ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.156 by root, Wed Nov 28 17:50:13 2007 UTC vs.
Revision 1.238 by root, Thu May 8 20:49:12 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE 271#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
213#endif 276# endif
214 277int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 278# ifdef __cplusplus
216# include <sys/inotify.h> 279}
280# endif
217#endif 281#endif
218 282
219/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 294
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 298
225#if __GNUC__ >= 3 299#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 302#else
236# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
240#endif 308#endif
241 309
242#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
244 319
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 322
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
250 325
251typedef ev_watcher *W; 326typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
254 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
256 338
257#ifdef _WIN32 339#ifdef _WIN32
258# include "ev_win32.c" 340# include "ev_win32.c"
259#endif 341#endif
260 342
281 perror (msg); 363 perror (msg);
282 abort (); 364 abort ();
283 } 365 }
284} 366}
285 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
286static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 384
288void 385void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 387{
291 alloc = cb; 388 alloc = cb;
292} 389}
293 390
294inline_speed void * 391inline_speed void *
295ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
296{ 393{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
298 395
299 if (!ptr && size) 396 if (!ptr && size)
300 { 397 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 399 abort ();
396{ 493{
397 return ev_rt_now; 494 return ev_rt_now;
398} 495}
399#endif 496#endif
400 497
401#define array_roundsize(type,n) (((n) | 4) & ~3) 498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
522
523/*****************************************************************************/
524
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526
527int inline_size
528array_nextsize (int elem, int cur, int cnt)
529{
530 int ncur = cur + 1;
531
532 do
533 ncur <<= 1;
534 while (cnt > ncur);
535
536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
538 {
539 ncur *= elem;
540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
541 ncur = ncur - sizeof (void *) * 4;
542 ncur /= elem;
543 }
544
545 return ncur;
546}
547
548static noinline void *
549array_realloc (int elem, void *base, int *cur, int cnt)
550{
551 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur);
553}
402 554
403#define array_needsize(type,base,cur,cnt,init) \ 555#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 556 if (expect_false ((cnt) > (cur))) \
405 { \ 557 { \
406 int newcnt = cur; \ 558 int ocur_ = (cur); \
407 do \ 559 (base) = (type *)array_realloc \
408 { \ 560 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 561 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 562 }
417 563
564#if 0
418#define array_slim(type,stem) \ 565#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 566 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 567 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 568 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 569 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 571 }
572#endif
425 573
426#define array_free(stem, idx) \ 574#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 576
429/*****************************************************************************/ 577/*****************************************************************************/
430 578
431void noinline 579void noinline
432ev_feed_event (EV_P_ void *w, int revents) 580ev_feed_event (EV_P_ void *w, int revents)
433{ 581{
434 W w_ = (W)w; 582 W w_ = (W)w;
583 int pri = ABSPRI (w_);
435 584
436 if (expect_false (w_->pending)) 585 if (expect_false (w_->pending))
586 pendings [pri][w_->pending - 1].events |= revents;
587 else
437 { 588 {
589 w_->pending = ++pendingcnt [pri];
590 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
591 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 592 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 593 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 594}
447 595
448void inline_size 596void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 597queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 598{
451 int i; 599 int i;
452 600
453 for (i = 0; i < eventcnt; ++i) 601 for (i = 0; i < eventcnt; ++i)
485} 633}
486 634
487void 635void
488ev_feed_fd_event (EV_P_ int fd, int revents) 636ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 637{
638 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 639 fd_event (EV_A_ fd, revents);
491} 640}
492 641
493void inline_size 642void inline_size
494fd_reify (EV_P) 643fd_reify (EV_P)
495{ 644{
499 { 648 {
500 int fd = fdchanges [i]; 649 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
502 ev_io *w; 651 ev_io *w;
503 652
504 int events = 0; 653 unsigned char events = 0;
505 654
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 656 events |= (unsigned char)w->events;
508 657
509#if EV_SELECT_IS_WINSOCKET 658#if EV_SELECT_IS_WINSOCKET
510 if (events) 659 if (events)
511 { 660 {
512 unsigned long argp; 661 unsigned long argp;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
513 anfd->handle = _get_osfhandle (fd); 665 anfd->handle = _get_osfhandle (fd);
666 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 668 }
516#endif 669#endif
517 670
671 {
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
518 anfd->reify = 0; 675 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events);
680 }
522 } 681 }
523 682
524 fdchangecnt = 0; 683 fdchangecnt = 0;
525} 684}
526 685
527void inline_size 686void inline_size
528fd_change (EV_P_ int fd) 687fd_change (EV_P_ int fd, int flags)
529{ 688{
530 if (expect_false (anfds [fd].reify)) 689 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 690 anfds [fd].reify |= flags;
534 691
692 if (expect_true (!reify))
693 {
535 ++fdchangecnt; 694 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 696 fdchanges [fdchangecnt - 1] = fd;
697 }
538} 698}
539 699
540void inline_speed 700void inline_speed
541fd_kill (EV_P_ int fd) 701fd_kill (EV_P_ int fd)
542{ 702{
589static void noinline 749static void noinline
590fd_rearm_all (EV_P) 750fd_rearm_all (EV_P)
591{ 751{
592 int fd; 752 int fd;
593 753
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 754 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 755 if (anfds [fd].events)
597 { 756 {
598 anfds [fd].events = 0; 757 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 758 fd_change (EV_A_ fd, EV_IOFDSET | 1);
600 } 759 }
601} 760}
602 761
603/*****************************************************************************/ 762/*****************************************************************************/
604 763
764/*
765 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers.
769 */
770#define USE_4HEAP !EV_MINIMAL
771#define USE_4HEAP 1/* they do not work corretcly */
772#if USE_4HEAP
773
774#define DHEAP 4
775#define HEAP0 (DHEAP - 1) /* index of first element in heap */
776
777/* towards the root */
605void inline_speed 778void inline_speed
606upheap (WT *heap, int k) 779upheap (WT *heap, int k)
607{ 780{
608 WT w = heap [k]; 781 WT w = heap [k];
609 782
610 while (k && heap [k >> 1]->at > w->at) 783 for (;;)
611 { 784 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
786
787 if (p == k || heap [p]->at <= w->at)
788 break;
789
612 heap [k] = heap [k >> 1]; 790 heap [k] = heap [p];
613 ((W)heap [k])->active = k + 1; 791 ev_active (heap [k]) = k;
614 k >>= 1; 792 k = p;
615 } 793 }
616 794
617 heap [k] = w; 795 heap [k] = w;
618 ((W)heap [k])->active = k + 1; 796 ev_active (heap [k]) = k;
619
620} 797}
621 798
799/* away from the root */
622void inline_speed 800void inline_speed
623downheap (WT *heap, int N, int k) 801downheap (WT *heap, int N, int k)
624{ 802{
625 WT w = heap [k]; 803 WT w = heap [k];
804 WT *E = heap + N + HEAP0;
626 805
627 while (k < (N >> 1)) 806 for (;;)
628 { 807 {
629 int j = k << 1; 808 ev_tstamp minat;
809 WT *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
630 811
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 812 // find minimum child
813 if (expect_true (pos + DHEAP - 1 < E))
632 ++j; 814 {
815 /* fast path */
816 (minpos = pos + 0), (minat = (*minpos)->at);
817 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
818 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
819 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
820 }
821 else
822 {
823 /* slow path */
824 if (pos >= E)
825 break;
826 (minpos = pos + 0), (minat = (*minpos)->at);
827 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
828 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
829 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
830 }
633 831
634 if (w->at <= heap [j]->at) 832 if (w->at <= minat)
635 break; 833 break;
636 834
637 heap [k] = heap [j]; 835 ev_active (*minpos) = k;
638 ((W)heap [k])->active = k + 1; 836 heap [k] = *minpos;
639 k = j; 837
838 k = minpos - heap;
640 } 839 }
641 840
642 heap [k] = w; 841 heap [k] = w;
842 ev_active (heap [k]) = k;
843}
844
845#else // 4HEAP
846
847#define HEAP0 1
848
849/* towards the root */
850void inline_speed
851upheap (WT *heap, int k)
852{
853 WT w = heap [k];
854
855 for (;;)
856 {
857 int p = k >> 1;
858
859 /* maybe we could use a dummy element at heap [0]? */
860 if (!p || heap [p]->at <= w->at)
861 break;
862
863 heap [k] = heap [p];
864 ev_active (heap [k]) = k;
865 k = p;
866 }
867
868 heap [k] = w;
869 ev_active (heap [k]) = k;
870}
871
872/* away from the root */
873void inline_speed
874downheap (WT *heap, int N, int k)
875{
876 WT w = heap [k];
877
878 for (;;)
879 {
880 int c = k << 1;
881
882 if (c > N)
883 break;
884
885 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
886 ? 1 : 0;
887
888 if (w->at <= heap [c]->at)
889 break;
890
891 heap [k] = heap [c];
643 ((W)heap [k])->active = k + 1; 892 ((W)heap [k])->active = k;
893
894 k = c;
895 }
896
897 heap [k] = w;
898 ev_active (heap [k]) = k;
644} 899}
900#endif
645 901
646void inline_size 902void inline_size
647adjustheap (WT *heap, int N, int k) 903adjustheap (WT *heap, int N, int k)
648{ 904{
649 upheap (heap, k); 905 upheap (heap, k);
653/*****************************************************************************/ 909/*****************************************************************************/
654 910
655typedef struct 911typedef struct
656{ 912{
657 WL head; 913 WL head;
658 sig_atomic_t volatile gotsig; 914 EV_ATOMIC_T gotsig;
659} ANSIG; 915} ANSIG;
660 916
661static ANSIG *signals; 917static ANSIG *signals;
662static int signalmax; 918static int signalmax;
663 919
664static int sigpipe [2]; 920static EV_ATOMIC_T gotsig;
665static sig_atomic_t volatile gotsig;
666static ev_io sigev;
667 921
668void inline_size 922void inline_size
669signals_init (ANSIG *base, int count) 923signals_init (ANSIG *base, int count)
670{ 924{
671 while (count--) 925 while (count--)
675 929
676 ++base; 930 ++base;
677 } 931 }
678} 932}
679 933
680static void 934/*****************************************************************************/
681sighandler (int signum)
682{
683#if _WIN32
684 signal (signum, sighandler);
685#endif
686 935
687 signals [signum - 1].gotsig = 1;
688
689 if (!gotsig)
690 {
691 int old_errno = errno;
692 gotsig = 1;
693 write (sigpipe [1], &signum, 1);
694 errno = old_errno;
695 }
696}
697
698void noinline
699ev_feed_signal_event (EV_P_ int signum)
700{
701 WL w;
702
703#if EV_MULTIPLICITY
704 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
705#endif
706
707 --signum;
708
709 if (signum < 0 || signum >= signalmax)
710 return;
711
712 signals [signum].gotsig = 0;
713
714 for (w = signals [signum].head; w; w = w->next)
715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
716}
717
718static void
719sigcb (EV_P_ ev_io *iow, int revents)
720{
721 int signum;
722
723 read (sigpipe [0], &revents, 1);
724 gotsig = 0;
725
726 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1);
729}
730
731void inline_size 936void inline_speed
732fd_intern (int fd) 937fd_intern (int fd)
733{ 938{
734#ifdef _WIN32 939#ifdef _WIN32
735 int arg = 1; 940 int arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 941 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
739 fcntl (fd, F_SETFL, O_NONBLOCK); 944 fcntl (fd, F_SETFL, O_NONBLOCK);
740#endif 945#endif
741} 946}
742 947
743static void noinline 948static void noinline
744siginit (EV_P) 949evpipe_init (EV_P)
745{ 950{
951 if (!ev_is_active (&pipeev))
952 {
953#if EV_USE_EVENTFD
954 if ((evfd = eventfd (0, 0)) >= 0)
955 {
956 evpipe [0] = -1;
957 fd_intern (evfd);
958 ev_io_set (&pipeev, evfd, EV_READ);
959 }
960 else
961#endif
962 {
963 while (pipe (evpipe))
964 syserr ("(libev) error creating signal/async pipe");
965
746 fd_intern (sigpipe [0]); 966 fd_intern (evpipe [0]);
747 fd_intern (sigpipe [1]); 967 fd_intern (evpipe [1]);
968 ev_io_set (&pipeev, evpipe [0], EV_READ);
969 }
748 970
749 ev_io_set (&sigev, sigpipe [0], EV_READ);
750 ev_io_start (EV_A_ &sigev); 971 ev_io_start (EV_A_ &pipeev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 972 ev_unref (EV_A); /* watcher should not keep loop alive */
973 }
974}
975
976void inline_size
977evpipe_write (EV_P_ EV_ATOMIC_T *flag)
978{
979 if (!*flag)
980 {
981 int old_errno = errno; /* save errno because write might clobber it */
982
983 *flag = 1;
984
985#if EV_USE_EVENTFD
986 if (evfd >= 0)
987 {
988 uint64_t counter = 1;
989 write (evfd, &counter, sizeof (uint64_t));
990 }
991 else
992#endif
993 write (evpipe [1], &old_errno, 1);
994
995 errno = old_errno;
996 }
997}
998
999static void
1000pipecb (EV_P_ ev_io *iow, int revents)
1001{
1002#if EV_USE_EVENTFD
1003 if (evfd >= 0)
1004 {
1005 uint64_t counter;
1006 read (evfd, &counter, sizeof (uint64_t));
1007 }
1008 else
1009#endif
1010 {
1011 char dummy;
1012 read (evpipe [0], &dummy, 1);
1013 }
1014
1015 if (gotsig && ev_is_default_loop (EV_A))
1016 {
1017 int signum;
1018 gotsig = 0;
1019
1020 for (signum = signalmax; signum--; )
1021 if (signals [signum].gotsig)
1022 ev_feed_signal_event (EV_A_ signum + 1);
1023 }
1024
1025#if EV_ASYNC_ENABLE
1026 if (gotasync)
1027 {
1028 int i;
1029 gotasync = 0;
1030
1031 for (i = asynccnt; i--; )
1032 if (asyncs [i]->sent)
1033 {
1034 asyncs [i]->sent = 0;
1035 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1036 }
1037 }
1038#endif
752} 1039}
753 1040
754/*****************************************************************************/ 1041/*****************************************************************************/
755 1042
1043static void
1044ev_sighandler (int signum)
1045{
1046#if EV_MULTIPLICITY
1047 struct ev_loop *loop = &default_loop_struct;
1048#endif
1049
1050#if _WIN32
1051 signal (signum, ev_sighandler);
1052#endif
1053
1054 signals [signum - 1].gotsig = 1;
1055 evpipe_write (EV_A_ &gotsig);
1056}
1057
1058void noinline
1059ev_feed_signal_event (EV_P_ int signum)
1060{
1061 WL w;
1062
1063#if EV_MULTIPLICITY
1064 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1065#endif
1066
1067 --signum;
1068
1069 if (signum < 0 || signum >= signalmax)
1070 return;
1071
1072 signals [signum].gotsig = 0;
1073
1074 for (w = signals [signum].head; w; w = w->next)
1075 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1076}
1077
1078/*****************************************************************************/
1079
756static ev_child *childs [EV_PID_HASHSIZE]; 1080static WL childs [EV_PID_HASHSIZE];
757 1081
758#ifndef _WIN32 1082#ifndef _WIN32
759 1083
760static ev_signal childev; 1084static ev_signal childev;
761 1085
1086#ifndef WIFCONTINUED
1087# define WIFCONTINUED(status) 0
1088#endif
1089
762void inline_speed 1090void inline_speed
763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1091child_reap (EV_P_ int chain, int pid, int status)
764{ 1092{
765 ev_child *w; 1093 ev_child *w;
1094 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
766 1095
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1096 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1097 {
768 if (w->pid == pid || !w->pid) 1098 if ((w->pid == pid || !w->pid)
1099 && (!traced || (w->flags & 1)))
769 { 1100 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1101 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
771 w->rpid = pid; 1102 w->rpid = pid;
772 w->rstatus = status; 1103 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1104 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 1105 }
1106 }
775} 1107}
776 1108
777#ifndef WCONTINUED 1109#ifndef WCONTINUED
778# define WCONTINUED 0 1110# define WCONTINUED 0
779#endif 1111#endif
788 if (!WCONTINUED 1120 if (!WCONTINUED
789 || errno != EINVAL 1121 || errno != EINVAL
790 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1122 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
791 return; 1123 return;
792 1124
793 /* make sure we are called again until all childs have been reaped */ 1125 /* make sure we are called again until all children have been reaped */
794 /* we need to do it this way so that the callback gets called before we continue */ 1126 /* we need to do it this way so that the callback gets called before we continue */
795 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1127 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
796 1128
797 child_reap (EV_A_ sw, pid, pid, status); 1129 child_reap (EV_A_ pid, pid, status);
798 if (EV_PID_HASHSIZE > 1) 1130 if (EV_PID_HASHSIZE > 1)
799 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1131 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
800} 1132}
801 1133
802#endif 1134#endif
803 1135
804/*****************************************************************************/ 1136/*****************************************************************************/
876} 1208}
877 1209
878unsigned int 1210unsigned int
879ev_embeddable_backends (void) 1211ev_embeddable_backends (void)
880{ 1212{
881 return EVBACKEND_EPOLL 1213 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
882 | EVBACKEND_KQUEUE 1214
883 | EVBACKEND_PORT; 1215 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1216 /* please fix it and tell me how to detect the fix */
1217 flags &= ~EVBACKEND_EPOLL;
1218
1219 return flags;
884} 1220}
885 1221
886unsigned int 1222unsigned int
887ev_backend (EV_P) 1223ev_backend (EV_P)
888{ 1224{
889 return backend; 1225 return backend;
1226}
1227
1228unsigned int
1229ev_loop_count (EV_P)
1230{
1231 return loop_count;
1232}
1233
1234void
1235ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1236{
1237 io_blocktime = interval;
1238}
1239
1240void
1241ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1242{
1243 timeout_blocktime = interval;
890} 1244}
891 1245
892static void noinline 1246static void noinline
893loop_init (EV_P_ unsigned int flags) 1247loop_init (EV_P_ unsigned int flags)
894{ 1248{
900 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1254 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
901 have_monotonic = 1; 1255 have_monotonic = 1;
902 } 1256 }
903#endif 1257#endif
904 1258
905 ev_rt_now = ev_time (); 1259 ev_rt_now = ev_time ();
906 mn_now = get_clock (); 1260 mn_now = get_clock ();
907 now_floor = mn_now; 1261 now_floor = mn_now;
908 rtmn_diff = ev_rt_now - mn_now; 1262 rtmn_diff = ev_rt_now - mn_now;
1263
1264 io_blocktime = 0.;
1265 timeout_blocktime = 0.;
1266 backend = 0;
1267 backend_fd = -1;
1268 gotasync = 0;
1269#if EV_USE_INOTIFY
1270 fs_fd = -2;
1271#endif
1272
1273 /* pid check not overridable via env */
1274#ifndef _WIN32
1275 if (flags & EVFLAG_FORKCHECK)
1276 curpid = getpid ();
1277#endif
909 1278
910 if (!(flags & EVFLAG_NOENV) 1279 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1280 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1281 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1282 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1283
915 if (!(flags & 0x0000ffffUL)) 1284 if (!(flags & 0x0000ffffU))
916 flags |= ev_recommended_backends (); 1285 flags |= ev_recommended_backends ();
917
918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY
921 fs_fd = -2;
922#endif
923 1286
924#if EV_USE_PORT 1287#if EV_USE_PORT
925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1288 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
926#endif 1289#endif
927#if EV_USE_KQUEUE 1290#if EV_USE_KQUEUE
935#endif 1298#endif
936#if EV_USE_SELECT 1299#if EV_USE_SELECT
937 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1300 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
938#endif 1301#endif
939 1302
940 ev_init (&sigev, sigcb); 1303 ev_init (&pipeev, pipecb);
941 ev_set_priority (&sigev, EV_MAXPRI); 1304 ev_set_priority (&pipeev, EV_MAXPRI);
942 } 1305 }
943} 1306}
944 1307
945static void noinline 1308static void noinline
946loop_destroy (EV_P) 1309loop_destroy (EV_P)
947{ 1310{
948 int i; 1311 int i;
1312
1313 if (ev_is_active (&pipeev))
1314 {
1315 ev_ref (EV_A); /* signal watcher */
1316 ev_io_stop (EV_A_ &pipeev);
1317
1318#if EV_USE_EVENTFD
1319 if (evfd >= 0)
1320 close (evfd);
1321#endif
1322
1323 if (evpipe [0] >= 0)
1324 {
1325 close (evpipe [0]);
1326 close (evpipe [1]);
1327 }
1328 }
949 1329
950#if EV_USE_INOTIFY 1330#if EV_USE_INOTIFY
951 if (fs_fd >= 0) 1331 if (fs_fd >= 0)
952 close (fs_fd); 1332 close (fs_fd);
953#endif 1333#endif
970#if EV_USE_SELECT 1350#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1351 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1352#endif
973 1353
974 for (i = NUMPRI; i--; ) 1354 for (i = NUMPRI; i--; )
1355 {
975 array_free (pending, [i]); 1356 array_free (pending, [i]);
1357#if EV_IDLE_ENABLE
1358 array_free (idle, [i]);
1359#endif
1360 }
1361
1362 ev_free (anfds); anfdmax = 0;
976 1363
977 /* have to use the microsoft-never-gets-it-right macro */ 1364 /* have to use the microsoft-never-gets-it-right macro */
978 array_free (fdchange, EMPTY0); 1365 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1366 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1367#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1368 array_free (periodic, EMPTY);
982#endif 1369#endif
1370#if EV_FORK_ENABLE
983 array_free (idle, EMPTY0); 1371 array_free (fork, EMPTY);
1372#endif
984 array_free (prepare, EMPTY0); 1373 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1374 array_free (check, EMPTY);
1375#if EV_ASYNC_ENABLE
1376 array_free (async, EMPTY);
1377#endif
986 1378
987 backend = 0; 1379 backend = 0;
988} 1380}
989 1381
1382#if EV_USE_INOTIFY
990void inline_size infy_fork (EV_P); 1383void inline_size infy_fork (EV_P);
1384#endif
991 1385
992void inline_size 1386void inline_size
993loop_fork (EV_P) 1387loop_fork (EV_P)
994{ 1388{
995#if EV_USE_PORT 1389#if EV_USE_PORT
1003#endif 1397#endif
1004#if EV_USE_INOTIFY 1398#if EV_USE_INOTIFY
1005 infy_fork (EV_A); 1399 infy_fork (EV_A);
1006#endif 1400#endif
1007 1401
1008 if (ev_is_active (&sigev)) 1402 if (ev_is_active (&pipeev))
1009 { 1403 {
1010 /* default loop */ 1404 /* this "locks" the handlers against writing to the pipe */
1405 /* while we modify the fd vars */
1406 gotsig = 1;
1407#if EV_ASYNC_ENABLE
1408 gotasync = 1;
1409#endif
1011 1410
1012 ev_ref (EV_A); 1411 ev_ref (EV_A);
1013 ev_io_stop (EV_A_ &sigev); 1412 ev_io_stop (EV_A_ &pipeev);
1413
1414#if EV_USE_EVENTFD
1415 if (evfd >= 0)
1416 close (evfd);
1417#endif
1418
1419 if (evpipe [0] >= 0)
1420 {
1014 close (sigpipe [0]); 1421 close (evpipe [0]);
1015 close (sigpipe [1]); 1422 close (evpipe [1]);
1423 }
1016 1424
1017 while (pipe (sigpipe))
1018 syserr ("(libev) error creating pipe");
1019
1020 siginit (EV_A); 1425 evpipe_init (EV_A);
1426 /* now iterate over everything, in case we missed something */
1427 pipecb (EV_A_ &pipeev, EV_READ);
1021 } 1428 }
1022 1429
1023 postfork = 0; 1430 postfork = 0;
1024} 1431}
1025 1432
1047} 1454}
1048 1455
1049void 1456void
1050ev_loop_fork (EV_P) 1457ev_loop_fork (EV_P)
1051{ 1458{
1052 postfork = 1; 1459 postfork = 1; /* must be in line with ev_default_fork */
1053} 1460}
1054
1055#endif 1461#endif
1056 1462
1057#if EV_MULTIPLICITY 1463#if EV_MULTIPLICITY
1058struct ev_loop * 1464struct ev_loop *
1059ev_default_loop_init (unsigned int flags) 1465ev_default_loop_init (unsigned int flags)
1060#else 1466#else
1061int 1467int
1062ev_default_loop (unsigned int flags) 1468ev_default_loop (unsigned int flags)
1063#endif 1469#endif
1064{ 1470{
1065 if (sigpipe [0] == sigpipe [1])
1066 if (pipe (sigpipe))
1067 return 0;
1068
1069 if (!ev_default_loop_ptr) 1471 if (!ev_default_loop_ptr)
1070 { 1472 {
1071#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1072 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1474 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1073#else 1475#else
1076 1478
1077 loop_init (EV_A_ flags); 1479 loop_init (EV_A_ flags);
1078 1480
1079 if (ev_backend (EV_A)) 1481 if (ev_backend (EV_A))
1080 { 1482 {
1081 siginit (EV_A);
1082
1083#ifndef _WIN32 1483#ifndef _WIN32
1084 ev_signal_init (&childev, childcb, SIGCHLD); 1484 ev_signal_init (&childev, childcb, SIGCHLD);
1085 ev_set_priority (&childev, EV_MAXPRI); 1485 ev_set_priority (&childev, EV_MAXPRI);
1086 ev_signal_start (EV_A_ &childev); 1486 ev_signal_start (EV_A_ &childev);
1087 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1487 ev_unref (EV_A); /* child watcher should not keep loop alive */
1104#ifndef _WIN32 1504#ifndef _WIN32
1105 ev_ref (EV_A); /* child watcher */ 1505 ev_ref (EV_A); /* child watcher */
1106 ev_signal_stop (EV_A_ &childev); 1506 ev_signal_stop (EV_A_ &childev);
1107#endif 1507#endif
1108 1508
1109 ev_ref (EV_A); /* signal watcher */
1110 ev_io_stop (EV_A_ &sigev);
1111
1112 close (sigpipe [0]); sigpipe [0] = 0;
1113 close (sigpipe [1]); sigpipe [1] = 0;
1114
1115 loop_destroy (EV_A); 1509 loop_destroy (EV_A);
1116} 1510}
1117 1511
1118void 1512void
1119ev_default_fork (void) 1513ev_default_fork (void)
1121#if EV_MULTIPLICITY 1515#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr; 1516 struct ev_loop *loop = ev_default_loop_ptr;
1123#endif 1517#endif
1124 1518
1125 if (backend) 1519 if (backend)
1126 postfork = 1; 1520 postfork = 1; /* must be in line with ev_loop_fork */
1127} 1521}
1128 1522
1129/*****************************************************************************/ 1523/*****************************************************************************/
1130 1524
1131int inline_size 1525void
1132any_pending (EV_P) 1526ev_invoke (EV_P_ void *w, int revents)
1133{ 1527{
1134 int pri; 1528 EV_CB_INVOKE ((W)w, revents);
1135
1136 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri])
1138 return 1;
1139
1140 return 0;
1141} 1529}
1142 1530
1143void inline_speed 1531void inline_speed
1144call_pending (EV_P) 1532call_pending (EV_P)
1145{ 1533{
1158 EV_CB_INVOKE (p->w, p->events); 1546 EV_CB_INVOKE (p->w, p->events);
1159 } 1547 }
1160 } 1548 }
1161} 1549}
1162 1550
1551#if EV_IDLE_ENABLE
1552void inline_size
1553idle_reify (EV_P)
1554{
1555 if (expect_false (idleall))
1556 {
1557 int pri;
1558
1559 for (pri = NUMPRI; pri--; )
1560 {
1561 if (pendingcnt [pri])
1562 break;
1563
1564 if (idlecnt [pri])
1565 {
1566 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1567 break;
1568 }
1569 }
1570 }
1571}
1572#endif
1573
1163void inline_size 1574void inline_size
1164timers_reify (EV_P) 1575timers_reify (EV_P)
1165{ 1576{
1166 while (timercnt && ((WT)timers [0])->at <= mn_now) 1577 while (timercnt && ev_at (timers [HEAP0]) <= mn_now)
1167 { 1578 {
1168 ev_timer *w = timers [0]; 1579 ev_timer *w = (ev_timer *)timers [HEAP0];
1169 1580
1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1581 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1171 1582
1172 /* first reschedule or stop timer */ 1583 /* first reschedule or stop timer */
1173 if (w->repeat) 1584 if (w->repeat)
1174 { 1585 {
1175 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1586 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1176 1587
1177 ((WT)w)->at += w->repeat; 1588 ev_at (w) += w->repeat;
1178 if (((WT)w)->at < mn_now) 1589 if (ev_at (w) < mn_now)
1179 ((WT)w)->at = mn_now; 1590 ev_at (w) = mn_now;
1180 1591
1181 downheap ((WT *)timers, timercnt, 0); 1592 downheap (timers, timercnt, HEAP0);
1182 } 1593 }
1183 else 1594 else
1184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1595 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1185 1596
1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1597 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1189 1600
1190#if EV_PERIODIC_ENABLE 1601#if EV_PERIODIC_ENABLE
1191void inline_size 1602void inline_size
1192periodics_reify (EV_P) 1603periodics_reify (EV_P)
1193{ 1604{
1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1605 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now)
1195 { 1606 {
1196 ev_periodic *w = periodics [0]; 1607 ev_periodic *w = (ev_periodic *)periodics [HEAP0];
1197 1608
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1609 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1199 1610
1200 /* first reschedule or stop timer */ 1611 /* first reschedule or stop timer */
1201 if (w->reschedule_cb) 1612 if (w->reschedule_cb)
1202 { 1613 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1614 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1615 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1205 downheap ((WT *)periodics, periodiccnt, 0); 1616 downheap (periodics, periodiccnt, 1);
1206 } 1617 }
1207 else if (w->interval) 1618 else if (w->interval)
1208 { 1619 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1620 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1621 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1622 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1211 downheap ((WT *)periodics, periodiccnt, 0); 1623 downheap (periodics, periodiccnt, HEAP0);
1212 } 1624 }
1213 else 1625 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1626 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1215 1627
1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1628 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1221periodics_reschedule (EV_P) 1633periodics_reschedule (EV_P)
1222{ 1634{
1223 int i; 1635 int i;
1224 1636
1225 /* adjust periodics after time jump */ 1637 /* adjust periodics after time jump */
1226 for (i = 0; i < periodiccnt; ++i) 1638 for (i = 1; i <= periodiccnt; ++i)
1227 { 1639 {
1228 ev_periodic *w = periodics [i]; 1640 ev_periodic *w = (ev_periodic *)periodics [i];
1229 1641
1230 if (w->reschedule_cb) 1642 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1643 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval) 1644 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1234 } 1646 }
1235 1647
1236 /* now rebuild the heap */ 1648 /* now rebuild the heap */
1237 for (i = periodiccnt >> 1; i--; ) 1649 for (i = periodiccnt >> 1; --i; )
1238 downheap ((WT *)periodics, periodiccnt, i); 1650 downheap (periodics, periodiccnt, i + HEAP0);
1239} 1651}
1240#endif 1652#endif
1241 1653
1242int inline_size 1654void inline_speed
1243time_update_monotonic (EV_P) 1655time_update (EV_P_ ev_tstamp max_block)
1244{ 1656{
1657 int i;
1658
1659#if EV_USE_MONOTONIC
1660 if (expect_true (have_monotonic))
1661 {
1662 ev_tstamp odiff = rtmn_diff;
1663
1245 mn_now = get_clock (); 1664 mn_now = get_clock ();
1246 1665
1666 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1667 /* interpolate in the meantime */
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1668 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 { 1669 {
1249 ev_rt_now = rtmn_diff + mn_now; 1670 ev_rt_now = rtmn_diff + mn_now;
1250 return 0; 1671 return;
1251 } 1672 }
1252 else 1673
1253 {
1254 now_floor = mn_now; 1674 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 1675 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 1676
1260void inline_size 1677 /* loop a few times, before making important decisions.
1261time_update (EV_P) 1678 * on the choice of "4": one iteration isn't enough,
1262{ 1679 * in case we get preempted during the calls to
1263 int i; 1680 * ev_time and get_clock. a second call is almost guaranteed
1264 1681 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 1682 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 1683 * in the unlikely event of having been preempted here.
1267 { 1684 */
1268 if (time_update_monotonic (EV_A)) 1685 for (i = 4; --i; )
1269 { 1686 {
1270 ev_tstamp odiff = rtmn_diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 1687 rtmn_diff = ev_rt_now - mn_now;
1283 1688
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1689 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1285 return; /* all is well */ 1690 return; /* all is well */
1286 1691
1287 ev_rt_now = ev_time (); 1692 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 1693 mn_now = get_clock ();
1289 now_floor = mn_now; 1694 now_floor = mn_now;
1290 } 1695 }
1291 1696
1292# if EV_PERIODIC_ENABLE 1697# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 1698 periodics_reschedule (EV_A);
1294# endif 1699# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */ 1700 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1701 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 1702 }
1299 else 1703 else
1300#endif 1704#endif
1301 { 1705 {
1302 ev_rt_now = ev_time (); 1706 ev_rt_now = ev_time ();
1303 1707
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1708 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 1709 {
1306#if EV_PERIODIC_ENABLE 1710#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 1711 periodics_reschedule (EV_A);
1308#endif 1712#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */ 1713 /* adjust timers. this is easy, as the offset is the same for all of them */
1311 for (i = 0; i < timercnt; ++i) 1714 for (i = 1; i <= timercnt; ++i)
1312 ((WT)timers [i])->at += ev_rt_now - mn_now; 1715 ev_at (timers [i]) += ev_rt_now - mn_now;
1313 } 1716 }
1314 1717
1315 mn_now = ev_rt_now; 1718 mn_now = ev_rt_now;
1316 } 1719 }
1317} 1720}
1331static int loop_done; 1734static int loop_done;
1332 1735
1333void 1736void
1334ev_loop (EV_P_ int flags) 1737ev_loop (EV_P_ int flags)
1335{ 1738{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1739 loop_done = EVUNLOOP_CANCEL;
1337 ? EVUNLOOP_ONE
1338 : EVUNLOOP_CANCEL;
1339 1740
1340 while (activecnt) 1741 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1742
1743 do
1341 { 1744 {
1342 /* we might have forked, so reify kernel state if necessary */ 1745#ifndef _WIN32
1746 if (expect_false (curpid)) /* penalise the forking check even more */
1747 if (expect_false (getpid () != curpid))
1748 {
1749 curpid = getpid ();
1750 postfork = 1;
1751 }
1752#endif
1753
1343 #if EV_FORK_ENABLE 1754#if EV_FORK_ENABLE
1755 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 1756 if (expect_false (postfork))
1345 if (forkcnt) 1757 if (forkcnt)
1346 { 1758 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1759 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 1760 call_pending (EV_A);
1349 } 1761 }
1350 #endif 1762#endif
1351 1763
1352 /* queue check watchers (and execute them) */ 1764 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 1765 if (expect_false (preparecnt))
1354 { 1766 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1767 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 1768 call_pending (EV_A);
1357 } 1769 }
1358 1770
1771 if (expect_false (!activecnt))
1772 break;
1773
1359 /* we might have forked, so reify kernel state if necessary */ 1774 /* we might have forked, so reify kernel state if necessary */
1360 if (expect_false (postfork)) 1775 if (expect_false (postfork))
1361 loop_fork (EV_A); 1776 loop_fork (EV_A);
1362 1777
1363 /* update fd-related kernel structures */ 1778 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 1779 fd_reify (EV_A);
1365 1780
1366 /* calculate blocking time */ 1781 /* calculate blocking time */
1367 { 1782 {
1368 double block; 1783 ev_tstamp waittime = 0.;
1784 ev_tstamp sleeptime = 0.;
1369 1785
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 1786 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1371 block = 0.; /* do not block at all */
1372 else
1373 { 1787 {
1374 /* update time to cancel out callback processing overhead */ 1788 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A); 1789 time_update (EV_A_ 1e100);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384 1790
1385 block = MAX_BLOCKTIME; 1791 waittime = MAX_BLOCKTIME;
1386 1792
1387 if (timercnt) 1793 if (timercnt)
1388 { 1794 {
1389 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1795 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge;
1390 if (block > to) block = to; 1796 if (waittime > to) waittime = to;
1391 } 1797 }
1392 1798
1393#if EV_PERIODIC_ENABLE 1799#if EV_PERIODIC_ENABLE
1394 if (periodiccnt) 1800 if (periodiccnt)
1395 { 1801 {
1396 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1802 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1397 if (block > to) block = to; 1803 if (waittime > to) waittime = to;
1398 } 1804 }
1399#endif 1805#endif
1400 1806
1401 if (expect_false (block < 0.)) block = 0.; 1807 if (expect_false (waittime < timeout_blocktime))
1808 waittime = timeout_blocktime;
1809
1810 sleeptime = waittime - backend_fudge;
1811
1812 if (expect_true (sleeptime > io_blocktime))
1813 sleeptime = io_blocktime;
1814
1815 if (sleeptime)
1816 {
1817 ev_sleep (sleeptime);
1818 waittime -= sleeptime;
1819 }
1402 } 1820 }
1403 1821
1822 ++loop_count;
1404 backend_poll (EV_A_ block); 1823 backend_poll (EV_A_ waittime);
1824
1825 /* update ev_rt_now, do magic */
1826 time_update (EV_A_ waittime + sleeptime);
1405 } 1827 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 1828
1410 /* queue pending timers and reschedule them */ 1829 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 1830 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 1831#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 1832 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 1833#endif
1415 1834
1835#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 1836 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 1837 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1838#endif
1419 1839
1420 /* queue check watchers, to be executed first */ 1840 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 1841 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1842 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1423 1843
1424 call_pending (EV_A); 1844 call_pending (EV_A);
1425
1426 if (expect_false (loop_done))
1427 break;
1428 } 1845 }
1846 while (expect_true (
1847 activecnt
1848 && !loop_done
1849 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1850 ));
1429 1851
1430 if (loop_done == EVUNLOOP_ONE) 1852 if (loop_done == EVUNLOOP_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 1853 loop_done = EVUNLOOP_CANCEL;
1432} 1854}
1433 1855
1460 head = &(*head)->next; 1882 head = &(*head)->next;
1461 } 1883 }
1462} 1884}
1463 1885
1464void inline_speed 1886void inline_speed
1465ev_clear_pending (EV_P_ W w) 1887clear_pending (EV_P_ W w)
1466{ 1888{
1467 if (w->pending) 1889 if (w->pending)
1468 { 1890 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1891 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1470 w->pending = 0; 1892 w->pending = 0;
1471 } 1893 }
1472} 1894}
1473 1895
1896int
1897ev_clear_pending (EV_P_ void *w)
1898{
1899 W w_ = (W)w;
1900 int pending = w_->pending;
1901
1902 if (expect_true (pending))
1903 {
1904 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1905 w_->pending = 0;
1906 p->w = 0;
1907 return p->events;
1908 }
1909 else
1910 return 0;
1911}
1912
1913void inline_size
1914pri_adjust (EV_P_ W w)
1915{
1916 int pri = w->priority;
1917 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1918 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1919 w->priority = pri;
1920}
1921
1474void inline_speed 1922void inline_speed
1475ev_start (EV_P_ W w, int active) 1923ev_start (EV_P_ W w, int active)
1476{ 1924{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1925 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 1926 w->active = active;
1481 ev_ref (EV_A); 1927 ev_ref (EV_A);
1482} 1928}
1483 1929
1484void inline_size 1930void inline_size
1488 w->active = 0; 1934 w->active = 0;
1489} 1935}
1490 1936
1491/*****************************************************************************/ 1937/*****************************************************************************/
1492 1938
1493void 1939void noinline
1494ev_io_start (EV_P_ ev_io *w) 1940ev_io_start (EV_P_ ev_io *w)
1495{ 1941{
1496 int fd = w->fd; 1942 int fd = w->fd;
1497 1943
1498 if (expect_false (ev_is_active (w))) 1944 if (expect_false (ev_is_active (w)))
1500 1946
1501 assert (("ev_io_start called with negative fd", fd >= 0)); 1947 assert (("ev_io_start called with negative fd", fd >= 0));
1502 1948
1503 ev_start (EV_A_ (W)w, 1); 1949 ev_start (EV_A_ (W)w, 1);
1504 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1950 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1951 wlist_add (&anfds[fd].head, (WL)w);
1506 1952
1507 fd_change (EV_A_ fd); 1953 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1954 w->events &= ~EV_IOFDSET;
1508} 1955}
1509 1956
1510void 1957void noinline
1511ev_io_stop (EV_P_ ev_io *w) 1958ev_io_stop (EV_P_ ev_io *w)
1512{ 1959{
1513 ev_clear_pending (EV_A_ (W)w); 1960 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 1961 if (expect_false (!ev_is_active (w)))
1515 return; 1962 return;
1516 1963
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1964 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 1965
1519 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1966 wlist_del (&anfds[w->fd].head, (WL)w);
1520 ev_stop (EV_A_ (W)w); 1967 ev_stop (EV_A_ (W)w);
1521 1968
1522 fd_change (EV_A_ w->fd); 1969 fd_change (EV_A_ w->fd, 1);
1523} 1970}
1524 1971
1525void 1972void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 1973ev_timer_start (EV_P_ ev_timer *w)
1527{ 1974{
1528 if (expect_false (ev_is_active (w))) 1975 if (expect_false (ev_is_active (w)))
1529 return; 1976 return;
1530 1977
1531 ((WT)w)->at += mn_now; 1978 ev_at (w) += mn_now;
1532 1979
1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1980 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1534 1981
1535 ev_start (EV_A_ (W)w, ++timercnt); 1982 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1983 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2);
1537 timers [timercnt - 1] = w; 1984 timers [ev_active (w)] = (WT)w;
1538 upheap ((WT *)timers, timercnt - 1); 1985 upheap (timers, ev_active (w));
1539 1986
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1987 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1541} 1988}
1542 1989
1543void 1990void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 1991ev_timer_stop (EV_P_ ev_timer *w)
1545{ 1992{
1546 ev_clear_pending (EV_A_ (W)w); 1993 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 1994 if (expect_false (!ev_is_active (w)))
1548 return; 1995 return;
1549 1996
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1551
1552 { 1997 {
1553 int active = ((W)w)->active; 1998 int active = ev_active (w);
1554 1999
2000 assert (("internal timer heap corruption", timers [active] == (WT)w));
2001
1555 if (expect_true (--active < --timercnt)) 2002 if (expect_true (active < timercnt + HEAP0 - 1))
1556 { 2003 {
1557 timers [active] = timers [timercnt]; 2004 timers [active] = timers [timercnt + HEAP0 - 1];
1558 adjustheap ((WT *)timers, timercnt, active); 2005 adjustheap (timers, timercnt, active);
1559 } 2006 }
2007
2008 --timercnt;
1560 } 2009 }
1561 2010
1562 ((WT)w)->at -= mn_now; 2011 ev_at (w) -= mn_now;
1563 2012
1564 ev_stop (EV_A_ (W)w); 2013 ev_stop (EV_A_ (W)w);
1565} 2014}
1566 2015
1567void 2016void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 2017ev_timer_again (EV_P_ ev_timer *w)
1569{ 2018{
1570 if (ev_is_active (w)) 2019 if (ev_is_active (w))
1571 { 2020 {
1572 if (w->repeat) 2021 if (w->repeat)
1573 { 2022 {
1574 ((WT)w)->at = mn_now + w->repeat; 2023 ev_at (w) = mn_now + w->repeat;
1575 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2024 adjustheap (timers, timercnt, ev_active (w));
1576 } 2025 }
1577 else 2026 else
1578 ev_timer_stop (EV_A_ w); 2027 ev_timer_stop (EV_A_ w);
1579 } 2028 }
1580 else if (w->repeat) 2029 else if (w->repeat)
1581 { 2030 {
1582 w->at = w->repeat; 2031 ev_at (w) = w->repeat;
1583 ev_timer_start (EV_A_ w); 2032 ev_timer_start (EV_A_ w);
1584 } 2033 }
1585} 2034}
1586 2035
1587#if EV_PERIODIC_ENABLE 2036#if EV_PERIODIC_ENABLE
1588void 2037void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 2038ev_periodic_start (EV_P_ ev_periodic *w)
1590{ 2039{
1591 if (expect_false (ev_is_active (w))) 2040 if (expect_false (ev_is_active (w)))
1592 return; 2041 return;
1593 2042
1594 if (w->reschedule_cb) 2043 if (w->reschedule_cb)
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2044 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 2045 else if (w->interval)
1597 { 2046 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2047 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 2048 /* this formula differs from the one in periodic_reify because we do not always round up */
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2049 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1601 } 2050 }
2051 else
2052 ev_at (w) = w->offset;
1602 2053
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 2054 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2055 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 2056 periodics [ev_active (w)] = (WT)w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 2057 upheap (periodics, ev_active (w));
1607 2058
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2059 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1609} 2060}
1610 2061
1611void 2062void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 2063ev_periodic_stop (EV_P_ ev_periodic *w)
1613{ 2064{
1614 ev_clear_pending (EV_A_ (W)w); 2065 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 2066 if (expect_false (!ev_is_active (w)))
1616 return; 2067 return;
1617 2068
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1619
1620 { 2069 {
1621 int active = ((W)w)->active; 2070 int active = ev_active (w);
1622 2071
2072 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
2073
1623 if (expect_true (--active < --periodiccnt)) 2074 if (expect_true (active < periodiccnt + HEAP0 - 1))
1624 { 2075 {
1625 periodics [active] = periodics [periodiccnt]; 2076 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1626 adjustheap ((WT *)periodics, periodiccnt, active); 2077 adjustheap (periodics, periodiccnt, active);
1627 } 2078 }
2079
2080 --periodiccnt;
1628 } 2081 }
1629 2082
1630 ev_stop (EV_A_ (W)w); 2083 ev_stop (EV_A_ (W)w);
1631} 2084}
1632 2085
1633void 2086void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 2087ev_periodic_again (EV_P_ ev_periodic *w)
1635{ 2088{
1636 /* TODO: use adjustheap and recalculation */ 2089 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 2090 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 2091 ev_periodic_start (EV_A_ w);
1641 2094
1642#ifndef SA_RESTART 2095#ifndef SA_RESTART
1643# define SA_RESTART 0 2096# define SA_RESTART 0
1644#endif 2097#endif
1645 2098
1646void 2099void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 2100ev_signal_start (EV_P_ ev_signal *w)
1648{ 2101{
1649#if EV_MULTIPLICITY 2102#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2103 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif 2104#endif
1652 if (expect_false (ev_is_active (w))) 2105 if (expect_false (ev_is_active (w)))
1653 return; 2106 return;
1654 2107
1655 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2108 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1656 2109
2110 evpipe_init (EV_A);
2111
2112 {
2113#ifndef _WIN32
2114 sigset_t full, prev;
2115 sigfillset (&full);
2116 sigprocmask (SIG_SETMASK, &full, &prev);
2117#endif
2118
2119 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2120
2121#ifndef _WIN32
2122 sigprocmask (SIG_SETMASK, &prev, 0);
2123#endif
2124 }
2125
1657 ev_start (EV_A_ (W)w, 1); 2126 ev_start (EV_A_ (W)w, 1);
1658 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1659 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2127 wlist_add (&signals [w->signum - 1].head, (WL)w);
1660 2128
1661 if (!((WL)w)->next) 2129 if (!((WL)w)->next)
1662 { 2130 {
1663#if _WIN32 2131#if _WIN32
1664 signal (w->signum, sighandler); 2132 signal (w->signum, ev_sighandler);
1665#else 2133#else
1666 struct sigaction sa; 2134 struct sigaction sa;
1667 sa.sa_handler = sighandler; 2135 sa.sa_handler = ev_sighandler;
1668 sigfillset (&sa.sa_mask); 2136 sigfillset (&sa.sa_mask);
1669 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2137 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1670 sigaction (w->signum, &sa, 0); 2138 sigaction (w->signum, &sa, 0);
1671#endif 2139#endif
1672 } 2140 }
1673} 2141}
1674 2142
1675void 2143void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 2144ev_signal_stop (EV_P_ ev_signal *w)
1677{ 2145{
1678 ev_clear_pending (EV_A_ (W)w); 2146 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 2147 if (expect_false (!ev_is_active (w)))
1680 return; 2148 return;
1681 2149
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2150 wlist_del (&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 2151 ev_stop (EV_A_ (W)w);
1684 2152
1685 if (!signals [w->signum - 1].head) 2153 if (!signals [w->signum - 1].head)
1686 signal (w->signum, SIG_DFL); 2154 signal (w->signum, SIG_DFL);
1687} 2155}
1694#endif 2162#endif
1695 if (expect_false (ev_is_active (w))) 2163 if (expect_false (ev_is_active (w)))
1696 return; 2164 return;
1697 2165
1698 ev_start (EV_A_ (W)w, 1); 2166 ev_start (EV_A_ (W)w, 1);
1699 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2167 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1700} 2168}
1701 2169
1702void 2170void
1703ev_child_stop (EV_P_ ev_child *w) 2171ev_child_stop (EV_P_ ev_child *w)
1704{ 2172{
1705 ev_clear_pending (EV_A_ (W)w); 2173 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 2174 if (expect_false (!ev_is_active (w)))
1707 return; 2175 return;
1708 2176
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2177 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 2178 ev_stop (EV_A_ (W)w);
1711} 2179}
1712 2180
1713#if EV_STAT_ENABLE 2181#if EV_STAT_ENABLE
1714 2182
1718# endif 2186# endif
1719 2187
1720#define DEF_STAT_INTERVAL 5.0074891 2188#define DEF_STAT_INTERVAL 5.0074891
1721#define MIN_STAT_INTERVAL 0.1074891 2189#define MIN_STAT_INTERVAL 0.1074891
1722 2190
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2191static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 2192
1725#if EV_USE_INOTIFY 2193#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 2194# define EV_INOTIFY_BUFSIZE 8192
1727 2195
1728static void noinline 2196static void noinline
1733 if (w->wd < 0) 2201 if (w->wd < 0)
1734 { 2202 {
1735 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2203 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1736 2204
1737 /* monitor some parent directory for speedup hints */ 2205 /* monitor some parent directory for speedup hints */
2206 /* note that exceeding the hardcoded limit is not a correctness issue, */
2207 /* but an efficiency issue only */
1738 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2208 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1739 { 2209 {
1740 char path [4096]; 2210 char path [4096];
1741 strcpy (path, w->path); 2211 strcpy (path, w->path);
1742 2212
1879 w->attr.st_nlink = 0; 2349 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 2350 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 2351 w->attr.st_nlink = 1;
1882} 2352}
1883 2353
1884void noinline 2354static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2355stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 2356{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2357 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 2358
1889 /* we copy this here each the time so that */ 2359 /* we copy this here each the time so that */
1946} 2416}
1947 2417
1948void 2418void
1949ev_stat_stop (EV_P_ ev_stat *w) 2419ev_stat_stop (EV_P_ ev_stat *w)
1950{ 2420{
1951 ev_clear_pending (EV_A_ (W)w); 2421 clear_pending (EV_A_ (W)w);
1952 if (expect_false (!ev_is_active (w))) 2422 if (expect_false (!ev_is_active (w)))
1953 return; 2423 return;
1954 2424
1955#if EV_USE_INOTIFY 2425#if EV_USE_INOTIFY
1956 infy_del (EV_A_ w); 2426 infy_del (EV_A_ w);
1959 2429
1960 ev_stop (EV_A_ (W)w); 2430 ev_stop (EV_A_ (W)w);
1961} 2431}
1962#endif 2432#endif
1963 2433
2434#if EV_IDLE_ENABLE
1964void 2435void
1965ev_idle_start (EV_P_ ev_idle *w) 2436ev_idle_start (EV_P_ ev_idle *w)
1966{ 2437{
1967 if (expect_false (ev_is_active (w))) 2438 if (expect_false (ev_is_active (w)))
1968 return; 2439 return;
1969 2440
2441 pri_adjust (EV_A_ (W)w);
2442
2443 {
2444 int active = ++idlecnt [ABSPRI (w)];
2445
2446 ++idleall;
1970 ev_start (EV_A_ (W)w, ++idlecnt); 2447 ev_start (EV_A_ (W)w, active);
2448
1971 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2449 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1972 idles [idlecnt - 1] = w; 2450 idles [ABSPRI (w)][active - 1] = w;
2451 }
1973} 2452}
1974 2453
1975void 2454void
1976ev_idle_stop (EV_P_ ev_idle *w) 2455ev_idle_stop (EV_P_ ev_idle *w)
1977{ 2456{
1978 ev_clear_pending (EV_A_ (W)w); 2457 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 2458 if (expect_false (!ev_is_active (w)))
1980 return; 2459 return;
1981 2460
1982 { 2461 {
1983 int active = ((W)w)->active; 2462 int active = ev_active (w);
1984 idles [active - 1] = idles [--idlecnt]; 2463
1985 ((W)idles [active - 1])->active = active; 2464 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2465 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2466
2467 ev_stop (EV_A_ (W)w);
2468 --idleall;
1986 } 2469 }
1987
1988 ev_stop (EV_A_ (W)w);
1989} 2470}
2471#endif
1990 2472
1991void 2473void
1992ev_prepare_start (EV_P_ ev_prepare *w) 2474ev_prepare_start (EV_P_ ev_prepare *w)
1993{ 2475{
1994 if (expect_false (ev_is_active (w))) 2476 if (expect_false (ev_is_active (w)))
2000} 2482}
2001 2483
2002void 2484void
2003ev_prepare_stop (EV_P_ ev_prepare *w) 2485ev_prepare_stop (EV_P_ ev_prepare *w)
2004{ 2486{
2005 ev_clear_pending (EV_A_ (W)w); 2487 clear_pending (EV_A_ (W)w);
2006 if (expect_false (!ev_is_active (w))) 2488 if (expect_false (!ev_is_active (w)))
2007 return; 2489 return;
2008 2490
2009 { 2491 {
2010 int active = ((W)w)->active; 2492 int active = ev_active (w);
2493
2011 prepares [active - 1] = prepares [--preparecnt]; 2494 prepares [active - 1] = prepares [--preparecnt];
2012 ((W)prepares [active - 1])->active = active; 2495 ev_active (prepares [active - 1]) = active;
2013 } 2496 }
2014 2497
2015 ev_stop (EV_A_ (W)w); 2498 ev_stop (EV_A_ (W)w);
2016} 2499}
2017 2500
2027} 2510}
2028 2511
2029void 2512void
2030ev_check_stop (EV_P_ ev_check *w) 2513ev_check_stop (EV_P_ ev_check *w)
2031{ 2514{
2032 ev_clear_pending (EV_A_ (W)w); 2515 clear_pending (EV_A_ (W)w);
2033 if (expect_false (!ev_is_active (w))) 2516 if (expect_false (!ev_is_active (w)))
2034 return; 2517 return;
2035 2518
2036 { 2519 {
2037 int active = ((W)w)->active; 2520 int active = ev_active (w);
2521
2038 checks [active - 1] = checks [--checkcnt]; 2522 checks [active - 1] = checks [--checkcnt];
2039 ((W)checks [active - 1])->active = active; 2523 ev_active (checks [active - 1]) = active;
2040 } 2524 }
2041 2525
2042 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
2043} 2527}
2044 2528
2045#if EV_EMBED_ENABLE 2529#if EV_EMBED_ENABLE
2046void noinline 2530void noinline
2047ev_embed_sweep (EV_P_ ev_embed *w) 2531ev_embed_sweep (EV_P_ ev_embed *w)
2048{ 2532{
2049 ev_loop (w->loop, EVLOOP_NONBLOCK); 2533 ev_loop (w->other, EVLOOP_NONBLOCK);
2050} 2534}
2051 2535
2052static void 2536static void
2053embed_cb (EV_P_ ev_io *io, int revents) 2537embed_io_cb (EV_P_ ev_io *io, int revents)
2054{ 2538{
2055 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2539 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2056 2540
2057 if (ev_cb (w)) 2541 if (ev_cb (w))
2058 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2542 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2059 else 2543 else
2060 ev_embed_sweep (loop, w); 2544 ev_loop (w->other, EVLOOP_NONBLOCK);
2061} 2545}
2546
2547static void
2548embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2549{
2550 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2551
2552 {
2553 struct ev_loop *loop = w->other;
2554
2555 while (fdchangecnt)
2556 {
2557 fd_reify (EV_A);
2558 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2559 }
2560 }
2561}
2562
2563#if 0
2564static void
2565embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2566{
2567 ev_idle_stop (EV_A_ idle);
2568}
2569#endif
2062 2570
2063void 2571void
2064ev_embed_start (EV_P_ ev_embed *w) 2572ev_embed_start (EV_P_ ev_embed *w)
2065{ 2573{
2066 if (expect_false (ev_is_active (w))) 2574 if (expect_false (ev_is_active (w)))
2067 return; 2575 return;
2068 2576
2069 { 2577 {
2070 struct ev_loop *loop = w->loop; 2578 struct ev_loop *loop = w->other;
2071 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2579 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2072 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2580 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2073 } 2581 }
2074 2582
2075 ev_set_priority (&w->io, ev_priority (w)); 2583 ev_set_priority (&w->io, ev_priority (w));
2076 ev_io_start (EV_A_ &w->io); 2584 ev_io_start (EV_A_ &w->io);
2077 2585
2586 ev_prepare_init (&w->prepare, embed_prepare_cb);
2587 ev_set_priority (&w->prepare, EV_MINPRI);
2588 ev_prepare_start (EV_A_ &w->prepare);
2589
2590 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2591
2078 ev_start (EV_A_ (W)w, 1); 2592 ev_start (EV_A_ (W)w, 1);
2079} 2593}
2080 2594
2081void 2595void
2082ev_embed_stop (EV_P_ ev_embed *w) 2596ev_embed_stop (EV_P_ ev_embed *w)
2083{ 2597{
2084 ev_clear_pending (EV_A_ (W)w); 2598 clear_pending (EV_A_ (W)w);
2085 if (expect_false (!ev_is_active (w))) 2599 if (expect_false (!ev_is_active (w)))
2086 return; 2600 return;
2087 2601
2088 ev_io_stop (EV_A_ &w->io); 2602 ev_io_stop (EV_A_ &w->io);
2603 ev_prepare_stop (EV_A_ &w->prepare);
2089 2604
2090 ev_stop (EV_A_ (W)w); 2605 ev_stop (EV_A_ (W)w);
2091} 2606}
2092#endif 2607#endif
2093 2608
2104} 2619}
2105 2620
2106void 2621void
2107ev_fork_stop (EV_P_ ev_fork *w) 2622ev_fork_stop (EV_P_ ev_fork *w)
2108{ 2623{
2109 ev_clear_pending (EV_A_ (W)w); 2624 clear_pending (EV_A_ (W)w);
2110 if (expect_false (!ev_is_active (w))) 2625 if (expect_false (!ev_is_active (w)))
2111 return; 2626 return;
2112 2627
2113 { 2628 {
2114 int active = ((W)w)->active; 2629 int active = ev_active (w);
2630
2115 forks [active - 1] = forks [--forkcnt]; 2631 forks [active - 1] = forks [--forkcnt];
2116 ((W)forks [active - 1])->active = active; 2632 ev_active (forks [active - 1]) = active;
2117 } 2633 }
2118 2634
2119 ev_stop (EV_A_ (W)w); 2635 ev_stop (EV_A_ (W)w);
2636}
2637#endif
2638
2639#if EV_ASYNC_ENABLE
2640void
2641ev_async_start (EV_P_ ev_async *w)
2642{
2643 if (expect_false (ev_is_active (w)))
2644 return;
2645
2646 evpipe_init (EV_A);
2647
2648 ev_start (EV_A_ (W)w, ++asynccnt);
2649 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2650 asyncs [asynccnt - 1] = w;
2651}
2652
2653void
2654ev_async_stop (EV_P_ ev_async *w)
2655{
2656 clear_pending (EV_A_ (W)w);
2657 if (expect_false (!ev_is_active (w)))
2658 return;
2659
2660 {
2661 int active = ev_active (w);
2662
2663 asyncs [active - 1] = asyncs [--asynccnt];
2664 ev_active (asyncs [active - 1]) = active;
2665 }
2666
2667 ev_stop (EV_A_ (W)w);
2668}
2669
2670void
2671ev_async_send (EV_P_ ev_async *w)
2672{
2673 w->sent = 1;
2674 evpipe_write (EV_A_ &gotasync);
2120} 2675}
2121#endif 2676#endif
2122 2677
2123/*****************************************************************************/ 2678/*****************************************************************************/
2124 2679
2182 ev_timer_set (&once->to, timeout, 0.); 2737 ev_timer_set (&once->to, timeout, 0.);
2183 ev_timer_start (EV_A_ &once->to); 2738 ev_timer_start (EV_A_ &once->to);
2184 } 2739 }
2185} 2740}
2186 2741
2742#if EV_MULTIPLICITY
2743 #include "ev_wrap.h"
2744#endif
2745
2187#ifdef __cplusplus 2746#ifdef __cplusplus
2188} 2747}
2189#endif 2748#endif
2190 2749

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines