ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.135 by root, Sat Nov 24 06:23:27 2007 UTC vs.
Revision 1.156 by root, Wed Nov 28 17:50:13 2007 UTC

94# else 94# else
95# define EV_USE_PORT 0 95# define EV_USE_PORT 0
96# endif 96# endif
97# endif 97# endif
98 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
99#endif 107#endif
100 108
101#include <math.h> 109#include <math.h>
102#include <stdlib.h> 110#include <stdlib.h>
103#include <fcntl.h> 111#include <fcntl.h>
110#include <sys/types.h> 118#include <sys/types.h>
111#include <time.h> 119#include <time.h>
112 120
113#include <signal.h> 121#include <signal.h>
114 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
115#ifndef _WIN32 129#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 130# include <sys/time.h>
118# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
119#else 133#else
120# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 135# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
156 170
157#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 172# define EV_USE_PORT 0
159#endif 173#endif
160 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
161/**/ 195/**/
162 196
163#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
172 206
173#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 208# include <winsock.h>
175#endif 209#endif
176 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
177/**/ 219/**/
178 220
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
183
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189 224
190#if __GNUC__ >= 3 225#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value)) 226# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
192# define inline static inline 233# define inline_speed static inline
234# endif
193#else 235#else
194# define expect(expr,value) (expr) 236# define expect(expr,value) (expr)
237# define inline_speed static
195# define inline static 238# define inline_size static
239# define noinline
196#endif 240#endif
197 241
198#define expect_false(expr) expect ((expr) != 0, 0) 242#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 243#define expect_true(expr) expect ((expr) != 0, 1)
200 244
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 246#define ABSPRI(w) ((w)->priority - EV_MINPRI)
203 247
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 249#define EMPTY2(a,b) /* used to suppress some warnings */
206 250
207typedef struct ev_watcher *W; 251typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 252typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 253typedef ev_watcher_time *WT;
210 254
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
212 256
213#ifdef _WIN32 257#ifdef _WIN32
214# include "ev_win32.c" 258# include "ev_win32.c"
216 260
217/*****************************************************************************/ 261/*****************************************************************************/
218 262
219static void (*syserr_cb)(const char *msg); 263static void (*syserr_cb)(const char *msg);
220 264
265void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 266ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 267{
223 syserr_cb = cb; 268 syserr_cb = cb;
224} 269}
225 270
226static void 271static void noinline
227syserr (const char *msg) 272syserr (const char *msg)
228{ 273{
229 if (!msg) 274 if (!msg)
230 msg = "(libev) system error"; 275 msg = "(libev) system error";
231 276
238 } 283 }
239} 284}
240 285
241static void *(*alloc)(void *ptr, long size); 286static void *(*alloc)(void *ptr, long size);
242 287
288void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 289ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 290{
245 alloc = cb; 291 alloc = cb;
246} 292}
247 293
248static void * 294inline_speed void *
249ev_realloc (void *ptr, long size) 295ev_realloc (void *ptr, long size)
250{ 296{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
252 298
253 if (!ptr && size) 299 if (!ptr && size)
277typedef struct 323typedef struct
278{ 324{
279 W w; 325 W w;
280 int events; 326 int events;
281} ANPENDING; 327} ANPENDING;
328
329#if EV_USE_INOTIFY
330typedef struct
331{
332 WL head;
333} ANFS;
334#endif
282 335
283#if EV_MULTIPLICITY 336#if EV_MULTIPLICITY
284 337
285 struct ev_loop 338 struct ev_loop
286 { 339 {
320 gettimeofday (&tv, 0); 373 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 374 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 375#endif
323} 376}
324 377
325inline ev_tstamp 378ev_tstamp inline_size
326get_clock (void) 379get_clock (void)
327{ 380{
328#if EV_USE_MONOTONIC 381#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 382 if (expect_true (have_monotonic))
330 { 383 {
373#define array_free(stem, idx) \ 426#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 428
376/*****************************************************************************/ 429/*****************************************************************************/
377 430
378static void 431void noinline
379anfds_init (ANFD *base, int count)
380{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389}
390
391void
392ev_feed_event (EV_P_ void *w, int revents) 432ev_feed_event (EV_P_ void *w, int revents)
393{ 433{
394 W w_ = (W)w; 434 W w_ = (W)w;
395 435
396 if (expect_false (w_->pending)) 436 if (expect_false (w_->pending))
397 { 437 {
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
399 return; 439 return;
400 } 440 }
401
402 if (expect_false (!w_->cb))
403 return;
404 441
405 w_->pending = ++pendingcnt [ABSPRI (w_)]; 442 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2); 443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409} 446}
410 447
411static void 448void inline_size
412queue_events (EV_P_ W *events, int eventcnt, int type) 449queue_events (EV_P_ W *events, int eventcnt, int type)
413{ 450{
414 int i; 451 int i;
415 452
416 for (i = 0; i < eventcnt; ++i) 453 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type); 454 ev_feed_event (EV_A_ events [i], type);
418} 455}
419 456
420inline void 457/*****************************************************************************/
458
459void inline_size
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
421fd_event (EV_P_ int fd, int revents) 473fd_event (EV_P_ int fd, int revents)
422{ 474{
423 ANFD *anfd = anfds + fd; 475 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 476 ev_io *w;
425 477
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 479 {
428 int ev = w->events & revents; 480 int ev = w->events & revents;
429 481
430 if (ev) 482 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 483 ev_feed_event (EV_A_ (W)w, ev);
436ev_feed_fd_event (EV_P_ int fd, int revents) 488ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 489{
438 fd_event (EV_A_ fd, revents); 490 fd_event (EV_A_ fd, revents);
439} 491}
440 492
441/*****************************************************************************/ 493void inline_size
442
443inline void
444fd_reify (EV_P) 494fd_reify (EV_P)
445{ 495{
446 int i; 496 int i;
447 497
448 for (i = 0; i < fdchangecnt; ++i) 498 for (i = 0; i < fdchangecnt; ++i)
449 { 499 {
450 int fd = fdchanges [i]; 500 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 501 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 502 ev_io *w;
453 503
454 int events = 0; 504 int events = 0;
455 505
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 507 events |= w->events;
458 508
459#if EV_SELECT_IS_WINSOCKET 509#if EV_SELECT_IS_WINSOCKET
460 if (events) 510 if (events)
461 { 511 {
472 } 522 }
473 523
474 fdchangecnt = 0; 524 fdchangecnt = 0;
475} 525}
476 526
477static void 527void inline_size
478fd_change (EV_P_ int fd) 528fd_change (EV_P_ int fd)
479{ 529{
480 if (expect_false (anfds [fd].reify)) 530 if (expect_false (anfds [fd].reify))
481 return; 531 return;
482 532
485 ++fdchangecnt; 535 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 537 fdchanges [fdchangecnt - 1] = fd;
488} 538}
489 539
490static void 540void inline_speed
491fd_kill (EV_P_ int fd) 541fd_kill (EV_P_ int fd)
492{ 542{
493 struct ev_io *w; 543 ev_io *w;
494 544
495 while ((w = (struct ev_io *)anfds [fd].head)) 545 while ((w = (ev_io *)anfds [fd].head))
496 { 546 {
497 ev_io_stop (EV_A_ w); 547 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 549 }
500} 550}
501 551
502inline int 552int inline_size
503fd_valid (int fd) 553fd_valid (int fd)
504{ 554{
505#ifdef _WIN32 555#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 556 return _get_osfhandle (fd) != -1;
507#else 557#else
508 return fcntl (fd, F_GETFD) != -1; 558 return fcntl (fd, F_GETFD) != -1;
509#endif 559#endif
510} 560}
511 561
512/* called on EBADF to verify fds */ 562/* called on EBADF to verify fds */
513static void 563static void noinline
514fd_ebadf (EV_P) 564fd_ebadf (EV_P)
515{ 565{
516 int fd; 566 int fd;
517 567
518 for (fd = 0; fd < anfdmax; ++fd) 568 for (fd = 0; fd < anfdmax; ++fd)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 570 if (!fd_valid (fd) == -1 && errno == EBADF)
521 fd_kill (EV_A_ fd); 571 fd_kill (EV_A_ fd);
522} 572}
523 573
524/* called on ENOMEM in select/poll to kill some fds and retry */ 574/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 575static void noinline
526fd_enomem (EV_P) 576fd_enomem (EV_P)
527{ 577{
528 int fd; 578 int fd;
529 579
530 for (fd = anfdmax; fd--; ) 580 for (fd = anfdmax; fd--; )
534 return; 584 return;
535 } 585 }
536} 586}
537 587
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 588/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 589static void noinline
540fd_rearm_all (EV_P) 590fd_rearm_all (EV_P)
541{ 591{
542 int fd; 592 int fd;
543 593
544 /* this should be highly optimised to not do anything but set a flag */ 594 /* this should be highly optimised to not do anything but set a flag */
550 } 600 }
551} 601}
552 602
553/*****************************************************************************/ 603/*****************************************************************************/
554 604
555static void 605void inline_speed
556upheap (WT *heap, int k) 606upheap (WT *heap, int k)
557{ 607{
558 WT w = heap [k]; 608 WT w = heap [k];
559 609
560 while (k && heap [k >> 1]->at > w->at) 610 while (k && heap [k >> 1]->at > w->at)
567 heap [k] = w; 617 heap [k] = w;
568 ((W)heap [k])->active = k + 1; 618 ((W)heap [k])->active = k + 1;
569 619
570} 620}
571 621
572static void 622void inline_speed
573downheap (WT *heap, int N, int k) 623downheap (WT *heap, int N, int k)
574{ 624{
575 WT w = heap [k]; 625 WT w = heap [k];
576 626
577 while (k < (N >> 1)) 627 while (k < (N >> 1))
591 641
592 heap [k] = w; 642 heap [k] = w;
593 ((W)heap [k])->active = k + 1; 643 ((W)heap [k])->active = k + 1;
594} 644}
595 645
596inline void 646void inline_size
597adjustheap (WT *heap, int N, int k) 647adjustheap (WT *heap, int N, int k)
598{ 648{
599 upheap (heap, k); 649 upheap (heap, k);
600 downheap (heap, N, k); 650 downheap (heap, N, k);
601} 651}
611static ANSIG *signals; 661static ANSIG *signals;
612static int signalmax; 662static int signalmax;
613 663
614static int sigpipe [2]; 664static int sigpipe [2];
615static sig_atomic_t volatile gotsig; 665static sig_atomic_t volatile gotsig;
616static struct ev_io sigev; 666static ev_io sigev;
617 667
618static void 668void inline_size
619signals_init (ANSIG *base, int count) 669signals_init (ANSIG *base, int count)
620{ 670{
621 while (count--) 671 while (count--)
622 { 672 {
623 base->head = 0; 673 base->head = 0;
643 write (sigpipe [1], &signum, 1); 693 write (sigpipe [1], &signum, 1);
644 errno = old_errno; 694 errno = old_errno;
645 } 695 }
646} 696}
647 697
648void 698void noinline
649ev_feed_signal_event (EV_P_ int signum) 699ev_feed_signal_event (EV_P_ int signum)
650{ 700{
651 WL w; 701 WL w;
652 702
653#if EV_MULTIPLICITY 703#if EV_MULTIPLICITY
664 for (w = signals [signum].head; w; w = w->next) 714 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666} 716}
667 717
668static void 718static void
669sigcb (EV_P_ struct ev_io *iow, int revents) 719sigcb (EV_P_ ev_io *iow, int revents)
670{ 720{
671 int signum; 721 int signum;
672 722
673 read (sigpipe [0], &revents, 1); 723 read (sigpipe [0], &revents, 1);
674 gotsig = 0; 724 gotsig = 0;
676 for (signum = signalmax; signum--; ) 726 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig) 727 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1); 728 ev_feed_signal_event (EV_A_ signum + 1);
679} 729}
680 730
681static void 731void inline_size
682fd_intern (int fd) 732fd_intern (int fd)
683{ 733{
684#ifdef _WIN32 734#ifdef _WIN32
685 int arg = 1; 735 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 738 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 739 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 740#endif
691} 741}
692 742
693static void 743static void noinline
694siginit (EV_P) 744siginit (EV_P)
695{ 745{
696 fd_intern (sigpipe [0]); 746 fd_intern (sigpipe [0]);
697 fd_intern (sigpipe [1]); 747 fd_intern (sigpipe [1]);
698 748
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 751 ev_unref (EV_A); /* child watcher should not keep loop alive */
702} 752}
703 753
704/*****************************************************************************/ 754/*****************************************************************************/
705 755
706static struct ev_child *childs [PID_HASHSIZE]; 756static ev_child *childs [EV_PID_HASHSIZE];
707 757
708#ifndef _WIN32 758#ifndef _WIN32
709 759
710static struct ev_signal childev; 760static ev_signal childev;
711 761
712#ifndef WCONTINUED 762void inline_speed
713# define WCONTINUED 0
714#endif
715
716static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
718{ 764{
719 struct ev_child *w; 765 ev_child *w;
720 766
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid) 768 if (w->pid == pid || !w->pid)
723 { 769 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid; 771 w->rpid = pid;
726 w->rstatus = status; 772 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD); 773 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 } 774 }
729} 775}
730 776
777#ifndef WCONTINUED
778# define WCONTINUED 0
779#endif
780
731static void 781static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 782childcb (EV_P_ ev_signal *sw, int revents)
733{ 783{
734 int pid, status; 784 int pid, status;
735 785
786 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 787 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 788 if (!WCONTINUED
789 || errno != EINVAL
790 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
791 return;
792
738 /* make sure we are called again until all childs have been reaped */ 793 /* make sure we are called again until all childs have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 794 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 795 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 796
742 child_reap (EV_A_ sw, pid, pid, status); 797 child_reap (EV_A_ sw, pid, pid, status);
798 if (EV_PID_HASHSIZE > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 799 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 800}
746 801
747#endif 802#endif
748 803
749/*****************************************************************************/ 804/*****************************************************************************/
775{ 830{
776 return EV_VERSION_MINOR; 831 return EV_VERSION_MINOR;
777} 832}
778 833
779/* return true if we are running with elevated privileges and should ignore env variables */ 834/* return true if we are running with elevated privileges and should ignore env variables */
780static int 835int inline_size
781enable_secure (void) 836enable_secure (void)
782{ 837{
783#ifdef _WIN32 838#ifdef _WIN32
784 return 0; 839 return 0;
785#else 840#else
832ev_backend (EV_P) 887ev_backend (EV_P)
833{ 888{
834 return backend; 889 return backend;
835} 890}
836 891
837static void 892static void noinline
838loop_init (EV_P_ unsigned int flags) 893loop_init (EV_P_ unsigned int flags)
839{ 894{
840 if (!backend) 895 if (!backend)
841 { 896 {
842#if EV_USE_MONOTONIC 897#if EV_USE_MONOTONIC
859 914
860 if (!(flags & 0x0000ffffUL)) 915 if (!(flags & 0x0000ffffUL))
861 flags |= ev_recommended_backends (); 916 flags |= ev_recommended_backends ();
862 917
863 backend = 0; 918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY
921 fs_fd = -2;
922#endif
923
864#if EV_USE_PORT 924#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 926#endif
867#if EV_USE_KQUEUE 927#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 928 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
880 ev_init (&sigev, sigcb); 940 ev_init (&sigev, sigcb);
881 ev_set_priority (&sigev, EV_MAXPRI); 941 ev_set_priority (&sigev, EV_MAXPRI);
882 } 942 }
883} 943}
884 944
885static void 945static void noinline
886loop_destroy (EV_P) 946loop_destroy (EV_P)
887{ 947{
888 int i; 948 int i;
949
950#if EV_USE_INOTIFY
951 if (fs_fd >= 0)
952 close (fs_fd);
953#endif
954
955 if (backend_fd >= 0)
956 close (backend_fd);
889 957
890#if EV_USE_PORT 958#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 959 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 960#endif
893#if EV_USE_KQUEUE 961#if EV_USE_KQUEUE
907 array_free (pending, [i]); 975 array_free (pending, [i]);
908 976
909 /* have to use the microsoft-never-gets-it-right macro */ 977 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0); 978 array_free (fdchange, EMPTY0);
911 array_free (timer, EMPTY0); 979 array_free (timer, EMPTY0);
912#if EV_PERIODICS 980#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 981 array_free (periodic, EMPTY0);
914#endif 982#endif
915 array_free (idle, EMPTY0); 983 array_free (idle, EMPTY0);
916 array_free (prepare, EMPTY0); 984 array_free (prepare, EMPTY0);
917 array_free (check, EMPTY0); 985 array_free (check, EMPTY0);
918 986
919 backend = 0; 987 backend = 0;
920} 988}
921 989
922static void 990void inline_size infy_fork (EV_P);
991
992void inline_size
923loop_fork (EV_P) 993loop_fork (EV_P)
924{ 994{
925#if EV_USE_PORT 995#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 996 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 997#endif
928#if EV_USE_KQUEUE 998#if EV_USE_KQUEUE
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 999 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 1000#endif
931#if EV_USE_EPOLL 1001#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1002 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1003#endif
1004#if EV_USE_INOTIFY
1005 infy_fork (EV_A);
933#endif 1006#endif
934 1007
935 if (ev_is_active (&sigev)) 1008 if (ev_is_active (&sigev))
936 { 1009 {
937 /* default loop */ 1010 /* default loop */
1053 postfork = 1; 1126 postfork = 1;
1054} 1127}
1055 1128
1056/*****************************************************************************/ 1129/*****************************************************************************/
1057 1130
1058static int 1131int inline_size
1059any_pending (EV_P) 1132any_pending (EV_P)
1060{ 1133{
1061 int pri; 1134 int pri;
1062 1135
1063 for (pri = NUMPRI; pri--; ) 1136 for (pri = NUMPRI; pri--; )
1065 return 1; 1138 return 1;
1066 1139
1067 return 0; 1140 return 0;
1068} 1141}
1069 1142
1070inline void 1143void inline_speed
1071call_pending (EV_P) 1144call_pending (EV_P)
1072{ 1145{
1073 int pri; 1146 int pri;
1074 1147
1075 for (pri = NUMPRI; pri--; ) 1148 for (pri = NUMPRI; pri--; )
1077 { 1150 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1151 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1152
1080 if (expect_true (p->w)) 1153 if (expect_true (p->w))
1081 { 1154 {
1155 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1156
1082 p->w->pending = 0; 1157 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1158 EV_CB_INVOKE (p->w, p->events);
1084 } 1159 }
1085 } 1160 }
1086} 1161}
1087 1162
1088inline void 1163void inline_size
1089timers_reify (EV_P) 1164timers_reify (EV_P)
1090{ 1165{
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1166 while (timercnt && ((WT)timers [0])->at <= mn_now)
1092 { 1167 {
1093 struct ev_timer *w = timers [0]; 1168 ev_timer *w = timers [0];
1094 1169
1095 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1096 1171
1097 /* first reschedule or stop timer */ 1172 /* first reschedule or stop timer */
1098 if (w->repeat) 1173 if (w->repeat)
1099 { 1174 {
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1175 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1110 1185
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1112 } 1187 }
1113} 1188}
1114 1189
1115#if EV_PERIODICS 1190#if EV_PERIODIC_ENABLE
1116inline void 1191void inline_size
1117periodics_reify (EV_P) 1192periodics_reify (EV_P)
1118{ 1193{
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1120 { 1195 {
1121 struct ev_periodic *w = periodics [0]; 1196 ev_periodic *w = periodics [0];
1122 1197
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 1199
1125 /* first reschedule or stop timer */ 1200 /* first reschedule or stop timer */
1126 if (w->reschedule_cb) 1201 if (w->reschedule_cb)
1127 { 1202 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1140 1215
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 } 1217 }
1143} 1218}
1144 1219
1145static void 1220static void noinline
1146periodics_reschedule (EV_P) 1221periodics_reschedule (EV_P)
1147{ 1222{
1148 int i; 1223 int i;
1149 1224
1150 /* adjust periodics after time jump */ 1225 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i) 1226 for (i = 0; i < periodiccnt; ++i)
1152 { 1227 {
1153 struct ev_periodic *w = periodics [i]; 1228 ev_periodic *w = periodics [i];
1154 1229
1155 if (w->reschedule_cb) 1230 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval) 1232 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1162 for (i = periodiccnt >> 1; i--; ) 1237 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i); 1238 downheap ((WT *)periodics, periodiccnt, i);
1164} 1239}
1165#endif 1240#endif
1166 1241
1167inline int 1242int inline_size
1168time_update_monotonic (EV_P) 1243time_update_monotonic (EV_P)
1169{ 1244{
1170 mn_now = get_clock (); 1245 mn_now = get_clock ();
1171 1246
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1180 ev_rt_now = ev_time (); 1255 ev_rt_now = ev_time ();
1181 return 1; 1256 return 1;
1182 } 1257 }
1183} 1258}
1184 1259
1185inline void 1260void inline_size
1186time_update (EV_P) 1261time_update (EV_P)
1187{ 1262{
1188 int i; 1263 int i;
1189 1264
1190#if EV_USE_MONOTONIC 1265#if EV_USE_MONOTONIC
1192 { 1267 {
1193 if (time_update_monotonic (EV_A)) 1268 if (time_update_monotonic (EV_A))
1194 { 1269 {
1195 ev_tstamp odiff = rtmn_diff; 1270 ev_tstamp odiff = rtmn_diff;
1196 1271
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1198 { 1281 {
1199 rtmn_diff = ev_rt_now - mn_now; 1282 rtmn_diff = ev_rt_now - mn_now;
1200 1283
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1202 return; /* all is well */ 1285 return; /* all is well */
1204 ev_rt_now = ev_time (); 1287 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 1288 mn_now = get_clock ();
1206 now_floor = mn_now; 1289 now_floor = mn_now;
1207 } 1290 }
1208 1291
1209# if EV_PERIODICS 1292# if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 1293 periodics_reschedule (EV_A);
1211# endif 1294# endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */ 1295 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 } 1297 }
1218 { 1301 {
1219 ev_rt_now = ev_time (); 1302 ev_rt_now = ev_time ();
1220 1303
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 { 1305 {
1223#if EV_PERIODICS 1306#if EV_PERIODIC_ENABLE
1224 periodics_reschedule (EV_A); 1307 periodics_reschedule (EV_A);
1225#endif 1308#endif
1226 1309
1227 /* adjust timers. this is easy, as the offset is the same for all */ 1310 /* adjust timers. this is easy, as the offset is the same for all */
1228 for (i = 0; i < timercnt; ++i) 1311 for (i = 0; i < timercnt; ++i)
1254 ? EVUNLOOP_ONE 1337 ? EVUNLOOP_ONE
1255 : EVUNLOOP_CANCEL; 1338 : EVUNLOOP_CANCEL;
1256 1339
1257 while (activecnt) 1340 while (activecnt)
1258 { 1341 {
1342 /* we might have forked, so reify kernel state if necessary */
1343 #if EV_FORK_ENABLE
1344 if (expect_false (postfork))
1345 if (forkcnt)
1346 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A);
1349 }
1350 #endif
1351
1259 /* queue check watchers (and execute them) */ 1352 /* queue check watchers (and execute them) */
1260 if (expect_false (preparecnt)) 1353 if (expect_false (preparecnt))
1261 { 1354 {
1262 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1263 call_pending (EV_A); 1356 call_pending (EV_A);
1295 { 1388 {
1296 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1389 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1297 if (block > to) block = to; 1390 if (block > to) block = to;
1298 } 1391 }
1299 1392
1300#if EV_PERIODICS 1393#if EV_PERIODIC_ENABLE
1301 if (periodiccnt) 1394 if (periodiccnt)
1302 { 1395 {
1303 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1396 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1304 if (block > to) block = to; 1397 if (block > to) block = to;
1305 } 1398 }
1314 /* update ev_rt_now, do magic */ 1407 /* update ev_rt_now, do magic */
1315 time_update (EV_A); 1408 time_update (EV_A);
1316 1409
1317 /* queue pending timers and reschedule them */ 1410 /* queue pending timers and reschedule them */
1318 timers_reify (EV_A); /* relative timers called last */ 1411 timers_reify (EV_A); /* relative timers called last */
1319#if EV_PERIODICS 1412#if EV_PERIODIC_ENABLE
1320 periodics_reify (EV_A); /* absolute timers called first */ 1413 periodics_reify (EV_A); /* absolute timers called first */
1321#endif 1414#endif
1322 1415
1323 /* queue idle watchers unless io or timers are pending */ 1416 /* queue idle watchers unless other events are pending */
1324 if (idlecnt && !any_pending (EV_A)) 1417 if (idlecnt && !any_pending (EV_A))
1325 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1326 1419
1327 /* queue check watchers, to be executed first */ 1420 /* queue check watchers, to be executed first */
1328 if (expect_false (checkcnt)) 1421 if (expect_false (checkcnt))
1344 loop_done = how; 1437 loop_done = how;
1345} 1438}
1346 1439
1347/*****************************************************************************/ 1440/*****************************************************************************/
1348 1441
1349inline void 1442void inline_size
1350wlist_add (WL *head, WL elem) 1443wlist_add (WL *head, WL elem)
1351{ 1444{
1352 elem->next = *head; 1445 elem->next = *head;
1353 *head = elem; 1446 *head = elem;
1354} 1447}
1355 1448
1356inline void 1449void inline_size
1357wlist_del (WL *head, WL elem) 1450wlist_del (WL *head, WL elem)
1358{ 1451{
1359 while (*head) 1452 while (*head)
1360 { 1453 {
1361 if (*head == elem) 1454 if (*head == elem)
1366 1459
1367 head = &(*head)->next; 1460 head = &(*head)->next;
1368 } 1461 }
1369} 1462}
1370 1463
1371inline void 1464void inline_speed
1372ev_clear_pending (EV_P_ W w) 1465ev_clear_pending (EV_P_ W w)
1373{ 1466{
1374 if (w->pending) 1467 if (w->pending)
1375 { 1468 {
1376 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1469 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1377 w->pending = 0; 1470 w->pending = 0;
1378 } 1471 }
1379} 1472}
1380 1473
1381inline void 1474void inline_speed
1382ev_start (EV_P_ W w, int active) 1475ev_start (EV_P_ W w, int active)
1383{ 1476{
1384 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1385 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1386 1479
1387 w->active = active; 1480 w->active = active;
1388 ev_ref (EV_A); 1481 ev_ref (EV_A);
1389} 1482}
1390 1483
1391inline void 1484void inline_size
1392ev_stop (EV_P_ W w) 1485ev_stop (EV_P_ W w)
1393{ 1486{
1394 ev_unref (EV_A); 1487 ev_unref (EV_A);
1395 w->active = 0; 1488 w->active = 0;
1396} 1489}
1397 1490
1398/*****************************************************************************/ 1491/*****************************************************************************/
1399 1492
1400void 1493void
1401ev_io_start (EV_P_ struct ev_io *w) 1494ev_io_start (EV_P_ ev_io *w)
1402{ 1495{
1403 int fd = w->fd; 1496 int fd = w->fd;
1404 1497
1405 if (expect_false (ev_is_active (w))) 1498 if (expect_false (ev_is_active (w)))
1406 return; 1499 return;
1413 1506
1414 fd_change (EV_A_ fd); 1507 fd_change (EV_A_ fd);
1415} 1508}
1416 1509
1417void 1510void
1418ev_io_stop (EV_P_ struct ev_io *w) 1511ev_io_stop (EV_P_ ev_io *w)
1419{ 1512{
1420 ev_clear_pending (EV_A_ (W)w); 1513 ev_clear_pending (EV_A_ (W)w);
1421 if (expect_false (!ev_is_active (w))) 1514 if (expect_false (!ev_is_active (w)))
1422 return; 1515 return;
1423 1516
1428 1521
1429 fd_change (EV_A_ w->fd); 1522 fd_change (EV_A_ w->fd);
1430} 1523}
1431 1524
1432void 1525void
1433ev_timer_start (EV_P_ struct ev_timer *w) 1526ev_timer_start (EV_P_ ev_timer *w)
1434{ 1527{
1435 if (expect_false (ev_is_active (w))) 1528 if (expect_false (ev_is_active (w)))
1436 return; 1529 return;
1437 1530
1438 ((WT)w)->at += mn_now; 1531 ((WT)w)->at += mn_now;
1439 1532
1440 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1441 1534
1442 ev_start (EV_A_ (W)w, ++timercnt); 1535 ev_start (EV_A_ (W)w, ++timercnt);
1443 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1444 timers [timercnt - 1] = w; 1537 timers [timercnt - 1] = w;
1445 upheap ((WT *)timers, timercnt - 1); 1538 upheap ((WT *)timers, timercnt - 1);
1446 1539
1447 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1448} 1541}
1449 1542
1450void 1543void
1451ev_timer_stop (EV_P_ struct ev_timer *w) 1544ev_timer_stop (EV_P_ ev_timer *w)
1452{ 1545{
1453 ev_clear_pending (EV_A_ (W)w); 1546 ev_clear_pending (EV_A_ (W)w);
1454 if (expect_false (!ev_is_active (w))) 1547 if (expect_false (!ev_is_active (w)))
1455 return; 1548 return;
1456 1549
1457 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1458 1551
1552 {
1553 int active = ((W)w)->active;
1554
1459 if (expect_true (((W)w)->active < timercnt--)) 1555 if (expect_true (--active < --timercnt))
1460 { 1556 {
1461 timers [((W)w)->active - 1] = timers [timercnt]; 1557 timers [active] = timers [timercnt];
1462 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1558 adjustheap ((WT *)timers, timercnt, active);
1463 } 1559 }
1560 }
1464 1561
1465 ((WT)w)->at -= mn_now; 1562 ((WT)w)->at -= mn_now;
1466 1563
1467 ev_stop (EV_A_ (W)w); 1564 ev_stop (EV_A_ (W)w);
1468} 1565}
1469 1566
1470void 1567void
1471ev_timer_again (EV_P_ struct ev_timer *w) 1568ev_timer_again (EV_P_ ev_timer *w)
1472{ 1569{
1473 if (ev_is_active (w)) 1570 if (ev_is_active (w))
1474 { 1571 {
1475 if (w->repeat) 1572 if (w->repeat)
1476 { 1573 {
1485 w->at = w->repeat; 1582 w->at = w->repeat;
1486 ev_timer_start (EV_A_ w); 1583 ev_timer_start (EV_A_ w);
1487 } 1584 }
1488} 1585}
1489 1586
1490#if EV_PERIODICS 1587#if EV_PERIODIC_ENABLE
1491void 1588void
1492ev_periodic_start (EV_P_ struct ev_periodic *w) 1589ev_periodic_start (EV_P_ ev_periodic *w)
1493{ 1590{
1494 if (expect_false (ev_is_active (w))) 1591 if (expect_false (ev_is_active (w)))
1495 return; 1592 return;
1496 1593
1497 if (w->reschedule_cb) 1594 if (w->reschedule_cb)
1502 /* this formula differs from the one in periodic_reify because we do not always round up */ 1599 /* this formula differs from the one in periodic_reify because we do not always round up */
1503 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1504 } 1601 }
1505 1602
1506 ev_start (EV_A_ (W)w, ++periodiccnt); 1603 ev_start (EV_A_ (W)w, ++periodiccnt);
1507 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1508 periodics [periodiccnt - 1] = w; 1605 periodics [periodiccnt - 1] = w;
1509 upheap ((WT *)periodics, periodiccnt - 1); 1606 upheap ((WT *)periodics, periodiccnt - 1);
1510 1607
1511 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1512} 1609}
1513 1610
1514void 1611void
1515ev_periodic_stop (EV_P_ struct ev_periodic *w) 1612ev_periodic_stop (EV_P_ ev_periodic *w)
1516{ 1613{
1517 ev_clear_pending (EV_A_ (W)w); 1614 ev_clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w))) 1615 if (expect_false (!ev_is_active (w)))
1519 return; 1616 return;
1520 1617
1521 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1522 1619
1620 {
1621 int active = ((W)w)->active;
1622
1523 if (expect_true (((W)w)->active < periodiccnt--)) 1623 if (expect_true (--active < --periodiccnt))
1524 { 1624 {
1525 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1625 periodics [active] = periodics [periodiccnt];
1526 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1626 adjustheap ((WT *)periodics, periodiccnt, active);
1527 } 1627 }
1628 }
1528 1629
1529 ev_stop (EV_A_ (W)w); 1630 ev_stop (EV_A_ (W)w);
1530} 1631}
1531 1632
1532void 1633void
1533ev_periodic_again (EV_P_ struct ev_periodic *w) 1634ev_periodic_again (EV_P_ ev_periodic *w)
1534{ 1635{
1535 /* TODO: use adjustheap and recalculation */ 1636 /* TODO: use adjustheap and recalculation */
1536 ev_periodic_stop (EV_A_ w); 1637 ev_periodic_stop (EV_A_ w);
1537 ev_periodic_start (EV_A_ w); 1638 ev_periodic_start (EV_A_ w);
1538} 1639}
1539#endif 1640#endif
1540 1641
1541void
1542ev_idle_start (EV_P_ struct ev_idle *w)
1543{
1544 if (expect_false (ev_is_active (w)))
1545 return;
1546
1547 ev_start (EV_A_ (W)w, ++idlecnt);
1548 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1549 idles [idlecnt - 1] = w;
1550}
1551
1552void
1553ev_idle_stop (EV_P_ struct ev_idle *w)
1554{
1555 ev_clear_pending (EV_A_ (W)w);
1556 if (expect_false (!ev_is_active (w)))
1557 return;
1558
1559 idles [((W)w)->active - 1] = idles [--idlecnt];
1560 ev_stop (EV_A_ (W)w);
1561}
1562
1563void
1564ev_prepare_start (EV_P_ struct ev_prepare *w)
1565{
1566 if (expect_false (ev_is_active (w)))
1567 return;
1568
1569 ev_start (EV_A_ (W)w, ++preparecnt);
1570 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1571 prepares [preparecnt - 1] = w;
1572}
1573
1574void
1575ev_prepare_stop (EV_P_ struct ev_prepare *w)
1576{
1577 ev_clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w)))
1579 return;
1580
1581 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1582 ev_stop (EV_A_ (W)w);
1583}
1584
1585void
1586ev_check_start (EV_P_ struct ev_check *w)
1587{
1588 if (expect_false (ev_is_active (w)))
1589 return;
1590
1591 ev_start (EV_A_ (W)w, ++checkcnt);
1592 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1593 checks [checkcnt - 1] = w;
1594}
1595
1596void
1597ev_check_stop (EV_P_ struct ev_check *w)
1598{
1599 ev_clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w)))
1601 return;
1602
1603 checks [((W)w)->active - 1] = checks [--checkcnt];
1604 ev_stop (EV_A_ (W)w);
1605}
1606
1607#ifndef SA_RESTART 1642#ifndef SA_RESTART
1608# define SA_RESTART 0 1643# define SA_RESTART 0
1609#endif 1644#endif
1610 1645
1611void 1646void
1612ev_signal_start (EV_P_ struct ev_signal *w) 1647ev_signal_start (EV_P_ ev_signal *w)
1613{ 1648{
1614#if EV_MULTIPLICITY 1649#if EV_MULTIPLICITY
1615 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1616#endif 1651#endif
1617 if (expect_false (ev_is_active (w))) 1652 if (expect_false (ev_is_active (w)))
1636#endif 1671#endif
1637 } 1672 }
1638} 1673}
1639 1674
1640void 1675void
1641ev_signal_stop (EV_P_ struct ev_signal *w) 1676ev_signal_stop (EV_P_ ev_signal *w)
1642{ 1677{
1643 ev_clear_pending (EV_A_ (W)w); 1678 ev_clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w))) 1679 if (expect_false (!ev_is_active (w)))
1645 return; 1680 return;
1646 1681
1650 if (!signals [w->signum - 1].head) 1685 if (!signals [w->signum - 1].head)
1651 signal (w->signum, SIG_DFL); 1686 signal (w->signum, SIG_DFL);
1652} 1687}
1653 1688
1654void 1689void
1655ev_child_start (EV_P_ struct ev_child *w) 1690ev_child_start (EV_P_ ev_child *w)
1656{ 1691{
1657#if EV_MULTIPLICITY 1692#if EV_MULTIPLICITY
1658 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1693 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1659#endif 1694#endif
1660 if (expect_false (ev_is_active (w))) 1695 if (expect_false (ev_is_active (w)))
1661 return; 1696 return;
1662 1697
1663 ev_start (EV_A_ (W)w, 1); 1698 ev_start (EV_A_ (W)w, 1);
1664 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1699 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1665} 1700}
1666 1701
1667void 1702void
1668ev_child_stop (EV_P_ struct ev_child *w) 1703ev_child_stop (EV_P_ ev_child *w)
1669{ 1704{
1670 ev_clear_pending (EV_A_ (W)w); 1705 ev_clear_pending (EV_A_ (W)w);
1671 if (expect_false (!ev_is_active (w))) 1706 if (expect_false (!ev_is_active (w)))
1672 return; 1707 return;
1673 1708
1674 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1675 ev_stop (EV_A_ (W)w); 1710 ev_stop (EV_A_ (W)w);
1676} 1711}
1677 1712
1678#if EV_MULTIPLICITY 1713#if EV_STAT_ENABLE
1714
1715# ifdef _WIN32
1716# undef lstat
1717# define lstat(a,b) _stati64 (a,b)
1718# endif
1719
1720#define DEF_STAT_INTERVAL 5.0074891
1721#define MIN_STAT_INTERVAL 0.1074891
1722
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724
1725#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192
1727
1728static void noinline
1729infy_add (EV_P_ ev_stat *w)
1730{
1731 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1732
1733 if (w->wd < 0)
1734 {
1735 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1736
1737 /* monitor some parent directory for speedup hints */
1738 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1739 {
1740 char path [4096];
1741 strcpy (path, w->path);
1742
1743 do
1744 {
1745 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1746 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1747
1748 char *pend = strrchr (path, '/');
1749
1750 if (!pend)
1751 break; /* whoops, no '/', complain to your admin */
1752
1753 *pend = 0;
1754 w->wd = inotify_add_watch (fs_fd, path, mask);
1755 }
1756 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1757 }
1758 }
1759 else
1760 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1761
1762 if (w->wd >= 0)
1763 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1764}
1765
1766static void noinline
1767infy_del (EV_P_ ev_stat *w)
1768{
1769 int slot;
1770 int wd = w->wd;
1771
1772 if (wd < 0)
1773 return;
1774
1775 w->wd = -2;
1776 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1777 wlist_del (&fs_hash [slot].head, (WL)w);
1778
1779 /* remove this watcher, if others are watching it, they will rearm */
1780 inotify_rm_watch (fs_fd, wd);
1781}
1782
1783static void noinline
1784infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1785{
1786 if (slot < 0)
1787 /* overflow, need to check for all hahs slots */
1788 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1789 infy_wd (EV_A_ slot, wd, ev);
1790 else
1791 {
1792 WL w_;
1793
1794 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1795 {
1796 ev_stat *w = (ev_stat *)w_;
1797 w_ = w_->next; /* lets us remove this watcher and all before it */
1798
1799 if (w->wd == wd || wd == -1)
1800 {
1801 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1802 {
1803 w->wd = -1;
1804 infy_add (EV_A_ w); /* re-add, no matter what */
1805 }
1806
1807 stat_timer_cb (EV_A_ &w->timer, 0);
1808 }
1809 }
1810 }
1811}
1812
1679static void 1813static void
1680embed_cb (EV_P_ struct ev_io *io, int revents) 1814infy_cb (EV_P_ ev_io *w, int revents)
1681{ 1815{
1682 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 1816 char buf [EV_INOTIFY_BUFSIZE];
1817 struct inotify_event *ev = (struct inotify_event *)buf;
1818 int ofs;
1819 int len = read (fs_fd, buf, sizeof (buf));
1683 1820
1821 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1822 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1823}
1824
1825void inline_size
1826infy_init (EV_P)
1827{
1828 if (fs_fd != -2)
1829 return;
1830
1831 fs_fd = inotify_init ();
1832
1833 if (fs_fd >= 0)
1834 {
1835 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1836 ev_set_priority (&fs_w, EV_MAXPRI);
1837 ev_io_start (EV_A_ &fs_w);
1838 }
1839}
1840
1841void inline_size
1842infy_fork (EV_P)
1843{
1844 int slot;
1845
1846 if (fs_fd < 0)
1847 return;
1848
1849 close (fs_fd);
1850 fs_fd = inotify_init ();
1851
1852 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1853 {
1854 WL w_ = fs_hash [slot].head;
1855 fs_hash [slot].head = 0;
1856
1857 while (w_)
1858 {
1859 ev_stat *w = (ev_stat *)w_;
1860 w_ = w_->next; /* lets us add this watcher */
1861
1862 w->wd = -1;
1863
1864 if (fs_fd >= 0)
1865 infy_add (EV_A_ w); /* re-add, no matter what */
1866 else
1867 ev_timer_start (EV_A_ &w->timer);
1868 }
1869
1870 }
1871}
1872
1873#endif
1874
1875void
1876ev_stat_stat (EV_P_ ev_stat *w)
1877{
1878 if (lstat (w->path, &w->attr) < 0)
1879 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1;
1882}
1883
1884void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888
1889 /* we copy this here each the time so that */
1890 /* prev has the old value when the callback gets invoked */
1891 w->prev = w->attr;
1892 ev_stat_stat (EV_A_ w);
1893
1894 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1895 if (
1896 w->prev.st_dev != w->attr.st_dev
1897 || w->prev.st_ino != w->attr.st_ino
1898 || w->prev.st_mode != w->attr.st_mode
1899 || w->prev.st_nlink != w->attr.st_nlink
1900 || w->prev.st_uid != w->attr.st_uid
1901 || w->prev.st_gid != w->attr.st_gid
1902 || w->prev.st_rdev != w->attr.st_rdev
1903 || w->prev.st_size != w->attr.st_size
1904 || w->prev.st_atime != w->attr.st_atime
1905 || w->prev.st_mtime != w->attr.st_mtime
1906 || w->prev.st_ctime != w->attr.st_ctime
1907 ) {
1908 #if EV_USE_INOTIFY
1909 infy_del (EV_A_ w);
1910 infy_add (EV_A_ w);
1911 ev_stat_stat (EV_A_ w); /* avoid race... */
1912 #endif
1913
1684 ev_feed_event (EV_A_ (W)w, EV_EMBED); 1914 ev_feed_event (EV_A_ w, EV_STAT);
1915 }
1916}
1917
1918void
1919ev_stat_start (EV_P_ ev_stat *w)
1920{
1921 if (expect_false (ev_is_active (w)))
1922 return;
1923
1924 /* since we use memcmp, we need to clear any padding data etc. */
1925 memset (&w->prev, 0, sizeof (ev_statdata));
1926 memset (&w->attr, 0, sizeof (ev_statdata));
1927
1928 ev_stat_stat (EV_A_ w);
1929
1930 if (w->interval < MIN_STAT_INTERVAL)
1931 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1932
1933 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1934 ev_set_priority (&w->timer, ev_priority (w));
1935
1936#if EV_USE_INOTIFY
1937 infy_init (EV_A);
1938
1939 if (fs_fd >= 0)
1940 infy_add (EV_A_ w);
1941 else
1942#endif
1943 ev_timer_start (EV_A_ &w->timer);
1944
1945 ev_start (EV_A_ (W)w, 1);
1946}
1947
1948void
1949ev_stat_stop (EV_P_ ev_stat *w)
1950{
1951 ev_clear_pending (EV_A_ (W)w);
1952 if (expect_false (!ev_is_active (w)))
1953 return;
1954
1955#if EV_USE_INOTIFY
1956 infy_del (EV_A_ w);
1957#endif
1958 ev_timer_stop (EV_A_ &w->timer);
1959
1960 ev_stop (EV_A_ (W)w);
1961}
1962#endif
1963
1964void
1965ev_idle_start (EV_P_ ev_idle *w)
1966{
1967 if (expect_false (ev_is_active (w)))
1968 return;
1969
1970 ev_start (EV_A_ (W)w, ++idlecnt);
1971 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1972 idles [idlecnt - 1] = w;
1973}
1974
1975void
1976ev_idle_stop (EV_P_ ev_idle *w)
1977{
1978 ev_clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w)))
1980 return;
1981
1982 {
1983 int active = ((W)w)->active;
1984 idles [active - 1] = idles [--idlecnt];
1985 ((W)idles [active - 1])->active = active;
1986 }
1987
1988 ev_stop (EV_A_ (W)w);
1989}
1990
1991void
1992ev_prepare_start (EV_P_ ev_prepare *w)
1993{
1994 if (expect_false (ev_is_active (w)))
1995 return;
1996
1997 ev_start (EV_A_ (W)w, ++preparecnt);
1998 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1999 prepares [preparecnt - 1] = w;
2000}
2001
2002void
2003ev_prepare_stop (EV_P_ ev_prepare *w)
2004{
2005 ev_clear_pending (EV_A_ (W)w);
2006 if (expect_false (!ev_is_active (w)))
2007 return;
2008
2009 {
2010 int active = ((W)w)->active;
2011 prepares [active - 1] = prepares [--preparecnt];
2012 ((W)prepares [active - 1])->active = active;
2013 }
2014
2015 ev_stop (EV_A_ (W)w);
2016}
2017
2018void
2019ev_check_start (EV_P_ ev_check *w)
2020{
2021 if (expect_false (ev_is_active (w)))
2022 return;
2023
2024 ev_start (EV_A_ (W)w, ++checkcnt);
2025 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2026 checks [checkcnt - 1] = w;
2027}
2028
2029void
2030ev_check_stop (EV_P_ ev_check *w)
2031{
2032 ev_clear_pending (EV_A_ (W)w);
2033 if (expect_false (!ev_is_active (w)))
2034 return;
2035
2036 {
2037 int active = ((W)w)->active;
2038 checks [active - 1] = checks [--checkcnt];
2039 ((W)checks [active - 1])->active = active;
2040 }
2041
2042 ev_stop (EV_A_ (W)w);
2043}
2044
2045#if EV_EMBED_ENABLE
2046void noinline
2047ev_embed_sweep (EV_P_ ev_embed *w)
2048{
1685 ev_loop (w->loop, EVLOOP_NONBLOCK); 2049 ev_loop (w->loop, EVLOOP_NONBLOCK);
1686} 2050}
1687 2051
2052static void
2053embed_cb (EV_P_ ev_io *io, int revents)
2054{
2055 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2056
2057 if (ev_cb (w))
2058 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2059 else
2060 ev_embed_sweep (loop, w);
2061}
2062
1688void 2063void
1689ev_embed_start (EV_P_ struct ev_embed *w) 2064ev_embed_start (EV_P_ ev_embed *w)
1690{ 2065{
1691 if (expect_false (ev_is_active (w))) 2066 if (expect_false (ev_is_active (w)))
1692 return; 2067 return;
1693 2068
1694 { 2069 {
1695 struct ev_loop *loop = w->loop; 2070 struct ev_loop *loop = w->loop;
1696 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2071 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1697 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2072 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1698 } 2073 }
1699 2074
2075 ev_set_priority (&w->io, ev_priority (w));
1700 ev_io_start (EV_A_ &w->io); 2076 ev_io_start (EV_A_ &w->io);
2077
1701 ev_start (EV_A_ (W)w, 1); 2078 ev_start (EV_A_ (W)w, 1);
1702} 2079}
1703 2080
1704void 2081void
1705ev_embed_stop (EV_P_ struct ev_embed *w) 2082ev_embed_stop (EV_P_ ev_embed *w)
1706{ 2083{
1707 ev_clear_pending (EV_A_ (W)w); 2084 ev_clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2085 if (expect_false (!ev_is_active (w)))
1709 return; 2086 return;
1710 2087
1711 ev_io_stop (EV_A_ &w->io); 2088 ev_io_stop (EV_A_ &w->io);
2089
1712 ev_stop (EV_A_ (W)w); 2090 ev_stop (EV_A_ (W)w);
1713} 2091}
1714#endif 2092#endif
1715 2093
2094#if EV_FORK_ENABLE
2095void
2096ev_fork_start (EV_P_ ev_fork *w)
2097{
2098 if (expect_false (ev_is_active (w)))
2099 return;
2100
2101 ev_start (EV_A_ (W)w, ++forkcnt);
2102 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2103 forks [forkcnt - 1] = w;
2104}
2105
2106void
2107ev_fork_stop (EV_P_ ev_fork *w)
2108{
2109 ev_clear_pending (EV_A_ (W)w);
2110 if (expect_false (!ev_is_active (w)))
2111 return;
2112
2113 {
2114 int active = ((W)w)->active;
2115 forks [active - 1] = forks [--forkcnt];
2116 ((W)forks [active - 1])->active = active;
2117 }
2118
2119 ev_stop (EV_A_ (W)w);
2120}
2121#endif
2122
1716/*****************************************************************************/ 2123/*****************************************************************************/
1717 2124
1718struct ev_once 2125struct ev_once
1719{ 2126{
1720 struct ev_io io; 2127 ev_io io;
1721 struct ev_timer to; 2128 ev_timer to;
1722 void (*cb)(int revents, void *arg); 2129 void (*cb)(int revents, void *arg);
1723 void *arg; 2130 void *arg;
1724}; 2131};
1725 2132
1726static void 2133static void
1735 2142
1736 cb (revents, arg); 2143 cb (revents, arg);
1737} 2144}
1738 2145
1739static void 2146static void
1740once_cb_io (EV_P_ struct ev_io *w, int revents) 2147once_cb_io (EV_P_ ev_io *w, int revents)
1741{ 2148{
1742 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2149 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1743} 2150}
1744 2151
1745static void 2152static void
1746once_cb_to (EV_P_ struct ev_timer *w, int revents) 2153once_cb_to (EV_P_ ev_timer *w, int revents)
1747{ 2154{
1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2155 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1749} 2156}
1750 2157
1751void 2158void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines