INVOKE (p->w, p->events);
1691 EV_FREQUENT_CHECK;
1159 } 1692 }
1160 } 1693 }
1161} 1694}
1162 1695
1696#if EV_IDLE_ENABLE
1697void inline_size
1698idle_reify (EV_P)
1699{
1700 if (expect_false (idleall))
1701 {
1702 int pri;
1703
1704 for (pri = NUMPRI; pri--; )
1705 {
1706 if (pendingcnt [pri])
1707 break;
1708
1709 if (idlecnt [pri])
1710 {
1711 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1712 break;
1713 }
1714 }
1715 }
1716}
1717#endif
1718
1163void inline_size 1719void inline_size
1164timers_reify (EV_P) 1720timers_reify (EV_P)
1165{ 1721{
1722 EV_FREQUENT_CHECK;
1723
1166 while (timercnt && ((WT)timers [0])->at <= mn_now) 1724 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1167 { 1725 {
1168 ev_timer *w = timers [0]; 1726 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1169 1727
1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1728 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1171 1729
1172 /* first reschedule or stop timer */ 1730 /* first reschedule or stop timer */
1173 if (w->repeat) 1731 if (w->repeat)
1174 { 1732 {
1733 ev_at (w) += w->repeat;
1734 if (ev_at (w) < mn_now)
1735 ev_at (w) = mn_now;
1736
1175 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1737 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1176 1738
1177 ((WT)w)->at += w->repeat; 1739 ANHE_at_cache (timers [HEAP0]);
1178 if (((WT)w)->at < mn_now)
1179 ((WT)w)->at = mn_now;
1180
1181 downheap ((WT *)timers, timercnt, 0); 1740 downheap (timers, timercnt, HEAP0);
1182 } 1741 }
1183 else 1742 else
1184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1743 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1185 1744
1745 EV_FREQUENT_CHECK;
1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1746 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1187 } 1747 }
1188} 1748}
1189 1749
1190#if EV_PERIODIC_ENABLE 1750#if EV_PERIODIC_ENABLE
1191void inline_size 1751void inline_size
1192periodics_reify (EV_P) 1752periodics_reify (EV_P)
1193{ 1753{
1754 EV_FREQUENT_CHECK;
1755
1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1756 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1195 { 1757 {
1196 ev_periodic *w = periodics [0]; 1758 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1197 1759
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1760 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1199 1761
1200 /* first reschedule or stop timer */ 1762 /* first reschedule or stop timer */
1201 if (w->reschedule_cb) 1763 if (w->reschedule_cb)
1202 { 1764 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1765 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1766
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1767 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1768
1769 ANHE_at_cache (periodics [HEAP0]);
1205 downheap ((WT *)periodics, periodiccnt, 0); 1770 downheap (periodics, periodiccnt, HEAP0);
1206 } 1771 }
1207 else if (w->interval) 1772 else if (w->interval)
1208 { 1773 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1774 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1775 /* if next trigger time is not sufficiently in the future, put it there */
1776 /* this might happen because of floating point inexactness */
1777 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1778 {
1779 ev_at (w) += w->interval;
1780
1781 /* if interval is unreasonably low we might still have a time in the past */
1782 /* so correct this. this will make the periodic very inexact, but the user */
1783 /* has effectively asked to get triggered more often than possible */
1784 if (ev_at (w) < ev_rt_now)
1785 ev_at (w) = ev_rt_now;
1786 }
1787
1788 ANHE_at_cache (periodics [HEAP0]);
1211 downheap ((WT *)periodics, periodiccnt, 0); 1789 downheap (periodics, periodiccnt, HEAP0);
1212 } 1790 }
1213 else 1791 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1792 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1215 1793
1794 EV_FREQUENT_CHECK;
1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1795 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1217 } 1796 }
1218} 1797}
1219 1798
1220static void noinline 1799static void noinline
1221periodics_reschedule (EV_P) 1800periodics_reschedule (EV_P)
1222{ 1801{
1223 int i; 1802 int i;
1224 1803
1225 /* adjust periodics after time jump */ 1804 /* adjust periodics after time jump */
1226 for (i = 0; i < periodiccnt; ++i) 1805 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1227 { 1806 {
1228 ev_periodic *w = periodics [i]; 1807 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1229 1808
1230 if (w->reschedule_cb) 1809 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1810 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval) 1811 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1812 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1813
1814 ANHE_at_cache (periodics [i]);
1815 }
1816
1817 reheap (periodics, periodiccnt);
1818}
1819#endif
1820
1821void inline_speed
1822time_update (EV_P_ ev_tstamp max_block)
1823{
1824 int i;
1825
1826#if EV_USE_MONOTONIC
1827 if (expect_true (have_monotonic))
1234 } 1828 {
1829 ev_tstamp odiff = rtmn_diff;
1235 1830
1236 /* now rebuild the heap */
1237 for (i = periodiccnt >> 1; i--; )
1238 downheap ((WT *)periodics, periodiccnt, i);
1239}
1240#endif
1241
1242int inline_size
1243time_update_monotonic (EV_P)
1244{
1245 mn_now = get_clock (); 1831 mn_now = get_clock ();
1246 1832
1833 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1834 /* interpolate in the meantime */
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1835 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 { 1836 {
1249 ev_rt_now = rtmn_diff + mn_now; 1837 ev_rt_now = rtmn_diff + mn_now;
1250 return 0; 1838 return;
1251 } 1839 }
1252 else 1840
1253 {
1254 now_floor = mn_now; 1841 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 1842 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 1843
1260void inline_size 1844 /* loop a few times, before making important decisions.
1261time_update (EV_P) 1845 * on the choice of "4": one iteration isn't enough,
1262{ 1846 * in case we get preempted during the calls to
1263 int i; 1847 * ev_time and get_clock. a second call is almost guaranteed
1264 1848 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 1849 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 1850 * in the unlikely event of having been preempted here.
1267 { 1851 */
1268 if (time_update_monotonic (EV_A)) 1852 for (i = 4; --i; )
1269 { 1853 {
1270 ev_tstamp odiff = rtmn_diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 1854 rtmn_diff = ev_rt_now - mn_now;
1283 1855
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1856 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1285 return; /* all is well */ 1857 return; /* all is well */
1286 1858
1287 ev_rt_now = ev_time (); 1859 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 1860 mn_now = get_clock ();
1289 now_floor = mn_now; 1861 now_floor = mn_now;
1290 } 1862 }
1291 1863
1292# if EV_PERIODIC_ENABLE 1864# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 1865 periodics_reschedule (EV_A);
1294# endif 1866# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */ 1867 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1868 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 1869 }
1299 else 1870 else
1300#endif 1871#endif
1301 { 1872 {
1302 ev_rt_now = ev_time (); 1873 ev_rt_now = ev_time ();
1303 1874
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1875 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 1876 {
1306#if EV_PERIODIC_ENABLE 1877#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 1878 periodics_reschedule (EV_A);
1308#endif 1879#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */ 1880 /* adjust timers. this is easy, as the offset is the same for all of them */
1311 for (i = 0; i < timercnt; ++i) 1881 for (i = 0; i < timercnt; ++i)
1882 {
1883 ANHE *he = timers + i + HEAP0;
1312 ((WT)timers [i])->at += ev_rt_now - mn_now; 1884 ANHE_w (*he)->at += ev_rt_now - mn_now;
1885 ANHE_at_cache (*he);
1886 }
1313 } 1887 }
1314 1888
1315 mn_now = ev_rt_now; 1889 mn_now = ev_rt_now;
1316 } 1890 }
1317} 1891}
1326ev_unref (EV_P) 1900ev_unref (EV_P)
1327{ 1901{
1328 --activecnt; 1902 --activecnt;
1329} 1903}
1330 1904
1905void
1906ev_now_update (EV_P)
1907{
1908 time_update (EV_A_ 1e100);
1909}
1910
1331static int loop_done; 1911static int loop_done;
1332 1912
1333void 1913void
1334ev_loop (EV_P_ int flags) 1914ev_loop (EV_P_ int flags)
1335{ 1915{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1916 loop_done = EVUNLOOP_CANCEL;
1337 ? EVUNLOOP_ONE
1338 : EVUNLOOP_CANCEL;
1339 1917
1340 while (activecnt) 1918 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1919
1920 do
1341 { 1921 {
1342 /* we might have forked, so reify kernel state if necessary */ 1922#if EV_VERIFY >= 2
1923 ev_loop_verify (EV_A);
1924#endif
1925
1926#ifndef _WIN32
1927 if (expect_false (curpid)) /* penalise the forking check even more */
1928 if (expect_false (getpid () != curpid))
1929 {
1930 curpid = getpid ();
1931 postfork = 1;
1932 }
1933#endif
1934
1343 #if EV_FORK_ENABLE 1935#if EV_FORK_ENABLE
1936 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 1937 if (expect_false (postfork))
1345 if (forkcnt) 1938 if (forkcnt)
1346 { 1939 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1940 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 1941 call_pending (EV_A);
1349 } 1942 }
1350 #endif 1943#endif
1351 1944
1352 /* queue check watchers (and execute them) */ 1945 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 1946 if (expect_false (preparecnt))
1354 { 1947 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1948 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 1949 call_pending (EV_A);
1357 } 1950 }
1358 1951
1952 if (expect_false (!activecnt))
1953 break;
1954
1359 /* we might have forked, so reify kernel state if necessary */ 1955 /* we might have forked, so reify kernel state if necessary */
1360 if (expect_false (postfork)) 1956 if (expect_false (postfork))
1361 loop_fork (EV_A); 1957 loop_fork (EV_A);
1362 1958
1363 /* update fd-related kernel structures */ 1959 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 1960 fd_reify (EV_A);
1365 1961
1366 /* calculate blocking time */ 1962 /* calculate blocking time */
1367 { 1963 {
1368 double block; 1964 ev_tstamp waittime = 0.;
1965 ev_tstamp sleeptime = 0.;
1369 1966
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 1967 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1371 block = 0.; /* do not block at all */
1372 else
1373 { 1968 {
1374 /* update time to cancel out callback processing overhead */ 1969 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A); 1970 time_update (EV_A_ 1e100);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384 1971
1385 block = MAX_BLOCKTIME; 1972 waittime = MAX_BLOCKTIME;
1386 1973
1387 if (timercnt) 1974 if (timercnt)
1388 { 1975 {
1389 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1976 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1390 if (block > to) block = to; 1977 if (waittime > to) waittime = to;
1391 } 1978 }
1392 1979
1393#if EV_PERIODIC_ENABLE 1980#if EV_PERIODIC_ENABLE
1394 if (periodiccnt) 1981 if (periodiccnt)
1395 { 1982 {
1396 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1983 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1397 if (block > to) block = to; 1984 if (waittime > to) waittime = to;
1398 } 1985 }
1399#endif 1986#endif
1400 1987
1401 if (expect_false (block < 0.)) block = 0.; 1988 if (expect_false (waittime < timeout_blocktime))
1989 waittime = timeout_blocktime;
1990
1991 sleeptime = waittime - backend_fudge;
1992
1993 if (expect_true (sleeptime > io_blocktime))
1994 sleeptime = io_blocktime;
1995
1996 if (sleeptime)
1997 {
1998 ev_sleep (sleeptime);
1999 waittime -= sleeptime;
2000 }
1402 } 2001 }
1403 2002
2003 ++loop_count;
1404 backend_poll (EV_A_ block); 2004 backend_poll (EV_A_ waittime);
2005
2006 /* update ev_rt_now, do magic */
2007 time_update (EV_A_ waittime + sleeptime);
1405 } 2008 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 2009
1410 /* queue pending timers and reschedule them */ 2010 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 2011 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 2012#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 2013 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 2014#endif
1415 2015
2016#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 2017 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 2018 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2019#endif
1419 2020
1420 /* queue check watchers, to be executed first */ 2021 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 2022 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1423 2024
1424 call_pending (EV_A); 2025 call_pending (EV_A);
1425
1426 if (expect_false (loop_done))
1427 break;
1428 } 2026 }
2027 while (expect_true (
2028 activecnt
2029 && !loop_done
2030 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2031 ));
1429 2032
1430 if (loop_done == EVUNLOOP_ONE) 2033 if (loop_done == EVUNLOOP_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 2034 loop_done = EVUNLOOP_CANCEL;
1432} 2035}
1433 2036
1460 head = &(*head)->next; 2063 head = &(*head)->next;
1461 } 2064 }
1462} 2065}
1463 2066
1464void inline_speed 2067void inline_speed
1465ev_clear_pending (EV_P_ W w) 2068clear_pending (EV_P_ W w)
1466{ 2069{
1467 if (w->pending) 2070 if (w->pending)
1468 { 2071 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2072 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1470 w->pending = 0; 2073 w->pending = 0;
1471 } 2074 }
1472} 2075}
1473 2076
2077int
2078ev_clear_pending (EV_P_ void *w)
2079{
2080 W w_ = (W)w;
2081 int pending = w_->pending;
2082
2083 if (expect_true (pending))
2084 {
2085 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2086 w_->pending = 0;
2087 p->w = 0;
2088 return p->events;
2089 }
2090 else
2091 return 0;
2092}
2093
2094void inline_size
2095pri_adjust (EV_P_ W w)
2096{
2097 int pri = w->priority;
2098 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2099 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2100 w->priority = pri;
2101}
2102
1474void inline_speed 2103void inline_speed
1475ev_start (EV_P_ W w, int active) 2104ev_start (EV_P_ W w, int active)
1476{ 2105{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2106 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 2107 w->active = active;
1481 ev_ref (EV_A); 2108 ev_ref (EV_A);
1482} 2109}
1483 2110
1484void inline_size 2111void inline_size
1488 w->active = 0; 2115 w->active = 0;
1489} 2116}
1490 2117
1491/*****************************************************************************/ 2118/*****************************************************************************/
1492 2119
1493void 2120void noinline
1494ev_io_start (EV_P_ ev_io *w) 2121ev_io_start (EV_P_ ev_io *w)
1495{ 2122{
1496 int fd = w->fd; 2123 int fd = w->fd;
1497 2124
1498 if (expect_false (ev_is_active (w))) 2125 if (expect_false (ev_is_active (w)))
1499 return; 2126 return;
1500 2127
1501 assert (("ev_io_start called with negative fd", fd >= 0)); 2128 assert (("ev_io_start called with negative fd", fd >= 0));
2129 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2130
2131 EV_FREQUENT_CHECK;
1502 2132
1503 ev_start (EV_A_ (W)w, 1); 2133 ev_start (EV_A_ (W)w, 1);
1504 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2134 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2135 wlist_add (&anfds[fd].head, (WL)w);
1506 2136
1507 fd_change (EV_A_ fd); 2137 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1508} 2138 w->events &= ~EV_IOFDSET;
1509 2139
1510void 2140 EV_FREQUENT_CHECK;
2141}
2142
2143void noinline
1511ev_io_stop (EV_P_ ev_io *w) 2144ev_io_stop (EV_P_ ev_io *w)
1512{ 2145{
1513 ev_clear_pending (EV_A_ (W)w); 2146 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 2147 if (expect_false (!ev_is_active (w)))
1515 return; 2148 return;
1516 2149
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2150 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 2151
2152 EV_FREQUENT_CHECK;
2153
1519 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2154 wlist_del (&anfds[w->fd].head, (WL)w);
1520 ev_stop (EV_A_ (W)w); 2155 ev_stop (EV_A_ (W)w);
1521 2156
1522 fd_change (EV_A_ w->fd); 2157 fd_change (EV_A_ w->fd, 1);
1523}
1524 2158
1525void 2159 EV_FREQUENT_CHECK;
2160}
2161
2162void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 2163ev_timer_start (EV_P_ ev_timer *w)
1527{ 2164{
1528 if (expect_false (ev_is_active (w))) 2165 if (expect_false (ev_is_active (w)))
1529 return; 2166 return;
1530 2167
1531 ((WT)w)->at += mn_now; 2168 ev_at (w) += mn_now;
1532 2169
1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2170 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1534 2171
2172 EV_FREQUENT_CHECK;
2173
2174 ++timercnt;
1535 ev_start (EV_A_ (W)w, ++timercnt); 2175 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2176 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1537 timers [timercnt - 1] = w; 2177 ANHE_w (timers [ev_active (w)]) = (WT)w;
1538 upheap ((WT *)timers, timercnt - 1); 2178 ANHE_at_cache (timers [ev_active (w)]);
2179 upheap (timers, ev_active (w));
1539 2180
2181 EV_FREQUENT_CHECK;
2182
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2183 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1541} 2184}
1542 2185
1543void 2186void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 2187ev_timer_stop (EV_P_ ev_timer *w)
1545{ 2188{
1546 ev_clear_pending (EV_A_ (W)w); 2189 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 2190 if (expect_false (!ev_is_active (w)))
1548 return; 2191 return;
1549 2192
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2193 EV_FREQUENT_CHECK;
1551 2194
1552 { 2195 {
1553 int active = ((W)w)->active; 2196 int active = ev_active (w);
1554 2197
2198 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2199
2200 --timercnt;
2201
1555 if (expect_true (--active < --timercnt)) 2202 if (expect_true (active < timercnt + HEAP0))
1556 { 2203 {
1557 timers [active] = timers [timercnt]; 2204 timers [active] = timers [timercnt + HEAP0];
1558 adjustheap ((WT *)timers, timercnt, active); 2205 adjustheap (timers, timercnt, active);
1559 } 2206 }
1560 } 2207 }
1561 2208
1562 ((WT)w)->at -= mn_now; 2209 EV_FREQUENT_CHECK;
2210
2211 ev_at (w) -= mn_now;
1563 2212
1564 ev_stop (EV_A_ (W)w); 2213 ev_stop (EV_A_ (W)w);
1565} 2214}
1566 2215
1567void 2216void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 2217ev_timer_again (EV_P_ ev_timer *w)
1569{ 2218{
2219 EV_FREQUENT_CHECK;
2220
1570 if (ev_is_active (w)) 2221 if (ev_is_active (w))
1571 { 2222 {
1572 if (w->repeat) 2223 if (w->repeat)
1573 { 2224 {
1574 ((WT)w)->at = mn_now + w->repeat; 2225 ev_at (w) = mn_now + w->repeat;
2226 ANHE_at_cache (timers [ev_active (w)]);
1575 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2227 adjustheap (timers, timercnt, ev_active (w));
1576 } 2228 }
1577 else 2229 else
1578 ev_timer_stop (EV_A_ w); 2230 ev_timer_stop (EV_A_ w);
1579 } 2231 }
1580 else if (w->repeat) 2232 else if (w->repeat)
1581 { 2233 {
1582 w->at = w->repeat; 2234 ev_at (w) = w->repeat;
1583 ev_timer_start (EV_A_ w); 2235 ev_timer_start (EV_A_ w);
1584 } 2236 }
2237
2238 EV_FREQUENT_CHECK;
1585} 2239}
1586 2240
1587#if EV_PERIODIC_ENABLE 2241#if EV_PERIODIC_ENABLE
1588void 2242void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 2243ev_periodic_start (EV_P_ ev_periodic *w)
1590{ 2244{
1591 if (expect_false (ev_is_active (w))) 2245 if (expect_false (ev_is_active (w)))
1592 return; 2246 return;
1593 2247
1594 if (w->reschedule_cb) 2248 if (w->reschedule_cb)
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2249 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 2250 else if (w->interval)
1597 { 2251 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2252 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 2253 /* this formula differs from the one in periodic_reify because we do not always round up */
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2254 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1601 } 2255 }
2256 else
2257 ev_at (w) = w->offset;
1602 2258
2259 EV_FREQUENT_CHECK;
2260
2261 ++periodiccnt;
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 2262 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2263 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 2264 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 2265 ANHE_at_cache (periodics [ev_active (w)]);
2266 upheap (periodics, ev_active (w));
1607 2267
2268 EV_FREQUENT_CHECK;
2269
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2270 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1609} 2271}
1610 2272
1611void 2273void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 2274ev_periodic_stop (EV_P_ ev_periodic *w)
1613{ 2275{
1614 ev_clear_pending (EV_A_ (W)w); 2276 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 2277 if (expect_false (!ev_is_active (w)))
1616 return; 2278 return;
1617 2279
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2280 EV_FREQUENT_CHECK;
1619 2281
1620 { 2282 {
1621 int active = ((W)w)->active; 2283 int active = ev_active (w);
1622 2284
2285 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2286
2287 --periodiccnt;
2288
1623 if (expect_true (--active < --periodiccnt)) 2289 if (expect_true (active < periodiccnt + HEAP0))
1624 { 2290 {
1625 periodics [active] = periodics [periodiccnt]; 2291 periodics [active] = periodics [periodiccnt + HEAP0];
1626 adjustheap ((WT *)periodics, periodiccnt, active); 2292 adjustheap (periodics, periodiccnt, active);
1627 } 2293 }
1628 } 2294 }
1629 2295
2296 EV_FREQUENT_CHECK;
2297
1630 ev_stop (EV_A_ (W)w); 2298 ev_stop (EV_A_ (W)w);
1631} 2299}
1632 2300
1633void 2301void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 2302ev_periodic_again (EV_P_ ev_periodic *w)
1635{ 2303{
1636 /* TODO: use adjustheap and recalculation */ 2304 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 2305 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 2306 ev_periodic_start (EV_A_ w);
1641 2309
1642#ifndef SA_RESTART 2310#ifndef SA_RESTART
1643# define SA_RESTART 0 2311# define SA_RESTART 0
1644#endif 2312#endif
1645 2313
1646void 2314void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 2315ev_signal_start (EV_P_ ev_signal *w)
1648{ 2316{
1649#if EV_MULTIPLICITY 2317#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2318 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif 2319#endif
1652 if (expect_false (ev_is_active (w))) 2320 if (expect_false (ev_is_active (w)))
1653 return; 2321 return;
1654 2322
1655 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2323 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1656 2324
2325 evpipe_init (EV_A);
2326
2327 EV_FREQUENT_CHECK;
2328
2329 {
2330#ifndef _WIN32
2331 sigset_t full, prev;
2332 sigfillset (&full);
2333 sigprocmask (SIG_SETMASK, &full, &prev);
2334#endif
2335
2336 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2337
2338#ifndef _WIN32
2339 sigprocmask (SIG_SETMASK, &prev, 0);
2340#endif
2341 }
2342
1657 ev_start (EV_A_ (W)w, 1); 2343 ev_start (EV_A_ (W)w, 1);
1658 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1659 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2344 wlist_add (&signals [w->signum - 1].head, (WL)w);
1660 2345
1661 if (!((WL)w)->next) 2346 if (!((WL)w)->next)
1662 { 2347 {
1663#if _WIN32 2348#if _WIN32
1664 signal (w->signum, sighandler); 2349 signal (w->signum, ev_sighandler);
1665#else 2350#else
1666 struct sigaction sa; 2351 struct sigaction sa;
1667 sa.sa_handler = sighandler; 2352 sa.sa_handler = ev_sighandler;
1668 sigfillset (&sa.sa_mask); 2353 sigfillset (&sa.sa_mask);
1669 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2354 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1670 sigaction (w->signum, &sa, 0); 2355 sigaction (w->signum, &sa, 0);
1671#endif 2356#endif
1672 } 2357 }
1673}
1674 2358
1675void 2359 EV_FREQUENT_CHECK;
2360}
2361
2362void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 2363ev_signal_stop (EV_P_ ev_signal *w)
1677{ 2364{
1678 ev_clear_pending (EV_A_ (W)w); 2365 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 2366 if (expect_false (!ev_is_active (w)))
1680 return; 2367 return;
1681 2368
2369 EV_FREQUENT_CHECK;
2370
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2371 wlist_del (&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 2372 ev_stop (EV_A_ (W)w);
1684 2373
1685 if (!signals [w->signum - 1].head) 2374 if (!signals [w->signum - 1].head)
1686 signal (w->signum, SIG_DFL); 2375 signal (w->signum, SIG_DFL);
2376
2377 EV_FREQUENT_CHECK;
1687} 2378}
1688 2379
1689void 2380void
1690ev_child_start (EV_P_ ev_child *w) 2381ev_child_start (EV_P_ ev_child *w)
1691{ 2382{
1693 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2384 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1694#endif 2385#endif
1695 if (expect_false (ev_is_active (w))) 2386 if (expect_false (ev_is_active (w)))
1696 return; 2387 return;
1697 2388
2389 EV_FREQUENT_CHECK;
2390
1698 ev_start (EV_A_ (W)w, 1); 2391 ev_start (EV_A_ (W)w, 1);
1699 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2392 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2393
2394 EV_FREQUENT_CHECK;
1700} 2395}
1701 2396
1702void 2397void
1703ev_child_stop (EV_P_ ev_child *w) 2398ev_child_stop (EV_P_ ev_child *w)
1704{ 2399{
1705 ev_clear_pending (EV_A_ (W)w); 2400 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 2401 if (expect_false (!ev_is_active (w)))
1707 return; 2402 return;
1708 2403
2404 EV_FREQUENT_CHECK;
2405
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2406 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 2407 ev_stop (EV_A_ (W)w);
2408
2409 EV_FREQUENT_CHECK;
1711} 2410}
1712 2411
1713#if EV_STAT_ENABLE 2412#if EV_STAT_ENABLE
1714 2413
1715# ifdef _WIN32 2414# ifdef _WIN32
1718# endif 2417# endif
1719 2418
1720#define DEF_STAT_INTERVAL 5.0074891 2419#define DEF_STAT_INTERVAL 5.0074891
1721#define MIN_STAT_INTERVAL 0.1074891 2420#define MIN_STAT_INTERVAL 0.1074891
1722 2421
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2422static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 2423
1725#if EV_USE_INOTIFY 2424#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 2425# define EV_INOTIFY_BUFSIZE 8192
1727 2426
1728static void noinline 2427static void noinline
1733 if (w->wd < 0) 2432 if (w->wd < 0)
1734 { 2433 {
1735 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2434 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1736 2435
1737 /* monitor some parent directory for speedup hints */ 2436 /* monitor some parent directory for speedup hints */
2437 /* note that exceeding the hardcoded limit is not a correctness issue, */
2438 /* but an efficiency issue only */
1738 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2439 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1739 { 2440 {
1740 char path [4096]; 2441 char path [4096];
1741 strcpy (path, w->path); 2442 strcpy (path, w->path);
1742 2443
1782 2483
1783static void noinline 2484static void noinline
1784infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2485infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1785{ 2486{
1786 if (slot < 0) 2487 if (slot < 0)
1787 /* overflow, need to check for all hahs slots */ 2488 /* overflow, need to check for all hash slots */
1788 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2489 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1789 infy_wd (EV_A_ slot, wd, ev); 2490 infy_wd (EV_A_ slot, wd, ev);
1790 else 2491 else
1791 { 2492 {
1792 WL w_; 2493 WL w_;
1826infy_init (EV_P) 2527infy_init (EV_P)
1827{ 2528{
1828 if (fs_fd != -2) 2529 if (fs_fd != -2)
1829 return; 2530 return;
1830 2531
2532 /* kernels < 2.6.25 are borked
2533 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2534 */
2535 {
2536 struct utsname buf;
2537 int major, minor, micro;
2538
2539 fs_fd = -1;
2540
2541 if (uname (&buf))
2542 return;
2543
2544 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2545 return;
2546
2547 if (major < 2
2548 || (major == 2 && minor < 6)
2549 || (major == 2 && minor == 6 && micro < 25))
2550 return;
2551 }
2552
1831 fs_fd = inotify_init (); 2553 fs_fd = inotify_init ();
1832 2554
1833 if (fs_fd >= 0) 2555 if (fs_fd >= 0)
1834 { 2556 {
1835 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 2557 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1864 if (fs_fd >= 0) 2586 if (fs_fd >= 0)
1865 infy_add (EV_A_ w); /* re-add, no matter what */ 2587 infy_add (EV_A_ w); /* re-add, no matter what */
1866 else 2588 else
1867 ev_timer_start (EV_A_ &w->timer); 2589 ev_timer_start (EV_A_ &w->timer);
1868 } 2590 }
1869
1870 } 2591 }
1871} 2592}
1872 2593
2594#endif
2595
2596#ifdef _WIN32
2597# define EV_LSTAT(p,b) _stati64 (p, b)
2598#else
2599# define EV_LSTAT(p,b) lstat (p, b)
1873#endif 2600#endif
1874 2601
1875void 2602void
1876ev_stat_stat (EV_P_ ev_stat *w) 2603ev_stat_stat (EV_P_ ev_stat *w)
1877{ 2604{
1879 w->attr.st_nlink = 0; 2606 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 2607 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 2608 w->attr.st_nlink = 1;
1882} 2609}
1883 2610
1884void noinline 2611static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2612stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 2613{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2614 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 2615
1889 /* we copy this here each the time so that */ 2616 /* we copy this here each the time so that */
1890 /* prev has the old value when the callback gets invoked */ 2617 /* prev has the old value when the callback gets invoked */
1891 w->prev = w->attr; 2618 w->prev = w->attr;
1892 ev_stat_stat (EV_A_ w); 2619 ev_stat_stat (EV_A_ w);
1893 2620
1894 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2621 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2622 if (
2623 w->prev.st_dev != w->attr.st_dev
2624 || w->prev.st_ino != w->attr.st_ino
2625 || w->prev.st_mode != w->attr.st_mode
2626 || w->prev.st_nlink != w->attr.st_nlink
2627 || w->prev.st_uid != w->attr.st_uid
2628 || w->prev.st_gid != w->attr.st_gid
2629 || w->prev.st_rdev != w->attr.st_rdev
2630 || w->prev.st_size != w->attr.st_size
2631 || w->prev.st_atime != w->attr.st_atime
2632 || w->prev.st_mtime != w->attr.st_mtime
2633 || w->prev.st_ctime != w->attr.st_ctime
1895 { 2634 ) {
1896 #if EV_USE_INOTIFY 2635 #if EV_USE_INOTIFY
2636 if (fs_fd >= 0)
2637 {
1897 infy_del (EV_A_ w); 2638 infy_del (EV_A_ w);
1898 infy_add (EV_A_ w); 2639 infy_add (EV_A_ w);
1899 ev_stat_stat (EV_A_ w); /* avoid race... */ 2640 ev_stat_stat (EV_A_ w); /* avoid race... */
2641 }
1900 #endif 2642 #endif
1901 2643
1902 ev_feed_event (EV_A_ w, EV_STAT); 2644 ev_feed_event (EV_A_ w, EV_STAT);
1903 } 2645 }
1904} 2646}
1929 else 2671 else
1930#endif 2672#endif
1931 ev_timer_start (EV_A_ &w->timer); 2673 ev_timer_start (EV_A_ &w->timer);
1932 2674
1933 ev_start (EV_A_ (W)w, 1); 2675 ev_start (EV_A_ (W)w, 1);
2676
2677 EV_FREQUENT_CHECK;
1934} 2678}
1935 2679
1936void 2680void
1937ev_stat_stop (EV_P_ ev_stat *w) 2681ev_stat_stop (EV_P_ ev_stat *w)
1938{ 2682{
1939 ev_clear_pending (EV_A_ (W)w); 2683 clear_pending (EV_A_ (W)w);
1940 if (expect_false (!ev_is_active (w))) 2684 if (expect_false (!ev_is_active (w)))
1941 return; 2685 return;
1942 2686
2687 EV_FREQUENT_CHECK;
2688
1943#if EV_USE_INOTIFY 2689#if EV_USE_INOTIFY
1944 infy_del (EV_A_ w); 2690 infy_del (EV_A_ w);
1945#endif 2691#endif
1946 ev_timer_stop (EV_A_ &w->timer); 2692 ev_timer_stop (EV_A_ &w->timer);
1947 2693
1948 ev_stop (EV_A_ (W)w); 2694 ev_stop (EV_A_ (W)w);
1949}
1950#endif
1951 2695
2696 EV_FREQUENT_CHECK;
2697}
2698#endif
2699
2700#if EV_IDLE_ENABLE
1952void 2701void
1953ev_idle_start (EV_P_ ev_idle *w) 2702ev_idle_start (EV_P_ ev_idle *w)
1954{ 2703{
1955 if (expect_false (ev_is_active (w))) 2704 if (expect_false (ev_is_active (w)))
1956 return; 2705 return;
1957 2706
2707 pri_adjust (EV_A_ (W)w);
2708
2709 EV_FREQUENT_CHECK;
2710
2711 {
2712 int active = ++idlecnt [ABSPRI (w)];
2713
2714 ++idleall;
1958 ev_start (EV_A_ (W)w, ++idlecnt); 2715 ev_start (EV_A_ (W)w, active);
2716
1959 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2717 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1960 idles [idlecnt - 1] = w; 2718 idles [ABSPRI (w)][active - 1] = w;
2719 }
2720
2721 EV_FREQUENT_CHECK;
1961} 2722}
1962 2723
1963void 2724void
1964ev_idle_stop (EV_P_ ev_idle *w) 2725ev_idle_stop (EV_P_ ev_idle *w)
1965{ 2726{
1966 ev_clear_pending (EV_A_ (W)w); 2727 clear_pending (EV_A_ (W)w);
1967 if (expect_false (!ev_is_active (w))) 2728 if (expect_false (!ev_is_active (w)))
1968 return; 2729 return;
1969 2730
2731 EV_FREQUENT_CHECK;
2732
1970 { 2733 {
1971 int active = ((W)w)->active; 2734 int active = ev_active (w);
1972 idles [active - 1] = idles [--idlecnt]; 2735
1973 ((W)idles [active - 1])->active = active; 2736 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2737 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2738
2739 ev_stop (EV_A_ (W)w);
2740 --idleall;
1974 } 2741 }
1975 2742
1976 ev_stop (EV_A_ (W)w); 2743 EV_FREQUENT_CHECK;
1977} 2744}
2745#endif
1978 2746
1979void 2747void
1980ev_prepare_start (EV_P_ ev_prepare *w) 2748ev_prepare_start (EV_P_ ev_prepare *w)
1981{ 2749{
1982 if (expect_false (ev_is_active (w))) 2750 if (expect_false (ev_is_active (w)))
1983 return; 2751 return;
2752
2753 EV_FREQUENT_CHECK;
1984 2754
1985 ev_start (EV_A_ (W)w, ++preparecnt); 2755 ev_start (EV_A_ (W)w, ++preparecnt);
1986 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2756 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1987 prepares [preparecnt - 1] = w; 2757 prepares [preparecnt - 1] = w;
2758
2759 EV_FREQUENT_CHECK;
1988} 2760}
1989 2761
1990void 2762void
1991ev_prepare_stop (EV_P_ ev_prepare *w) 2763ev_prepare_stop (EV_P_ ev_prepare *w)
1992{ 2764{
1993 ev_clear_pending (EV_A_ (W)w); 2765 clear_pending (EV_A_ (W)w);
1994 if (expect_false (!ev_is_active (w))) 2766 if (expect_false (!ev_is_active (w)))
1995 return; 2767 return;
1996 2768
2769 EV_FREQUENT_CHECK;
2770
1997 { 2771 {
1998 int active = ((W)w)->active; 2772 int active = ev_active (w);
2773
1999 prepares [active - 1] = prepares [--preparecnt]; 2774 prepares [active - 1] = prepares [--preparecnt];
2000 ((W)prepares [active - 1])->active = active; 2775 ev_active (prepares [active - 1]) = active;
2001 } 2776 }
2002 2777
2003 ev_stop (EV_A_ (W)w); 2778 ev_stop (EV_A_ (W)w);
2779
2780 EV_FREQUENT_CHECK;
2004} 2781}
2005 2782
2006void 2783void
2007ev_check_start (EV_P_ ev_check *w) 2784ev_check_start (EV_P_ ev_check *w)
2008{ 2785{
2009 if (expect_false (ev_is_active (w))) 2786 if (expect_false (ev_is_active (w)))
2010 return; 2787 return;
2788
2789 EV_FREQUENT_CHECK;
2011 2790
2012 ev_start (EV_A_ (W)w, ++checkcnt); 2791 ev_start (EV_A_ (W)w, ++checkcnt);
2013 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2792 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2014 checks [checkcnt - 1] = w; 2793 checks [checkcnt - 1] = w;
2794
2795 EV_FREQUENT_CHECK;
2015} 2796}
2016 2797
2017void 2798void
2018ev_check_stop (EV_P_ ev_check *w) 2799ev_check_stop (EV_P_ ev_check *w)
2019{ 2800{
2020 ev_clear_pending (EV_A_ (W)w); 2801 clear_pending (EV_A_ (W)w);
2021 if (expect_false (!ev_is_active (w))) 2802 if (expect_false (!ev_is_active (w)))
2022 return; 2803 return;
2023 2804
2805 EV_FREQUENT_CHECK;
2806
2024 { 2807 {
2025 int active = ((W)w)->active; 2808 int active = ev_active (w);
2809
2026 checks [active - 1] = checks [--checkcnt]; 2810 checks [active - 1] = checks [--checkcnt];
2027 ((W)checks [active - 1])->active = active; 2811 ev_active (checks [active - 1]) = active;
2028 } 2812 }
2029 2813
2030 ev_stop (EV_A_ (W)w); 2814 ev_stop (EV_A_ (W)w);
2815
2816 EV_FREQUENT_CHECK;
2031} 2817}
2032 2818
2033#if EV_EMBED_ENABLE 2819#if EV_EMBED_ENABLE
2034void noinline 2820void noinline
2035ev_embed_sweep (EV_P_ ev_embed *w) 2821ev_embed_sweep (EV_P_ ev_embed *w)
2036{ 2822{
2037 ev_loop (w->loop, EVLOOP_NONBLOCK); 2823 ev_loop (w->other, EVLOOP_NONBLOCK);
2038} 2824}
2039 2825
2040static void 2826static void
2041embed_cb (EV_P_ ev_io *io, int revents) 2827embed_io_cb (EV_P_ ev_io *io, int revents)
2042{ 2828{
2043 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2829 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2044 2830
2045 if (ev_cb (w)) 2831 if (ev_cb (w))
2046 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2832 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2047 else 2833 else
2048 ev_embed_sweep (loop, w); 2834 ev_loop (w->other, EVLOOP_NONBLOCK);
2049} 2835}
2836
2837static void
2838embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2839{
2840 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2841
2842 {
2843 struct ev_loop *loop = w->other;
2844
2845 while (fdchangecnt)
2846 {
2847 fd_reify (EV_A);
2848 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2849 }
2850 }
2851}
2852
2853static void
2854embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2855{
2856 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2857
2858 {
2859 struct ev_loop *loop = w->other;
2860
2861 ev_loop_fork (EV_A);
2862 }
2863}
2864
2865#if 0
2866static void
2867embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2868{
2869 ev_idle_stop (EV_A_ idle);
2870}
2871#endif
2050 2872
2051void 2873void
2052ev_embed_start (EV_P_ ev_embed *w) 2874ev_embed_start (EV_P_ ev_embed *w)
2053{ 2875{
2054 if (expect_false (ev_is_active (w))) 2876 if (expect_false (ev_is_active (w)))
2055 return; 2877 return;
2056 2878
2057 { 2879 {
2058 struct ev_loop *loop = w->loop; 2880 struct ev_loop *loop = w->other;
2059 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2881 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2060 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2882 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2061 } 2883 }
2884
2885 EV_FREQUENT_CHECK;
2062 2886
2063 ev_set_priority (&w->io, ev_priority (w)); 2887 ev_set_priority (&w->io, ev_priority (w));
2064 ev_io_start (EV_A_ &w->io); 2888 ev_io_start (EV_A_ &w->io);
2065 2889
2890 ev_prepare_init (&w->prepare, embed_prepare_cb);
2891 ev_set_priority (&w->prepare, EV_MINPRI);
2892 ev_prepare_start (EV_A_ &w->prepare);
2893
2894 ev_fork_init (&w->fork, embed_fork_cb);
2895 ev_fork_start (EV_A_ &w->fork);
2896
2897 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2898
2066 ev_start (EV_A_ (W)w, 1); 2899 ev_start (EV_A_ (W)w, 1);
2900
2901 EV_FREQUENT_CHECK;
2067} 2902}
2068 2903
2069void 2904void
2070ev_embed_stop (EV_P_ ev_embed *w) 2905ev_embed_stop (EV_P_ ev_embed *w)
2071{ 2906{
2072 ev_clear_pending (EV_A_ (W)w); 2907 clear_pending (EV_A_ (W)w);
2073 if (expect_false (!ev_is_active (w))) 2908 if (expect_false (!ev_is_active (w)))
2074 return; 2909 return;
2075 2910
2911 EV_FREQUENT_CHECK;
2912
2076 ev_io_stop (EV_A_ &w->io); 2913 ev_io_stop (EV_A_ &w->io);
2914 ev_prepare_stop (EV_A_ &w->prepare);
2915 ev_fork_stop (EV_A_ &w->fork);
2077 2916
2078 ev_stop (EV_A_ (W)w); 2917 EV_FREQUENT_CHECK;
2079} 2918}
2080#endif 2919#endif
2081 2920
2082#if EV_FORK_ENABLE 2921#if EV_FORK_ENABLE
2083void 2922void
2084ev_fork_start (EV_P_ ev_fork *w) 2923ev_fork_start (EV_P_ ev_fork *w)
2085{ 2924{
2086 if (expect_false (ev_is_active (w))) 2925 if (expect_false (ev_is_active (w)))
2087 return; 2926 return;
2927
2928 EV_FREQUENT_CHECK;
2088 2929
2089 ev_start (EV_A_ (W)w, ++forkcnt); 2930 ev_start (EV_A_ (W)w, ++forkcnt);
2090 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2931 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2091 forks [forkcnt - 1] = w; 2932 forks [forkcnt - 1] = w;
2933
2934 EV_FREQUENT_CHECK;
2092} 2935}
2093 2936
2094void 2937void
2095ev_fork_stop (EV_P_ ev_fork *w) 2938ev_fork_stop (EV_P_ ev_fork *w)
2096{ 2939{
2097 ev_clear_pending (EV_A_ (W)w); 2940 clear_pending (EV_A_ (W)w);
2098 if (expect_false (!ev_is_active (w))) 2941 if (expect_false (!ev_is_active (w)))
2099 return; 2942 return;
2100 2943
2944 EV_FREQUENT_CHECK;
2945
2101 { 2946 {
2102 int active = ((W)w)->active; 2947 int active = ev_active (w);
2948
2103 forks [active - 1] = forks [--forkcnt]; 2949 forks [active - 1] = forks [--forkcnt];
2104 ((W)forks [active - 1])->active = active; 2950 ev_active (forks [active - 1]) = active;
2105 } 2951 }
2106 2952
2107 ev_stop (EV_A_ (W)w); 2953 ev_stop (EV_A_ (W)w);
2954
2955 EV_FREQUENT_CHECK;
2956}
2957#endif
2958
2959#if EV_ASYNC_ENABLE
2960void
2961ev_async_start (EV_P_ ev_async *w)
2962{
2963 if (expect_false (ev_is_active (w)))
2964 return;
2965
2966 evpipe_init (EV_A);
2967
2968 EV_FREQUENT_CHECK;
2969
2970 ev_start (EV_A_ (W)w, ++asynccnt);
2971 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2972 asyncs [asynccnt - 1] = w;
2973
2974 EV_FREQUENT_CHECK;
2975}
2976
2977void
2978ev_async_stop (EV_P_ ev_async *w)
2979{
2980 clear_pending (EV_A_ (W)w);
2981 if (expect_false (!ev_is_active (w)))
2982 return;
2983
2984 EV_FREQUENT_CHECK;
2985
2986 {
2987 int active = ev_active (w);
2988
2989 asyncs [active - 1] = asyncs [--asynccnt];
2990 ev_active (asyncs [active - 1]) = active;
2991 }
2992
2993 ev_stop (EV_A_ (W)w);
2994
2995 EV_FREQUENT_CHECK;
2996}
2997
2998void
2999ev_async_send (EV_P_ ev_async *w)
3000{
3001 w->sent = 1;
3002 evpipe_write (EV_A_ &gotasync);
2108} 3003}
2109#endif 3004#endif
2110 3005
2111/*****************************************************************************/ 3006/*****************************************************************************/
2112 3007
2122once_cb (EV_P_ struct ev_once *once, int revents) 3017once_cb (EV_P_ struct ev_once *once, int revents)
2123{ 3018{
2124 void (*cb)(int revents, void *arg) = once->cb; 3019 void (*cb)(int revents, void *arg) = once->cb;
2125 void *arg = once->arg; 3020 void *arg = once->arg;
2126 3021
2127 ev_io_stop (EV_A_ &once->io); 3022 ev_io_stop (EV_A_ &once->io);
2128 ev_timer_stop (EV_A_ &once->to); 3023 ev_timer_stop (EV_A_ &once->to);
2129 ev_free (once); 3024 ev_free (once);
2130 3025
2131 cb (revents, arg); 3026 cb (revents, arg);
2132} 3027}
2133 3028
2134static void 3029static void
2135once_cb_io (EV_P_ ev_io *w, int revents) 3030once_cb_io (EV_P_ ev_io *w, int revents)
2136{ 3031{
2137 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3032 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3033
3034 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2138} 3035}
2139 3036
2140static void 3037static void
2141once_cb_to (EV_P_ ev_timer *w, int revents) 3038once_cb_to (EV_P_ ev_timer *w, int revents)
2142{ 3039{
2143 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3040 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3041
3042 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2144} 3043}
2145 3044
2146void 3045void
2147ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3046ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2148{ 3047{
2170 ev_timer_set (&once->to, timeout, 0.); 3069 ev_timer_set (&once->to, timeout, 0.);
2171 ev_timer_start (EV_A_ &once->to); 3070 ev_timer_start (EV_A_ &once->to);
2172 } 3071 }
2173} 3072}
2174 3073
3074#if EV_MULTIPLICITY
3075 #include "ev_wrap.h"
3076#endif
3077
2175#ifdef __cplusplus 3078#ifdef __cplusplus
2176} 3079}
2177#endif 3080#endif
2178 3081

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines