ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.156 by root, Wed Nov 28 17:50:13 2007 UTC vs.
Revision 1.179 by root, Tue Dec 11 21:04:40 2007 UTC

216# include <sys/inotify.h> 216# include <sys/inotify.h>
217#endif 217#endif
218 218
219/**/ 219/**/
220 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 234
225#if __GNUC__ >= 3 235#if __GNUC__ >= 3
226# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 237# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 238#else
236# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
240#endif 244#endif
241 245
242#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
244 255
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 258
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
250 261
251typedef ev_watcher *W; 262typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
396{ 407{
397 return ev_rt_now; 408 return ev_rt_now;
398} 409}
399#endif 410#endif
400 411
401#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
402 439
403#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
405 { \ 442 { \
406 int newcnt = cur; \ 443 int ocur_ = (cur); \
407 do \ 444 (base) = (type *)array_realloc \
408 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 447 }
417 448
449#if 0
418#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 452 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 456 }
457#endif
425 458
426#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 461
429/*****************************************************************************/ 462/*****************************************************************************/
430 463
431void noinline 464void noinline
432ev_feed_event (EV_P_ void *w, int revents) 465ev_feed_event (EV_P_ void *w, int revents)
433{ 466{
434 W w_ = (W)w; 467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
435 469
436 if (expect_false (w_->pending)) 470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
437 { 473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 477 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 478 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 479}
447 480
448void inline_size 481void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 482queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 483{
451 int i; 484 int i;
452 485
453 for (i = 0; i < eventcnt; ++i) 486 for (i = 0; i < eventcnt; ++i)
485} 518}
486 519
487void 520void
488ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 522{
523 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
491} 525}
492 526
493void inline_size 527void inline_size
494fd_reify (EV_P) 528fd_reify (EV_P)
495{ 529{
589static void noinline 623static void noinline
590fd_rearm_all (EV_P) 624fd_rearm_all (EV_P)
591{ 625{
592 int fd; 626 int fd;
593 627
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 628 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 629 if (anfds [fd].events)
597 { 630 {
598 anfds [fd].events = 0; 631 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 632 fd_change (EV_A_ fd);
605void inline_speed 638void inline_speed
606upheap (WT *heap, int k) 639upheap (WT *heap, int k)
607{ 640{
608 WT w = heap [k]; 641 WT w = heap [k];
609 642
610 while (k && heap [k >> 1]->at > w->at) 643 while (k)
611 { 644 {
645 int p = (k - 1) >> 1;
646
647 if (heap [p]->at <= w->at)
648 break;
649
612 heap [k] = heap [k >> 1]; 650 heap [k] = heap [p];
613 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
614 k >>= 1; 652 k = p;
615 } 653 }
616 654
617 heap [k] = w; 655 heap [k] = w;
618 ((W)heap [k])->active = k + 1; 656 ((W)heap [k])->active = k + 1;
619 657
622void inline_speed 660void inline_speed
623downheap (WT *heap, int N, int k) 661downheap (WT *heap, int N, int k)
624{ 662{
625 WT w = heap [k]; 663 WT w = heap [k];
626 664
627 while (k < (N >> 1)) 665 for (;;)
628 { 666 {
629 int j = k << 1; 667 int c = (k << 1) + 1;
630 668
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 669 if (c >= N)
632 ++j;
633
634 if (w->at <= heap [j]->at)
635 break; 670 break;
636 671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
637 heap [k] = heap [j]; 678 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 679 ((W)heap [k])->active = k + 1;
680
639 k = j; 681 k = c;
640 } 682 }
641 683
642 heap [k] = w; 684 heap [k] = w;
643 ((W)heap [k])->active = k + 1; 685 ((W)heap [k])->active = k + 1;
644} 686}
726 for (signum = signalmax; signum--; ) 768 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig) 769 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1); 770 ev_feed_signal_event (EV_A_ signum + 1);
729} 771}
730 772
731void inline_size 773void inline_speed
732fd_intern (int fd) 774fd_intern (int fd)
733{ 775{
734#ifdef _WIN32 776#ifdef _WIN32
735 int arg = 1; 777 int arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
765 ev_child *w; 807 ev_child *w;
766 808
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
768 if (w->pid == pid || !w->pid) 810 if (w->pid == pid || !w->pid)
769 { 811 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
771 w->rpid = pid; 813 w->rpid = pid;
772 w->rstatus = status; 814 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 815 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 816 }
775} 817}
776 818
777#ifndef WCONTINUED 819#ifndef WCONTINUED
887ev_backend (EV_P) 929ev_backend (EV_P)
888{ 930{
889 return backend; 931 return backend;
890} 932}
891 933
934unsigned int
935ev_loop_count (EV_P)
936{
937 return loop_count;
938}
939
892static void noinline 940static void noinline
893loop_init (EV_P_ unsigned int flags) 941loop_init (EV_P_ unsigned int flags)
894{ 942{
895 if (!backend) 943 if (!backend)
896 { 944 {
905 ev_rt_now = ev_time (); 953 ev_rt_now = ev_time ();
906 mn_now = get_clock (); 954 mn_now = get_clock ();
907 now_floor = mn_now; 955 now_floor = mn_now;
908 rtmn_diff = ev_rt_now - mn_now; 956 rtmn_diff = ev_rt_now - mn_now;
909 957
958 /* pid check not overridable via env */
959#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid ();
962#endif
963
910 if (!(flags & EVFLAG_NOENV) 964 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 965 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 966 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 967 flags = atoi (getenv ("LIBEV_FLAGS"));
914 968
970#if EV_USE_SELECT 1024#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1025 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1026#endif
973 1027
974 for (i = NUMPRI; i--; ) 1028 for (i = NUMPRI; i--; )
1029 {
975 array_free (pending, [i]); 1030 array_free (pending, [i]);
1031#if EV_IDLE_ENABLE
1032 array_free (idle, [i]);
1033#endif
1034 }
976 1035
977 /* have to use the microsoft-never-gets-it-right macro */ 1036 /* have to use the microsoft-never-gets-it-right macro */
978 array_free (fdchange, EMPTY0); 1037 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1038 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1039#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1040 array_free (periodic, EMPTY);
982#endif 1041#endif
983 array_free (idle, EMPTY0);
984 array_free (prepare, EMPTY0); 1042 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1043 array_free (check, EMPTY);
986 1044
987 backend = 0; 1045 backend = 0;
988} 1046}
989 1047
990void inline_size infy_fork (EV_P); 1048void inline_size infy_fork (EV_P);
1126 postfork = 1; 1184 postfork = 1;
1127} 1185}
1128 1186
1129/*****************************************************************************/ 1187/*****************************************************************************/
1130 1188
1131int inline_size 1189void
1132any_pending (EV_P) 1190ev_invoke (EV_P_ void *w, int revents)
1133{ 1191{
1134 int pri; 1192 EV_CB_INVOKE ((W)w, revents);
1135
1136 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri])
1138 return 1;
1139
1140 return 0;
1141} 1193}
1142 1194
1143void inline_speed 1195void inline_speed
1144call_pending (EV_P) 1196call_pending (EV_P)
1145{ 1197{
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1199 1251
1200 /* first reschedule or stop timer */ 1252 /* first reschedule or stop timer */
1201 if (w->reschedule_cb) 1253 if (w->reschedule_cb)
1202 { 1254 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1205 downheap ((WT *)periodics, periodiccnt, 0); 1257 downheap ((WT *)periodics, periodiccnt, 0);
1206 } 1258 }
1207 else if (w->interval) 1259 else if (w->interval)
1208 { 1260 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1211 downheap ((WT *)periodics, periodiccnt, 0); 1264 downheap ((WT *)periodics, periodiccnt, 0);
1212 } 1265 }
1213 else 1266 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1228 ev_periodic *w = periodics [i]; 1281 ev_periodic *w = periodics [i];
1229 1282
1230 if (w->reschedule_cb) 1283 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval) 1285 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1234 } 1287 }
1235 1288
1236 /* now rebuild the heap */ 1289 /* now rebuild the heap */
1237 for (i = periodiccnt >> 1; i--; ) 1290 for (i = periodiccnt >> 1; i--; )
1238 downheap ((WT *)periodics, periodiccnt, i); 1291 downheap ((WT *)periodics, periodiccnt, i);
1239} 1292}
1240#endif 1293#endif
1241 1294
1295#if EV_IDLE_ENABLE
1242int inline_size 1296void inline_size
1243time_update_monotonic (EV_P) 1297idle_reify (EV_P)
1244{ 1298{
1299 if (expect_false (idleall))
1300 {
1301 int pri;
1302
1303 for (pri = NUMPRI; pri--; )
1304 {
1305 if (pendingcnt [pri])
1306 break;
1307
1308 if (idlecnt [pri])
1309 {
1310 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1311 break;
1312 }
1313 }
1314 }
1315}
1316#endif
1317
1318void inline_speed
1319time_update (EV_P_ ev_tstamp max_block)
1320{
1321 int i;
1322
1323#if EV_USE_MONOTONIC
1324 if (expect_true (have_monotonic))
1325 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1245 mn_now = get_clock (); 1328 mn_now = get_clock ();
1246 1329
1330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1331 /* interpolate in the meantime */
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1332 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 { 1333 {
1249 ev_rt_now = rtmn_diff + mn_now; 1334 ev_rt_now = rtmn_diff + mn_now;
1250 return 0; 1335 return;
1251 } 1336 }
1252 else 1337
1253 {
1254 now_floor = mn_now; 1338 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 1339 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 1340
1260void inline_size 1341 /* loop a few times, before making important decisions.
1261time_update (EV_P) 1342 * on the choice of "4": one iteration isn't enough,
1262{ 1343 * in case we get preempted during the calls to
1263 int i; 1344 * ev_time and get_clock. a second call is almost guaranteed
1264 1345 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 1346 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 1347 * in the unlikely event of having been preempted here.
1267 { 1348 */
1268 if (time_update_monotonic (EV_A)) 1349 for (i = 4; --i; )
1269 { 1350 {
1270 ev_tstamp odiff = rtmn_diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 1351 rtmn_diff = ev_rt_now - mn_now;
1283 1352
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1285 return; /* all is well */ 1354 return; /* all is well */
1286 1355
1287 ev_rt_now = ev_time (); 1356 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 1357 mn_now = get_clock ();
1289 now_floor = mn_now; 1358 now_floor = mn_now;
1290 } 1359 }
1291 1360
1292# if EV_PERIODIC_ENABLE 1361# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 1362 periodics_reschedule (EV_A);
1294# endif 1363# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */ 1364 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1365 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 1366 }
1299 else 1367 else
1300#endif 1368#endif
1301 { 1369 {
1302 ev_rt_now = ev_time (); 1370 ev_rt_now = ev_time ();
1303 1371
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 1373 {
1306#if EV_PERIODIC_ENABLE 1374#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 1375 periodics_reschedule (EV_A);
1308#endif 1376#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */ 1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1311 for (i = 0; i < timercnt; ++i) 1378 for (i = 0; i < timercnt; ++i)
1312 ((WT)timers [i])->at += ev_rt_now - mn_now; 1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1313 } 1380 }
1314 1381
1315 mn_now = ev_rt_now; 1382 mn_now = ev_rt_now;
1335{ 1402{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1337 ? EVUNLOOP_ONE 1404 ? EVUNLOOP_ONE
1338 : EVUNLOOP_CANCEL; 1405 : EVUNLOOP_CANCEL;
1339 1406
1340 while (activecnt) 1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408
1409 do
1341 { 1410 {
1342 /* we might have forked, so reify kernel state if necessary */ 1411#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid))
1414 {
1415 curpid = getpid ();
1416 postfork = 1;
1417 }
1418#endif
1419
1343 #if EV_FORK_ENABLE 1420#if EV_FORK_ENABLE
1421 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 1422 if (expect_false (postfork))
1345 if (forkcnt) 1423 if (forkcnt)
1346 { 1424 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 1426 call_pending (EV_A);
1349 } 1427 }
1350 #endif 1428#endif
1351 1429
1352 /* queue check watchers (and execute them) */ 1430 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 1431 if (expect_false (preparecnt))
1354 { 1432 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 1434 call_pending (EV_A);
1357 } 1435 }
1358 1436
1437 if (expect_false (!activecnt))
1438 break;
1439
1359 /* we might have forked, so reify kernel state if necessary */ 1440 /* we might have forked, so reify kernel state if necessary */
1360 if (expect_false (postfork)) 1441 if (expect_false (postfork))
1361 loop_fork (EV_A); 1442 loop_fork (EV_A);
1362 1443
1363 /* update fd-related kernel structures */ 1444 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 1445 fd_reify (EV_A);
1365 1446
1366 /* calculate blocking time */ 1447 /* calculate blocking time */
1367 { 1448 {
1368 double block; 1449 ev_tstamp block;
1369 1450
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1371 block = 0.; /* do not block at all */ 1452 block = 0.; /* do not block at all */
1372 else 1453 else
1373 { 1454 {
1374 /* update time to cancel out callback processing overhead */ 1455 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A); 1456 time_update (EV_A_ 1e100);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384 1457
1385 block = MAX_BLOCKTIME; 1458 block = MAX_BLOCKTIME;
1386 1459
1387 if (timercnt) 1460 if (timercnt)
1388 { 1461 {
1399#endif 1472#endif
1400 1473
1401 if (expect_false (block < 0.)) block = 0.; 1474 if (expect_false (block < 0.)) block = 0.;
1402 } 1475 }
1403 1476
1477 ++loop_count;
1404 backend_poll (EV_A_ block); 1478 backend_poll (EV_A_ block);
1479
1480 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block);
1405 } 1482 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 1483
1410 /* queue pending timers and reschedule them */ 1484 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 1485 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 1486#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 1487 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 1488#endif
1415 1489
1490#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 1491 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 1492 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1493#endif
1419 1494
1420 /* queue check watchers, to be executed first */ 1495 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 1496 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1423 1498
1424 call_pending (EV_A); 1499 call_pending (EV_A);
1425 1500
1426 if (expect_false (loop_done))
1427 break;
1428 } 1501 }
1502 while (expect_true (activecnt && !loop_done));
1429 1503
1430 if (loop_done == EVUNLOOP_ONE) 1504 if (loop_done == EVUNLOOP_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 1505 loop_done = EVUNLOOP_CANCEL;
1432} 1506}
1433 1507
1460 head = &(*head)->next; 1534 head = &(*head)->next;
1461 } 1535 }
1462} 1536}
1463 1537
1464void inline_speed 1538void inline_speed
1465ev_clear_pending (EV_P_ W w) 1539clear_pending (EV_P_ W w)
1466{ 1540{
1467 if (w->pending) 1541 if (w->pending)
1468 { 1542 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1543 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1470 w->pending = 0; 1544 w->pending = 0;
1471 } 1545 }
1472} 1546}
1473 1547
1548int
1549ev_clear_pending (EV_P_ void *w)
1550{
1551 W w_ = (W)w;
1552 int pending = w_->pending;
1553
1554 if (expect_true (pending))
1555 {
1556 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1557 w_->pending = 0;
1558 p->w = 0;
1559 return p->events;
1560 }
1561 else
1562 return 0;
1563}
1564
1565void inline_size
1566pri_adjust (EV_P_ W w)
1567{
1568 int pri = w->priority;
1569 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1570 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1571 w->priority = pri;
1572}
1573
1474void inline_speed 1574void inline_speed
1475ev_start (EV_P_ W w, int active) 1575ev_start (EV_P_ W w, int active)
1476{ 1576{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1577 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 1578 w->active = active;
1481 ev_ref (EV_A); 1579 ev_ref (EV_A);
1482} 1580}
1483 1581
1484void inline_size 1582void inline_size
1488 w->active = 0; 1586 w->active = 0;
1489} 1587}
1490 1588
1491/*****************************************************************************/ 1589/*****************************************************************************/
1492 1590
1493void 1591void noinline
1494ev_io_start (EV_P_ ev_io *w) 1592ev_io_start (EV_P_ ev_io *w)
1495{ 1593{
1496 int fd = w->fd; 1594 int fd = w->fd;
1497 1595
1498 if (expect_false (ev_is_active (w))) 1596 if (expect_false (ev_is_active (w)))
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1603 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1506 1604
1507 fd_change (EV_A_ fd); 1605 fd_change (EV_A_ fd);
1508} 1606}
1509 1607
1510void 1608void noinline
1511ev_io_stop (EV_P_ ev_io *w) 1609ev_io_stop (EV_P_ ev_io *w)
1512{ 1610{
1513 ev_clear_pending (EV_A_ (W)w); 1611 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 1612 if (expect_false (!ev_is_active (w)))
1515 return; 1613 return;
1516 1614
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1615 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 1616
1520 ev_stop (EV_A_ (W)w); 1618 ev_stop (EV_A_ (W)w);
1521 1619
1522 fd_change (EV_A_ w->fd); 1620 fd_change (EV_A_ w->fd);
1523} 1621}
1524 1622
1525void 1623void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 1624ev_timer_start (EV_P_ ev_timer *w)
1527{ 1625{
1528 if (expect_false (ev_is_active (w))) 1626 if (expect_false (ev_is_active (w)))
1529 return; 1627 return;
1530 1628
1538 upheap ((WT *)timers, timercnt - 1); 1636 upheap ((WT *)timers, timercnt - 1);
1539 1637
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1638 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1541} 1639}
1542 1640
1543void 1641void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 1642ev_timer_stop (EV_P_ ev_timer *w)
1545{ 1643{
1546 ev_clear_pending (EV_A_ (W)w); 1644 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 1645 if (expect_false (!ev_is_active (w)))
1548 return; 1646 return;
1549 1647
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1648 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1551 1649
1562 ((WT)w)->at -= mn_now; 1660 ((WT)w)->at -= mn_now;
1563 1661
1564 ev_stop (EV_A_ (W)w); 1662 ev_stop (EV_A_ (W)w);
1565} 1663}
1566 1664
1567void 1665void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 1666ev_timer_again (EV_P_ ev_timer *w)
1569{ 1667{
1570 if (ev_is_active (w)) 1668 if (ev_is_active (w))
1571 { 1669 {
1572 if (w->repeat) 1670 if (w->repeat)
1583 ev_timer_start (EV_A_ w); 1681 ev_timer_start (EV_A_ w);
1584 } 1682 }
1585} 1683}
1586 1684
1587#if EV_PERIODIC_ENABLE 1685#if EV_PERIODIC_ENABLE
1588void 1686void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 1687ev_periodic_start (EV_P_ ev_periodic *w)
1590{ 1688{
1591 if (expect_false (ev_is_active (w))) 1689 if (expect_false (ev_is_active (w)))
1592 return; 1690 return;
1593 1691
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1693 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 1694 else if (w->interval)
1597 { 1695 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1696 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 1697 /* this formula differs from the one in periodic_reify because we do not always round up */
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1698 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1601 } 1699 }
1700 else
1701 ((WT)w)->at = w->offset;
1602 1702
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 1703 ev_start (EV_A_ (W)w, ++periodiccnt);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1704 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 1705 periodics [periodiccnt - 1] = w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 1706 upheap ((WT *)periodics, periodiccnt - 1);
1607 1707
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1708 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1609} 1709}
1610 1710
1611void 1711void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 1712ev_periodic_stop (EV_P_ ev_periodic *w)
1613{ 1713{
1614 ev_clear_pending (EV_A_ (W)w); 1714 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 1715 if (expect_false (!ev_is_active (w)))
1616 return; 1716 return;
1617 1717
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1718 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1619 1719
1628 } 1728 }
1629 1729
1630 ev_stop (EV_A_ (W)w); 1730 ev_stop (EV_A_ (W)w);
1631} 1731}
1632 1732
1633void 1733void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 1734ev_periodic_again (EV_P_ ev_periodic *w)
1635{ 1735{
1636 /* TODO: use adjustheap and recalculation */ 1736 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 1737 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 1738 ev_periodic_start (EV_A_ w);
1641 1741
1642#ifndef SA_RESTART 1742#ifndef SA_RESTART
1643# define SA_RESTART 0 1743# define SA_RESTART 0
1644#endif 1744#endif
1645 1745
1646void 1746void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 1747ev_signal_start (EV_P_ ev_signal *w)
1648{ 1748{
1649#if EV_MULTIPLICITY 1749#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1750 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif 1751#endif
1670 sigaction (w->signum, &sa, 0); 1770 sigaction (w->signum, &sa, 0);
1671#endif 1771#endif
1672 } 1772 }
1673} 1773}
1674 1774
1675void 1775void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 1776ev_signal_stop (EV_P_ ev_signal *w)
1677{ 1777{
1678 ev_clear_pending (EV_A_ (W)w); 1778 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 1779 if (expect_false (!ev_is_active (w)))
1680 return; 1780 return;
1681 1781
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1782 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 1783 ev_stop (EV_A_ (W)w);
1700} 1800}
1701 1801
1702void 1802void
1703ev_child_stop (EV_P_ ev_child *w) 1803ev_child_stop (EV_P_ ev_child *w)
1704{ 1804{
1705 ev_clear_pending (EV_A_ (W)w); 1805 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 1806 if (expect_false (!ev_is_active (w)))
1707 return; 1807 return;
1708 1808
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1809 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 1810 ev_stop (EV_A_ (W)w);
1718# endif 1818# endif
1719 1819
1720#define DEF_STAT_INTERVAL 5.0074891 1820#define DEF_STAT_INTERVAL 5.0074891
1721#define MIN_STAT_INTERVAL 0.1074891 1821#define MIN_STAT_INTERVAL 0.1074891
1722 1822
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 1823static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 1824
1725#if EV_USE_INOTIFY 1825#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 1826# define EV_INOTIFY_BUFSIZE 8192
1727 1827
1728static void noinline 1828static void noinline
1879 w->attr.st_nlink = 0; 1979 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 1980 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 1981 w->attr.st_nlink = 1;
1882} 1982}
1883 1983
1884void noinline 1984static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 1985stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 1986{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 1987 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 1988
1889 /* we copy this here each the time so that */ 1989 /* we copy this here each the time so that */
1946} 2046}
1947 2047
1948void 2048void
1949ev_stat_stop (EV_P_ ev_stat *w) 2049ev_stat_stop (EV_P_ ev_stat *w)
1950{ 2050{
1951 ev_clear_pending (EV_A_ (W)w); 2051 clear_pending (EV_A_ (W)w);
1952 if (expect_false (!ev_is_active (w))) 2052 if (expect_false (!ev_is_active (w)))
1953 return; 2053 return;
1954 2054
1955#if EV_USE_INOTIFY 2055#if EV_USE_INOTIFY
1956 infy_del (EV_A_ w); 2056 infy_del (EV_A_ w);
1959 2059
1960 ev_stop (EV_A_ (W)w); 2060 ev_stop (EV_A_ (W)w);
1961} 2061}
1962#endif 2062#endif
1963 2063
2064#if EV_IDLE_ENABLE
1964void 2065void
1965ev_idle_start (EV_P_ ev_idle *w) 2066ev_idle_start (EV_P_ ev_idle *w)
1966{ 2067{
1967 if (expect_false (ev_is_active (w))) 2068 if (expect_false (ev_is_active (w)))
1968 return; 2069 return;
1969 2070
2071 pri_adjust (EV_A_ (W)w);
2072
2073 {
2074 int active = ++idlecnt [ABSPRI (w)];
2075
2076 ++idleall;
1970 ev_start (EV_A_ (W)w, ++idlecnt); 2077 ev_start (EV_A_ (W)w, active);
2078
1971 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2079 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1972 idles [idlecnt - 1] = w; 2080 idles [ABSPRI (w)][active - 1] = w;
2081 }
1973} 2082}
1974 2083
1975void 2084void
1976ev_idle_stop (EV_P_ ev_idle *w) 2085ev_idle_stop (EV_P_ ev_idle *w)
1977{ 2086{
1978 ev_clear_pending (EV_A_ (W)w); 2087 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 2088 if (expect_false (!ev_is_active (w)))
1980 return; 2089 return;
1981 2090
1982 { 2091 {
1983 int active = ((W)w)->active; 2092 int active = ((W)w)->active;
1984 idles [active - 1] = idles [--idlecnt]; 2093
2094 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1985 ((W)idles [active - 1])->active = active; 2095 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2096
2097 ev_stop (EV_A_ (W)w);
2098 --idleall;
1986 } 2099 }
1987
1988 ev_stop (EV_A_ (W)w);
1989} 2100}
2101#endif
1990 2102
1991void 2103void
1992ev_prepare_start (EV_P_ ev_prepare *w) 2104ev_prepare_start (EV_P_ ev_prepare *w)
1993{ 2105{
1994 if (expect_false (ev_is_active (w))) 2106 if (expect_false (ev_is_active (w)))
2000} 2112}
2001 2113
2002void 2114void
2003ev_prepare_stop (EV_P_ ev_prepare *w) 2115ev_prepare_stop (EV_P_ ev_prepare *w)
2004{ 2116{
2005 ev_clear_pending (EV_A_ (W)w); 2117 clear_pending (EV_A_ (W)w);
2006 if (expect_false (!ev_is_active (w))) 2118 if (expect_false (!ev_is_active (w)))
2007 return; 2119 return;
2008 2120
2009 { 2121 {
2010 int active = ((W)w)->active; 2122 int active = ((W)w)->active;
2027} 2139}
2028 2140
2029void 2141void
2030ev_check_stop (EV_P_ ev_check *w) 2142ev_check_stop (EV_P_ ev_check *w)
2031{ 2143{
2032 ev_clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
2033 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
2034 return; 2146 return;
2035 2147
2036 { 2148 {
2037 int active = ((W)w)->active; 2149 int active = ((W)w)->active;
2079} 2191}
2080 2192
2081void 2193void
2082ev_embed_stop (EV_P_ ev_embed *w) 2194ev_embed_stop (EV_P_ ev_embed *w)
2083{ 2195{
2084 ev_clear_pending (EV_A_ (W)w); 2196 clear_pending (EV_A_ (W)w);
2085 if (expect_false (!ev_is_active (w))) 2197 if (expect_false (!ev_is_active (w)))
2086 return; 2198 return;
2087 2199
2088 ev_io_stop (EV_A_ &w->io); 2200 ev_io_stop (EV_A_ &w->io);
2089 2201
2104} 2216}
2105 2217
2106void 2218void
2107ev_fork_stop (EV_P_ ev_fork *w) 2219ev_fork_stop (EV_P_ ev_fork *w)
2108{ 2220{
2109 ev_clear_pending (EV_A_ (W)w); 2221 clear_pending (EV_A_ (W)w);
2110 if (expect_false (!ev_is_active (w))) 2222 if (expect_false (!ev_is_active (w)))
2111 return; 2223 return;
2112 2224
2113 { 2225 {
2114 int active = ((W)w)->active; 2226 int active = ((W)w)->active;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines