ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.156 by root, Wed Nov 28 17:50:13 2007 UTC vs.
Revision 1.212 by root, Tue Feb 19 19:01:13 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 162
147#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
149#endif 165#endif
150 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
151#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
153#endif 173#endif
154 174
155#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
205#endif 225#endif
206 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
207#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 243# include <winsock.h>
209#endif 244#endif
210 245
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 246/**/
247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 257
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 261
225#if __GNUC__ >= 3 262#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 264# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 265#else
236# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
240#endif 271#endif
241 272
242#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
244 282
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 285
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
250 288
251typedef ev_watcher *W; 289typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
254 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
256 298
257#ifdef _WIN32 299#ifdef _WIN32
258# include "ev_win32.c" 300# include "ev_win32.c"
259#endif 301#endif
260 302
396{ 438{
397 return ev_rt_now; 439 return ev_rt_now;
398} 440}
399#endif 441#endif
400 442
401#define array_roundsize(type,n) (((n) | 4) & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
402 497
403#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
405 { \ 500 { \
406 int newcnt = cur; \ 501 int ocur_ = (cur); \
407 do \ 502 (base) = (type *)array_realloc \
408 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 505 }
417 506
507#if 0
418#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 510 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 514 }
515#endif
425 516
426#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 519
429/*****************************************************************************/ 520/*****************************************************************************/
430 521
431void noinline 522void noinline
432ev_feed_event (EV_P_ void *w, int revents) 523ev_feed_event (EV_P_ void *w, int revents)
433{ 524{
434 W w_ = (W)w; 525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
435 527
436 if (expect_false (w_->pending)) 528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
437 { 531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 535 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 536 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 537}
447 538
448void inline_size 539void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 540queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 541{
451 int i; 542 int i;
452 543
453 for (i = 0; i < eventcnt; ++i) 544 for (i = 0; i < eventcnt; ++i)
485} 576}
486 577
487void 578void
488ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 580{
581 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
491} 583}
492 584
493void inline_size 585void inline_size
494fd_reify (EV_P) 586fd_reify (EV_P)
495{ 587{
499 { 591 {
500 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
502 ev_io *w; 594 ev_io *w;
503 595
504 int events = 0; 596 unsigned char events = 0;
505 597
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 599 events |= (unsigned char)w->events;
508 600
509#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
510 if (events) 602 if (events)
511 { 603 {
512 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
513 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 611 }
516#endif 612#endif
517 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
518 anfd->reify = 0; 618 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
522 } 624 }
523 625
524 fdchangecnt = 0; 626 fdchangecnt = 0;
525} 627}
526 628
527void inline_size 629void inline_size
528fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
529{ 631{
530 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
534 634
635 if (expect_true (!reify))
636 {
535 ++fdchangecnt; 637 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
538} 641}
539 642
540void inline_speed 643void inline_speed
541fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
542{ 645{
589static void noinline 692static void noinline
590fd_rearm_all (EV_P) 693fd_rearm_all (EV_P)
591{ 694{
592 int fd; 695 int fd;
593 696
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 698 if (anfds [fd].events)
597 { 699 {
598 anfds [fd].events = 0; 700 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
600 } 702 }
601} 703}
602 704
603/*****************************************************************************/ 705/*****************************************************************************/
604 706
605void inline_speed 707void inline_speed
606upheap (WT *heap, int k) 708upheap (WT *heap, int k)
607{ 709{
608 WT w = heap [k]; 710 WT w = heap [k];
609 711
610 while (k && heap [k >> 1]->at > w->at) 712 while (k)
611 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
612 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
613 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
614 k >>= 1; 721 k = p;
615 } 722 }
616 723
617 heap [k] = w; 724 heap [k] = w;
618 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
619
620} 726}
621 727
622void inline_speed 728void inline_speed
623downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
624{ 730{
625 WT w = heap [k]; 731 WT w = heap [k];
626 732
627 while (k < (N >> 1)) 733 for (;;)
628 { 734 {
629 int j = k << 1; 735 int c = (k << 1) + 1;
630 736
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
632 ++j;
633
634 if (w->at <= heap [j]->at)
635 break; 738 break;
636 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
637 heap [k] = heap [j]; 746 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
639 k = j; 749 k = c;
640 } 750 }
641 751
642 heap [k] = w; 752 heap [k] = w;
643 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
644} 754}
653/*****************************************************************************/ 763/*****************************************************************************/
654 764
655typedef struct 765typedef struct
656{ 766{
657 WL head; 767 WL head;
658 sig_atomic_t volatile gotsig; 768 EV_ATOMIC_T gotsig;
659} ANSIG; 769} ANSIG;
660 770
661static ANSIG *signals; 771static ANSIG *signals;
662static int signalmax; 772static int signalmax;
663 773
664static int sigpipe [2]; 774static EV_ATOMIC_T gotsig;
665static sig_atomic_t volatile gotsig;
666static ev_io sigev;
667 775
668void inline_size 776void inline_size
669signals_init (ANSIG *base, int count) 777signals_init (ANSIG *base, int count)
670{ 778{
671 while (count--) 779 while (count--)
675 783
676 ++base; 784 ++base;
677 } 785 }
678} 786}
679 787
680static void 788/*****************************************************************************/
681sighandler (int signum)
682{
683#if _WIN32
684 signal (signum, sighandler);
685#endif
686 789
687 signals [signum - 1].gotsig = 1;
688
689 if (!gotsig)
690 {
691 int old_errno = errno;
692 gotsig = 1;
693 write (sigpipe [1], &signum, 1);
694 errno = old_errno;
695 }
696}
697
698void noinline
699ev_feed_signal_event (EV_P_ int signum)
700{
701 WL w;
702
703#if EV_MULTIPLICITY
704 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
705#endif
706
707 --signum;
708
709 if (signum < 0 || signum >= signalmax)
710 return;
711
712 signals [signum].gotsig = 0;
713
714 for (w = signals [signum].head; w; w = w->next)
715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
716}
717
718static void
719sigcb (EV_P_ ev_io *iow, int revents)
720{
721 int signum;
722
723 read (sigpipe [0], &revents, 1);
724 gotsig = 0;
725
726 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1);
729}
730
731void inline_size 790void inline_speed
732fd_intern (int fd) 791fd_intern (int fd)
733{ 792{
734#ifdef _WIN32 793#ifdef _WIN32
735 int arg = 1; 794 int arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
739 fcntl (fd, F_SETFL, O_NONBLOCK); 798 fcntl (fd, F_SETFL, O_NONBLOCK);
740#endif 799#endif
741} 800}
742 801
743static void noinline 802static void noinline
744siginit (EV_P) 803evpipe_init (EV_P)
745{ 804{
805 if (!ev_is_active (&pipeev))
806 {
807 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe");
809
746 fd_intern (sigpipe [0]); 810 fd_intern (evpipe [0]);
747 fd_intern (sigpipe [1]); 811 fd_intern (evpipe [1]);
748 812
749 ev_io_set (&sigev, sigpipe [0], EV_READ); 813 ev_io_set (&pipeev, evpipe [0], EV_READ);
750 ev_io_start (EV_A_ &sigev); 814 ev_io_start (EV_A_ &pipeev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 815 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ int sig, int async)
821{
822 if (!(gotasync || gotsig))
823 {
824 int old_errno = errno; /* save errno becaue write might clobber it */
825
826 if (sig) gotsig = 1;
827 if (async) gotasync = 1;
828
829 write (evpipe [1], &old_errno, 1);
830
831 errno = old_errno;
832 }
833}
834
835static void
836pipecb (EV_P_ ev_io *iow, int revents)
837{
838 {
839 int dummy;
840 read (evpipe [0], &dummy, 1);
841 }
842
843 if (gotsig && ev_is_default_loop (EV_A))
844 {
845 int signum;
846 gotsig = 0;
847
848 for (signum = signalmax; signum--; )
849 if (signals [signum].gotsig)
850 ev_feed_signal_event (EV_A_ signum + 1);
851 }
852
853#if EV_ASYNC_ENABLE
854 if (gotasync)
855 {
856 int i;
857 gotasync = 0;
858
859 for (i = asynccnt; i--; )
860 if (asyncs [i]->sent)
861 {
862 asyncs [i]->sent = 0;
863 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
864 }
865 }
866#endif
752} 867}
753 868
754/*****************************************************************************/ 869/*****************************************************************************/
755 870
871static void
872sighandler (int signum)
873{
874#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct;
876#endif
877
878#if _WIN32
879 signal (signum, sighandler);
880#endif
881
882 signals [signum - 1].gotsig = 1;
883 evpipe_write (EV_A_ 1, 0);
884}
885
886void noinline
887ev_feed_signal_event (EV_P_ int signum)
888{
889 WL w;
890
891#if EV_MULTIPLICITY
892 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
893#endif
894
895 --signum;
896
897 if (signum < 0 || signum >= signalmax)
898 return;
899
900 signals [signum].gotsig = 0;
901
902 for (w = signals [signum].head; w; w = w->next)
903 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
904}
905
906/*****************************************************************************/
907
756static ev_child *childs [EV_PID_HASHSIZE]; 908static WL childs [EV_PID_HASHSIZE];
757 909
758#ifndef _WIN32 910#ifndef _WIN32
759 911
760static ev_signal childev; 912static ev_signal childev;
913
914#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0
916#endif
761 917
762void inline_speed 918void inline_speed
763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
764{ 920{
765 ev_child *w; 921 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
766 923
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
925 {
768 if (w->pid == pid || !w->pid) 926 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1)))
769 { 928 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
771 w->rpid = pid; 930 w->rpid = pid;
772 w->rstatus = status; 931 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 932 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 933 }
934 }
775} 935}
776 936
777#ifndef WCONTINUED 937#ifndef WCONTINUED
778# define WCONTINUED 0 938# define WCONTINUED 0
779#endif 939#endif
876} 1036}
877 1037
878unsigned int 1038unsigned int
879ev_embeddable_backends (void) 1039ev_embeddable_backends (void)
880{ 1040{
881 return EVBACKEND_EPOLL 1041 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
882 | EVBACKEND_KQUEUE 1042
883 | EVBACKEND_PORT; 1043 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1044 /* please fix it and tell me how to detect the fix */
1045 flags &= ~EVBACKEND_EPOLL;
1046
1047 return flags;
884} 1048}
885 1049
886unsigned int 1050unsigned int
887ev_backend (EV_P) 1051ev_backend (EV_P)
888{ 1052{
889 return backend; 1053 return backend;
1054}
1055
1056unsigned int
1057ev_loop_count (EV_P)
1058{
1059 return loop_count;
1060}
1061
1062void
1063ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1064{
1065 io_blocktime = interval;
1066}
1067
1068void
1069ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1070{
1071 timeout_blocktime = interval;
890} 1072}
891 1073
892static void noinline 1074static void noinline
893loop_init (EV_P_ unsigned int flags) 1075loop_init (EV_P_ unsigned int flags)
894{ 1076{
900 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1082 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
901 have_monotonic = 1; 1083 have_monotonic = 1;
902 } 1084 }
903#endif 1085#endif
904 1086
905 ev_rt_now = ev_time (); 1087 ev_rt_now = ev_time ();
906 mn_now = get_clock (); 1088 mn_now = get_clock ();
907 now_floor = mn_now; 1089 now_floor = mn_now;
908 rtmn_diff = ev_rt_now - mn_now; 1090 rtmn_diff = ev_rt_now - mn_now;
1091
1092 io_blocktime = 0.;
1093 timeout_blocktime = 0.;
1094 backend = 0;
1095 backend_fd = -1;
1096 gotasync = 0;
1097#if EV_USE_INOTIFY
1098 fs_fd = -2;
1099#endif
1100
1101 /* pid check not overridable via env */
1102#ifndef _WIN32
1103 if (flags & EVFLAG_FORKCHECK)
1104 curpid = getpid ();
1105#endif
909 1106
910 if (!(flags & EVFLAG_NOENV) 1107 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1108 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1109 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1110 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1111
915 if (!(flags & 0x0000ffffUL)) 1112 if (!(flags & 0x0000ffffUL))
916 flags |= ev_recommended_backends (); 1113 flags |= ev_recommended_backends ();
917 1114
918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY
921 fs_fd = -2;
922#endif
923
924#if EV_USE_PORT 1115#if EV_USE_PORT
925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
926#endif 1117#endif
927#if EV_USE_KQUEUE 1118#if EV_USE_KQUEUE
928 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1119 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
935#endif 1126#endif
936#if EV_USE_SELECT 1127#if EV_USE_SELECT
937 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1128 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
938#endif 1129#endif
939 1130
940 ev_init (&sigev, sigcb); 1131 ev_init (&pipeev, pipecb);
941 ev_set_priority (&sigev, EV_MAXPRI); 1132 ev_set_priority (&pipeev, EV_MAXPRI);
942 } 1133 }
943} 1134}
944 1135
945static void noinline 1136static void noinline
946loop_destroy (EV_P) 1137loop_destroy (EV_P)
947{ 1138{
948 int i; 1139 int i;
1140
1141 if (ev_is_active (&pipeev))
1142 {
1143 ev_ref (EV_A); /* signal watcher */
1144 ev_io_stop (EV_A_ &pipeev);
1145
1146 close (evpipe [0]); evpipe [0] = 0;
1147 close (evpipe [1]); evpipe [1] = 0;
1148 }
949 1149
950#if EV_USE_INOTIFY 1150#if EV_USE_INOTIFY
951 if (fs_fd >= 0) 1151 if (fs_fd >= 0)
952 close (fs_fd); 1152 close (fs_fd);
953#endif 1153#endif
970#if EV_USE_SELECT 1170#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1171 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1172#endif
973 1173
974 for (i = NUMPRI; i--; ) 1174 for (i = NUMPRI; i--; )
1175 {
975 array_free (pending, [i]); 1176 array_free (pending, [i]);
1177#if EV_IDLE_ENABLE
1178 array_free (idle, [i]);
1179#endif
1180 }
1181
1182 ev_free (anfds); anfdmax = 0;
976 1183
977 /* have to use the microsoft-never-gets-it-right macro */ 1184 /* have to use the microsoft-never-gets-it-right macro */
978 array_free (fdchange, EMPTY0); 1185 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1186 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1187#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1188 array_free (periodic, EMPTY);
982#endif 1189#endif
1190#if EV_FORK_ENABLE
983 array_free (idle, EMPTY0); 1191 array_free (fork, EMPTY);
1192#endif
984 array_free (prepare, EMPTY0); 1193 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1194 array_free (check, EMPTY);
1195#if EV_ASYNC_ENABLE
1196 array_free (async, EMPTY);
1197#endif
986 1198
987 backend = 0; 1199 backend = 0;
988} 1200}
989 1201
990void inline_size infy_fork (EV_P); 1202void inline_size infy_fork (EV_P);
1003#endif 1215#endif
1004#if EV_USE_INOTIFY 1216#if EV_USE_INOTIFY
1005 infy_fork (EV_A); 1217 infy_fork (EV_A);
1006#endif 1218#endif
1007 1219
1008 if (ev_is_active (&sigev)) 1220 if (ev_is_active (&pipeev))
1009 { 1221 {
1010 /* default loop */ 1222 /* this "locks" the handlers against writing to the pipe */
1223 /* while we modify the fd vars */
1224 gotsig = 1;
1225#if EV_ASYNC_ENABLE
1226 gotasync = 1;
1227#endif
1011 1228
1012 ev_ref (EV_A); 1229 ev_ref (EV_A);
1013 ev_io_stop (EV_A_ &sigev); 1230 ev_io_stop (EV_A_ &pipeev);
1014 close (sigpipe [0]); 1231 close (evpipe [0]);
1015 close (sigpipe [1]); 1232 close (evpipe [1]);
1016 1233
1017 while (pipe (sigpipe))
1018 syserr ("(libev) error creating pipe");
1019
1020 siginit (EV_A); 1234 evpipe_init (EV_A);
1235 /* now iterate over everything, in case we missed something */
1236 pipecb (EV_A_ &pipeev, EV_READ);
1021 } 1237 }
1022 1238
1023 postfork = 0; 1239 postfork = 0;
1024} 1240}
1025 1241
1047} 1263}
1048 1264
1049void 1265void
1050ev_loop_fork (EV_P) 1266ev_loop_fork (EV_P)
1051{ 1267{
1052 postfork = 1; 1268 postfork = 1; /* must be in line with ev_default_fork */
1053} 1269}
1054 1270
1055#endif 1271#endif
1056 1272
1057#if EV_MULTIPLICITY 1273#if EV_MULTIPLICITY
1060#else 1276#else
1061int 1277int
1062ev_default_loop (unsigned int flags) 1278ev_default_loop (unsigned int flags)
1063#endif 1279#endif
1064{ 1280{
1065 if (sigpipe [0] == sigpipe [1])
1066 if (pipe (sigpipe))
1067 return 0;
1068
1069 if (!ev_default_loop_ptr) 1281 if (!ev_default_loop_ptr)
1070 { 1282 {
1071#if EV_MULTIPLICITY 1283#if EV_MULTIPLICITY
1072 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1284 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1073#else 1285#else
1076 1288
1077 loop_init (EV_A_ flags); 1289 loop_init (EV_A_ flags);
1078 1290
1079 if (ev_backend (EV_A)) 1291 if (ev_backend (EV_A))
1080 { 1292 {
1081 siginit (EV_A);
1082
1083#ifndef _WIN32 1293#ifndef _WIN32
1084 ev_signal_init (&childev, childcb, SIGCHLD); 1294 ev_signal_init (&childev, childcb, SIGCHLD);
1085 ev_set_priority (&childev, EV_MAXPRI); 1295 ev_set_priority (&childev, EV_MAXPRI);
1086 ev_signal_start (EV_A_ &childev); 1296 ev_signal_start (EV_A_ &childev);
1087 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1297 ev_unref (EV_A); /* child watcher should not keep loop alive */
1104#ifndef _WIN32 1314#ifndef _WIN32
1105 ev_ref (EV_A); /* child watcher */ 1315 ev_ref (EV_A); /* child watcher */
1106 ev_signal_stop (EV_A_ &childev); 1316 ev_signal_stop (EV_A_ &childev);
1107#endif 1317#endif
1108 1318
1109 ev_ref (EV_A); /* signal watcher */
1110 ev_io_stop (EV_A_ &sigev);
1111
1112 close (sigpipe [0]); sigpipe [0] = 0;
1113 close (sigpipe [1]); sigpipe [1] = 0;
1114
1115 loop_destroy (EV_A); 1319 loop_destroy (EV_A);
1116} 1320}
1117 1321
1118void 1322void
1119ev_default_fork (void) 1323ev_default_fork (void)
1121#if EV_MULTIPLICITY 1325#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr; 1326 struct ev_loop *loop = ev_default_loop_ptr;
1123#endif 1327#endif
1124 1328
1125 if (backend) 1329 if (backend)
1126 postfork = 1; 1330 postfork = 1; /* must be in line with ev_loop_fork */
1127} 1331}
1128 1332
1129/*****************************************************************************/ 1333/*****************************************************************************/
1130 1334
1131int inline_size 1335void
1132any_pending (EV_P) 1336ev_invoke (EV_P_ void *w, int revents)
1133{ 1337{
1134 int pri; 1338 EV_CB_INVOKE ((W)w, revents);
1135
1136 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri])
1138 return 1;
1139
1140 return 0;
1141} 1339}
1142 1340
1143void inline_speed 1341void inline_speed
1144call_pending (EV_P) 1342call_pending (EV_P)
1145{ 1343{
1163void inline_size 1361void inline_size
1164timers_reify (EV_P) 1362timers_reify (EV_P)
1165{ 1363{
1166 while (timercnt && ((WT)timers [0])->at <= mn_now) 1364 while (timercnt && ((WT)timers [0])->at <= mn_now)
1167 { 1365 {
1168 ev_timer *w = timers [0]; 1366 ev_timer *w = (ev_timer *)timers [0];
1169 1367
1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1368 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1171 1369
1172 /* first reschedule or stop timer */ 1370 /* first reschedule or stop timer */
1173 if (w->repeat) 1371 if (w->repeat)
1176 1374
1177 ((WT)w)->at += w->repeat; 1375 ((WT)w)->at += w->repeat;
1178 if (((WT)w)->at < mn_now) 1376 if (((WT)w)->at < mn_now)
1179 ((WT)w)->at = mn_now; 1377 ((WT)w)->at = mn_now;
1180 1378
1181 downheap ((WT *)timers, timercnt, 0); 1379 downheap (timers, timercnt, 0);
1182 } 1380 }
1183 else 1381 else
1184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1382 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1185 1383
1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1384 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1191void inline_size 1389void inline_size
1192periodics_reify (EV_P) 1390periodics_reify (EV_P)
1193{ 1391{
1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1392 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1195 { 1393 {
1196 ev_periodic *w = periodics [0]; 1394 ev_periodic *w = (ev_periodic *)periodics [0];
1197 1395
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1396 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1199 1397
1200 /* first reschedule or stop timer */ 1398 /* first reschedule or stop timer */
1201 if (w->reschedule_cb) 1399 if (w->reschedule_cb)
1202 { 1400 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1401 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1402 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1205 downheap ((WT *)periodics, periodiccnt, 0); 1403 downheap (periodics, periodiccnt, 0);
1206 } 1404 }
1207 else if (w->interval) 1405 else if (w->interval)
1208 { 1406 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1407 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1408 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1409 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1211 downheap ((WT *)periodics, periodiccnt, 0); 1410 downheap (periodics, periodiccnt, 0);
1212 } 1411 }
1213 else 1412 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1413 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1215 1414
1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1415 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1223 int i; 1422 int i;
1224 1423
1225 /* adjust periodics after time jump */ 1424 /* adjust periodics after time jump */
1226 for (i = 0; i < periodiccnt; ++i) 1425 for (i = 0; i < periodiccnt; ++i)
1227 { 1426 {
1228 ev_periodic *w = periodics [i]; 1427 ev_periodic *w = (ev_periodic *)periodics [i];
1229 1428
1230 if (w->reschedule_cb) 1429 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1430 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval) 1431 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1432 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1234 } 1433 }
1235 1434
1236 /* now rebuild the heap */ 1435 /* now rebuild the heap */
1237 for (i = periodiccnt >> 1; i--; ) 1436 for (i = periodiccnt >> 1; i--; )
1238 downheap ((WT *)periodics, periodiccnt, i); 1437 downheap (periodics, periodiccnt, i);
1239} 1438}
1240#endif 1439#endif
1241 1440
1441#if EV_IDLE_ENABLE
1242int inline_size 1442void inline_size
1243time_update_monotonic (EV_P) 1443idle_reify (EV_P)
1244{ 1444{
1445 if (expect_false (idleall))
1446 {
1447 int pri;
1448
1449 for (pri = NUMPRI; pri--; )
1450 {
1451 if (pendingcnt [pri])
1452 break;
1453
1454 if (idlecnt [pri])
1455 {
1456 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1457 break;
1458 }
1459 }
1460 }
1461}
1462#endif
1463
1464void inline_speed
1465time_update (EV_P_ ev_tstamp max_block)
1466{
1467 int i;
1468
1469#if EV_USE_MONOTONIC
1470 if (expect_true (have_monotonic))
1471 {
1472 ev_tstamp odiff = rtmn_diff;
1473
1245 mn_now = get_clock (); 1474 mn_now = get_clock ();
1246 1475
1476 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1477 /* interpolate in the meantime */
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1478 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 { 1479 {
1249 ev_rt_now = rtmn_diff + mn_now; 1480 ev_rt_now = rtmn_diff + mn_now;
1250 return 0; 1481 return;
1251 } 1482 }
1252 else 1483
1253 {
1254 now_floor = mn_now; 1484 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 1485 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 1486
1260void inline_size 1487 /* loop a few times, before making important decisions.
1261time_update (EV_P) 1488 * on the choice of "4": one iteration isn't enough,
1262{ 1489 * in case we get preempted during the calls to
1263 int i; 1490 * ev_time and get_clock. a second call is almost guaranteed
1264 1491 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 1492 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 1493 * in the unlikely event of having been preempted here.
1267 { 1494 */
1268 if (time_update_monotonic (EV_A)) 1495 for (i = 4; --i; )
1269 { 1496 {
1270 ev_tstamp odiff = rtmn_diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 1497 rtmn_diff = ev_rt_now - mn_now;
1283 1498
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1499 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1285 return; /* all is well */ 1500 return; /* all is well */
1286 1501
1287 ev_rt_now = ev_time (); 1502 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 1503 mn_now = get_clock ();
1289 now_floor = mn_now; 1504 now_floor = mn_now;
1290 } 1505 }
1291 1506
1292# if EV_PERIODIC_ENABLE 1507# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 1508 periodics_reschedule (EV_A);
1294# endif 1509# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */ 1510 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1511 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 1512 }
1299 else 1513 else
1300#endif 1514#endif
1301 { 1515 {
1302 ev_rt_now = ev_time (); 1516 ev_rt_now = ev_time ();
1303 1517
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1518 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 1519 {
1306#if EV_PERIODIC_ENABLE 1520#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 1521 periodics_reschedule (EV_A);
1308#endif 1522#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */ 1523 /* adjust timers. this is easy, as the offset is the same for all of them */
1311 for (i = 0; i < timercnt; ++i) 1524 for (i = 0; i < timercnt; ++i)
1312 ((WT)timers [i])->at += ev_rt_now - mn_now; 1525 ((WT)timers [i])->at += ev_rt_now - mn_now;
1313 } 1526 }
1314 1527
1315 mn_now = ev_rt_now; 1528 mn_now = ev_rt_now;
1335{ 1548{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1549 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1337 ? EVUNLOOP_ONE 1550 ? EVUNLOOP_ONE
1338 : EVUNLOOP_CANCEL; 1551 : EVUNLOOP_CANCEL;
1339 1552
1340 while (activecnt) 1553 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1554
1555 do
1341 { 1556 {
1342 /* we might have forked, so reify kernel state if necessary */ 1557#ifndef _WIN32
1558 if (expect_false (curpid)) /* penalise the forking check even more */
1559 if (expect_false (getpid () != curpid))
1560 {
1561 curpid = getpid ();
1562 postfork = 1;
1563 }
1564#endif
1565
1343 #if EV_FORK_ENABLE 1566#if EV_FORK_ENABLE
1567 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 1568 if (expect_false (postfork))
1345 if (forkcnt) 1569 if (forkcnt)
1346 { 1570 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1571 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 1572 call_pending (EV_A);
1349 } 1573 }
1350 #endif 1574#endif
1351 1575
1352 /* queue check watchers (and execute them) */ 1576 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 1577 if (expect_false (preparecnt))
1354 { 1578 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1579 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 1580 call_pending (EV_A);
1357 } 1581 }
1358 1582
1583 if (expect_false (!activecnt))
1584 break;
1585
1359 /* we might have forked, so reify kernel state if necessary */ 1586 /* we might have forked, so reify kernel state if necessary */
1360 if (expect_false (postfork)) 1587 if (expect_false (postfork))
1361 loop_fork (EV_A); 1588 loop_fork (EV_A);
1362 1589
1363 /* update fd-related kernel structures */ 1590 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 1591 fd_reify (EV_A);
1365 1592
1366 /* calculate blocking time */ 1593 /* calculate blocking time */
1367 { 1594 {
1368 double block; 1595 ev_tstamp waittime = 0.;
1596 ev_tstamp sleeptime = 0.;
1369 1597
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 1598 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1371 block = 0.; /* do not block at all */
1372 else
1373 { 1599 {
1374 /* update time to cancel out callback processing overhead */ 1600 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A); 1601 time_update (EV_A_ 1e100);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384 1602
1385 block = MAX_BLOCKTIME; 1603 waittime = MAX_BLOCKTIME;
1386 1604
1387 if (timercnt) 1605 if (timercnt)
1388 { 1606 {
1389 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1607 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1390 if (block > to) block = to; 1608 if (waittime > to) waittime = to;
1391 } 1609 }
1392 1610
1393#if EV_PERIODIC_ENABLE 1611#if EV_PERIODIC_ENABLE
1394 if (periodiccnt) 1612 if (periodiccnt)
1395 { 1613 {
1396 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1614 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1397 if (block > to) block = to; 1615 if (waittime > to) waittime = to;
1398 } 1616 }
1399#endif 1617#endif
1400 1618
1401 if (expect_false (block < 0.)) block = 0.; 1619 if (expect_false (waittime < timeout_blocktime))
1620 waittime = timeout_blocktime;
1621
1622 sleeptime = waittime - backend_fudge;
1623
1624 if (expect_true (sleeptime > io_blocktime))
1625 sleeptime = io_blocktime;
1626
1627 if (sleeptime)
1628 {
1629 ev_sleep (sleeptime);
1630 waittime -= sleeptime;
1631 }
1402 } 1632 }
1403 1633
1634 ++loop_count;
1404 backend_poll (EV_A_ block); 1635 backend_poll (EV_A_ waittime);
1636
1637 /* update ev_rt_now, do magic */
1638 time_update (EV_A_ waittime + sleeptime);
1405 } 1639 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 1640
1410 /* queue pending timers and reschedule them */ 1641 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 1642 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 1643#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 1644 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 1645#endif
1415 1646
1647#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 1648 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 1649 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1650#endif
1419 1651
1420 /* queue check watchers, to be executed first */ 1652 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 1653 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1654 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1423 1655
1424 call_pending (EV_A); 1656 call_pending (EV_A);
1425 1657
1426 if (expect_false (loop_done))
1427 break;
1428 } 1658 }
1659 while (expect_true (activecnt && !loop_done));
1429 1660
1430 if (loop_done == EVUNLOOP_ONE) 1661 if (loop_done == EVUNLOOP_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 1662 loop_done = EVUNLOOP_CANCEL;
1432} 1663}
1433 1664
1460 head = &(*head)->next; 1691 head = &(*head)->next;
1461 } 1692 }
1462} 1693}
1463 1694
1464void inline_speed 1695void inline_speed
1465ev_clear_pending (EV_P_ W w) 1696clear_pending (EV_P_ W w)
1466{ 1697{
1467 if (w->pending) 1698 if (w->pending)
1468 { 1699 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1700 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1470 w->pending = 0; 1701 w->pending = 0;
1471 } 1702 }
1472} 1703}
1473 1704
1705int
1706ev_clear_pending (EV_P_ void *w)
1707{
1708 W w_ = (W)w;
1709 int pending = w_->pending;
1710
1711 if (expect_true (pending))
1712 {
1713 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1714 w_->pending = 0;
1715 p->w = 0;
1716 return p->events;
1717 }
1718 else
1719 return 0;
1720}
1721
1722void inline_size
1723pri_adjust (EV_P_ W w)
1724{
1725 int pri = w->priority;
1726 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1727 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1728 w->priority = pri;
1729}
1730
1474void inline_speed 1731void inline_speed
1475ev_start (EV_P_ W w, int active) 1732ev_start (EV_P_ W w, int active)
1476{ 1733{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1734 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 1735 w->active = active;
1481 ev_ref (EV_A); 1736 ev_ref (EV_A);
1482} 1737}
1483 1738
1484void inline_size 1739void inline_size
1488 w->active = 0; 1743 w->active = 0;
1489} 1744}
1490 1745
1491/*****************************************************************************/ 1746/*****************************************************************************/
1492 1747
1493void 1748void noinline
1494ev_io_start (EV_P_ ev_io *w) 1749ev_io_start (EV_P_ ev_io *w)
1495{ 1750{
1496 int fd = w->fd; 1751 int fd = w->fd;
1497 1752
1498 if (expect_false (ev_is_active (w))) 1753 if (expect_false (ev_is_active (w)))
1500 1755
1501 assert (("ev_io_start called with negative fd", fd >= 0)); 1756 assert (("ev_io_start called with negative fd", fd >= 0));
1502 1757
1503 ev_start (EV_A_ (W)w, 1); 1758 ev_start (EV_A_ (W)w, 1);
1504 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1759 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1760 wlist_add (&anfds[fd].head, (WL)w);
1506 1761
1507 fd_change (EV_A_ fd); 1762 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1763 w->events &= ~EV_IOFDSET;
1508} 1764}
1509 1765
1510void 1766void noinline
1511ev_io_stop (EV_P_ ev_io *w) 1767ev_io_stop (EV_P_ ev_io *w)
1512{ 1768{
1513 ev_clear_pending (EV_A_ (W)w); 1769 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 1770 if (expect_false (!ev_is_active (w)))
1515 return; 1771 return;
1516 1772
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1773 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 1774
1519 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1775 wlist_del (&anfds[w->fd].head, (WL)w);
1520 ev_stop (EV_A_ (W)w); 1776 ev_stop (EV_A_ (W)w);
1521 1777
1522 fd_change (EV_A_ w->fd); 1778 fd_change (EV_A_ w->fd, 1);
1523} 1779}
1524 1780
1525void 1781void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 1782ev_timer_start (EV_P_ ev_timer *w)
1527{ 1783{
1528 if (expect_false (ev_is_active (w))) 1784 if (expect_false (ev_is_active (w)))
1529 return; 1785 return;
1530 1786
1531 ((WT)w)->at += mn_now; 1787 ((WT)w)->at += mn_now;
1532 1788
1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1789 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1534 1790
1535 ev_start (EV_A_ (W)w, ++timercnt); 1791 ev_start (EV_A_ (W)w, ++timercnt);
1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1792 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1537 timers [timercnt - 1] = w; 1793 timers [timercnt - 1] = (WT)w;
1538 upheap ((WT *)timers, timercnt - 1); 1794 upheap (timers, timercnt - 1);
1539 1795
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1796 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1541} 1797}
1542 1798
1543void 1799void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 1800ev_timer_stop (EV_P_ ev_timer *w)
1545{ 1801{
1546 ev_clear_pending (EV_A_ (W)w); 1802 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 1803 if (expect_false (!ev_is_active (w)))
1548 return; 1804 return;
1549 1805
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1806 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1551 1807
1552 { 1808 {
1553 int active = ((W)w)->active; 1809 int active = ((W)w)->active;
1554 1810
1555 if (expect_true (--active < --timercnt)) 1811 if (expect_true (--active < --timercnt))
1556 { 1812 {
1557 timers [active] = timers [timercnt]; 1813 timers [active] = timers [timercnt];
1558 adjustheap ((WT *)timers, timercnt, active); 1814 adjustheap (timers, timercnt, active);
1559 } 1815 }
1560 } 1816 }
1561 1817
1562 ((WT)w)->at -= mn_now; 1818 ((WT)w)->at -= mn_now;
1563 1819
1564 ev_stop (EV_A_ (W)w); 1820 ev_stop (EV_A_ (W)w);
1565} 1821}
1566 1822
1567void 1823void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 1824ev_timer_again (EV_P_ ev_timer *w)
1569{ 1825{
1570 if (ev_is_active (w)) 1826 if (ev_is_active (w))
1571 { 1827 {
1572 if (w->repeat) 1828 if (w->repeat)
1573 { 1829 {
1574 ((WT)w)->at = mn_now + w->repeat; 1830 ((WT)w)->at = mn_now + w->repeat;
1575 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1831 adjustheap (timers, timercnt, ((W)w)->active - 1);
1576 } 1832 }
1577 else 1833 else
1578 ev_timer_stop (EV_A_ w); 1834 ev_timer_stop (EV_A_ w);
1579 } 1835 }
1580 else if (w->repeat) 1836 else if (w->repeat)
1583 ev_timer_start (EV_A_ w); 1839 ev_timer_start (EV_A_ w);
1584 } 1840 }
1585} 1841}
1586 1842
1587#if EV_PERIODIC_ENABLE 1843#if EV_PERIODIC_ENABLE
1588void 1844void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 1845ev_periodic_start (EV_P_ ev_periodic *w)
1590{ 1846{
1591 if (expect_false (ev_is_active (w))) 1847 if (expect_false (ev_is_active (w)))
1592 return; 1848 return;
1593 1849
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1851 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 1852 else if (w->interval)
1597 { 1853 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1854 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 1855 /* this formula differs from the one in periodic_reify because we do not always round up */
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1856 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1601 } 1857 }
1858 else
1859 ((WT)w)->at = w->offset;
1602 1860
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 1861 ev_start (EV_A_ (W)w, ++periodiccnt);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1862 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 1863 periodics [periodiccnt - 1] = (WT)w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 1864 upheap (periodics, periodiccnt - 1);
1607 1865
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1866 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1609} 1867}
1610 1868
1611void 1869void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 1870ev_periodic_stop (EV_P_ ev_periodic *w)
1613{ 1871{
1614 ev_clear_pending (EV_A_ (W)w); 1872 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 1873 if (expect_false (!ev_is_active (w)))
1616 return; 1874 return;
1617 1875
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1876 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1619 1877
1620 { 1878 {
1621 int active = ((W)w)->active; 1879 int active = ((W)w)->active;
1622 1880
1623 if (expect_true (--active < --periodiccnt)) 1881 if (expect_true (--active < --periodiccnt))
1624 { 1882 {
1625 periodics [active] = periodics [periodiccnt]; 1883 periodics [active] = periodics [periodiccnt];
1626 adjustheap ((WT *)periodics, periodiccnt, active); 1884 adjustheap (periodics, periodiccnt, active);
1627 } 1885 }
1628 } 1886 }
1629 1887
1630 ev_stop (EV_A_ (W)w); 1888 ev_stop (EV_A_ (W)w);
1631} 1889}
1632 1890
1633void 1891void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 1892ev_periodic_again (EV_P_ ev_periodic *w)
1635{ 1893{
1636 /* TODO: use adjustheap and recalculation */ 1894 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 1895 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 1896 ev_periodic_start (EV_A_ w);
1641 1899
1642#ifndef SA_RESTART 1900#ifndef SA_RESTART
1643# define SA_RESTART 0 1901# define SA_RESTART 0
1644#endif 1902#endif
1645 1903
1646void 1904void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 1905ev_signal_start (EV_P_ ev_signal *w)
1648{ 1906{
1649#if EV_MULTIPLICITY 1907#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1908 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif 1909#endif
1652 if (expect_false (ev_is_active (w))) 1910 if (expect_false (ev_is_active (w)))
1653 return; 1911 return;
1654 1912
1655 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1913 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1656 1914
1915 evpipe_init (EV_A);
1916
1917 {
1918#ifndef _WIN32
1919 sigset_t full, prev;
1920 sigfillset (&full);
1921 sigprocmask (SIG_SETMASK, &full, &prev);
1922#endif
1923
1924 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1925
1926#ifndef _WIN32
1927 sigprocmask (SIG_SETMASK, &prev, 0);
1928#endif
1929 }
1930
1657 ev_start (EV_A_ (W)w, 1); 1931 ev_start (EV_A_ (W)w, 1);
1658 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1659 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1932 wlist_add (&signals [w->signum - 1].head, (WL)w);
1660 1933
1661 if (!((WL)w)->next) 1934 if (!((WL)w)->next)
1662 { 1935 {
1663#if _WIN32 1936#if _WIN32
1664 signal (w->signum, sighandler); 1937 signal (w->signum, sighandler);
1670 sigaction (w->signum, &sa, 0); 1943 sigaction (w->signum, &sa, 0);
1671#endif 1944#endif
1672 } 1945 }
1673} 1946}
1674 1947
1675void 1948void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 1949ev_signal_stop (EV_P_ ev_signal *w)
1677{ 1950{
1678 ev_clear_pending (EV_A_ (W)w); 1951 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 1952 if (expect_false (!ev_is_active (w)))
1680 return; 1953 return;
1681 1954
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1955 wlist_del (&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 1956 ev_stop (EV_A_ (W)w);
1684 1957
1685 if (!signals [w->signum - 1].head) 1958 if (!signals [w->signum - 1].head)
1686 signal (w->signum, SIG_DFL); 1959 signal (w->signum, SIG_DFL);
1687} 1960}
1694#endif 1967#endif
1695 if (expect_false (ev_is_active (w))) 1968 if (expect_false (ev_is_active (w)))
1696 return; 1969 return;
1697 1970
1698 ev_start (EV_A_ (W)w, 1); 1971 ev_start (EV_A_ (W)w, 1);
1699 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1972 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1700} 1973}
1701 1974
1702void 1975void
1703ev_child_stop (EV_P_ ev_child *w) 1976ev_child_stop (EV_P_ ev_child *w)
1704{ 1977{
1705 ev_clear_pending (EV_A_ (W)w); 1978 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 1979 if (expect_false (!ev_is_active (w)))
1707 return; 1980 return;
1708 1981
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1982 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 1983 ev_stop (EV_A_ (W)w);
1711} 1984}
1712 1985
1713#if EV_STAT_ENABLE 1986#if EV_STAT_ENABLE
1714 1987
1718# endif 1991# endif
1719 1992
1720#define DEF_STAT_INTERVAL 5.0074891 1993#define DEF_STAT_INTERVAL 5.0074891
1721#define MIN_STAT_INTERVAL 0.1074891 1994#define MIN_STAT_INTERVAL 0.1074891
1722 1995
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 1996static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 1997
1725#if EV_USE_INOTIFY 1998#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 1999# define EV_INOTIFY_BUFSIZE 8192
1727 2000
1728static void noinline 2001static void noinline
1879 w->attr.st_nlink = 0; 2152 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 2153 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 2154 w->attr.st_nlink = 1;
1882} 2155}
1883 2156
1884void noinline 2157static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2158stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 2159{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2160 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 2161
1889 /* we copy this here each the time so that */ 2162 /* we copy this here each the time so that */
1946} 2219}
1947 2220
1948void 2221void
1949ev_stat_stop (EV_P_ ev_stat *w) 2222ev_stat_stop (EV_P_ ev_stat *w)
1950{ 2223{
1951 ev_clear_pending (EV_A_ (W)w); 2224 clear_pending (EV_A_ (W)w);
1952 if (expect_false (!ev_is_active (w))) 2225 if (expect_false (!ev_is_active (w)))
1953 return; 2226 return;
1954 2227
1955#if EV_USE_INOTIFY 2228#if EV_USE_INOTIFY
1956 infy_del (EV_A_ w); 2229 infy_del (EV_A_ w);
1959 2232
1960 ev_stop (EV_A_ (W)w); 2233 ev_stop (EV_A_ (W)w);
1961} 2234}
1962#endif 2235#endif
1963 2236
2237#if EV_IDLE_ENABLE
1964void 2238void
1965ev_idle_start (EV_P_ ev_idle *w) 2239ev_idle_start (EV_P_ ev_idle *w)
1966{ 2240{
1967 if (expect_false (ev_is_active (w))) 2241 if (expect_false (ev_is_active (w)))
1968 return; 2242 return;
1969 2243
2244 pri_adjust (EV_A_ (W)w);
2245
2246 {
2247 int active = ++idlecnt [ABSPRI (w)];
2248
2249 ++idleall;
1970 ev_start (EV_A_ (W)w, ++idlecnt); 2250 ev_start (EV_A_ (W)w, active);
2251
1971 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2252 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1972 idles [idlecnt - 1] = w; 2253 idles [ABSPRI (w)][active - 1] = w;
2254 }
1973} 2255}
1974 2256
1975void 2257void
1976ev_idle_stop (EV_P_ ev_idle *w) 2258ev_idle_stop (EV_P_ ev_idle *w)
1977{ 2259{
1978 ev_clear_pending (EV_A_ (W)w); 2260 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 2261 if (expect_false (!ev_is_active (w)))
1980 return; 2262 return;
1981 2263
1982 { 2264 {
1983 int active = ((W)w)->active; 2265 int active = ((W)w)->active;
1984 idles [active - 1] = idles [--idlecnt]; 2266
2267 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1985 ((W)idles [active - 1])->active = active; 2268 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2269
2270 ev_stop (EV_A_ (W)w);
2271 --idleall;
1986 } 2272 }
1987
1988 ev_stop (EV_A_ (W)w);
1989} 2273}
2274#endif
1990 2275
1991void 2276void
1992ev_prepare_start (EV_P_ ev_prepare *w) 2277ev_prepare_start (EV_P_ ev_prepare *w)
1993{ 2278{
1994 if (expect_false (ev_is_active (w))) 2279 if (expect_false (ev_is_active (w)))
2000} 2285}
2001 2286
2002void 2287void
2003ev_prepare_stop (EV_P_ ev_prepare *w) 2288ev_prepare_stop (EV_P_ ev_prepare *w)
2004{ 2289{
2005 ev_clear_pending (EV_A_ (W)w); 2290 clear_pending (EV_A_ (W)w);
2006 if (expect_false (!ev_is_active (w))) 2291 if (expect_false (!ev_is_active (w)))
2007 return; 2292 return;
2008 2293
2009 { 2294 {
2010 int active = ((W)w)->active; 2295 int active = ((W)w)->active;
2027} 2312}
2028 2313
2029void 2314void
2030ev_check_stop (EV_P_ ev_check *w) 2315ev_check_stop (EV_P_ ev_check *w)
2031{ 2316{
2032 ev_clear_pending (EV_A_ (W)w); 2317 clear_pending (EV_A_ (W)w);
2033 if (expect_false (!ev_is_active (w))) 2318 if (expect_false (!ev_is_active (w)))
2034 return; 2319 return;
2035 2320
2036 { 2321 {
2037 int active = ((W)w)->active; 2322 int active = ((W)w)->active;
2044 2329
2045#if EV_EMBED_ENABLE 2330#if EV_EMBED_ENABLE
2046void noinline 2331void noinline
2047ev_embed_sweep (EV_P_ ev_embed *w) 2332ev_embed_sweep (EV_P_ ev_embed *w)
2048{ 2333{
2049 ev_loop (w->loop, EVLOOP_NONBLOCK); 2334 ev_loop (w->other, EVLOOP_NONBLOCK);
2050} 2335}
2051 2336
2052static void 2337static void
2053embed_cb (EV_P_ ev_io *io, int revents) 2338embed_io_cb (EV_P_ ev_io *io, int revents)
2054{ 2339{
2055 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2340 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2056 2341
2057 if (ev_cb (w)) 2342 if (ev_cb (w))
2058 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2343 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2059 else 2344 else
2060 ev_embed_sweep (loop, w); 2345 ev_loop (w->other, EVLOOP_NONBLOCK);
2061} 2346}
2347
2348static void
2349embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2350{
2351 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2352
2353 {
2354 struct ev_loop *loop = w->other;
2355
2356 while (fdchangecnt)
2357 {
2358 fd_reify (EV_A);
2359 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2360 }
2361 }
2362}
2363
2364#if 0
2365static void
2366embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2367{
2368 ev_idle_stop (EV_A_ idle);
2369}
2370#endif
2062 2371
2063void 2372void
2064ev_embed_start (EV_P_ ev_embed *w) 2373ev_embed_start (EV_P_ ev_embed *w)
2065{ 2374{
2066 if (expect_false (ev_is_active (w))) 2375 if (expect_false (ev_is_active (w)))
2067 return; 2376 return;
2068 2377
2069 { 2378 {
2070 struct ev_loop *loop = w->loop; 2379 struct ev_loop *loop = w->other;
2071 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2380 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2072 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2381 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2073 } 2382 }
2074 2383
2075 ev_set_priority (&w->io, ev_priority (w)); 2384 ev_set_priority (&w->io, ev_priority (w));
2076 ev_io_start (EV_A_ &w->io); 2385 ev_io_start (EV_A_ &w->io);
2077 2386
2387 ev_prepare_init (&w->prepare, embed_prepare_cb);
2388 ev_set_priority (&w->prepare, EV_MINPRI);
2389 ev_prepare_start (EV_A_ &w->prepare);
2390
2391 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2392
2078 ev_start (EV_A_ (W)w, 1); 2393 ev_start (EV_A_ (W)w, 1);
2079} 2394}
2080 2395
2081void 2396void
2082ev_embed_stop (EV_P_ ev_embed *w) 2397ev_embed_stop (EV_P_ ev_embed *w)
2083{ 2398{
2084 ev_clear_pending (EV_A_ (W)w); 2399 clear_pending (EV_A_ (W)w);
2085 if (expect_false (!ev_is_active (w))) 2400 if (expect_false (!ev_is_active (w)))
2086 return; 2401 return;
2087 2402
2088 ev_io_stop (EV_A_ &w->io); 2403 ev_io_stop (EV_A_ &w->io);
2404 ev_prepare_stop (EV_A_ &w->prepare);
2089 2405
2090 ev_stop (EV_A_ (W)w); 2406 ev_stop (EV_A_ (W)w);
2091} 2407}
2092#endif 2408#endif
2093 2409
2104} 2420}
2105 2421
2106void 2422void
2107ev_fork_stop (EV_P_ ev_fork *w) 2423ev_fork_stop (EV_P_ ev_fork *w)
2108{ 2424{
2109 ev_clear_pending (EV_A_ (W)w); 2425 clear_pending (EV_A_ (W)w);
2110 if (expect_false (!ev_is_active (w))) 2426 if (expect_false (!ev_is_active (w)))
2111 return; 2427 return;
2112 2428
2113 { 2429 {
2114 int active = ((W)w)->active; 2430 int active = ((W)w)->active;
2118 2434
2119 ev_stop (EV_A_ (W)w); 2435 ev_stop (EV_A_ (W)w);
2120} 2436}
2121#endif 2437#endif
2122 2438
2439#if EV_ASYNC_ENABLE
2440void
2441ev_async_start (EV_P_ ev_async *w)
2442{
2443 if (expect_false (ev_is_active (w)))
2444 return;
2445
2446 evpipe_init (EV_A);
2447
2448 ev_start (EV_A_ (W)w, ++asynccnt);
2449 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2450 asyncs [asynccnt - 1] = w;
2451}
2452
2453void
2454ev_async_stop (EV_P_ ev_async *w)
2455{
2456 clear_pending (EV_A_ (W)w);
2457 if (expect_false (!ev_is_active (w)))
2458 return;
2459
2460 {
2461 int active = ((W)w)->active;
2462 asyncs [active - 1] = asyncs [--asynccnt];
2463 ((W)asyncs [active - 1])->active = active;
2464 }
2465
2466 ev_stop (EV_A_ (W)w);
2467}
2468
2469void
2470ev_async_send (EV_P_ ev_async *w)
2471{
2472 w->sent = 1;
2473 evpipe_write (EV_A_ 0, 1);
2474}
2475#endif
2476
2123/*****************************************************************************/ 2477/*****************************************************************************/
2124 2478
2125struct ev_once 2479struct ev_once
2126{ 2480{
2127 ev_io io; 2481 ev_io io;
2182 ev_timer_set (&once->to, timeout, 0.); 2536 ev_timer_set (&once->to, timeout, 0.);
2183 ev_timer_start (EV_A_ &once->to); 2537 ev_timer_start (EV_A_ &once->to);
2184 } 2538 }
2185} 2539}
2186 2540
2541#if EV_MULTIPLICITY
2542 #include "ev_wrap.h"
2543#endif
2544
2187#ifdef __cplusplus 2545#ifdef __cplusplus
2188} 2546}
2189#endif 2547#endif
2190 2548

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines