ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.156 by root, Wed Nov 28 17:50:13 2007 UTC vs.
Revision 1.249 by root, Wed May 21 23:30:52 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 1
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_USE_4HEAP
247# define EV_USE_4HEAP !EV_MINIMAL
248#endif
249
250#ifndef EV_HEAP_CACHE_AT
251# define EV_HEAP_CACHE_AT !EV_MINIMAL
252#endif
253
254/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 255
197#ifndef CLOCK_MONOTONIC 256#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 257# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
200#endif 259#endif
202#ifndef CLOCK_REALTIME 261#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 262# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME 0
205#endif 264#endif
206 265
266#if !EV_STAT_ENABLE
267# undef EV_USE_INOTIFY
268# define EV_USE_INOTIFY 0
269#endif
270
271#if !EV_USE_NANOSLEEP
272# ifndef _WIN32
273# include <sys/select.h>
274# endif
275#endif
276
277#if EV_USE_INOTIFY
278# include <sys/inotify.h>
279#endif
280
207#if EV_SELECT_IS_WINSOCKET 281#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 282# include <winsock.h>
209#endif 283#endif
210 284
211#if !EV_STAT_ENABLE 285#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 286/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
287# include <stdint.h>
288# ifdef __cplusplus
289extern "C" {
213#endif 290# endif
214 291int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 292# ifdef __cplusplus
216# include <sys/inotify.h> 293}
294# endif
217#endif 295#endif
218 296
219/**/ 297/**/
298
299/* EV_VERIFY: enable internal consistency checks
300 * undefined or zero: no verification done or available
301 * 1 or higher: ev_loop_verify function available
302 * 2 or higher: ev_loop_verify is called frequently
303 */
304#if EV_VERIFY >= 1
305# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
306#else
307# define EV_FREQUENT_CHECK do { } while (0)
308#endif
309
310/*
311 * This is used to avoid floating point rounding problems.
312 * It is added to ev_rt_now when scheduling periodics
313 * to ensure progress, time-wise, even when rounding
314 * errors are against us.
315 * This value is good at least till the year 4000.
316 * Better solutions welcome.
317 */
318#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 319
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 320#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 321#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 322/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 323
225#if __GNUC__ >= 3 324#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 325# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 326# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 327#else
236# define expect(expr,value) (expr) 328# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 329# define noinline
330# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
331# define inline
332# endif
240#endif 333#endif
241 334
242#define expect_false(expr) expect ((expr) != 0, 0) 335#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 336#define expect_true(expr) expect ((expr) != 0, 1)
337#define inline_size static inline
338
339#if EV_MINIMAL
340# define inline_speed static noinline
341#else
342# define inline_speed static inline
343#endif
244 344
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 345#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 346#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 347
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 348#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 349#define EMPTY2(a,b) /* used to suppress some warnings */
250 350
251typedef ev_watcher *W; 351typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 352typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 353typedef ev_watcher_time *WT;
254 354
355#define ev_active(w) ((W)(w))->active
356#define ev_at(w) ((WT)(w))->at
357
358#if EV_USE_MONOTONIC
359/* sig_atomic_t is used to avoid per-thread variables or locking but still */
360/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 361static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
362#endif
256 363
257#ifdef _WIN32 364#ifdef _WIN32
258# include "ev_win32.c" 365# include "ev_win32.c"
259#endif 366#endif
260 367
281 perror (msg); 388 perror (msg);
282 abort (); 389 abort ();
283 } 390 }
284} 391}
285 392
393static void *
394ev_realloc_emul (void *ptr, long size)
395{
396 /* some systems, notably openbsd and darwin, fail to properly
397 * implement realloc (x, 0) (as required by both ansi c-98 and
398 * the single unix specification, so work around them here.
399 */
400
401 if (size)
402 return realloc (ptr, size);
403
404 free (ptr);
405 return 0;
406}
407
286static void *(*alloc)(void *ptr, long size); 408static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 409
288void 410void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 411ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 412{
291 alloc = cb; 413 alloc = cb;
292} 414}
293 415
294inline_speed void * 416inline_speed void *
295ev_realloc (void *ptr, long size) 417ev_realloc (void *ptr, long size)
296{ 418{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 419 ptr = alloc (ptr, size);
298 420
299 if (!ptr && size) 421 if (!ptr && size)
300 { 422 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 423 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 424 abort ();
325 W w; 447 W w;
326 int events; 448 int events;
327} ANPENDING; 449} ANPENDING;
328 450
329#if EV_USE_INOTIFY 451#if EV_USE_INOTIFY
452/* hash table entry per inotify-id */
330typedef struct 453typedef struct
331{ 454{
332 WL head; 455 WL head;
333} ANFS; 456} ANFS;
457#endif
458
459/* Heap Entry */
460#if EV_HEAP_CACHE_AT
461 typedef struct {
462 ev_tstamp at;
463 WT w;
464 } ANHE;
465
466 #define ANHE_w(he) (he).w /* access watcher, read-write */
467 #define ANHE_at(he) (he).at /* access cached at, read-only */
468 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
469#else
470 typedef WT ANHE;
471
472 #define ANHE_w(he) (he)
473 #define ANHE_at(he) (he)->at
474 #define ANHE_at_cache(he)
334#endif 475#endif
335 476
336#if EV_MULTIPLICITY 477#if EV_MULTIPLICITY
337 478
338 struct ev_loop 479 struct ev_loop
396{ 537{
397 return ev_rt_now; 538 return ev_rt_now;
398} 539}
399#endif 540#endif
400 541
401#define array_roundsize(type,n) (((n) | 4) & ~3) 542void
543ev_sleep (ev_tstamp delay)
544{
545 if (delay > 0.)
546 {
547#if EV_USE_NANOSLEEP
548 struct timespec ts;
549
550 ts.tv_sec = (time_t)delay;
551 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
552
553 nanosleep (&ts, 0);
554#elif defined(_WIN32)
555 Sleep ((unsigned long)(delay * 1e3));
556#else
557 struct timeval tv;
558
559 tv.tv_sec = (time_t)delay;
560 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
561
562 select (0, 0, 0, 0, &tv);
563#endif
564 }
565}
566
567/*****************************************************************************/
568
569#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
570
571int inline_size
572array_nextsize (int elem, int cur, int cnt)
573{
574 int ncur = cur + 1;
575
576 do
577 ncur <<= 1;
578 while (cnt > ncur);
579
580 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
581 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
582 {
583 ncur *= elem;
584 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
585 ncur = ncur - sizeof (void *) * 4;
586 ncur /= elem;
587 }
588
589 return ncur;
590}
591
592static noinline void *
593array_realloc (int elem, void *base, int *cur, int cnt)
594{
595 *cur = array_nextsize (elem, *cur, cnt);
596 return ev_realloc (base, elem * *cur);
597}
402 598
403#define array_needsize(type,base,cur,cnt,init) \ 599#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 600 if (expect_false ((cnt) > (cur))) \
405 { \ 601 { \
406 int newcnt = cur; \ 602 int ocur_ = (cur); \
407 do \ 603 (base) = (type *)array_realloc \
408 { \ 604 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 605 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 606 }
417 607
608#if 0
418#define array_slim(type,stem) \ 609#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 610 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 611 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 612 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 613 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 614 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 615 }
616#endif
425 617
426#define array_free(stem, idx) \ 618#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 619 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 620
429/*****************************************************************************/ 621/*****************************************************************************/
430 622
431void noinline 623void noinline
432ev_feed_event (EV_P_ void *w, int revents) 624ev_feed_event (EV_P_ void *w, int revents)
433{ 625{
434 W w_ = (W)w; 626 W w_ = (W)w;
627 int pri = ABSPRI (w_);
435 628
436 if (expect_false (w_->pending)) 629 if (expect_false (w_->pending))
630 pendings [pri][w_->pending - 1].events |= revents;
631 else
437 { 632 {
633 w_->pending = ++pendingcnt [pri];
634 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
635 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 636 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 637 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 638}
447 639
448void inline_size 640void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 641queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 642{
451 int i; 643 int i;
452 644
453 for (i = 0; i < eventcnt; ++i) 645 for (i = 0; i < eventcnt; ++i)
485} 677}
486 678
487void 679void
488ev_feed_fd_event (EV_P_ int fd, int revents) 680ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 681{
682 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 683 fd_event (EV_A_ fd, revents);
491} 684}
492 685
493void inline_size 686void inline_size
494fd_reify (EV_P) 687fd_reify (EV_P)
495{ 688{
499 { 692 {
500 int fd = fdchanges [i]; 693 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 694 ANFD *anfd = anfds + fd;
502 ev_io *w; 695 ev_io *w;
503 696
504 int events = 0; 697 unsigned char events = 0;
505 698
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 699 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 700 events |= (unsigned char)w->events;
508 701
509#if EV_SELECT_IS_WINSOCKET 702#if EV_SELECT_IS_WINSOCKET
510 if (events) 703 if (events)
511 { 704 {
512 unsigned long argp; 705 unsigned long argp;
706 #ifdef EV_FD_TO_WIN32_HANDLE
707 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
708 #else
513 anfd->handle = _get_osfhandle (fd); 709 anfd->handle = _get_osfhandle (fd);
710 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 711 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 712 }
516#endif 713#endif
517 714
715 {
716 unsigned char o_events = anfd->events;
717 unsigned char o_reify = anfd->reify;
718
518 anfd->reify = 0; 719 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 720 anfd->events = events;
721
722 if (o_events != events || o_reify & EV_IOFDSET)
723 backend_modify (EV_A_ fd, o_events, events);
724 }
522 } 725 }
523 726
524 fdchangecnt = 0; 727 fdchangecnt = 0;
525} 728}
526 729
527void inline_size 730void inline_size
528fd_change (EV_P_ int fd) 731fd_change (EV_P_ int fd, int flags)
529{ 732{
530 if (expect_false (anfds [fd].reify)) 733 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 734 anfds [fd].reify |= flags;
534 735
736 if (expect_true (!reify))
737 {
535 ++fdchangecnt; 738 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 739 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 740 fdchanges [fdchangecnt - 1] = fd;
741 }
538} 742}
539 743
540void inline_speed 744void inline_speed
541fd_kill (EV_P_ int fd) 745fd_kill (EV_P_ int fd)
542{ 746{
589static void noinline 793static void noinline
590fd_rearm_all (EV_P) 794fd_rearm_all (EV_P)
591{ 795{
592 int fd; 796 int fd;
593 797
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 798 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 799 if (anfds [fd].events)
597 { 800 {
598 anfds [fd].events = 0; 801 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 802 fd_change (EV_A_ fd, EV_IOFDSET | 1);
600 } 803 }
601} 804}
602 805
603/*****************************************************************************/ 806/*****************************************************************************/
604 807
808/*
809 * the heap functions want a real array index. array index 0 uis guaranteed to not
810 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
811 * the branching factor of the d-tree.
812 */
813
814/*
815 * at the moment we allow libev the luxury of two heaps,
816 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
817 * which is more cache-efficient.
818 * the difference is about 5% with 50000+ watchers.
819 */
820#if EV_USE_4HEAP
821
822#define DHEAP 4
823#define HEAP0 (DHEAP - 1) /* index of first element in heap */
824#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
825#define UPHEAP_DONE(p,k) ((p) == (k))
826
827/* away from the root */
605void inline_speed 828void inline_speed
606upheap (WT *heap, int k) 829downheap (ANHE *heap, int N, int k)
607{ 830{
608 WT w = heap [k]; 831 ANHE he = heap [k];
832 ANHE *E = heap + N + HEAP0;
609 833
610 while (k && heap [k >> 1]->at > w->at) 834 for (;;)
611 {
612 heap [k] = heap [k >> 1];
613 ((W)heap [k])->active = k + 1;
614 k >>= 1;
615 } 835 {
836 ev_tstamp minat;
837 ANHE *minpos;
838 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
616 839
840 /* find minimum child */
841 if (expect_true (pos + DHEAP - 1 < E))
842 {
843 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
846 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
847 }
848 else if (pos < E)
849 {
850 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else
856 break;
857
858 if (ANHE_at (he) <= minat)
859 break;
860
861 heap [k] = *minpos;
862 ev_active (ANHE_w (*minpos)) = k;
863
864 k = minpos - heap;
865 }
866
617 heap [k] = w; 867 heap [k] = he;
618 ((W)heap [k])->active = k + 1; 868 ev_active (ANHE_w (he)) = k;
619
620} 869}
621 870
871#else /* 4HEAP */
872
873#define HEAP0 1
874#define HPARENT(k) ((k) >> 1)
875#define UPHEAP_DONE(p,k) (!(p))
876
877/* away from the root */
622void inline_speed 878void inline_speed
623downheap (WT *heap, int N, int k) 879downheap (ANHE *heap, int N, int k)
624{ 880{
625 WT w = heap [k]; 881 ANHE he = heap [k];
626 882
627 while (k < (N >> 1)) 883 for (;;)
628 { 884 {
629 int j = k << 1; 885 int c = k << 1;
630 886
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 887 if (c > N + HEAP0 - 1)
632 ++j;
633
634 if (w->at <= heap [j]->at)
635 break; 888 break;
636 889
890 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
891 ? 1 : 0;
892
893 if (ANHE_at (he) <= ANHE_at (heap [c]))
894 break;
895
637 heap [k] = heap [j]; 896 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 897 ev_active (ANHE_w (heap [k])) = k;
898
639 k = j; 899 k = c;
640 } 900 }
641 901
642 heap [k] = w; 902 heap [k] = he;
643 ((W)heap [k])->active = k + 1; 903 ev_active (ANHE_w (he)) = k;
904}
905#endif
906
907/* towards the root */
908void inline_speed
909upheap (ANHE *heap, int k)
910{
911 ANHE he = heap [k];
912
913 for (;;)
914 {
915 int p = HPARENT (k);
916
917 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
918 break;
919
920 heap [k] = heap [p];
921 ev_active (ANHE_w (heap [k])) = k;
922 k = p;
923 }
924
925 heap [k] = he;
926 ev_active (ANHE_w (he)) = k;
644} 927}
645 928
646void inline_size 929void inline_size
647adjustheap (WT *heap, int N, int k) 930adjustheap (ANHE *heap, int N, int k)
648{ 931{
932 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
649 upheap (heap, k); 933 upheap (heap, k);
934 else
650 downheap (heap, N, k); 935 downheap (heap, N, k);
651} 936}
937
938/* rebuild the heap: this function is used only once and executed rarely */
939void inline_size
940reheap (ANHE *heap, int N)
941{
942 int i;
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
947}
948
949#if EV_VERIFY
950static void
951checkheap (ANHE *heap, int N)
952{
953 int i;
954
955 for (i = HEAP0; i < N + HEAP0; ++i)
956 {
957 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
958 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
959 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
960 }
961}
962#endif
652 963
653/*****************************************************************************/ 964/*****************************************************************************/
654 965
655typedef struct 966typedef struct
656{ 967{
657 WL head; 968 WL head;
658 sig_atomic_t volatile gotsig; 969 EV_ATOMIC_T gotsig;
659} ANSIG; 970} ANSIG;
660 971
661static ANSIG *signals; 972static ANSIG *signals;
662static int signalmax; 973static int signalmax;
663 974
664static int sigpipe [2]; 975static EV_ATOMIC_T gotsig;
665static sig_atomic_t volatile gotsig;
666static ev_io sigev;
667 976
668void inline_size 977void inline_size
669signals_init (ANSIG *base, int count) 978signals_init (ANSIG *base, int count)
670{ 979{
671 while (count--) 980 while (count--)
675 984
676 ++base; 985 ++base;
677 } 986 }
678} 987}
679 988
680static void 989/*****************************************************************************/
681sighandler (int signum)
682{
683#if _WIN32
684 signal (signum, sighandler);
685#endif
686 990
687 signals [signum - 1].gotsig = 1;
688
689 if (!gotsig)
690 {
691 int old_errno = errno;
692 gotsig = 1;
693 write (sigpipe [1], &signum, 1);
694 errno = old_errno;
695 }
696}
697
698void noinline
699ev_feed_signal_event (EV_P_ int signum)
700{
701 WL w;
702
703#if EV_MULTIPLICITY
704 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
705#endif
706
707 --signum;
708
709 if (signum < 0 || signum >= signalmax)
710 return;
711
712 signals [signum].gotsig = 0;
713
714 for (w = signals [signum].head; w; w = w->next)
715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
716}
717
718static void
719sigcb (EV_P_ ev_io *iow, int revents)
720{
721 int signum;
722
723 read (sigpipe [0], &revents, 1);
724 gotsig = 0;
725
726 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1);
729}
730
731void inline_size 991void inline_speed
732fd_intern (int fd) 992fd_intern (int fd)
733{ 993{
734#ifdef _WIN32 994#ifdef _WIN32
735 int arg = 1; 995 int arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 996 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
739 fcntl (fd, F_SETFL, O_NONBLOCK); 999 fcntl (fd, F_SETFL, O_NONBLOCK);
740#endif 1000#endif
741} 1001}
742 1002
743static void noinline 1003static void noinline
744siginit (EV_P) 1004evpipe_init (EV_P)
745{ 1005{
1006 if (!ev_is_active (&pipeev))
1007 {
1008#if EV_USE_EVENTFD
1009 if ((evfd = eventfd (0, 0)) >= 0)
1010 {
1011 evpipe [0] = -1;
1012 fd_intern (evfd);
1013 ev_io_set (&pipeev, evfd, EV_READ);
1014 }
1015 else
1016#endif
1017 {
1018 while (pipe (evpipe))
1019 syserr ("(libev) error creating signal/async pipe");
1020
746 fd_intern (sigpipe [0]); 1021 fd_intern (evpipe [0]);
747 fd_intern (sigpipe [1]); 1022 fd_intern (evpipe [1]);
1023 ev_io_set (&pipeev, evpipe [0], EV_READ);
1024 }
748 1025
749 ev_io_set (&sigev, sigpipe [0], EV_READ);
750 ev_io_start (EV_A_ &sigev); 1026 ev_io_start (EV_A_ &pipeev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1027 ev_unref (EV_A); /* watcher should not keep loop alive */
1028 }
1029}
1030
1031void inline_size
1032evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1033{
1034 if (!*flag)
1035 {
1036 int old_errno = errno; /* save errno because write might clobber it */
1037
1038 *flag = 1;
1039
1040#if EV_USE_EVENTFD
1041 if (evfd >= 0)
1042 {
1043 uint64_t counter = 1;
1044 write (evfd, &counter, sizeof (uint64_t));
1045 }
1046 else
1047#endif
1048 write (evpipe [1], &old_errno, 1);
1049
1050 errno = old_errno;
1051 }
1052}
1053
1054static void
1055pipecb (EV_P_ ev_io *iow, int revents)
1056{
1057#if EV_USE_EVENTFD
1058 if (evfd >= 0)
1059 {
1060 uint64_t counter;
1061 read (evfd, &counter, sizeof (uint64_t));
1062 }
1063 else
1064#endif
1065 {
1066 char dummy;
1067 read (evpipe [0], &dummy, 1);
1068 }
1069
1070 if (gotsig && ev_is_default_loop (EV_A))
1071 {
1072 int signum;
1073 gotsig = 0;
1074
1075 for (signum = signalmax; signum--; )
1076 if (signals [signum].gotsig)
1077 ev_feed_signal_event (EV_A_ signum + 1);
1078 }
1079
1080#if EV_ASYNC_ENABLE
1081 if (gotasync)
1082 {
1083 int i;
1084 gotasync = 0;
1085
1086 for (i = asynccnt; i--; )
1087 if (asyncs [i]->sent)
1088 {
1089 asyncs [i]->sent = 0;
1090 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1091 }
1092 }
1093#endif
752} 1094}
753 1095
754/*****************************************************************************/ 1096/*****************************************************************************/
755 1097
1098static void
1099ev_sighandler (int signum)
1100{
1101#if EV_MULTIPLICITY
1102 struct ev_loop *loop = &default_loop_struct;
1103#endif
1104
1105#if _WIN32
1106 signal (signum, ev_sighandler);
1107#endif
1108
1109 signals [signum - 1].gotsig = 1;
1110 evpipe_write (EV_A_ &gotsig);
1111}
1112
1113void noinline
1114ev_feed_signal_event (EV_P_ int signum)
1115{
1116 WL w;
1117
1118#if EV_MULTIPLICITY
1119 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1120#endif
1121
1122 --signum;
1123
1124 if (signum < 0 || signum >= signalmax)
1125 return;
1126
1127 signals [signum].gotsig = 0;
1128
1129 for (w = signals [signum].head; w; w = w->next)
1130 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1131}
1132
1133/*****************************************************************************/
1134
756static ev_child *childs [EV_PID_HASHSIZE]; 1135static WL childs [EV_PID_HASHSIZE];
757 1136
758#ifndef _WIN32 1137#ifndef _WIN32
759 1138
760static ev_signal childev; 1139static ev_signal childev;
761 1140
1141#ifndef WIFCONTINUED
1142# define WIFCONTINUED(status) 0
1143#endif
1144
762void inline_speed 1145void inline_speed
763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1146child_reap (EV_P_ int chain, int pid, int status)
764{ 1147{
765 ev_child *w; 1148 ev_child *w;
1149 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
766 1150
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1151 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1152 {
768 if (w->pid == pid || !w->pid) 1153 if ((w->pid == pid || !w->pid)
1154 && (!traced || (w->flags & 1)))
769 { 1155 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1156 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
771 w->rpid = pid; 1157 w->rpid = pid;
772 w->rstatus = status; 1158 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1159 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 1160 }
1161 }
775} 1162}
776 1163
777#ifndef WCONTINUED 1164#ifndef WCONTINUED
778# define WCONTINUED 0 1165# define WCONTINUED 0
779#endif 1166#endif
788 if (!WCONTINUED 1175 if (!WCONTINUED
789 || errno != EINVAL 1176 || errno != EINVAL
790 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1177 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
791 return; 1178 return;
792 1179
793 /* make sure we are called again until all childs have been reaped */ 1180 /* make sure we are called again until all children have been reaped */
794 /* we need to do it this way so that the callback gets called before we continue */ 1181 /* we need to do it this way so that the callback gets called before we continue */
795 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1182 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
796 1183
797 child_reap (EV_A_ sw, pid, pid, status); 1184 child_reap (EV_A_ pid, pid, status);
798 if (EV_PID_HASHSIZE > 1) 1185 if (EV_PID_HASHSIZE > 1)
799 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1186 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
800} 1187}
801 1188
802#endif 1189#endif
803 1190
804/*****************************************************************************/ 1191/*****************************************************************************/
876} 1263}
877 1264
878unsigned int 1265unsigned int
879ev_embeddable_backends (void) 1266ev_embeddable_backends (void)
880{ 1267{
881 return EVBACKEND_EPOLL 1268 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
882 | EVBACKEND_KQUEUE 1269
883 | EVBACKEND_PORT; 1270 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1271 /* please fix it and tell me how to detect the fix */
1272 flags &= ~EVBACKEND_EPOLL;
1273
1274 return flags;
884} 1275}
885 1276
886unsigned int 1277unsigned int
887ev_backend (EV_P) 1278ev_backend (EV_P)
888{ 1279{
889 return backend; 1280 return backend;
1281}
1282
1283unsigned int
1284ev_loop_count (EV_P)
1285{
1286 return loop_count;
1287}
1288
1289void
1290ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1291{
1292 io_blocktime = interval;
1293}
1294
1295void
1296ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1297{
1298 timeout_blocktime = interval;
890} 1299}
891 1300
892static void noinline 1301static void noinline
893loop_init (EV_P_ unsigned int flags) 1302loop_init (EV_P_ unsigned int flags)
894{ 1303{
900 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1309 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
901 have_monotonic = 1; 1310 have_monotonic = 1;
902 } 1311 }
903#endif 1312#endif
904 1313
905 ev_rt_now = ev_time (); 1314 ev_rt_now = ev_time ();
906 mn_now = get_clock (); 1315 mn_now = get_clock ();
907 now_floor = mn_now; 1316 now_floor = mn_now;
908 rtmn_diff = ev_rt_now - mn_now; 1317 rtmn_diff = ev_rt_now - mn_now;
1318
1319 io_blocktime = 0.;
1320 timeout_blocktime = 0.;
1321 backend = 0;
1322 backend_fd = -1;
1323 gotasync = 0;
1324#if EV_USE_INOTIFY
1325 fs_fd = -2;
1326#endif
1327
1328 /* pid check not overridable via env */
1329#ifndef _WIN32
1330 if (flags & EVFLAG_FORKCHECK)
1331 curpid = getpid ();
1332#endif
909 1333
910 if (!(flags & EVFLAG_NOENV) 1334 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1335 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1336 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1337 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1338
915 if (!(flags & 0x0000ffffUL)) 1339 if (!(flags & 0x0000ffffU))
916 flags |= ev_recommended_backends (); 1340 flags |= ev_recommended_backends ();
917
918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY
921 fs_fd = -2;
922#endif
923 1341
924#if EV_USE_PORT 1342#if EV_USE_PORT
925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1343 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
926#endif 1344#endif
927#if EV_USE_KQUEUE 1345#if EV_USE_KQUEUE
935#endif 1353#endif
936#if EV_USE_SELECT 1354#if EV_USE_SELECT
937 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1355 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
938#endif 1356#endif
939 1357
940 ev_init (&sigev, sigcb); 1358 ev_init (&pipeev, pipecb);
941 ev_set_priority (&sigev, EV_MAXPRI); 1359 ev_set_priority (&pipeev, EV_MAXPRI);
942 } 1360 }
943} 1361}
944 1362
945static void noinline 1363static void noinline
946loop_destroy (EV_P) 1364loop_destroy (EV_P)
947{ 1365{
948 int i; 1366 int i;
1367
1368 if (ev_is_active (&pipeev))
1369 {
1370 ev_ref (EV_A); /* signal watcher */
1371 ev_io_stop (EV_A_ &pipeev);
1372
1373#if EV_USE_EVENTFD
1374 if (evfd >= 0)
1375 close (evfd);
1376#endif
1377
1378 if (evpipe [0] >= 0)
1379 {
1380 close (evpipe [0]);
1381 close (evpipe [1]);
1382 }
1383 }
949 1384
950#if EV_USE_INOTIFY 1385#if EV_USE_INOTIFY
951 if (fs_fd >= 0) 1386 if (fs_fd >= 0)
952 close (fs_fd); 1387 close (fs_fd);
953#endif 1388#endif
970#if EV_USE_SELECT 1405#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1406 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1407#endif
973 1408
974 for (i = NUMPRI; i--; ) 1409 for (i = NUMPRI; i--; )
1410 {
975 array_free (pending, [i]); 1411 array_free (pending, [i]);
1412#if EV_IDLE_ENABLE
1413 array_free (idle, [i]);
1414#endif
1415 }
1416
1417 ev_free (anfds); anfdmax = 0;
976 1418
977 /* have to use the microsoft-never-gets-it-right macro */ 1419 /* have to use the microsoft-never-gets-it-right macro */
978 array_free (fdchange, EMPTY0); 1420 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1421 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1422#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1423 array_free (periodic, EMPTY);
982#endif 1424#endif
1425#if EV_FORK_ENABLE
983 array_free (idle, EMPTY0); 1426 array_free (fork, EMPTY);
1427#endif
984 array_free (prepare, EMPTY0); 1428 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1429 array_free (check, EMPTY);
1430#if EV_ASYNC_ENABLE
1431 array_free (async, EMPTY);
1432#endif
986 1433
987 backend = 0; 1434 backend = 0;
988} 1435}
989 1436
1437#if EV_USE_INOTIFY
990void inline_size infy_fork (EV_P); 1438void inline_size infy_fork (EV_P);
1439#endif
991 1440
992void inline_size 1441void inline_size
993loop_fork (EV_P) 1442loop_fork (EV_P)
994{ 1443{
995#if EV_USE_PORT 1444#if EV_USE_PORT
1003#endif 1452#endif
1004#if EV_USE_INOTIFY 1453#if EV_USE_INOTIFY
1005 infy_fork (EV_A); 1454 infy_fork (EV_A);
1006#endif 1455#endif
1007 1456
1008 if (ev_is_active (&sigev)) 1457 if (ev_is_active (&pipeev))
1009 { 1458 {
1010 /* default loop */ 1459 /* this "locks" the handlers against writing to the pipe */
1460 /* while we modify the fd vars */
1461 gotsig = 1;
1462#if EV_ASYNC_ENABLE
1463 gotasync = 1;
1464#endif
1011 1465
1012 ev_ref (EV_A); 1466 ev_ref (EV_A);
1013 ev_io_stop (EV_A_ &sigev); 1467 ev_io_stop (EV_A_ &pipeev);
1468
1469#if EV_USE_EVENTFD
1470 if (evfd >= 0)
1471 close (evfd);
1472#endif
1473
1474 if (evpipe [0] >= 0)
1475 {
1014 close (sigpipe [0]); 1476 close (evpipe [0]);
1015 close (sigpipe [1]); 1477 close (evpipe [1]);
1478 }
1016 1479
1017 while (pipe (sigpipe))
1018 syserr ("(libev) error creating pipe");
1019
1020 siginit (EV_A); 1480 evpipe_init (EV_A);
1481 /* now iterate over everything, in case we missed something */
1482 pipecb (EV_A_ &pipeev, EV_READ);
1021 } 1483 }
1022 1484
1023 postfork = 0; 1485 postfork = 0;
1024} 1486}
1025 1487
1047} 1509}
1048 1510
1049void 1511void
1050ev_loop_fork (EV_P) 1512ev_loop_fork (EV_P)
1051{ 1513{
1052 postfork = 1; 1514 postfork = 1; /* must be in line with ev_default_fork */
1053} 1515}
1516
1517#if EV_VERIFY
1518static void
1519array_check (W **ws, int cnt)
1520{
1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
1524
1525static void
1526ev_loop_verify (EV_P)
1527{
1528 int i;
1529
1530 checkheap (timers, timercnt);
1531#if EV_PERIODIC_ENABLE
1532 checkheap (periodics, periodiccnt);
1533#endif
1534
1535#if EV_IDLE_ENABLE
1536 for (i = NUMPRI; i--; )
1537 array_check ((W **)idles [i], idlecnt [i]);
1538#endif
1539#if EV_FORK_ENABLE
1540 array_check ((W **)forks, forkcnt);
1541#endif
1542 array_check ((W **)prepares, preparecnt);
1543 array_check ((W **)checks, checkcnt);
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547}
1548#endif
1054 1549
1055#endif 1550#endif
1056 1551
1057#if EV_MULTIPLICITY 1552#if EV_MULTIPLICITY
1058struct ev_loop * 1553struct ev_loop *
1060#else 1555#else
1061int 1556int
1062ev_default_loop (unsigned int flags) 1557ev_default_loop (unsigned int flags)
1063#endif 1558#endif
1064{ 1559{
1065 if (sigpipe [0] == sigpipe [1])
1066 if (pipe (sigpipe))
1067 return 0;
1068
1069 if (!ev_default_loop_ptr) 1560 if (!ev_default_loop_ptr)
1070 { 1561 {
1071#if EV_MULTIPLICITY 1562#if EV_MULTIPLICITY
1072 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1563 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1073#else 1564#else
1076 1567
1077 loop_init (EV_A_ flags); 1568 loop_init (EV_A_ flags);
1078 1569
1079 if (ev_backend (EV_A)) 1570 if (ev_backend (EV_A))
1080 { 1571 {
1081 siginit (EV_A);
1082
1083#ifndef _WIN32 1572#ifndef _WIN32
1084 ev_signal_init (&childev, childcb, SIGCHLD); 1573 ev_signal_init (&childev, childcb, SIGCHLD);
1085 ev_set_priority (&childev, EV_MAXPRI); 1574 ev_set_priority (&childev, EV_MAXPRI);
1086 ev_signal_start (EV_A_ &childev); 1575 ev_signal_start (EV_A_ &childev);
1087 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1576 ev_unref (EV_A); /* child watcher should not keep loop alive */
1104#ifndef _WIN32 1593#ifndef _WIN32
1105 ev_ref (EV_A); /* child watcher */ 1594 ev_ref (EV_A); /* child watcher */
1106 ev_signal_stop (EV_A_ &childev); 1595 ev_signal_stop (EV_A_ &childev);
1107#endif 1596#endif
1108 1597
1109 ev_ref (EV_A); /* signal watcher */
1110 ev_io_stop (EV_A_ &sigev);
1111
1112 close (sigpipe [0]); sigpipe [0] = 0;
1113 close (sigpipe [1]); sigpipe [1] = 0;
1114
1115 loop_destroy (EV_A); 1598 loop_destroy (EV_A);
1116} 1599}
1117 1600
1118void 1601void
1119ev_default_fork (void) 1602ev_default_fork (void)
1121#if EV_MULTIPLICITY 1604#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr; 1605 struct ev_loop *loop = ev_default_loop_ptr;
1123#endif 1606#endif
1124 1607
1125 if (backend) 1608 if (backend)
1126 postfork = 1; 1609 postfork = 1; /* must be in line with ev_loop_fork */
1127} 1610}
1128 1611
1129/*****************************************************************************/ 1612/*****************************************************************************/
1130 1613
1131int inline_size 1614void
1132any_pending (EV_P) 1615ev_invoke (EV_P_ void *w, int revents)
1133{ 1616{
1134 int pri; 1617 EV_CB_INVOKE ((W)w, revents);
1135
1136 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri])
1138 return 1;
1139
1140 return 0;
1141} 1618}
1142 1619
1143void inline_speed 1620void inline_speed
1144call_pending (EV_P) 1621call_pending (EV_P)
1145{ 1622{
1146 int pri; 1623 int pri;
1624
1625 EV_FREQUENT_CHECK;
1147 1626
1148 for (pri = NUMPRI; pri--; ) 1627 for (pri = NUMPRI; pri--; )
1149 while (pendingcnt [pri]) 1628 while (pendingcnt [pri])
1150 { 1629 {
1151 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1630 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1156 1635
1157 p->w->pending = 0; 1636 p->w->pending = 0;
1158 EV_CB_INVOKE (p->w, p->events); 1637 EV_CB_INVOKE (p->w, p->events);
1159 } 1638 }
1160 } 1639 }
1640
1641 EV_FREQUENT_CHECK;
1161} 1642}
1643
1644#if EV_IDLE_ENABLE
1645void inline_size
1646idle_reify (EV_P)
1647{
1648 if (expect_false (idleall))
1649 {
1650 int pri;
1651
1652 for (pri = NUMPRI; pri--; )
1653 {
1654 if (pendingcnt [pri])
1655 break;
1656
1657 if (idlecnt [pri])
1658 {
1659 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1660 break;
1661 }
1662 }
1663 }
1664}
1665#endif
1162 1666
1163void inline_size 1667void inline_size
1164timers_reify (EV_P) 1668timers_reify (EV_P)
1165{ 1669{
1670 EV_FREQUENT_CHECK;
1671
1166 while (timercnt && ((WT)timers [0])->at <= mn_now) 1672 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1167 { 1673 {
1168 ev_timer *w = timers [0]; 1674 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1169 1675
1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1676 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1171 1677
1172 /* first reschedule or stop timer */ 1678 /* first reschedule or stop timer */
1173 if (w->repeat) 1679 if (w->repeat)
1174 { 1680 {
1681 ev_at (w) += w->repeat;
1682 if (ev_at (w) < mn_now)
1683 ev_at (w) = mn_now;
1684
1175 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1685 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1176 1686
1177 ((WT)w)->at += w->repeat; 1687 ANHE_at_cache (timers [HEAP0]);
1178 if (((WT)w)->at < mn_now)
1179 ((WT)w)->at = mn_now;
1180
1181 downheap ((WT *)timers, timercnt, 0); 1688 downheap (timers, timercnt, HEAP0);
1182 } 1689 }
1183 else 1690 else
1184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1691 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1185 1692
1693 EV_FREQUENT_CHECK;
1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1694 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1187 } 1695 }
1188} 1696}
1189 1697
1190#if EV_PERIODIC_ENABLE 1698#if EV_PERIODIC_ENABLE
1191void inline_size 1699void inline_size
1192periodics_reify (EV_P) 1700periodics_reify (EV_P)
1193{ 1701{
1702 EV_FREQUENT_CHECK;
1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1195 { 1704 {
1196 ev_periodic *w = periodics [0]; 1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1197 1706
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1199 1708
1200 /* first reschedule or stop timer */ 1709 /* first reschedule or stop timer */
1201 if (w->reschedule_cb) 1710 if (w->reschedule_cb)
1202 { 1711 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
1205 downheap ((WT *)periodics, periodiccnt, 0); 1717 downheap (periodics, periodiccnt, HEAP0);
1718 EV_FREQUENT_CHECK;
1206 } 1719 }
1207 else if (w->interval) 1720 else if (w->interval)
1208 { 1721 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1722 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1723 /* if next trigger time is not sufficiently in the future, put it there */
1724 /* this might happen because of floating point inexactness */
1725 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1726 {
1727 ev_at (w) += w->interval;
1728
1729 /* if interval is unreasonably low we might still have a time in the past */
1730 /* so correct this. this will make the periodic very inexact, but the user */
1731 /* has effectively asked to get triggered more often than possible */
1732 if (ev_at (w) < ev_rt_now)
1733 ev_at (w) = ev_rt_now;
1734 }
1735
1736 ANHE_at_cache (periodics [HEAP0]);
1211 downheap ((WT *)periodics, periodiccnt, 0); 1737 downheap (periodics, periodiccnt, HEAP0);
1212 } 1738 }
1213 else 1739 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1740 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1215 1741
1742 EV_FREQUENT_CHECK;
1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1743 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1217 } 1744 }
1218} 1745}
1219 1746
1220static void noinline 1747static void noinline
1221periodics_reschedule (EV_P) 1748periodics_reschedule (EV_P)
1222{ 1749{
1223 int i; 1750 int i;
1224 1751
1225 /* adjust periodics after time jump */ 1752 /* adjust periodics after time jump */
1226 for (i = 0; i < periodiccnt; ++i) 1753 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1227 { 1754 {
1228 ev_periodic *w = periodics [i]; 1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1229 1756
1230 if (w->reschedule_cb) 1757 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1758 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval) 1759 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1760 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1761
1762 ANHE_at_cache (periodics [i]);
1763 }
1764
1765 reheap (periodics, periodiccnt);
1766}
1767#endif
1768
1769void inline_speed
1770time_update (EV_P_ ev_tstamp max_block)
1771{
1772 int i;
1773
1774#if EV_USE_MONOTONIC
1775 if (expect_true (have_monotonic))
1234 } 1776 {
1777 ev_tstamp odiff = rtmn_diff;
1235 1778
1236 /* now rebuild the heap */
1237 for (i = periodiccnt >> 1; i--; )
1238 downheap ((WT *)periodics, periodiccnt, i);
1239}
1240#endif
1241
1242int inline_size
1243time_update_monotonic (EV_P)
1244{
1245 mn_now = get_clock (); 1779 mn_now = get_clock ();
1246 1780
1781 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1782 /* interpolate in the meantime */
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1783 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 { 1784 {
1249 ev_rt_now = rtmn_diff + mn_now; 1785 ev_rt_now = rtmn_diff + mn_now;
1250 return 0; 1786 return;
1251 } 1787 }
1252 else 1788
1253 {
1254 now_floor = mn_now; 1789 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 1790 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 1791
1260void inline_size 1792 /* loop a few times, before making important decisions.
1261time_update (EV_P) 1793 * on the choice of "4": one iteration isn't enough,
1262{ 1794 * in case we get preempted during the calls to
1263 int i; 1795 * ev_time and get_clock. a second call is almost guaranteed
1264 1796 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 1797 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 1798 * in the unlikely event of having been preempted here.
1267 { 1799 */
1268 if (time_update_monotonic (EV_A)) 1800 for (i = 4; --i; )
1269 { 1801 {
1270 ev_tstamp odiff = rtmn_diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 1802 rtmn_diff = ev_rt_now - mn_now;
1283 1803
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1804 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1285 return; /* all is well */ 1805 return; /* all is well */
1286 1806
1287 ev_rt_now = ev_time (); 1807 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 1808 mn_now = get_clock ();
1289 now_floor = mn_now; 1809 now_floor = mn_now;
1290 } 1810 }
1291 1811
1292# if EV_PERIODIC_ENABLE 1812# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 1813 periodics_reschedule (EV_A);
1294# endif 1814# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */ 1815 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1816 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 1817 }
1299 else 1818 else
1300#endif 1819#endif
1301 { 1820 {
1302 ev_rt_now = ev_time (); 1821 ev_rt_now = ev_time ();
1303 1822
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1823 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 1824 {
1306#if EV_PERIODIC_ENABLE 1825#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 1826 periodics_reschedule (EV_A);
1308#endif 1827#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */ 1828 /* adjust timers. this is easy, as the offset is the same for all of them */
1311 for (i = 0; i < timercnt; ++i) 1829 for (i = 0; i < timercnt; ++i)
1830 {
1831 ANHE *he = timers + i + HEAP0;
1312 ((WT)timers [i])->at += ev_rt_now - mn_now; 1832 ANHE_w (*he)->at += ev_rt_now - mn_now;
1833 ANHE_at_cache (*he);
1834 }
1313 } 1835 }
1314 1836
1315 mn_now = ev_rt_now; 1837 mn_now = ev_rt_now;
1316 } 1838 }
1317} 1839}
1331static int loop_done; 1853static int loop_done;
1332 1854
1333void 1855void
1334ev_loop (EV_P_ int flags) 1856ev_loop (EV_P_ int flags)
1335{ 1857{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1858 loop_done = EVUNLOOP_CANCEL;
1337 ? EVUNLOOP_ONE
1338 : EVUNLOOP_CANCEL;
1339 1859
1340 while (activecnt) 1860 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1861
1862 do
1341 { 1863 {
1342 /* we might have forked, so reify kernel state if necessary */ 1864#ifndef _WIN32
1865 if (expect_false (curpid)) /* penalise the forking check even more */
1866 if (expect_false (getpid () != curpid))
1867 {
1868 curpid = getpid ();
1869 postfork = 1;
1870 }
1871#endif
1872
1343 #if EV_FORK_ENABLE 1873#if EV_FORK_ENABLE
1874 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 1875 if (expect_false (postfork))
1345 if (forkcnt) 1876 if (forkcnt)
1346 { 1877 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1878 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 1879 call_pending (EV_A);
1349 } 1880 }
1350 #endif 1881#endif
1351 1882
1352 /* queue check watchers (and execute them) */ 1883 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 1884 if (expect_false (preparecnt))
1354 { 1885 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1886 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 1887 call_pending (EV_A);
1357 } 1888 }
1358 1889
1890 if (expect_false (!activecnt))
1891 break;
1892
1359 /* we might have forked, so reify kernel state if necessary */ 1893 /* we might have forked, so reify kernel state if necessary */
1360 if (expect_false (postfork)) 1894 if (expect_false (postfork))
1361 loop_fork (EV_A); 1895 loop_fork (EV_A);
1362 1896
1363 /* update fd-related kernel structures */ 1897 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 1898 fd_reify (EV_A);
1365 1899
1366 /* calculate blocking time */ 1900 /* calculate blocking time */
1367 { 1901 {
1368 double block; 1902 ev_tstamp waittime = 0.;
1903 ev_tstamp sleeptime = 0.;
1369 1904
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 1905 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1371 block = 0.; /* do not block at all */
1372 else
1373 { 1906 {
1374 /* update time to cancel out callback processing overhead */ 1907 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A); 1908 time_update (EV_A_ 1e100);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384 1909
1385 block = MAX_BLOCKTIME; 1910 waittime = MAX_BLOCKTIME;
1386 1911
1387 if (timercnt) 1912 if (timercnt)
1388 { 1913 {
1389 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1914 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1390 if (block > to) block = to; 1915 if (waittime > to) waittime = to;
1391 } 1916 }
1392 1917
1393#if EV_PERIODIC_ENABLE 1918#if EV_PERIODIC_ENABLE
1394 if (periodiccnt) 1919 if (periodiccnt)
1395 { 1920 {
1396 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1921 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1397 if (block > to) block = to; 1922 if (waittime > to) waittime = to;
1398 } 1923 }
1399#endif 1924#endif
1400 1925
1401 if (expect_false (block < 0.)) block = 0.; 1926 if (expect_false (waittime < timeout_blocktime))
1927 waittime = timeout_blocktime;
1928
1929 sleeptime = waittime - backend_fudge;
1930
1931 if (expect_true (sleeptime > io_blocktime))
1932 sleeptime = io_blocktime;
1933
1934 if (sleeptime)
1935 {
1936 ev_sleep (sleeptime);
1937 waittime -= sleeptime;
1938 }
1402 } 1939 }
1403 1940
1941 ++loop_count;
1404 backend_poll (EV_A_ block); 1942 backend_poll (EV_A_ waittime);
1943
1944 /* update ev_rt_now, do magic */
1945 time_update (EV_A_ waittime + sleeptime);
1405 } 1946 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 1947
1410 /* queue pending timers and reschedule them */ 1948 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 1949 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 1950#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 1951 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 1952#endif
1415 1953
1954#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 1955 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 1956 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1957#endif
1419 1958
1420 /* queue check watchers, to be executed first */ 1959 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 1960 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1961 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1423 1962
1424 call_pending (EV_A); 1963 call_pending (EV_A);
1425
1426 if (expect_false (loop_done))
1427 break;
1428 } 1964 }
1965 while (expect_true (
1966 activecnt
1967 && !loop_done
1968 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1969 ));
1429 1970
1430 if (loop_done == EVUNLOOP_ONE) 1971 if (loop_done == EVUNLOOP_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 1972 loop_done = EVUNLOOP_CANCEL;
1432} 1973}
1433 1974
1460 head = &(*head)->next; 2001 head = &(*head)->next;
1461 } 2002 }
1462} 2003}
1463 2004
1464void inline_speed 2005void inline_speed
1465ev_clear_pending (EV_P_ W w) 2006clear_pending (EV_P_ W w)
1466{ 2007{
1467 if (w->pending) 2008 if (w->pending)
1468 { 2009 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2010 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1470 w->pending = 0; 2011 w->pending = 0;
1471 } 2012 }
1472} 2013}
1473 2014
2015int
2016ev_clear_pending (EV_P_ void *w)
2017{
2018 W w_ = (W)w;
2019 int pending = w_->pending;
2020
2021 if (expect_true (pending))
2022 {
2023 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2024 w_->pending = 0;
2025 p->w = 0;
2026 return p->events;
2027 }
2028 else
2029 return 0;
2030}
2031
2032void inline_size
2033pri_adjust (EV_P_ W w)
2034{
2035 int pri = w->priority;
2036 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2037 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2038 w->priority = pri;
2039}
2040
1474void inline_speed 2041void inline_speed
1475ev_start (EV_P_ W w, int active) 2042ev_start (EV_P_ W w, int active)
1476{ 2043{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2044 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 2045 w->active = active;
1481 ev_ref (EV_A); 2046 ev_ref (EV_A);
1482} 2047}
1483 2048
1484void inline_size 2049void inline_size
1488 w->active = 0; 2053 w->active = 0;
1489} 2054}
1490 2055
1491/*****************************************************************************/ 2056/*****************************************************************************/
1492 2057
1493void 2058void noinline
1494ev_io_start (EV_P_ ev_io *w) 2059ev_io_start (EV_P_ ev_io *w)
1495{ 2060{
1496 int fd = w->fd; 2061 int fd = w->fd;
1497 2062
1498 if (expect_false (ev_is_active (w))) 2063 if (expect_false (ev_is_active (w)))
1499 return; 2064 return;
1500 2065
1501 assert (("ev_io_start called with negative fd", fd >= 0)); 2066 assert (("ev_io_start called with negative fd", fd >= 0));
1502 2067
2068 EV_FREQUENT_CHECK;
2069
1503 ev_start (EV_A_ (W)w, 1); 2070 ev_start (EV_A_ (W)w, 1);
1504 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2071 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2072 wlist_add (&anfds[fd].head, (WL)w);
1506 2073
1507 fd_change (EV_A_ fd); 2074 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1508} 2075 w->events &= ~EV_IOFDSET;
1509 2076
1510void 2077 EV_FREQUENT_CHECK;
2078}
2079
2080void noinline
1511ev_io_stop (EV_P_ ev_io *w) 2081ev_io_stop (EV_P_ ev_io *w)
1512{ 2082{
1513 ev_clear_pending (EV_A_ (W)w); 2083 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 2084 if (expect_false (!ev_is_active (w)))
1515 return; 2085 return;
1516 2086
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2087 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 2088
2089 EV_FREQUENT_CHECK;
2090
1519 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2091 wlist_del (&anfds[w->fd].head, (WL)w);
1520 ev_stop (EV_A_ (W)w); 2092 ev_stop (EV_A_ (W)w);
1521 2093
1522 fd_change (EV_A_ w->fd); 2094 fd_change (EV_A_ w->fd, 1);
1523}
1524 2095
1525void 2096 EV_FREQUENT_CHECK;
2097}
2098
2099void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 2100ev_timer_start (EV_P_ ev_timer *w)
1527{ 2101{
1528 if (expect_false (ev_is_active (w))) 2102 if (expect_false (ev_is_active (w)))
1529 return; 2103 return;
1530 2104
1531 ((WT)w)->at += mn_now; 2105 ev_at (w) += mn_now;
1532 2106
1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2107 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1534 2108
2109 EV_FREQUENT_CHECK;
2110
2111 ++timercnt;
1535 ev_start (EV_A_ (W)w, ++timercnt); 2112 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2113 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1537 timers [timercnt - 1] = w; 2114 ANHE_w (timers [ev_active (w)]) = (WT)w;
1538 upheap ((WT *)timers, timercnt - 1); 2115 ANHE_at_cache (timers [ev_active (w)]);
2116 upheap (timers, ev_active (w));
1539 2117
2118 EV_FREQUENT_CHECK;
2119
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2120 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1541} 2121}
1542 2122
1543void 2123void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 2124ev_timer_stop (EV_P_ ev_timer *w)
1545{ 2125{
1546 ev_clear_pending (EV_A_ (W)w); 2126 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 2127 if (expect_false (!ev_is_active (w)))
1548 return; 2128 return;
1549 2129
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2130 EV_FREQUENT_CHECK;
1551 2131
1552 { 2132 {
1553 int active = ((W)w)->active; 2133 int active = ev_active (w);
1554 2134
2135 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2136
2137 --timercnt;
2138
1555 if (expect_true (--active < --timercnt)) 2139 if (expect_true (active < timercnt + HEAP0))
1556 { 2140 {
1557 timers [active] = timers [timercnt]; 2141 timers [active] = timers [timercnt + HEAP0];
1558 adjustheap ((WT *)timers, timercnt, active); 2142 adjustheap (timers, timercnt, active);
1559 } 2143 }
1560 } 2144 }
1561 2145
1562 ((WT)w)->at -= mn_now; 2146 EV_FREQUENT_CHECK;
2147
2148 ev_at (w) -= mn_now;
1563 2149
1564 ev_stop (EV_A_ (W)w); 2150 ev_stop (EV_A_ (W)w);
1565} 2151}
1566 2152
1567void 2153void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 2154ev_timer_again (EV_P_ ev_timer *w)
1569{ 2155{
2156 EV_FREQUENT_CHECK;
2157
1570 if (ev_is_active (w)) 2158 if (ev_is_active (w))
1571 { 2159 {
1572 if (w->repeat) 2160 if (w->repeat)
1573 { 2161 {
1574 ((WT)w)->at = mn_now + w->repeat; 2162 ev_at (w) = mn_now + w->repeat;
2163 ANHE_at_cache (timers [ev_active (w)]);
1575 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2164 adjustheap (timers, timercnt, ev_active (w));
1576 } 2165 }
1577 else 2166 else
1578 ev_timer_stop (EV_A_ w); 2167 ev_timer_stop (EV_A_ w);
1579 } 2168 }
1580 else if (w->repeat) 2169 else if (w->repeat)
1581 { 2170 {
1582 w->at = w->repeat; 2171 ev_at (w) = w->repeat;
1583 ev_timer_start (EV_A_ w); 2172 ev_timer_start (EV_A_ w);
1584 } 2173 }
2174
2175 EV_FREQUENT_CHECK;
1585} 2176}
1586 2177
1587#if EV_PERIODIC_ENABLE 2178#if EV_PERIODIC_ENABLE
1588void 2179void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 2180ev_periodic_start (EV_P_ ev_periodic *w)
1590{ 2181{
1591 if (expect_false (ev_is_active (w))) 2182 if (expect_false (ev_is_active (w)))
1592 return; 2183 return;
1593 2184
1594 if (w->reschedule_cb) 2185 if (w->reschedule_cb)
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2186 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 2187 else if (w->interval)
1597 { 2188 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2189 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 2190 /* this formula differs from the one in periodic_reify because we do not always round up */
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2191 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1601 } 2192 }
2193 else
2194 ev_at (w) = w->offset;
1602 2195
2196 EV_FREQUENT_CHECK;
2197
2198 ++periodiccnt;
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 2199 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2200 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 2201 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 2202 ANHE_at_cache (periodics [ev_active (w)]);
2203 upheap (periodics, ev_active (w));
1607 2204
2205 EV_FREQUENT_CHECK;
2206
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2207 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1609} 2208}
1610 2209
1611void 2210void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 2211ev_periodic_stop (EV_P_ ev_periodic *w)
1613{ 2212{
1614 ev_clear_pending (EV_A_ (W)w); 2213 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 2214 if (expect_false (!ev_is_active (w)))
1616 return; 2215 return;
1617 2216
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2217 EV_FREQUENT_CHECK;
1619 2218
1620 { 2219 {
1621 int active = ((W)w)->active; 2220 int active = ev_active (w);
1622 2221
2222 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2223
2224 --periodiccnt;
2225
1623 if (expect_true (--active < --periodiccnt)) 2226 if (expect_true (active < periodiccnt + HEAP0))
1624 { 2227 {
1625 periodics [active] = periodics [periodiccnt]; 2228 periodics [active] = periodics [periodiccnt + HEAP0];
1626 adjustheap ((WT *)periodics, periodiccnt, active); 2229 adjustheap (periodics, periodiccnt, active);
1627 } 2230 }
1628 } 2231 }
1629 2232
2233 EV_FREQUENT_CHECK;
2234
1630 ev_stop (EV_A_ (W)w); 2235 ev_stop (EV_A_ (W)w);
1631} 2236}
1632 2237
1633void 2238void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 2239ev_periodic_again (EV_P_ ev_periodic *w)
1635{ 2240{
1636 /* TODO: use adjustheap and recalculation */ 2241 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 2242 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 2243 ev_periodic_start (EV_A_ w);
1641 2246
1642#ifndef SA_RESTART 2247#ifndef SA_RESTART
1643# define SA_RESTART 0 2248# define SA_RESTART 0
1644#endif 2249#endif
1645 2250
1646void 2251void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 2252ev_signal_start (EV_P_ ev_signal *w)
1648{ 2253{
1649#if EV_MULTIPLICITY 2254#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2255 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif 2256#endif
1652 if (expect_false (ev_is_active (w))) 2257 if (expect_false (ev_is_active (w)))
1653 return; 2258 return;
1654 2259
1655 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2260 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1656 2261
2262 evpipe_init (EV_A);
2263
2264 EV_FREQUENT_CHECK;
2265
2266 {
2267#ifndef _WIN32
2268 sigset_t full, prev;
2269 sigfillset (&full);
2270 sigprocmask (SIG_SETMASK, &full, &prev);
2271#endif
2272
2273 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2274
2275#ifndef _WIN32
2276 sigprocmask (SIG_SETMASK, &prev, 0);
2277#endif
2278 }
2279
1657 ev_start (EV_A_ (W)w, 1); 2280 ev_start (EV_A_ (W)w, 1);
1658 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1659 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2281 wlist_add (&signals [w->signum - 1].head, (WL)w);
1660 2282
1661 if (!((WL)w)->next) 2283 if (!((WL)w)->next)
1662 { 2284 {
1663#if _WIN32 2285#if _WIN32
1664 signal (w->signum, sighandler); 2286 signal (w->signum, ev_sighandler);
1665#else 2287#else
1666 struct sigaction sa; 2288 struct sigaction sa;
1667 sa.sa_handler = sighandler; 2289 sa.sa_handler = ev_sighandler;
1668 sigfillset (&sa.sa_mask); 2290 sigfillset (&sa.sa_mask);
1669 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2291 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1670 sigaction (w->signum, &sa, 0); 2292 sigaction (w->signum, &sa, 0);
1671#endif 2293#endif
1672 } 2294 }
1673}
1674 2295
1675void 2296 EV_FREQUENT_CHECK;
2297}
2298
2299void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 2300ev_signal_stop (EV_P_ ev_signal *w)
1677{ 2301{
1678 ev_clear_pending (EV_A_ (W)w); 2302 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 2303 if (expect_false (!ev_is_active (w)))
1680 return; 2304 return;
1681 2305
2306 EV_FREQUENT_CHECK;
2307
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2308 wlist_del (&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 2309 ev_stop (EV_A_ (W)w);
1684 2310
1685 if (!signals [w->signum - 1].head) 2311 if (!signals [w->signum - 1].head)
1686 signal (w->signum, SIG_DFL); 2312 signal (w->signum, SIG_DFL);
2313
2314 EV_FREQUENT_CHECK;
1687} 2315}
1688 2316
1689void 2317void
1690ev_child_start (EV_P_ ev_child *w) 2318ev_child_start (EV_P_ ev_child *w)
1691{ 2319{
1693 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2321 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1694#endif 2322#endif
1695 if (expect_false (ev_is_active (w))) 2323 if (expect_false (ev_is_active (w)))
1696 return; 2324 return;
1697 2325
2326 EV_FREQUENT_CHECK;
2327
1698 ev_start (EV_A_ (W)w, 1); 2328 ev_start (EV_A_ (W)w, 1);
1699 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2329 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2330
2331 EV_FREQUENT_CHECK;
1700} 2332}
1701 2333
1702void 2334void
1703ev_child_stop (EV_P_ ev_child *w) 2335ev_child_stop (EV_P_ ev_child *w)
1704{ 2336{
1705 ev_clear_pending (EV_A_ (W)w); 2337 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 2338 if (expect_false (!ev_is_active (w)))
1707 return; 2339 return;
1708 2340
2341 EV_FREQUENT_CHECK;
2342
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2343 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 2344 ev_stop (EV_A_ (W)w);
2345
2346 EV_FREQUENT_CHECK;
1711} 2347}
1712 2348
1713#if EV_STAT_ENABLE 2349#if EV_STAT_ENABLE
1714 2350
1715# ifdef _WIN32 2351# ifdef _WIN32
1718# endif 2354# endif
1719 2355
1720#define DEF_STAT_INTERVAL 5.0074891 2356#define DEF_STAT_INTERVAL 5.0074891
1721#define MIN_STAT_INTERVAL 0.1074891 2357#define MIN_STAT_INTERVAL 0.1074891
1722 2358
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2359static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 2360
1725#if EV_USE_INOTIFY 2361#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 2362# define EV_INOTIFY_BUFSIZE 8192
1727 2363
1728static void noinline 2364static void noinline
1733 if (w->wd < 0) 2369 if (w->wd < 0)
1734 { 2370 {
1735 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2371 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1736 2372
1737 /* monitor some parent directory for speedup hints */ 2373 /* monitor some parent directory for speedup hints */
2374 /* note that exceeding the hardcoded limit is not a correctness issue, */
2375 /* but an efficiency issue only */
1738 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2376 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1739 { 2377 {
1740 char path [4096]; 2378 char path [4096];
1741 strcpy (path, w->path); 2379 strcpy (path, w->path);
1742 2380
1879 w->attr.st_nlink = 0; 2517 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 2518 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 2519 w->attr.st_nlink = 1;
1882} 2520}
1883 2521
1884void noinline 2522static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2523stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 2524{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2525 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 2526
1889 /* we copy this here each the time so that */ 2527 /* we copy this here each the time so that */
1941 else 2579 else
1942#endif 2580#endif
1943 ev_timer_start (EV_A_ &w->timer); 2581 ev_timer_start (EV_A_ &w->timer);
1944 2582
1945 ev_start (EV_A_ (W)w, 1); 2583 ev_start (EV_A_ (W)w, 1);
2584
2585 EV_FREQUENT_CHECK;
1946} 2586}
1947 2587
1948void 2588void
1949ev_stat_stop (EV_P_ ev_stat *w) 2589ev_stat_stop (EV_P_ ev_stat *w)
1950{ 2590{
1951 ev_clear_pending (EV_A_ (W)w); 2591 clear_pending (EV_A_ (W)w);
1952 if (expect_false (!ev_is_active (w))) 2592 if (expect_false (!ev_is_active (w)))
1953 return; 2593 return;
1954 2594
2595 EV_FREQUENT_CHECK;
2596
1955#if EV_USE_INOTIFY 2597#if EV_USE_INOTIFY
1956 infy_del (EV_A_ w); 2598 infy_del (EV_A_ w);
1957#endif 2599#endif
1958 ev_timer_stop (EV_A_ &w->timer); 2600 ev_timer_stop (EV_A_ &w->timer);
1959 2601
1960 ev_stop (EV_A_ (W)w); 2602 ev_stop (EV_A_ (W)w);
1961}
1962#endif
1963 2603
2604 EV_FREQUENT_CHECK;
2605}
2606#endif
2607
2608#if EV_IDLE_ENABLE
1964void 2609void
1965ev_idle_start (EV_P_ ev_idle *w) 2610ev_idle_start (EV_P_ ev_idle *w)
1966{ 2611{
1967 if (expect_false (ev_is_active (w))) 2612 if (expect_false (ev_is_active (w)))
1968 return; 2613 return;
1969 2614
2615 pri_adjust (EV_A_ (W)w);
2616
2617 EV_FREQUENT_CHECK;
2618
2619 {
2620 int active = ++idlecnt [ABSPRI (w)];
2621
2622 ++idleall;
1970 ev_start (EV_A_ (W)w, ++idlecnt); 2623 ev_start (EV_A_ (W)w, active);
2624
1971 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2625 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1972 idles [idlecnt - 1] = w; 2626 idles [ABSPRI (w)][active - 1] = w;
2627 }
2628
2629 EV_FREQUENT_CHECK;
1973} 2630}
1974 2631
1975void 2632void
1976ev_idle_stop (EV_P_ ev_idle *w) 2633ev_idle_stop (EV_P_ ev_idle *w)
1977{ 2634{
1978 ev_clear_pending (EV_A_ (W)w); 2635 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 2636 if (expect_false (!ev_is_active (w)))
1980 return; 2637 return;
1981 2638
2639 EV_FREQUENT_CHECK;
2640
1982 { 2641 {
1983 int active = ((W)w)->active; 2642 int active = ev_active (w);
1984 idles [active - 1] = idles [--idlecnt]; 2643
1985 ((W)idles [active - 1])->active = active; 2644 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2645 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2646
2647 ev_stop (EV_A_ (W)w);
2648 --idleall;
1986 } 2649 }
1987 2650
1988 ev_stop (EV_A_ (W)w); 2651 EV_FREQUENT_CHECK;
1989} 2652}
2653#endif
1990 2654
1991void 2655void
1992ev_prepare_start (EV_P_ ev_prepare *w) 2656ev_prepare_start (EV_P_ ev_prepare *w)
1993{ 2657{
1994 if (expect_false (ev_is_active (w))) 2658 if (expect_false (ev_is_active (w)))
1995 return; 2659 return;
2660
2661 EV_FREQUENT_CHECK;
1996 2662
1997 ev_start (EV_A_ (W)w, ++preparecnt); 2663 ev_start (EV_A_ (W)w, ++preparecnt);
1998 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2664 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1999 prepares [preparecnt - 1] = w; 2665 prepares [preparecnt - 1] = w;
2666
2667 EV_FREQUENT_CHECK;
2000} 2668}
2001 2669
2002void 2670void
2003ev_prepare_stop (EV_P_ ev_prepare *w) 2671ev_prepare_stop (EV_P_ ev_prepare *w)
2004{ 2672{
2005 ev_clear_pending (EV_A_ (W)w); 2673 clear_pending (EV_A_ (W)w);
2006 if (expect_false (!ev_is_active (w))) 2674 if (expect_false (!ev_is_active (w)))
2007 return; 2675 return;
2008 2676
2677 EV_FREQUENT_CHECK;
2678
2009 { 2679 {
2010 int active = ((W)w)->active; 2680 int active = ev_active (w);
2681
2011 prepares [active - 1] = prepares [--preparecnt]; 2682 prepares [active - 1] = prepares [--preparecnt];
2012 ((W)prepares [active - 1])->active = active; 2683 ev_active (prepares [active - 1]) = active;
2013 } 2684 }
2014 2685
2015 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
2016} 2689}
2017 2690
2018void 2691void
2019ev_check_start (EV_P_ ev_check *w) 2692ev_check_start (EV_P_ ev_check *w)
2020{ 2693{
2021 if (expect_false (ev_is_active (w))) 2694 if (expect_false (ev_is_active (w)))
2022 return; 2695 return;
2696
2697 EV_FREQUENT_CHECK;
2023 2698
2024 ev_start (EV_A_ (W)w, ++checkcnt); 2699 ev_start (EV_A_ (W)w, ++checkcnt);
2025 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2700 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2026 checks [checkcnt - 1] = w; 2701 checks [checkcnt - 1] = w;
2702
2703 EV_FREQUENT_CHECK;
2027} 2704}
2028 2705
2029void 2706void
2030ev_check_stop (EV_P_ ev_check *w) 2707ev_check_stop (EV_P_ ev_check *w)
2031{ 2708{
2032 ev_clear_pending (EV_A_ (W)w); 2709 clear_pending (EV_A_ (W)w);
2033 if (expect_false (!ev_is_active (w))) 2710 if (expect_false (!ev_is_active (w)))
2034 return; 2711 return;
2035 2712
2713 EV_FREQUENT_CHECK;
2714
2036 { 2715 {
2037 int active = ((W)w)->active; 2716 int active = ev_active (w);
2717
2038 checks [active - 1] = checks [--checkcnt]; 2718 checks [active - 1] = checks [--checkcnt];
2039 ((W)checks [active - 1])->active = active; 2719 ev_active (checks [active - 1]) = active;
2040 } 2720 }
2041 2721
2042 ev_stop (EV_A_ (W)w); 2722 ev_stop (EV_A_ (W)w);
2723
2724 EV_FREQUENT_CHECK;
2043} 2725}
2044 2726
2045#if EV_EMBED_ENABLE 2727#if EV_EMBED_ENABLE
2046void noinline 2728void noinline
2047ev_embed_sweep (EV_P_ ev_embed *w) 2729ev_embed_sweep (EV_P_ ev_embed *w)
2048{ 2730{
2049 ev_loop (w->loop, EVLOOP_NONBLOCK); 2731 ev_loop (w->other, EVLOOP_NONBLOCK);
2050} 2732}
2051 2733
2052static void 2734static void
2053embed_cb (EV_P_ ev_io *io, int revents) 2735embed_io_cb (EV_P_ ev_io *io, int revents)
2054{ 2736{
2055 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2737 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2056 2738
2057 if (ev_cb (w)) 2739 if (ev_cb (w))
2058 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2740 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2059 else 2741 else
2060 ev_embed_sweep (loop, w); 2742 ev_loop (w->other, EVLOOP_NONBLOCK);
2061} 2743}
2744
2745static void
2746embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2747{
2748 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2749
2750 {
2751 struct ev_loop *loop = w->other;
2752
2753 while (fdchangecnt)
2754 {
2755 fd_reify (EV_A);
2756 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2757 }
2758 }
2759}
2760
2761#if 0
2762static void
2763embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2764{
2765 ev_idle_stop (EV_A_ idle);
2766}
2767#endif
2062 2768
2063void 2769void
2064ev_embed_start (EV_P_ ev_embed *w) 2770ev_embed_start (EV_P_ ev_embed *w)
2065{ 2771{
2066 if (expect_false (ev_is_active (w))) 2772 if (expect_false (ev_is_active (w)))
2067 return; 2773 return;
2068 2774
2069 { 2775 {
2070 struct ev_loop *loop = w->loop; 2776 struct ev_loop *loop = w->other;
2071 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2777 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2072 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2778 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2073 } 2779 }
2780
2781 EV_FREQUENT_CHECK;
2074 2782
2075 ev_set_priority (&w->io, ev_priority (w)); 2783 ev_set_priority (&w->io, ev_priority (w));
2076 ev_io_start (EV_A_ &w->io); 2784 ev_io_start (EV_A_ &w->io);
2077 2785
2786 ev_prepare_init (&w->prepare, embed_prepare_cb);
2787 ev_set_priority (&w->prepare, EV_MINPRI);
2788 ev_prepare_start (EV_A_ &w->prepare);
2789
2790 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2791
2078 ev_start (EV_A_ (W)w, 1); 2792 ev_start (EV_A_ (W)w, 1);
2793
2794 EV_FREQUENT_CHECK;
2079} 2795}
2080 2796
2081void 2797void
2082ev_embed_stop (EV_P_ ev_embed *w) 2798ev_embed_stop (EV_P_ ev_embed *w)
2083{ 2799{
2084 ev_clear_pending (EV_A_ (W)w); 2800 clear_pending (EV_A_ (W)w);
2085 if (expect_false (!ev_is_active (w))) 2801 if (expect_false (!ev_is_active (w)))
2086 return; 2802 return;
2087 2803
2804 EV_FREQUENT_CHECK;
2805
2088 ev_io_stop (EV_A_ &w->io); 2806 ev_io_stop (EV_A_ &w->io);
2807 ev_prepare_stop (EV_A_ &w->prepare);
2089 2808
2090 ev_stop (EV_A_ (W)w); 2809 ev_stop (EV_A_ (W)w);
2810
2811 EV_FREQUENT_CHECK;
2091} 2812}
2092#endif 2813#endif
2093 2814
2094#if EV_FORK_ENABLE 2815#if EV_FORK_ENABLE
2095void 2816void
2096ev_fork_start (EV_P_ ev_fork *w) 2817ev_fork_start (EV_P_ ev_fork *w)
2097{ 2818{
2098 if (expect_false (ev_is_active (w))) 2819 if (expect_false (ev_is_active (w)))
2099 return; 2820 return;
2821
2822 EV_FREQUENT_CHECK;
2100 2823
2101 ev_start (EV_A_ (W)w, ++forkcnt); 2824 ev_start (EV_A_ (W)w, ++forkcnt);
2102 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2825 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2103 forks [forkcnt - 1] = w; 2826 forks [forkcnt - 1] = w;
2827
2828 EV_FREQUENT_CHECK;
2104} 2829}
2105 2830
2106void 2831void
2107ev_fork_stop (EV_P_ ev_fork *w) 2832ev_fork_stop (EV_P_ ev_fork *w)
2108{ 2833{
2109 ev_clear_pending (EV_A_ (W)w); 2834 clear_pending (EV_A_ (W)w);
2110 if (expect_false (!ev_is_active (w))) 2835 if (expect_false (!ev_is_active (w)))
2111 return; 2836 return;
2112 2837
2838 EV_FREQUENT_CHECK;
2839
2113 { 2840 {
2114 int active = ((W)w)->active; 2841 int active = ev_active (w);
2842
2115 forks [active - 1] = forks [--forkcnt]; 2843 forks [active - 1] = forks [--forkcnt];
2116 ((W)forks [active - 1])->active = active; 2844 ev_active (forks [active - 1]) = active;
2117 } 2845 }
2118 2846
2119 ev_stop (EV_A_ (W)w); 2847 ev_stop (EV_A_ (W)w);
2848
2849 EV_FREQUENT_CHECK;
2850}
2851#endif
2852
2853#if EV_ASYNC_ENABLE
2854void
2855ev_async_start (EV_P_ ev_async *w)
2856{
2857 if (expect_false (ev_is_active (w)))
2858 return;
2859
2860 evpipe_init (EV_A);
2861
2862 EV_FREQUENT_CHECK;
2863
2864 ev_start (EV_A_ (W)w, ++asynccnt);
2865 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2866 asyncs [asynccnt - 1] = w;
2867
2868 EV_FREQUENT_CHECK;
2869}
2870
2871void
2872ev_async_stop (EV_P_ ev_async *w)
2873{
2874 clear_pending (EV_A_ (W)w);
2875 if (expect_false (!ev_is_active (w)))
2876 return;
2877
2878 EV_FREQUENT_CHECK;
2879
2880 {
2881 int active = ev_active (w);
2882
2883 asyncs [active - 1] = asyncs [--asynccnt];
2884 ev_active (asyncs [active - 1]) = active;
2885 }
2886
2887 ev_stop (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2890}
2891
2892void
2893ev_async_send (EV_P_ ev_async *w)
2894{
2895 w->sent = 1;
2896 evpipe_write (EV_A_ &gotasync);
2120} 2897}
2121#endif 2898#endif
2122 2899
2123/*****************************************************************************/ 2900/*****************************************************************************/
2124 2901
2182 ev_timer_set (&once->to, timeout, 0.); 2959 ev_timer_set (&once->to, timeout, 0.);
2183 ev_timer_start (EV_A_ &once->to); 2960 ev_timer_start (EV_A_ &once->to);
2184 } 2961 }
2185} 2962}
2186 2963
2964#if EV_MULTIPLICITY
2965 #include "ev_wrap.h"
2966#endif
2967
2187#ifdef __cplusplus 2968#ifdef __cplusplus
2188} 2969}
2189#endif 2970#endif
2190 2971

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines