ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.156 by root, Wed Nov 28 17:50:13 2007 UTC vs.
Revision 1.292 by root, Mon Jun 29 07:22:56 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
107#endif 146#endif
108 147
109#include <math.h> 148#include <math.h>
110#include <stdlib.h> 149#include <stdlib.h>
111#include <fcntl.h> 150#include <fcntl.h>
129#ifndef _WIN32 168#ifndef _WIN32
130# include <sys/time.h> 169# include <sys/time.h>
131# include <sys/wait.h> 170# include <sys/wait.h>
132# include <unistd.h> 171# include <unistd.h>
133#else 172#else
173# include <io.h>
134# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 175# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
138# endif 178# endif
139#endif 179#endif
140 180
141/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
142 190
143#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
144# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
145#endif 197#endif
146 198
147#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
149#endif 209#endif
150 210
151#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
153#endif 213#endif
159# define EV_USE_POLL 1 219# define EV_USE_POLL 1
160# endif 220# endif
161#endif 221#endif
162 222
163#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
164# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
165#endif 229#endif
166 230
167#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
169#endif 233#endif
171#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 236# define EV_USE_PORT 0
173#endif 237#endif
174 238
175#ifndef EV_USE_INOTIFY 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
176# define EV_USE_INOTIFY 0 243# define EV_USE_INOTIFY 0
244# endif
177#endif 245#endif
178 246
179#ifndef EV_PID_HASHSIZE 247#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 248# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 249# define EV_PID_HASHSIZE 1
190# else 258# else
191# define EV_INOTIFY_HASHSIZE 16 259# define EV_INOTIFY_HASHSIZE 16
192# endif 260# endif
193#endif 261#endif
194 262
195/**/ 263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 304
197#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
200#endif 308#endif
202#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
205#endif 313#endif
206 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
207#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 338# include <winsock.h>
209#endif 339#endif
210 340
211#if !EV_STAT_ENABLE 341#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
213#endif 346# endif
214 347int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 348# ifdef __cplusplus
216# include <sys/inotify.h> 349}
350# endif
217#endif 351#endif
218 352
219/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 370
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 374
225#if __GNUC__ >= 3 375#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 378#else
236# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
240#endif 384#endif
241 385
242#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
244 395
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 397#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 398
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 399#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 400#define EMPTY2(a,b) /* used to suppress some warnings */
250 401
251typedef ev_watcher *W; 402typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 403typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
254 405
406#define ev_active(w) ((W)(w))->active
407#define ev_at(w) ((WT)(w))->at
408
409#if EV_USE_REALTIME
410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
417#endif
256 418
257#ifdef _WIN32 419#ifdef _WIN32
258# include "ev_win32.c" 420# include "ev_win32.c"
259#endif 421#endif
260 422
267{ 429{
268 syserr_cb = cb; 430 syserr_cb = cb;
269} 431}
270 432
271static void noinline 433static void noinline
272syserr (const char *msg) 434ev_syserr (const char *msg)
273{ 435{
274 if (!msg) 436 if (!msg)
275 msg = "(libev) system error"; 437 msg = "(libev) system error";
276 438
277 if (syserr_cb) 439 if (syserr_cb)
281 perror (msg); 443 perror (msg);
282 abort (); 444 abort ();
283 } 445 }
284} 446}
285 447
448static void *
449ev_realloc_emul (void *ptr, long size)
450{
451 /* some systems, notably openbsd and darwin, fail to properly
452 * implement realloc (x, 0) (as required by both ansi c-98 and
453 * the single unix specification, so work around them here.
454 */
455
456 if (size)
457 return realloc (ptr, size);
458
459 free (ptr);
460 return 0;
461}
462
286static void *(*alloc)(void *ptr, long size); 463static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 464
288void 465void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 466ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 467{
291 alloc = cb; 468 alloc = cb;
292} 469}
293 470
294inline_speed void * 471inline_speed void *
295ev_realloc (void *ptr, long size) 472ev_realloc (void *ptr, long size)
296{ 473{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 474 ptr = alloc (ptr, size);
298 475
299 if (!ptr && size) 476 if (!ptr && size)
300 { 477 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 478 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 479 abort ();
308#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
310 487
311/*****************************************************************************/ 488/*****************************************************************************/
312 489
490/* file descriptor info structure */
313typedef struct 491typedef struct
314{ 492{
315 WL head; 493 WL head;
316 unsigned char events; 494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 497 unsigned char unused;
498#if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500#endif
318#if EV_SELECT_IS_WINSOCKET 501#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 502 SOCKET handle;
320#endif 503#endif
321} ANFD; 504} ANFD;
322 505
506/* stores the pending event set for a given watcher */
323typedef struct 507typedef struct
324{ 508{
325 W w; 509 W w;
326 int events; 510 int events; /* the pending event set for the given watcher */
327} ANPENDING; 511} ANPENDING;
328 512
329#if EV_USE_INOTIFY 513#if EV_USE_INOTIFY
514/* hash table entry per inotify-id */
330typedef struct 515typedef struct
331{ 516{
332 WL head; 517 WL head;
333} ANFS; 518} ANFS;
519#endif
520
521/* Heap Entry */
522#if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532#else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
334#endif 539#endif
335 540
336#if EV_MULTIPLICITY 541#if EV_MULTIPLICITY
337 542
338 struct ev_loop 543 struct ev_loop
359 564
360#endif 565#endif
361 566
362/*****************************************************************************/ 567/*****************************************************************************/
363 568
569#ifndef EV_HAVE_EV_TIME
364ev_tstamp 570ev_tstamp
365ev_time (void) 571ev_time (void)
366{ 572{
367#if EV_USE_REALTIME 573#if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
368 struct timespec ts; 576 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 577 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 578 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 579 }
580#endif
581
372 struct timeval tv; 582 struct timeval tv;
373 gettimeofday (&tv, 0); 583 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 584 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 585}
586#endif
377 587
378ev_tstamp inline_size 588inline_size ev_tstamp
379get_clock (void) 589get_clock (void)
380{ 590{
381#if EV_USE_MONOTONIC 591#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 592 if (expect_true (have_monotonic))
383 { 593 {
396{ 606{
397 return ev_rt_now; 607 return ev_rt_now;
398} 608}
399#endif 609#endif
400 610
401#define array_roundsize(type,n) (((n) | 4) & ~3) 611void
612ev_sleep (ev_tstamp delay)
613{
614 if (delay > 0.)
615 {
616#if EV_USE_NANOSLEEP
617 struct timespec ts;
618
619 ts.tv_sec = (time_t)delay;
620 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
621
622 nanosleep (&ts, 0);
623#elif defined(_WIN32)
624 Sleep ((unsigned long)(delay * 1e3));
625#else
626 struct timeval tv;
627
628 tv.tv_sec = (time_t)delay;
629 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
630
631 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
632 /* somehting nto guaranteed by newer posix versions, but guaranteed */
633 /* by older ones */
634 select (0, 0, 0, 0, &tv);
635#endif
636 }
637}
638
639/*****************************************************************************/
640
641#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
642
643/* find a suitable new size for the given array, */
644/* hopefully by rounding to a ncie-to-malloc size */
645inline_size int
646array_nextsize (int elem, int cur, int cnt)
647{
648 int ncur = cur + 1;
649
650 do
651 ncur <<= 1;
652 while (cnt > ncur);
653
654 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
655 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
656 {
657 ncur *= elem;
658 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
659 ncur = ncur - sizeof (void *) * 4;
660 ncur /= elem;
661 }
662
663 return ncur;
664}
665
666static noinline void *
667array_realloc (int elem, void *base, int *cur, int cnt)
668{
669 *cur = array_nextsize (elem, *cur, cnt);
670 return ev_realloc (base, elem * *cur);
671}
672
673#define array_init_zero(base,count) \
674 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 675
403#define array_needsize(type,base,cur,cnt,init) \ 676#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 677 if (expect_false ((cnt) > (cur))) \
405 { \ 678 { \
406 int newcnt = cur; \ 679 int ocur_ = (cur); \
407 do \ 680 (base) = (type *)array_realloc \
408 { \ 681 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 682 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 683 }
417 684
685#if 0
418#define array_slim(type,stem) \ 686#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 687 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 688 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 689 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 690 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 692 }
693#endif
425 694
426#define array_free(stem, idx) \ 695#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 697
429/*****************************************************************************/ 698/*****************************************************************************/
699
700/* dummy callback for pending events */
701static void noinline
702pendingcb (EV_P_ ev_prepare *w, int revents)
703{
704}
430 705
431void noinline 706void noinline
432ev_feed_event (EV_P_ void *w, int revents) 707ev_feed_event (EV_P_ void *w, int revents)
433{ 708{
434 W w_ = (W)w; 709 W w_ = (W)w;
710 int pri = ABSPRI (w_);
435 711
436 if (expect_false (w_->pending)) 712 if (expect_false (w_->pending))
713 pendings [pri][w_->pending - 1].events |= revents;
714 else
437 { 715 {
716 w_->pending = ++pendingcnt [pri];
717 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
718 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 719 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 720 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 721}
447 722
448void inline_size 723inline_speed void
724feed_reverse (EV_P_ W w)
725{
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728}
729
730inline_size void
731feed_reverse_done (EV_P_ int revents)
732{
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736}
737
738inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 739queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 740{
451 int i; 741 int i;
452 742
453 for (i = 0; i < eventcnt; ++i) 743 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 744 ev_feed_event (EV_A_ events [i], type);
455} 745}
456 746
457/*****************************************************************************/ 747/*****************************************************************************/
458 748
459void inline_size 749inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 750fd_event (EV_P_ int fd, int revents)
474{ 751{
475 ANFD *anfd = anfds + fd; 752 ANFD *anfd = anfds + fd;
476 ev_io *w; 753 ev_io *w;
477 754
485} 762}
486 763
487void 764void
488ev_feed_fd_event (EV_P_ int fd, int revents) 765ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 766{
767 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 768 fd_event (EV_A_ fd, revents);
491} 769}
492 770
493void inline_size 771/* make sure the external fd watch events are in-sync */
772/* with the kernel/libev internal state */
773inline_size void
494fd_reify (EV_P) 774fd_reify (EV_P)
495{ 775{
496 int i; 776 int i;
497 777
498 for (i = 0; i < fdchangecnt; ++i) 778 for (i = 0; i < fdchangecnt; ++i)
499 { 779 {
500 int fd = fdchanges [i]; 780 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 781 ANFD *anfd = anfds + fd;
502 ev_io *w; 782 ev_io *w;
503 783
504 int events = 0; 784 unsigned char events = 0;
505 785
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 786 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 787 events |= (unsigned char)w->events;
508 788
509#if EV_SELECT_IS_WINSOCKET 789#if EV_SELECT_IS_WINSOCKET
510 if (events) 790 if (events)
511 { 791 {
512 unsigned long argp; 792 unsigned long arg;
793 #ifdef EV_FD_TO_WIN32_HANDLE
794 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
795 #else
513 anfd->handle = _get_osfhandle (fd); 796 anfd->handle = _get_osfhandle (fd);
797 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 798 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 799 }
516#endif 800#endif
517 801
802 {
803 unsigned char o_events = anfd->events;
804 unsigned char o_reify = anfd->reify;
805
518 anfd->reify = 0; 806 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 807 anfd->events = events;
808
809 if (o_events != events || o_reify & EV__IOFDSET)
810 backend_modify (EV_A_ fd, o_events, events);
811 }
522 } 812 }
523 813
524 fdchangecnt = 0; 814 fdchangecnt = 0;
525} 815}
526 816
527void inline_size 817/* something about the given fd changed */
818inline_size void
528fd_change (EV_P_ int fd) 819fd_change (EV_P_ int fd, int flags)
529{ 820{
530 if (expect_false (anfds [fd].reify)) 821 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 822 anfds [fd].reify |= flags;
534 823
824 if (expect_true (!reify))
825 {
535 ++fdchangecnt; 826 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 828 fdchanges [fdchangecnt - 1] = fd;
829 }
538} 830}
539 831
540void inline_speed 832/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833inline_speed void
541fd_kill (EV_P_ int fd) 834fd_kill (EV_P_ int fd)
542{ 835{
543 ev_io *w; 836 ev_io *w;
544 837
545 while ((w = (ev_io *)anfds [fd].head)) 838 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 840 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 842 }
550} 843}
551 844
552int inline_size 845/* check whether the given fd is atcually valid, for error recovery */
846inline_size int
553fd_valid (int fd) 847fd_valid (int fd)
554{ 848{
555#ifdef _WIN32 849#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 850 return _get_osfhandle (fd) != -1;
557#else 851#else
565{ 859{
566 int fd; 860 int fd;
567 861
568 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 863 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 864 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 865 fd_kill (EV_A_ fd);
572} 866}
573 867
574/* called on ENOMEM in select/poll to kill some fds and retry */ 868/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 869static void noinline
589static void noinline 883static void noinline
590fd_rearm_all (EV_P) 884fd_rearm_all (EV_P)
591{ 885{
592 int fd; 886 int fd;
593 887
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 888 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 889 if (anfds [fd].events)
597 { 890 {
598 anfds [fd].events = 0; 891 anfds [fd].events = 0;
892 anfds [fd].emask = 0;
599 fd_change (EV_A_ fd); 893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
600 } 894 }
601} 895}
602 896
603/*****************************************************************************/ 897/*****************************************************************************/
604 898
605void inline_speed 899/*
606upheap (WT *heap, int k) 900 * the heap functions want a real array index. array index 0 uis guaranteed to not
607{ 901 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
608 WT w = heap [k]; 902 * the branching factor of the d-tree.
903 */
609 904
610 while (k && heap [k >> 1]->at > w->at) 905/*
611 { 906 * at the moment we allow libev the luxury of two heaps,
612 heap [k] = heap [k >> 1]; 907 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
613 ((W)heap [k])->active = k + 1; 908 * which is more cache-efficient.
614 k >>= 1; 909 * the difference is about 5% with 50000+ watchers.
615 } 910 */
911#if EV_USE_4HEAP
616 912
617 heap [k] = w; 913#define DHEAP 4
618 ((W)heap [k])->active = k + 1; 914#define HEAP0 (DHEAP - 1) /* index of first element in heap */
915#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
916#define UPHEAP_DONE(p,k) ((p) == (k))
619 917
620} 918/* away from the root */
621 919inline_speed void
622void inline_speed
623downheap (WT *heap, int N, int k) 920downheap (ANHE *heap, int N, int k)
624{ 921{
625 WT w = heap [k]; 922 ANHE he = heap [k];
923 ANHE *E = heap + N + HEAP0;
626 924
627 while (k < (N >> 1)) 925 for (;;)
628 { 926 {
629 int j = k << 1; 927 ev_tstamp minat;
928 ANHE *minpos;
929 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
630 930
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 931 /* find minimum child */
932 if (expect_true (pos + DHEAP - 1 < E))
632 ++j; 933 {
633 934 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
634 if (w->at <= heap [j]->at) 935 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
936 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
937 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
938 }
939 else if (pos < E)
940 {
941 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
942 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
943 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
944 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
945 }
946 else
635 break; 947 break;
636 948
949 if (ANHE_at (he) <= minat)
950 break;
951
952 heap [k] = *minpos;
953 ev_active (ANHE_w (*minpos)) = k;
954
955 k = minpos - heap;
956 }
957
958 heap [k] = he;
959 ev_active (ANHE_w (he)) = k;
960}
961
962#else /* 4HEAP */
963
964#define HEAP0 1
965#define HPARENT(k) ((k) >> 1)
966#define UPHEAP_DONE(p,k) (!(p))
967
968/* away from the root */
969inline_speed void
970downheap (ANHE *heap, int N, int k)
971{
972 ANHE he = heap [k];
973
974 for (;;)
975 {
976 int c = k << 1;
977
978 if (c > N + HEAP0 - 1)
979 break;
980
981 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
982 ? 1 : 0;
983
984 if (ANHE_at (he) <= ANHE_at (heap [c]))
985 break;
986
637 heap [k] = heap [j]; 987 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 988 ev_active (ANHE_w (heap [k])) = k;
989
639 k = j; 990 k = c;
640 } 991 }
641 992
642 heap [k] = w; 993 heap [k] = he;
643 ((W)heap [k])->active = k + 1; 994 ev_active (ANHE_w (he)) = k;
644} 995}
996#endif
645 997
646void inline_size 998/* towards the root */
999inline_speed void
1000upheap (ANHE *heap, int k)
1001{
1002 ANHE he = heap [k];
1003
1004 for (;;)
1005 {
1006 int p = HPARENT (k);
1007
1008 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1009 break;
1010
1011 heap [k] = heap [p];
1012 ev_active (ANHE_w (heap [k])) = k;
1013 k = p;
1014 }
1015
1016 heap [k] = he;
1017 ev_active (ANHE_w (he)) = k;
1018}
1019
1020/* move an element suitably so it is in a correct place */
1021inline_size void
647adjustheap (WT *heap, int N, int k) 1022adjustheap (ANHE *heap, int N, int k)
648{ 1023{
1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
649 upheap (heap, k); 1025 upheap (heap, k);
1026 else
650 downheap (heap, N, k); 1027 downheap (heap, N, k);
1028}
1029
1030/* rebuild the heap: this function is used only once and executed rarely */
1031inline_size void
1032reheap (ANHE *heap, int N)
1033{
1034 int i;
1035
1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1037 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1038 for (i = 0; i < N; ++i)
1039 upheap (heap, i + HEAP0);
651} 1040}
652 1041
653/*****************************************************************************/ 1042/*****************************************************************************/
654 1043
1044/* associate signal watchers to a signal signal */
655typedef struct 1045typedef struct
656{ 1046{
657 WL head; 1047 WL head;
658 sig_atomic_t volatile gotsig; 1048 EV_ATOMIC_T gotsig;
659} ANSIG; 1049} ANSIG;
660 1050
661static ANSIG *signals; 1051static ANSIG *signals;
662static int signalmax; 1052static int signalmax;
663 1053
664static int sigpipe [2]; 1054static EV_ATOMIC_T gotsig;
665static sig_atomic_t volatile gotsig;
666static ev_io sigev;
667 1055
668void inline_size 1056/*****************************************************************************/
669signals_init (ANSIG *base, int count)
670{
671 while (count--)
672 {
673 base->head = 0;
674 base->gotsig = 0;
675 1057
676 ++base; 1058/* used to prepare libev internal fd's */
677 } 1059/* this is not fork-safe */
678} 1060inline_speed void
679
680static void
681sighandler (int signum)
682{
683#if _WIN32
684 signal (signum, sighandler);
685#endif
686
687 signals [signum - 1].gotsig = 1;
688
689 if (!gotsig)
690 {
691 int old_errno = errno;
692 gotsig = 1;
693 write (sigpipe [1], &signum, 1);
694 errno = old_errno;
695 }
696}
697
698void noinline
699ev_feed_signal_event (EV_P_ int signum)
700{
701 WL w;
702
703#if EV_MULTIPLICITY
704 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
705#endif
706
707 --signum;
708
709 if (signum < 0 || signum >= signalmax)
710 return;
711
712 signals [signum].gotsig = 0;
713
714 for (w = signals [signum].head; w; w = w->next)
715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
716}
717
718static void
719sigcb (EV_P_ ev_io *iow, int revents)
720{
721 int signum;
722
723 read (sigpipe [0], &revents, 1);
724 gotsig = 0;
725
726 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1);
729}
730
731void inline_size
732fd_intern (int fd) 1061fd_intern (int fd)
733{ 1062{
734#ifdef _WIN32 1063#ifdef _WIN32
735 int arg = 1; 1064 unsigned long arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
737#else 1066#else
738 fcntl (fd, F_SETFD, FD_CLOEXEC); 1067 fcntl (fd, F_SETFD, FD_CLOEXEC);
739 fcntl (fd, F_SETFL, O_NONBLOCK); 1068 fcntl (fd, F_SETFL, O_NONBLOCK);
740#endif 1069#endif
741} 1070}
742 1071
743static void noinline 1072static void noinline
744siginit (EV_P) 1073evpipe_init (EV_P)
745{ 1074{
1075 if (!ev_is_active (&pipe_w))
1076 {
1077#if EV_USE_EVENTFD
1078 if ((evfd = eventfd (0, 0)) >= 0)
1079 {
1080 evpipe [0] = -1;
1081 fd_intern (evfd);
1082 ev_io_set (&pipe_w, evfd, EV_READ);
1083 }
1084 else
1085#endif
1086 {
1087 while (pipe (evpipe))
1088 ev_syserr ("(libev) error creating signal/async pipe");
1089
746 fd_intern (sigpipe [0]); 1090 fd_intern (evpipe [0]);
747 fd_intern (sigpipe [1]); 1091 fd_intern (evpipe [1]);
1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1093 }
748 1094
749 ev_io_set (&sigev, sigpipe [0], EV_READ);
750 ev_io_start (EV_A_ &sigev); 1095 ev_io_start (EV_A_ &pipe_w);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1096 ev_unref (EV_A); /* watcher should not keep loop alive */
1097 }
1098}
1099
1100inline_size void
1101evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1102{
1103 if (!*flag)
1104 {
1105 int old_errno = errno; /* save errno because write might clobber it */
1106
1107 *flag = 1;
1108
1109#if EV_USE_EVENTFD
1110 if (evfd >= 0)
1111 {
1112 uint64_t counter = 1;
1113 write (evfd, &counter, sizeof (uint64_t));
1114 }
1115 else
1116#endif
1117 write (evpipe [1], &old_errno, 1);
1118
1119 errno = old_errno;
1120 }
1121}
1122
1123/* called whenever the libev signal pipe */
1124/* got some events (signal, async) */
1125static void
1126pipecb (EV_P_ ev_io *iow, int revents)
1127{
1128#if EV_USE_EVENTFD
1129 if (evfd >= 0)
1130 {
1131 uint64_t counter;
1132 read (evfd, &counter, sizeof (uint64_t));
1133 }
1134 else
1135#endif
1136 {
1137 char dummy;
1138 read (evpipe [0], &dummy, 1);
1139 }
1140
1141 if (gotsig && ev_is_default_loop (EV_A))
1142 {
1143 int signum;
1144 gotsig = 0;
1145
1146 for (signum = signalmax; signum--; )
1147 if (signals [signum].gotsig)
1148 ev_feed_signal_event (EV_A_ signum + 1);
1149 }
1150
1151#if EV_ASYNC_ENABLE
1152 if (gotasync)
1153 {
1154 int i;
1155 gotasync = 0;
1156
1157 for (i = asynccnt; i--; )
1158 if (asyncs [i]->sent)
1159 {
1160 asyncs [i]->sent = 0;
1161 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1162 }
1163 }
1164#endif
752} 1165}
753 1166
754/*****************************************************************************/ 1167/*****************************************************************************/
755 1168
1169static void
1170ev_sighandler (int signum)
1171{
1172#if EV_MULTIPLICITY
1173 struct ev_loop *loop = &default_loop_struct;
1174#endif
1175
1176#if _WIN32
1177 signal (signum, ev_sighandler);
1178#endif
1179
1180 signals [signum - 1].gotsig = 1;
1181 evpipe_write (EV_A_ &gotsig);
1182}
1183
1184void noinline
1185ev_feed_signal_event (EV_P_ int signum)
1186{
1187 WL w;
1188
1189#if EV_MULTIPLICITY
1190 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1191#endif
1192
1193 --signum;
1194
1195 if (signum < 0 || signum >= signalmax)
1196 return;
1197
1198 signals [signum].gotsig = 0;
1199
1200 for (w = signals [signum].head; w; w = w->next)
1201 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1202}
1203
1204/*****************************************************************************/
1205
756static ev_child *childs [EV_PID_HASHSIZE]; 1206static WL childs [EV_PID_HASHSIZE];
757 1207
758#ifndef _WIN32 1208#ifndef _WIN32
759 1209
760static ev_signal childev; 1210static ev_signal childev;
761 1211
762void inline_speed 1212#ifndef WIFCONTINUED
1213# define WIFCONTINUED(status) 0
1214#endif
1215
1216/* handle a single child status event */
1217inline_speed void
763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1218child_reap (EV_P_ int chain, int pid, int status)
764{ 1219{
765 ev_child *w; 1220 ev_child *w;
1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
766 1222
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1223 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1224 {
768 if (w->pid == pid || !w->pid) 1225 if ((w->pid == pid || !w->pid)
1226 && (!traced || (w->flags & 1)))
769 { 1227 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1228 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
771 w->rpid = pid; 1229 w->rpid = pid;
772 w->rstatus = status; 1230 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1231 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 1232 }
1233 }
775} 1234}
776 1235
777#ifndef WCONTINUED 1236#ifndef WCONTINUED
778# define WCONTINUED 0 1237# define WCONTINUED 0
779#endif 1238#endif
780 1239
1240/* called on sigchld etc., calls waitpid */
781static void 1241static void
782childcb (EV_P_ ev_signal *sw, int revents) 1242childcb (EV_P_ ev_signal *sw, int revents)
783{ 1243{
784 int pid, status; 1244 int pid, status;
785 1245
788 if (!WCONTINUED 1248 if (!WCONTINUED
789 || errno != EINVAL 1249 || errno != EINVAL
790 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1250 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
791 return; 1251 return;
792 1252
793 /* make sure we are called again until all childs have been reaped */ 1253 /* make sure we are called again until all children have been reaped */
794 /* we need to do it this way so that the callback gets called before we continue */ 1254 /* we need to do it this way so that the callback gets called before we continue */
795 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1255 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
796 1256
797 child_reap (EV_A_ sw, pid, pid, status); 1257 child_reap (EV_A_ pid, pid, status);
798 if (EV_PID_HASHSIZE > 1) 1258 if (EV_PID_HASHSIZE > 1)
799 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1259 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
800} 1260}
801 1261
802#endif 1262#endif
803 1263
804/*****************************************************************************/ 1264/*****************************************************************************/
866 /* kqueue is borked on everything but netbsd apparently */ 1326 /* kqueue is borked on everything but netbsd apparently */
867 /* it usually doesn't work correctly on anything but sockets and pipes */ 1327 /* it usually doesn't work correctly on anything but sockets and pipes */
868 flags &= ~EVBACKEND_KQUEUE; 1328 flags &= ~EVBACKEND_KQUEUE;
869#endif 1329#endif
870#ifdef __APPLE__ 1330#ifdef __APPLE__
871 // flags &= ~EVBACKEND_KQUEUE; for documentation 1331 /* only select works correctly on that "unix-certified" platform */
872 flags &= ~EVBACKEND_POLL; 1332 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
873#endif 1334#endif
874 1335
875 return flags; 1336 return flags;
876} 1337}
877 1338
878unsigned int 1339unsigned int
879ev_embeddable_backends (void) 1340ev_embeddable_backends (void)
880{ 1341{
881 return EVBACKEND_EPOLL 1342 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
882 | EVBACKEND_KQUEUE 1343
883 | EVBACKEND_PORT; 1344 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1345 /* please fix it and tell me how to detect the fix */
1346 flags &= ~EVBACKEND_EPOLL;
1347
1348 return flags;
884} 1349}
885 1350
886unsigned int 1351unsigned int
887ev_backend (EV_P) 1352ev_backend (EV_P)
888{ 1353{
889 return backend; 1354 return backend;
890} 1355}
891 1356
1357unsigned int
1358ev_loop_count (EV_P)
1359{
1360 return loop_count;
1361}
1362
1363void
1364ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1365{
1366 io_blocktime = interval;
1367}
1368
1369void
1370ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1371{
1372 timeout_blocktime = interval;
1373}
1374
1375/* initialise a loop structure, must be zero-initialised */
892static void noinline 1376static void noinline
893loop_init (EV_P_ unsigned int flags) 1377loop_init (EV_P_ unsigned int flags)
894{ 1378{
895 if (!backend) 1379 if (!backend)
896 { 1380 {
1381#if EV_USE_REALTIME
1382 if (!have_realtime)
1383 {
1384 struct timespec ts;
1385
1386 if (!clock_gettime (CLOCK_REALTIME, &ts))
1387 have_realtime = 1;
1388 }
1389#endif
1390
897#if EV_USE_MONOTONIC 1391#if EV_USE_MONOTONIC
1392 if (!have_monotonic)
898 { 1393 {
899 struct timespec ts; 1394 struct timespec ts;
1395
900 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1396 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
901 have_monotonic = 1; 1397 have_monotonic = 1;
902 } 1398 }
903#endif 1399#endif
904 1400
905 ev_rt_now = ev_time (); 1401 ev_rt_now = ev_time ();
906 mn_now = get_clock (); 1402 mn_now = get_clock ();
907 now_floor = mn_now; 1403 now_floor = mn_now;
908 rtmn_diff = ev_rt_now - mn_now; 1404 rtmn_diff = ev_rt_now - mn_now;
1405
1406 io_blocktime = 0.;
1407 timeout_blocktime = 0.;
1408 backend = 0;
1409 backend_fd = -1;
1410 gotasync = 0;
1411#if EV_USE_INOTIFY
1412 fs_fd = -2;
1413#endif
1414
1415 /* pid check not overridable via env */
1416#ifndef _WIN32
1417 if (flags & EVFLAG_FORKCHECK)
1418 curpid = getpid ();
1419#endif
909 1420
910 if (!(flags & EVFLAG_NOENV) 1421 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1422 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1423 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1424 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1425
915 if (!(flags & 0x0000ffffUL)) 1426 if (!(flags & 0x0000ffffU))
916 flags |= ev_recommended_backends (); 1427 flags |= ev_recommended_backends ();
917
918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY
921 fs_fd = -2;
922#endif
923 1428
924#if EV_USE_PORT 1429#if EV_USE_PORT
925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1430 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
926#endif 1431#endif
927#if EV_USE_KQUEUE 1432#if EV_USE_KQUEUE
935#endif 1440#endif
936#if EV_USE_SELECT 1441#if EV_USE_SELECT
937 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1442 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
938#endif 1443#endif
939 1444
1445 ev_prepare_init (&pending_w, pendingcb);
1446
940 ev_init (&sigev, sigcb); 1447 ev_init (&pipe_w, pipecb);
941 ev_set_priority (&sigev, EV_MAXPRI); 1448 ev_set_priority (&pipe_w, EV_MAXPRI);
942 } 1449 }
943} 1450}
944 1451
1452/* free up a loop structure */
945static void noinline 1453static void noinline
946loop_destroy (EV_P) 1454loop_destroy (EV_P)
947{ 1455{
948 int i; 1456 int i;
1457
1458 if (ev_is_active (&pipe_w))
1459 {
1460 ev_ref (EV_A); /* signal watcher */
1461 ev_io_stop (EV_A_ &pipe_w);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
1470 close (evpipe [0]);
1471 close (evpipe [1]);
1472 }
1473 }
949 1474
950#if EV_USE_INOTIFY 1475#if EV_USE_INOTIFY
951 if (fs_fd >= 0) 1476 if (fs_fd >= 0)
952 close (fs_fd); 1477 close (fs_fd);
953#endif 1478#endif
970#if EV_USE_SELECT 1495#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1496 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1497#endif
973 1498
974 for (i = NUMPRI; i--; ) 1499 for (i = NUMPRI; i--; )
1500 {
975 array_free (pending, [i]); 1501 array_free (pending, [i]);
1502#if EV_IDLE_ENABLE
1503 array_free (idle, [i]);
1504#endif
1505 }
1506
1507 ev_free (anfds); anfdmax = 0;
976 1508
977 /* have to use the microsoft-never-gets-it-right macro */ 1509 /* have to use the microsoft-never-gets-it-right macro */
1510 array_free (rfeed, EMPTY);
978 array_free (fdchange, EMPTY0); 1511 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1512 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1513#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1514 array_free (periodic, EMPTY);
982#endif 1515#endif
1516#if EV_FORK_ENABLE
983 array_free (idle, EMPTY0); 1517 array_free (fork, EMPTY);
1518#endif
984 array_free (prepare, EMPTY0); 1519 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1520 array_free (check, EMPTY);
1521#if EV_ASYNC_ENABLE
1522 array_free (async, EMPTY);
1523#endif
986 1524
987 backend = 0; 1525 backend = 0;
988} 1526}
989 1527
1528#if EV_USE_INOTIFY
990void inline_size infy_fork (EV_P); 1529inline_size void infy_fork (EV_P);
1530#endif
991 1531
992void inline_size 1532inline_size void
993loop_fork (EV_P) 1533loop_fork (EV_P)
994{ 1534{
995#if EV_USE_PORT 1535#if EV_USE_PORT
996 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1536 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
997#endif 1537#endif
1003#endif 1543#endif
1004#if EV_USE_INOTIFY 1544#if EV_USE_INOTIFY
1005 infy_fork (EV_A); 1545 infy_fork (EV_A);
1006#endif 1546#endif
1007 1547
1008 if (ev_is_active (&sigev)) 1548 if (ev_is_active (&pipe_w))
1009 { 1549 {
1010 /* default loop */ 1550 /* this "locks" the handlers against writing to the pipe */
1551 /* while we modify the fd vars */
1552 gotsig = 1;
1553#if EV_ASYNC_ENABLE
1554 gotasync = 1;
1555#endif
1011 1556
1012 ev_ref (EV_A); 1557 ev_ref (EV_A);
1013 ev_io_stop (EV_A_ &sigev); 1558 ev_io_stop (EV_A_ &pipe_w);
1559
1560#if EV_USE_EVENTFD
1561 if (evfd >= 0)
1562 close (evfd);
1563#endif
1564
1565 if (evpipe [0] >= 0)
1566 {
1014 close (sigpipe [0]); 1567 close (evpipe [0]);
1015 close (sigpipe [1]); 1568 close (evpipe [1]);
1569 }
1016 1570
1017 while (pipe (sigpipe))
1018 syserr ("(libev) error creating pipe");
1019
1020 siginit (EV_A); 1571 evpipe_init (EV_A);
1572 /* now iterate over everything, in case we missed something */
1573 pipecb (EV_A_ &pipe_w, EV_READ);
1021 } 1574 }
1022 1575
1023 postfork = 0; 1576 postfork = 0;
1024} 1577}
1025 1578
1026#if EV_MULTIPLICITY 1579#if EV_MULTIPLICITY
1580
1027struct ev_loop * 1581struct ev_loop *
1028ev_loop_new (unsigned int flags) 1582ev_loop_new (unsigned int flags)
1029{ 1583{
1030 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1584 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1031 1585
1047} 1601}
1048 1602
1049void 1603void
1050ev_loop_fork (EV_P) 1604ev_loop_fork (EV_P)
1051{ 1605{
1052 postfork = 1; 1606 postfork = 1; /* must be in line with ev_default_fork */
1053} 1607}
1054 1608
1609#if EV_VERIFY
1610static void noinline
1611verify_watcher (EV_P_ W w)
1612{
1613 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1614
1615 if (w->pending)
1616 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1617}
1618
1619static void noinline
1620verify_heap (EV_P_ ANHE *heap, int N)
1621{
1622 int i;
1623
1624 for (i = HEAP0; i < N + HEAP0; ++i)
1625 {
1626 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1627 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1628 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1629
1630 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1631 }
1632}
1633
1634static void noinline
1635array_verify (EV_P_ W *ws, int cnt)
1636{
1637 while (cnt--)
1638 {
1639 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1640 verify_watcher (EV_A_ ws [cnt]);
1641 }
1642}
1643#endif
1644
1645void
1646ev_loop_verify (EV_P)
1647{
1648#if EV_VERIFY
1649 int i;
1650 WL w;
1651
1652 assert (activecnt >= -1);
1653
1654 assert (fdchangemax >= fdchangecnt);
1655 for (i = 0; i < fdchangecnt; ++i)
1656 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1657
1658 assert (anfdmax >= 0);
1659 for (i = 0; i < anfdmax; ++i)
1660 for (w = anfds [i].head; w; w = w->next)
1661 {
1662 verify_watcher (EV_A_ (W)w);
1663 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1664 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1665 }
1666
1667 assert (timermax >= timercnt);
1668 verify_heap (EV_A_ timers, timercnt);
1669
1670#if EV_PERIODIC_ENABLE
1671 assert (periodicmax >= periodiccnt);
1672 verify_heap (EV_A_ periodics, periodiccnt);
1673#endif
1674
1675 for (i = NUMPRI; i--; )
1676 {
1677 assert (pendingmax [i] >= pendingcnt [i]);
1678#if EV_IDLE_ENABLE
1679 assert (idleall >= 0);
1680 assert (idlemax [i] >= idlecnt [i]);
1681 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1682#endif
1683 }
1684
1685#if EV_FORK_ENABLE
1686 assert (forkmax >= forkcnt);
1687 array_verify (EV_A_ (W *)forks, forkcnt);
1688#endif
1689
1690#if EV_ASYNC_ENABLE
1691 assert (asyncmax >= asynccnt);
1692 array_verify (EV_A_ (W *)asyncs, asynccnt);
1693#endif
1694
1695 assert (preparemax >= preparecnt);
1696 array_verify (EV_A_ (W *)prepares, preparecnt);
1697
1698 assert (checkmax >= checkcnt);
1699 array_verify (EV_A_ (W *)checks, checkcnt);
1700
1701# if 0
1702 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1703 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1055#endif 1704# endif
1705#endif
1706}
1707
1708#endif /* multiplicity */
1056 1709
1057#if EV_MULTIPLICITY 1710#if EV_MULTIPLICITY
1058struct ev_loop * 1711struct ev_loop *
1059ev_default_loop_init (unsigned int flags) 1712ev_default_loop_init (unsigned int flags)
1060#else 1713#else
1061int 1714int
1062ev_default_loop (unsigned int flags) 1715ev_default_loop (unsigned int flags)
1063#endif 1716#endif
1064{ 1717{
1065 if (sigpipe [0] == sigpipe [1])
1066 if (pipe (sigpipe))
1067 return 0;
1068
1069 if (!ev_default_loop_ptr) 1718 if (!ev_default_loop_ptr)
1070 { 1719 {
1071#if EV_MULTIPLICITY 1720#if EV_MULTIPLICITY
1072 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1721 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1073#else 1722#else
1076 1725
1077 loop_init (EV_A_ flags); 1726 loop_init (EV_A_ flags);
1078 1727
1079 if (ev_backend (EV_A)) 1728 if (ev_backend (EV_A))
1080 { 1729 {
1081 siginit (EV_A);
1082
1083#ifndef _WIN32 1730#ifndef _WIN32
1084 ev_signal_init (&childev, childcb, SIGCHLD); 1731 ev_signal_init (&childev, childcb, SIGCHLD);
1085 ev_set_priority (&childev, EV_MAXPRI); 1732 ev_set_priority (&childev, EV_MAXPRI);
1086 ev_signal_start (EV_A_ &childev); 1733 ev_signal_start (EV_A_ &childev);
1087 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1734 ev_unref (EV_A); /* child watcher should not keep loop alive */
1099{ 1746{
1100#if EV_MULTIPLICITY 1747#if EV_MULTIPLICITY
1101 struct ev_loop *loop = ev_default_loop_ptr; 1748 struct ev_loop *loop = ev_default_loop_ptr;
1102#endif 1749#endif
1103 1750
1751 ev_default_loop_ptr = 0;
1752
1104#ifndef _WIN32 1753#ifndef _WIN32
1105 ev_ref (EV_A); /* child watcher */ 1754 ev_ref (EV_A); /* child watcher */
1106 ev_signal_stop (EV_A_ &childev); 1755 ev_signal_stop (EV_A_ &childev);
1107#endif 1756#endif
1108 1757
1109 ev_ref (EV_A); /* signal watcher */
1110 ev_io_stop (EV_A_ &sigev);
1111
1112 close (sigpipe [0]); sigpipe [0] = 0;
1113 close (sigpipe [1]); sigpipe [1] = 0;
1114
1115 loop_destroy (EV_A); 1758 loop_destroy (EV_A);
1116} 1759}
1117 1760
1118void 1761void
1119ev_default_fork (void) 1762ev_default_fork (void)
1120{ 1763{
1121#if EV_MULTIPLICITY 1764#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr; 1765 struct ev_loop *loop = ev_default_loop_ptr;
1123#endif 1766#endif
1124 1767
1125 if (backend) 1768 postfork = 1; /* must be in line with ev_loop_fork */
1126 postfork = 1;
1127} 1769}
1128 1770
1129/*****************************************************************************/ 1771/*****************************************************************************/
1130 1772
1131int inline_size 1773void
1132any_pending (EV_P) 1774ev_invoke (EV_P_ void *w, int revents)
1133{ 1775{
1134 int pri; 1776 EV_CB_INVOKE ((W)w, revents);
1135
1136 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri])
1138 return 1;
1139
1140 return 0;
1141} 1777}
1142 1778
1143void inline_speed 1779inline_speed void
1144call_pending (EV_P) 1780call_pending (EV_P)
1145{ 1781{
1146 int pri; 1782 int pri;
1147 1783
1148 for (pri = NUMPRI; pri--; ) 1784 for (pri = NUMPRI; pri--; )
1149 while (pendingcnt [pri]) 1785 while (pendingcnt [pri])
1150 { 1786 {
1151 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1787 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1152 1788
1153 if (expect_true (p->w))
1154 {
1155 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1789 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1790 /* ^ this is no longer true, as pending_w could be here */
1156 1791
1157 p->w->pending = 0; 1792 p->w->pending = 0;
1158 EV_CB_INVOKE (p->w, p->events); 1793 EV_CB_INVOKE (p->w, p->events);
1159 } 1794 EV_FREQUENT_CHECK;
1160 } 1795 }
1161} 1796}
1162 1797
1163void inline_size 1798#if EV_IDLE_ENABLE
1799/* make idle watchers pending. this handles the "call-idle */
1800/* only when higher priorities are idle" logic */
1801inline_size void
1802idle_reify (EV_P)
1803{
1804 if (expect_false (idleall))
1805 {
1806 int pri;
1807
1808 for (pri = NUMPRI; pri--; )
1809 {
1810 if (pendingcnt [pri])
1811 break;
1812
1813 if (idlecnt [pri])
1814 {
1815 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1816 break;
1817 }
1818 }
1819 }
1820}
1821#endif
1822
1823/* make timers pending */
1824inline_size void
1164timers_reify (EV_P) 1825timers_reify (EV_P)
1165{ 1826{
1827 EV_FREQUENT_CHECK;
1828
1166 while (timercnt && ((WT)timers [0])->at <= mn_now) 1829 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1167 { 1830 {
1168 ev_timer *w = timers [0]; 1831 do
1169
1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1171
1172 /* first reschedule or stop timer */
1173 if (w->repeat)
1174 { 1832 {
1833 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1834
1835 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1836
1837 /* first reschedule or stop timer */
1838 if (w->repeat)
1839 {
1840 ev_at (w) += w->repeat;
1841 if (ev_at (w) < mn_now)
1842 ev_at (w) = mn_now;
1843
1175 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1844 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1176 1845
1177 ((WT)w)->at += w->repeat; 1846 ANHE_at_cache (timers [HEAP0]);
1178 if (((WT)w)->at < mn_now)
1179 ((WT)w)->at = mn_now;
1180
1181 downheap ((WT *)timers, timercnt, 0); 1847 downheap (timers, timercnt, HEAP0);
1848 }
1849 else
1850 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1851
1852 EV_FREQUENT_CHECK;
1853 feed_reverse (EV_A_ (W)w);
1182 } 1854 }
1183 else 1855 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1185 1856
1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1857 feed_reverse_done (EV_A_ EV_TIMEOUT);
1187 } 1858 }
1188} 1859}
1189 1860
1190#if EV_PERIODIC_ENABLE 1861#if EV_PERIODIC_ENABLE
1191void inline_size 1862/* make periodics pending */
1863inline_size void
1192periodics_reify (EV_P) 1864periodics_reify (EV_P)
1193{ 1865{
1866 EV_FREQUENT_CHECK;
1867
1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1868 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1195 { 1869 {
1196 ev_periodic *w = periodics [0]; 1870 int feed_count = 0;
1197 1871
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1872 do
1199
1200 /* first reschedule or stop timer */
1201 if (w->reschedule_cb)
1202 { 1873 {
1874 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1875
1876 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1877
1878 /* first reschedule or stop timer */
1879 if (w->reschedule_cb)
1880 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1881 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1882
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1883 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1884
1885 ANHE_at_cache (periodics [HEAP0]);
1205 downheap ((WT *)periodics, periodiccnt, 0); 1886 downheap (periodics, periodiccnt, HEAP0);
1887 }
1888 else if (w->interval)
1889 {
1890 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1891 /* if next trigger time is not sufficiently in the future, put it there */
1892 /* this might happen because of floating point inexactness */
1893 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1894 {
1895 ev_at (w) += w->interval;
1896
1897 /* if interval is unreasonably low we might still have a time in the past */
1898 /* so correct this. this will make the periodic very inexact, but the user */
1899 /* has effectively asked to get triggered more often than possible */
1900 if (ev_at (w) < ev_rt_now)
1901 ev_at (w) = ev_rt_now;
1902 }
1903
1904 ANHE_at_cache (periodics [HEAP0]);
1905 downheap (periodics, periodiccnt, HEAP0);
1906 }
1907 else
1908 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1909
1910 EV_FREQUENT_CHECK;
1911 feed_reverse (EV_A_ (W)w);
1206 } 1912 }
1207 else if (w->interval) 1913 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1208 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1211 downheap ((WT *)periodics, periodiccnt, 0);
1212 }
1213 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1215 1914
1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1915 feed_reverse_done (EV_A_ EV_PERIODIC);
1217 } 1916 }
1218} 1917}
1219 1918
1919/* simply recalculate all periodics */
1920/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1220static void noinline 1921static void noinline
1221periodics_reschedule (EV_P) 1922periodics_reschedule (EV_P)
1222{ 1923{
1223 int i; 1924 int i;
1224 1925
1225 /* adjust periodics after time jump */ 1926 /* adjust periodics after time jump */
1226 for (i = 0; i < periodiccnt; ++i) 1927 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1227 { 1928 {
1228 ev_periodic *w = periodics [i]; 1929 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1229 1930
1230 if (w->reschedule_cb) 1931 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1932 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval) 1933 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1934 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1935
1936 ANHE_at_cache (periodics [i]);
1937 }
1938
1939 reheap (periodics, periodiccnt);
1940}
1941#endif
1942
1943/* adjust all timers by a given offset */
1944static void noinline
1945timers_reschedule (EV_P_ ev_tstamp adjust)
1946{
1947 int i;
1948
1949 for (i = 0; i < timercnt; ++i)
1234 } 1950 {
1235 1951 ANHE *he = timers + i + HEAP0;
1236 /* now rebuild the heap */ 1952 ANHE_w (*he)->at += adjust;
1237 for (i = periodiccnt >> 1; i--; ) 1953 ANHE_at_cache (*he);
1238 downheap ((WT *)periodics, periodiccnt, i); 1954 }
1239} 1955}
1240#endif
1241 1956
1242int inline_size 1957/* fetch new monotonic and realtime times from the kernel */
1243time_update_monotonic (EV_P) 1958/* also detetc if there was a timejump, and act accordingly */
1959inline_speed void
1960time_update (EV_P_ ev_tstamp max_block)
1244{ 1961{
1962#if EV_USE_MONOTONIC
1963 if (expect_true (have_monotonic))
1964 {
1965 int i;
1966 ev_tstamp odiff = rtmn_diff;
1967
1245 mn_now = get_clock (); 1968 mn_now = get_clock ();
1246 1969
1970 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1971 /* interpolate in the meantime */
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1972 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 { 1973 {
1249 ev_rt_now = rtmn_diff + mn_now; 1974 ev_rt_now = rtmn_diff + mn_now;
1250 return 0; 1975 return;
1251 } 1976 }
1252 else 1977
1253 {
1254 now_floor = mn_now; 1978 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 1979 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 1980
1260void inline_size 1981 /* loop a few times, before making important decisions.
1261time_update (EV_P) 1982 * on the choice of "4": one iteration isn't enough,
1262{ 1983 * in case we get preempted during the calls to
1263 int i; 1984 * ev_time and get_clock. a second call is almost guaranteed
1264 1985 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 1986 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 1987 * in the unlikely event of having been preempted here.
1267 { 1988 */
1268 if (time_update_monotonic (EV_A)) 1989 for (i = 4; --i; )
1269 { 1990 {
1270 ev_tstamp odiff = rtmn_diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 1991 rtmn_diff = ev_rt_now - mn_now;
1283 1992
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1993 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1285 return; /* all is well */ 1994 return; /* all is well */
1286 1995
1287 ev_rt_now = ev_time (); 1996 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 1997 mn_now = get_clock ();
1289 now_floor = mn_now; 1998 now_floor = mn_now;
1290 } 1999 }
1291 2000
2001 /* no timer adjustment, as the monotonic clock doesn't jump */
2002 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1292# if EV_PERIODIC_ENABLE 2003# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 2004 periodics_reschedule (EV_A);
1294# endif 2005# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 2006 }
1299 else 2007 else
1300#endif 2008#endif
1301 { 2009 {
1302 ev_rt_now = ev_time (); 2010 ev_rt_now = ev_time ();
1303 2011
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2012 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 2013 {
2014 /* adjust timers. this is easy, as the offset is the same for all of them */
2015 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1306#if EV_PERIODIC_ENABLE 2016#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 2017 periodics_reschedule (EV_A);
1308#endif 2018#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */
1311 for (i = 0; i < timercnt; ++i)
1312 ((WT)timers [i])->at += ev_rt_now - mn_now;
1313 } 2019 }
1314 2020
1315 mn_now = ev_rt_now; 2021 mn_now = ev_rt_now;
1316 } 2022 }
1317} 2023}
1318 2024
1319void
1320ev_ref (EV_P)
1321{
1322 ++activecnt;
1323}
1324
1325void
1326ev_unref (EV_P)
1327{
1328 --activecnt;
1329}
1330
1331static int loop_done; 2025static int loop_done;
1332 2026
1333void 2027void
1334ev_loop (EV_P_ int flags) 2028ev_loop (EV_P_ int flags)
1335{ 2029{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2030 loop_done = EVUNLOOP_CANCEL;
1337 ? EVUNLOOP_ONE
1338 : EVUNLOOP_CANCEL;
1339 2031
1340 while (activecnt) 2032 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
2033
2034 do
1341 { 2035 {
1342 /* we might have forked, so reify kernel state if necessary */ 2036#if EV_VERIFY >= 2
2037 ev_loop_verify (EV_A);
2038#endif
2039
2040#ifndef _WIN32
2041 if (expect_false (curpid)) /* penalise the forking check even more */
2042 if (expect_false (getpid () != curpid))
2043 {
2044 curpid = getpid ();
2045 postfork = 1;
2046 }
2047#endif
2048
1343 #if EV_FORK_ENABLE 2049#if EV_FORK_ENABLE
2050 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 2051 if (expect_false (postfork))
1345 if (forkcnt) 2052 if (forkcnt)
1346 { 2053 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2054 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 2055 call_pending (EV_A);
1349 } 2056 }
1350 #endif 2057#endif
1351 2058
1352 /* queue check watchers (and execute them) */ 2059 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 2060 if (expect_false (preparecnt))
1354 { 2061 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2062 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 2063 call_pending (EV_A);
1357 } 2064 }
1363 /* update fd-related kernel structures */ 2070 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 2071 fd_reify (EV_A);
1365 2072
1366 /* calculate blocking time */ 2073 /* calculate blocking time */
1367 { 2074 {
1368 double block; 2075 ev_tstamp waittime = 0.;
2076 ev_tstamp sleeptime = 0.;
1369 2077
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 2078 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1371 block = 0.; /* do not block at all */
1372 else
1373 { 2079 {
1374 /* update time to cancel out callback processing overhead */ 2080 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A); 2081 time_update (EV_A_ 1e100);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384 2082
1385 block = MAX_BLOCKTIME; 2083 waittime = MAX_BLOCKTIME;
1386 2084
1387 if (timercnt) 2085 if (timercnt)
1388 { 2086 {
1389 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2087 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1390 if (block > to) block = to; 2088 if (waittime > to) waittime = to;
1391 } 2089 }
1392 2090
1393#if EV_PERIODIC_ENABLE 2091#if EV_PERIODIC_ENABLE
1394 if (periodiccnt) 2092 if (periodiccnt)
1395 { 2093 {
1396 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2094 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1397 if (block > to) block = to; 2095 if (waittime > to) waittime = to;
1398 } 2096 }
1399#endif 2097#endif
1400 2098
1401 if (expect_false (block < 0.)) block = 0.; 2099 if (expect_false (waittime < timeout_blocktime))
2100 waittime = timeout_blocktime;
2101
2102 sleeptime = waittime - backend_fudge;
2103
2104 if (expect_true (sleeptime > io_blocktime))
2105 sleeptime = io_blocktime;
2106
2107 if (sleeptime)
2108 {
2109 ev_sleep (sleeptime);
2110 waittime -= sleeptime;
2111 }
1402 } 2112 }
1403 2113
2114 ++loop_count;
1404 backend_poll (EV_A_ block); 2115 backend_poll (EV_A_ waittime);
2116
2117 /* update ev_rt_now, do magic */
2118 time_update (EV_A_ waittime + sleeptime);
1405 } 2119 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 2120
1410 /* queue pending timers and reschedule them */ 2121 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 2122 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 2123#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 2124 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 2125#endif
1415 2126
2127#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 2128 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 2129 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2130#endif
1419 2131
1420 /* queue check watchers, to be executed first */ 2132 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 2133 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2134 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1423 2135
1424 call_pending (EV_A); 2136 call_pending (EV_A);
1425
1426 if (expect_false (loop_done))
1427 break;
1428 } 2137 }
2138 while (expect_true (
2139 activecnt
2140 && !loop_done
2141 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2142 ));
1429 2143
1430 if (loop_done == EVUNLOOP_ONE) 2144 if (loop_done == EVUNLOOP_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 2145 loop_done = EVUNLOOP_CANCEL;
1432} 2146}
1433 2147
1435ev_unloop (EV_P_ int how) 2149ev_unloop (EV_P_ int how)
1436{ 2150{
1437 loop_done = how; 2151 loop_done = how;
1438} 2152}
1439 2153
2154void
2155ev_ref (EV_P)
2156{
2157 ++activecnt;
2158}
2159
2160void
2161ev_unref (EV_P)
2162{
2163 --activecnt;
2164}
2165
2166void
2167ev_now_update (EV_P)
2168{
2169 time_update (EV_A_ 1e100);
2170}
2171
2172void
2173ev_suspend (EV_P)
2174{
2175 ev_now_update (EV_A);
2176}
2177
2178void
2179ev_resume (EV_P)
2180{
2181 ev_tstamp mn_prev = mn_now;
2182
2183 ev_now_update (EV_A);
2184 timers_reschedule (EV_A_ mn_now - mn_prev);
2185#if EV_PERIODIC_ENABLE
2186 /* TODO: really do this? */
2187 periodics_reschedule (EV_A);
2188#endif
2189}
2190
1440/*****************************************************************************/ 2191/*****************************************************************************/
2192/* singly-linked list management, used when the expected list length is short */
1441 2193
1442void inline_size 2194inline_size void
1443wlist_add (WL *head, WL elem) 2195wlist_add (WL *head, WL elem)
1444{ 2196{
1445 elem->next = *head; 2197 elem->next = *head;
1446 *head = elem; 2198 *head = elem;
1447} 2199}
1448 2200
1449void inline_size 2201inline_size void
1450wlist_del (WL *head, WL elem) 2202wlist_del (WL *head, WL elem)
1451{ 2203{
1452 while (*head) 2204 while (*head)
1453 { 2205 {
1454 if (*head == elem) 2206 if (*head == elem)
1459 2211
1460 head = &(*head)->next; 2212 head = &(*head)->next;
1461 } 2213 }
1462} 2214}
1463 2215
1464void inline_speed 2216/* internal, faster, version of ev_clear_pending */
2217inline_speed void
1465ev_clear_pending (EV_P_ W w) 2218clear_pending (EV_P_ W w)
1466{ 2219{
1467 if (w->pending) 2220 if (w->pending)
1468 { 2221 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2222 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1470 w->pending = 0; 2223 w->pending = 0;
1471 } 2224 }
1472} 2225}
1473 2226
1474void inline_speed 2227int
2228ev_clear_pending (EV_P_ void *w)
2229{
2230 W w_ = (W)w;
2231 int pending = w_->pending;
2232
2233 if (expect_true (pending))
2234 {
2235 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2236 p->w = (W)&pending_w;
2237 w_->pending = 0;
2238 return p->events;
2239 }
2240 else
2241 return 0;
2242}
2243
2244inline_size void
2245pri_adjust (EV_P_ W w)
2246{
2247 int pri = w->priority;
2248 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2249 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2250 w->priority = pri;
2251}
2252
2253inline_speed void
1475ev_start (EV_P_ W w, int active) 2254ev_start (EV_P_ W w, int active)
1476{ 2255{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2256 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 2257 w->active = active;
1481 ev_ref (EV_A); 2258 ev_ref (EV_A);
1482} 2259}
1483 2260
1484void inline_size 2261inline_size void
1485ev_stop (EV_P_ W w) 2262ev_stop (EV_P_ W w)
1486{ 2263{
1487 ev_unref (EV_A); 2264 ev_unref (EV_A);
1488 w->active = 0; 2265 w->active = 0;
1489} 2266}
1490 2267
1491/*****************************************************************************/ 2268/*****************************************************************************/
1492 2269
1493void 2270void noinline
1494ev_io_start (EV_P_ ev_io *w) 2271ev_io_start (EV_P_ ev_io *w)
1495{ 2272{
1496 int fd = w->fd; 2273 int fd = w->fd;
1497 2274
1498 if (expect_false (ev_is_active (w))) 2275 if (expect_false (ev_is_active (w)))
1499 return; 2276 return;
1500 2277
1501 assert (("ev_io_start called with negative fd", fd >= 0)); 2278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2279 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2280
2281 EV_FREQUENT_CHECK;
1502 2282
1503 ev_start (EV_A_ (W)w, 1); 2283 ev_start (EV_A_ (W)w, 1);
1504 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2284 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2285 wlist_add (&anfds[fd].head, (WL)w);
1506 2286
1507 fd_change (EV_A_ fd); 2287 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1508} 2288 w->events &= ~EV__IOFDSET;
1509 2289
1510void 2290 EV_FREQUENT_CHECK;
2291}
2292
2293void noinline
1511ev_io_stop (EV_P_ ev_io *w) 2294ev_io_stop (EV_P_ ev_io *w)
1512{ 2295{
1513 ev_clear_pending (EV_A_ (W)w); 2296 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 2297 if (expect_false (!ev_is_active (w)))
1515 return; 2298 return;
1516 2299
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2300 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 2301
2302 EV_FREQUENT_CHECK;
2303
1519 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2304 wlist_del (&anfds[w->fd].head, (WL)w);
1520 ev_stop (EV_A_ (W)w); 2305 ev_stop (EV_A_ (W)w);
1521 2306
1522 fd_change (EV_A_ w->fd); 2307 fd_change (EV_A_ w->fd, 1);
1523}
1524 2308
1525void 2309 EV_FREQUENT_CHECK;
2310}
2311
2312void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 2313ev_timer_start (EV_P_ ev_timer *w)
1527{ 2314{
1528 if (expect_false (ev_is_active (w))) 2315 if (expect_false (ev_is_active (w)))
1529 return; 2316 return;
1530 2317
1531 ((WT)w)->at += mn_now; 2318 ev_at (w) += mn_now;
1532 2319
1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2320 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1534 2321
2322 EV_FREQUENT_CHECK;
2323
2324 ++timercnt;
1535 ev_start (EV_A_ (W)w, ++timercnt); 2325 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2326 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1537 timers [timercnt - 1] = w; 2327 ANHE_w (timers [ev_active (w)]) = (WT)w;
1538 upheap ((WT *)timers, timercnt - 1); 2328 ANHE_at_cache (timers [ev_active (w)]);
2329 upheap (timers, ev_active (w));
1539 2330
2331 EV_FREQUENT_CHECK;
2332
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2333 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1541} 2334}
1542 2335
1543void 2336void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 2337ev_timer_stop (EV_P_ ev_timer *w)
1545{ 2338{
1546 ev_clear_pending (EV_A_ (W)w); 2339 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 2340 if (expect_false (!ev_is_active (w)))
1548 return; 2341 return;
1549 2342
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2343 EV_FREQUENT_CHECK;
1551 2344
1552 { 2345 {
1553 int active = ((W)w)->active; 2346 int active = ev_active (w);
1554 2347
2348 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2349
2350 --timercnt;
2351
1555 if (expect_true (--active < --timercnt)) 2352 if (expect_true (active < timercnt + HEAP0))
1556 { 2353 {
1557 timers [active] = timers [timercnt]; 2354 timers [active] = timers [timercnt + HEAP0];
1558 adjustheap ((WT *)timers, timercnt, active); 2355 adjustheap (timers, timercnt, active);
1559 } 2356 }
1560 } 2357 }
1561 2358
1562 ((WT)w)->at -= mn_now; 2359 EV_FREQUENT_CHECK;
2360
2361 ev_at (w) -= mn_now;
1563 2362
1564 ev_stop (EV_A_ (W)w); 2363 ev_stop (EV_A_ (W)w);
1565} 2364}
1566 2365
1567void 2366void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 2367ev_timer_again (EV_P_ ev_timer *w)
1569{ 2368{
2369 EV_FREQUENT_CHECK;
2370
1570 if (ev_is_active (w)) 2371 if (ev_is_active (w))
1571 { 2372 {
1572 if (w->repeat) 2373 if (w->repeat)
1573 { 2374 {
1574 ((WT)w)->at = mn_now + w->repeat; 2375 ev_at (w) = mn_now + w->repeat;
2376 ANHE_at_cache (timers [ev_active (w)]);
1575 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2377 adjustheap (timers, timercnt, ev_active (w));
1576 } 2378 }
1577 else 2379 else
1578 ev_timer_stop (EV_A_ w); 2380 ev_timer_stop (EV_A_ w);
1579 } 2381 }
1580 else if (w->repeat) 2382 else if (w->repeat)
1581 { 2383 {
1582 w->at = w->repeat; 2384 ev_at (w) = w->repeat;
1583 ev_timer_start (EV_A_ w); 2385 ev_timer_start (EV_A_ w);
1584 } 2386 }
2387
2388 EV_FREQUENT_CHECK;
1585} 2389}
1586 2390
1587#if EV_PERIODIC_ENABLE 2391#if EV_PERIODIC_ENABLE
1588void 2392void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 2393ev_periodic_start (EV_P_ ev_periodic *w)
1590{ 2394{
1591 if (expect_false (ev_is_active (w))) 2395 if (expect_false (ev_is_active (w)))
1592 return; 2396 return;
1593 2397
1594 if (w->reschedule_cb) 2398 if (w->reschedule_cb)
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2399 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 2400 else if (w->interval)
1597 { 2401 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2402 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 2403 /* this formula differs from the one in periodic_reify because we do not always round up */
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2404 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1601 } 2405 }
2406 else
2407 ev_at (w) = w->offset;
1602 2408
2409 EV_FREQUENT_CHECK;
2410
2411 ++periodiccnt;
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 2412 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2413 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 2414 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 2415 ANHE_at_cache (periodics [ev_active (w)]);
2416 upheap (periodics, ev_active (w));
1607 2417
2418 EV_FREQUENT_CHECK;
2419
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2420 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1609} 2421}
1610 2422
1611void 2423void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 2424ev_periodic_stop (EV_P_ ev_periodic *w)
1613{ 2425{
1614 ev_clear_pending (EV_A_ (W)w); 2426 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 2427 if (expect_false (!ev_is_active (w)))
1616 return; 2428 return;
1617 2429
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2430 EV_FREQUENT_CHECK;
1619 2431
1620 { 2432 {
1621 int active = ((W)w)->active; 2433 int active = ev_active (w);
1622 2434
2435 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2436
2437 --periodiccnt;
2438
1623 if (expect_true (--active < --periodiccnt)) 2439 if (expect_true (active < periodiccnt + HEAP0))
1624 { 2440 {
1625 periodics [active] = periodics [periodiccnt]; 2441 periodics [active] = periodics [periodiccnt + HEAP0];
1626 adjustheap ((WT *)periodics, periodiccnt, active); 2442 adjustheap (periodics, periodiccnt, active);
1627 } 2443 }
1628 } 2444 }
1629 2445
2446 EV_FREQUENT_CHECK;
2447
1630 ev_stop (EV_A_ (W)w); 2448 ev_stop (EV_A_ (W)w);
1631} 2449}
1632 2450
1633void 2451void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 2452ev_periodic_again (EV_P_ ev_periodic *w)
1635{ 2453{
1636 /* TODO: use adjustheap and recalculation */ 2454 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 2455 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 2456 ev_periodic_start (EV_A_ w);
1641 2459
1642#ifndef SA_RESTART 2460#ifndef SA_RESTART
1643# define SA_RESTART 0 2461# define SA_RESTART 0
1644#endif 2462#endif
1645 2463
1646void 2464void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 2465ev_signal_start (EV_P_ ev_signal *w)
1648{ 2466{
1649#if EV_MULTIPLICITY 2467#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2468 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif 2469#endif
1652 if (expect_false (ev_is_active (w))) 2470 if (expect_false (ev_is_active (w)))
1653 return; 2471 return;
1654 2472
1655 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2473 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2474
2475 evpipe_init (EV_A);
2476
2477 EV_FREQUENT_CHECK;
2478
2479 {
2480#ifndef _WIN32
2481 sigset_t full, prev;
2482 sigfillset (&full);
2483 sigprocmask (SIG_SETMASK, &full, &prev);
2484#endif
2485
2486 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2487
2488#ifndef _WIN32
2489 sigprocmask (SIG_SETMASK, &prev, 0);
2490#endif
2491 }
1656 2492
1657 ev_start (EV_A_ (W)w, 1); 2493 ev_start (EV_A_ (W)w, 1);
1658 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1659 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2494 wlist_add (&signals [w->signum - 1].head, (WL)w);
1660 2495
1661 if (!((WL)w)->next) 2496 if (!((WL)w)->next)
1662 { 2497 {
1663#if _WIN32 2498#if _WIN32
1664 signal (w->signum, sighandler); 2499 signal (w->signum, ev_sighandler);
1665#else 2500#else
1666 struct sigaction sa; 2501 struct sigaction sa;
1667 sa.sa_handler = sighandler; 2502 sa.sa_handler = ev_sighandler;
1668 sigfillset (&sa.sa_mask); 2503 sigfillset (&sa.sa_mask);
1669 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2504 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1670 sigaction (w->signum, &sa, 0); 2505 sigaction (w->signum, &sa, 0);
1671#endif 2506#endif
1672 } 2507 }
1673}
1674 2508
1675void 2509 EV_FREQUENT_CHECK;
2510}
2511
2512void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 2513ev_signal_stop (EV_P_ ev_signal *w)
1677{ 2514{
1678 ev_clear_pending (EV_A_ (W)w); 2515 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 2516 if (expect_false (!ev_is_active (w)))
1680 return; 2517 return;
1681 2518
2519 EV_FREQUENT_CHECK;
2520
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2521 wlist_del (&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 2522 ev_stop (EV_A_ (W)w);
1684 2523
1685 if (!signals [w->signum - 1].head) 2524 if (!signals [w->signum - 1].head)
1686 signal (w->signum, SIG_DFL); 2525 signal (w->signum, SIG_DFL);
2526
2527 EV_FREQUENT_CHECK;
1687} 2528}
1688 2529
1689void 2530void
1690ev_child_start (EV_P_ ev_child *w) 2531ev_child_start (EV_P_ ev_child *w)
1691{ 2532{
1692#if EV_MULTIPLICITY 2533#if EV_MULTIPLICITY
1693 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2534 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1694#endif 2535#endif
1695 if (expect_false (ev_is_active (w))) 2536 if (expect_false (ev_is_active (w)))
1696 return; 2537 return;
1697 2538
2539 EV_FREQUENT_CHECK;
2540
1698 ev_start (EV_A_ (W)w, 1); 2541 ev_start (EV_A_ (W)w, 1);
1699 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2542 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2543
2544 EV_FREQUENT_CHECK;
1700} 2545}
1701 2546
1702void 2547void
1703ev_child_stop (EV_P_ ev_child *w) 2548ev_child_stop (EV_P_ ev_child *w)
1704{ 2549{
1705 ev_clear_pending (EV_A_ (W)w); 2550 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 2551 if (expect_false (!ev_is_active (w)))
1707 return; 2552 return;
1708 2553
2554 EV_FREQUENT_CHECK;
2555
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2556 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 2557 ev_stop (EV_A_ (W)w);
2558
2559 EV_FREQUENT_CHECK;
1711} 2560}
1712 2561
1713#if EV_STAT_ENABLE 2562#if EV_STAT_ENABLE
1714 2563
1715# ifdef _WIN32 2564# ifdef _WIN32
1716# undef lstat 2565# undef lstat
1717# define lstat(a,b) _stati64 (a,b) 2566# define lstat(a,b) _stati64 (a,b)
1718# endif 2567# endif
1719 2568
1720#define DEF_STAT_INTERVAL 5.0074891 2569#define DEF_STAT_INTERVAL 5.0074891
2570#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1721#define MIN_STAT_INTERVAL 0.1074891 2571#define MIN_STAT_INTERVAL 0.1074891
1722 2572
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2573static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 2574
1725#if EV_USE_INOTIFY 2575#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 2576# define EV_INOTIFY_BUFSIZE 8192
1727 2577
1728static void noinline 2578static void noinline
1730{ 2580{
1731 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2581 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1732 2582
1733 if (w->wd < 0) 2583 if (w->wd < 0)
1734 { 2584 {
2585 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1735 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2586 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1736 2587
1737 /* monitor some parent directory for speedup hints */ 2588 /* monitor some parent directory for speedup hints */
2589 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2590 /* but an efficiency issue only */
1738 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2591 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1739 { 2592 {
1740 char path [4096]; 2593 char path [4096];
1741 strcpy (path, w->path); 2594 strcpy (path, w->path);
1742 2595
1745 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2598 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1746 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2599 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1747 2600
1748 char *pend = strrchr (path, '/'); 2601 char *pend = strrchr (path, '/');
1749 2602
1750 if (!pend) 2603 if (!pend || pend == path)
1751 break; /* whoops, no '/', complain to your admin */ 2604 break;
1752 2605
1753 *pend = 0; 2606 *pend = 0;
1754 w->wd = inotify_add_watch (fs_fd, path, mask); 2607 w->wd = inotify_add_watch (fs_fd, path, mask);
1755 } 2608 }
1756 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2609 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1757 } 2610 }
1758 } 2611 }
1759 else
1760 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1761 2612
1762 if (w->wd >= 0) 2613 if (w->wd >= 0)
2614 {
1763 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2615 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2616
2617 /* now local changes will be tracked by inotify, but remote changes won't */
2618 /* unless the filesystem it known to be local, we therefore still poll */
2619 /* also do poll on <2.6.25, but with normal frequency */
2620 struct statfs sfs;
2621
2622 if (fs_2625 && !statfs (w->path, &sfs))
2623 if (sfs.f_type == 0x1373 /* devfs */
2624 || sfs.f_type == 0xEF53 /* ext2/3 */
2625 || sfs.f_type == 0x3153464a /* jfs */
2626 || sfs.f_type == 0x52654973 /* reiser3 */
2627 || sfs.f_type == 0x01021994 /* tempfs */
2628 || sfs.f_type == 0x58465342 /* xfs */)
2629 return;
2630
2631 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2632 ev_timer_again (EV_A_ &w->timer);
2633 }
1764} 2634}
1765 2635
1766static void noinline 2636static void noinline
1767infy_del (EV_P_ ev_stat *w) 2637infy_del (EV_P_ ev_stat *w)
1768{ 2638{
1782 2652
1783static void noinline 2653static void noinline
1784infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2654infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1785{ 2655{
1786 if (slot < 0) 2656 if (slot < 0)
1787 /* overflow, need to check for all hahs slots */ 2657 /* overflow, need to check for all hash slots */
1788 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2658 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1789 infy_wd (EV_A_ slot, wd, ev); 2659 infy_wd (EV_A_ slot, wd, ev);
1790 else 2660 else
1791 { 2661 {
1792 WL w_; 2662 WL w_;
1798 2668
1799 if (w->wd == wd || wd == -1) 2669 if (w->wd == wd || wd == -1)
1800 { 2670 {
1801 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2671 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1802 { 2672 {
2673 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1803 w->wd = -1; 2674 w->wd = -1;
1804 infy_add (EV_A_ w); /* re-add, no matter what */ 2675 infy_add (EV_A_ w); /* re-add, no matter what */
1805 } 2676 }
1806 2677
1807 stat_timer_cb (EV_A_ &w->timer, 0); 2678 stat_timer_cb (EV_A_ &w->timer, 0);
1820 2691
1821 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2692 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1822 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2693 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1823} 2694}
1824 2695
1825void inline_size 2696inline_size void
2697check_2625 (EV_P)
2698{
2699 /* kernels < 2.6.25 are borked
2700 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2701 */
2702 struct utsname buf;
2703 int major, minor, micro;
2704
2705 if (uname (&buf))
2706 return;
2707
2708 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2709 return;
2710
2711 if (major < 2
2712 || (major == 2 && minor < 6)
2713 || (major == 2 && minor == 6 && micro < 25))
2714 return;
2715
2716 fs_2625 = 1;
2717}
2718
2719inline_size void
1826infy_init (EV_P) 2720infy_init (EV_P)
1827{ 2721{
1828 if (fs_fd != -2) 2722 if (fs_fd != -2)
1829 return; 2723 return;
2724
2725 fs_fd = -1;
2726
2727 check_2625 (EV_A);
1830 2728
1831 fs_fd = inotify_init (); 2729 fs_fd = inotify_init ();
1832 2730
1833 if (fs_fd >= 0) 2731 if (fs_fd >= 0)
1834 { 2732 {
1836 ev_set_priority (&fs_w, EV_MAXPRI); 2734 ev_set_priority (&fs_w, EV_MAXPRI);
1837 ev_io_start (EV_A_ &fs_w); 2735 ev_io_start (EV_A_ &fs_w);
1838 } 2736 }
1839} 2737}
1840 2738
1841void inline_size 2739inline_size void
1842infy_fork (EV_P) 2740infy_fork (EV_P)
1843{ 2741{
1844 int slot; 2742 int slot;
1845 2743
1846 if (fs_fd < 0) 2744 if (fs_fd < 0)
1862 w->wd = -1; 2760 w->wd = -1;
1863 2761
1864 if (fs_fd >= 0) 2762 if (fs_fd >= 0)
1865 infy_add (EV_A_ w); /* re-add, no matter what */ 2763 infy_add (EV_A_ w); /* re-add, no matter what */
1866 else 2764 else
1867 ev_timer_start (EV_A_ &w->timer); 2765 ev_timer_again (EV_A_ &w->timer);
1868 } 2766 }
1869
1870 } 2767 }
1871} 2768}
1872 2769
2770#endif
2771
2772#ifdef _WIN32
2773# define EV_LSTAT(p,b) _stati64 (p, b)
2774#else
2775# define EV_LSTAT(p,b) lstat (p, b)
1873#endif 2776#endif
1874 2777
1875void 2778void
1876ev_stat_stat (EV_P_ ev_stat *w) 2779ev_stat_stat (EV_P_ ev_stat *w)
1877{ 2780{
1879 w->attr.st_nlink = 0; 2782 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 2783 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 2784 w->attr.st_nlink = 1;
1882} 2785}
1883 2786
1884void noinline 2787static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2788stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 2789{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2790 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 2791
1889 /* we copy this here each the time so that */ 2792 /* we copy this here each the time so that */
1904 || w->prev.st_atime != w->attr.st_atime 2807 || w->prev.st_atime != w->attr.st_atime
1905 || w->prev.st_mtime != w->attr.st_mtime 2808 || w->prev.st_mtime != w->attr.st_mtime
1906 || w->prev.st_ctime != w->attr.st_ctime 2809 || w->prev.st_ctime != w->attr.st_ctime
1907 ) { 2810 ) {
1908 #if EV_USE_INOTIFY 2811 #if EV_USE_INOTIFY
2812 if (fs_fd >= 0)
2813 {
1909 infy_del (EV_A_ w); 2814 infy_del (EV_A_ w);
1910 infy_add (EV_A_ w); 2815 infy_add (EV_A_ w);
1911 ev_stat_stat (EV_A_ w); /* avoid race... */ 2816 ev_stat_stat (EV_A_ w); /* avoid race... */
2817 }
1912 #endif 2818 #endif
1913 2819
1914 ev_feed_event (EV_A_ w, EV_STAT); 2820 ev_feed_event (EV_A_ w, EV_STAT);
1915 } 2821 }
1916} 2822}
1919ev_stat_start (EV_P_ ev_stat *w) 2825ev_stat_start (EV_P_ ev_stat *w)
1920{ 2826{
1921 if (expect_false (ev_is_active (w))) 2827 if (expect_false (ev_is_active (w)))
1922 return; 2828 return;
1923 2829
1924 /* since we use memcmp, we need to clear any padding data etc. */
1925 memset (&w->prev, 0, sizeof (ev_statdata));
1926 memset (&w->attr, 0, sizeof (ev_statdata));
1927
1928 ev_stat_stat (EV_A_ w); 2830 ev_stat_stat (EV_A_ w);
1929 2831
2832 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1930 if (w->interval < MIN_STAT_INTERVAL) 2833 w->interval = MIN_STAT_INTERVAL;
1931 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1932 2834
1933 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2835 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1934 ev_set_priority (&w->timer, ev_priority (w)); 2836 ev_set_priority (&w->timer, ev_priority (w));
1935 2837
1936#if EV_USE_INOTIFY 2838#if EV_USE_INOTIFY
1937 infy_init (EV_A); 2839 infy_init (EV_A);
1938 2840
1939 if (fs_fd >= 0) 2841 if (fs_fd >= 0)
1940 infy_add (EV_A_ w); 2842 infy_add (EV_A_ w);
1941 else 2843 else
1942#endif 2844#endif
1943 ev_timer_start (EV_A_ &w->timer); 2845 ev_timer_again (EV_A_ &w->timer);
1944 2846
1945 ev_start (EV_A_ (W)w, 1); 2847 ev_start (EV_A_ (W)w, 1);
2848
2849 EV_FREQUENT_CHECK;
1946} 2850}
1947 2851
1948void 2852void
1949ev_stat_stop (EV_P_ ev_stat *w) 2853ev_stat_stop (EV_P_ ev_stat *w)
1950{ 2854{
1951 ev_clear_pending (EV_A_ (W)w); 2855 clear_pending (EV_A_ (W)w);
1952 if (expect_false (!ev_is_active (w))) 2856 if (expect_false (!ev_is_active (w)))
1953 return; 2857 return;
1954 2858
2859 EV_FREQUENT_CHECK;
2860
1955#if EV_USE_INOTIFY 2861#if EV_USE_INOTIFY
1956 infy_del (EV_A_ w); 2862 infy_del (EV_A_ w);
1957#endif 2863#endif
1958 ev_timer_stop (EV_A_ &w->timer); 2864 ev_timer_stop (EV_A_ &w->timer);
1959 2865
1960 ev_stop (EV_A_ (W)w); 2866 ev_stop (EV_A_ (W)w);
1961}
1962#endif
1963 2867
2868 EV_FREQUENT_CHECK;
2869}
2870#endif
2871
2872#if EV_IDLE_ENABLE
1964void 2873void
1965ev_idle_start (EV_P_ ev_idle *w) 2874ev_idle_start (EV_P_ ev_idle *w)
1966{ 2875{
1967 if (expect_false (ev_is_active (w))) 2876 if (expect_false (ev_is_active (w)))
1968 return; 2877 return;
1969 2878
2879 pri_adjust (EV_A_ (W)w);
2880
2881 EV_FREQUENT_CHECK;
2882
2883 {
2884 int active = ++idlecnt [ABSPRI (w)];
2885
2886 ++idleall;
1970 ev_start (EV_A_ (W)w, ++idlecnt); 2887 ev_start (EV_A_ (W)w, active);
2888
1971 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2889 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1972 idles [idlecnt - 1] = w; 2890 idles [ABSPRI (w)][active - 1] = w;
2891 }
2892
2893 EV_FREQUENT_CHECK;
1973} 2894}
1974 2895
1975void 2896void
1976ev_idle_stop (EV_P_ ev_idle *w) 2897ev_idle_stop (EV_P_ ev_idle *w)
1977{ 2898{
1978 ev_clear_pending (EV_A_ (W)w); 2899 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 2900 if (expect_false (!ev_is_active (w)))
1980 return; 2901 return;
1981 2902
2903 EV_FREQUENT_CHECK;
2904
1982 { 2905 {
1983 int active = ((W)w)->active; 2906 int active = ev_active (w);
1984 idles [active - 1] = idles [--idlecnt]; 2907
1985 ((W)idles [active - 1])->active = active; 2908 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2909 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2910
2911 ev_stop (EV_A_ (W)w);
2912 --idleall;
1986 } 2913 }
1987 2914
1988 ev_stop (EV_A_ (W)w); 2915 EV_FREQUENT_CHECK;
1989} 2916}
2917#endif
1990 2918
1991void 2919void
1992ev_prepare_start (EV_P_ ev_prepare *w) 2920ev_prepare_start (EV_P_ ev_prepare *w)
1993{ 2921{
1994 if (expect_false (ev_is_active (w))) 2922 if (expect_false (ev_is_active (w)))
1995 return; 2923 return;
2924
2925 EV_FREQUENT_CHECK;
1996 2926
1997 ev_start (EV_A_ (W)w, ++preparecnt); 2927 ev_start (EV_A_ (W)w, ++preparecnt);
1998 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2928 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1999 prepares [preparecnt - 1] = w; 2929 prepares [preparecnt - 1] = w;
2930
2931 EV_FREQUENT_CHECK;
2000} 2932}
2001 2933
2002void 2934void
2003ev_prepare_stop (EV_P_ ev_prepare *w) 2935ev_prepare_stop (EV_P_ ev_prepare *w)
2004{ 2936{
2005 ev_clear_pending (EV_A_ (W)w); 2937 clear_pending (EV_A_ (W)w);
2006 if (expect_false (!ev_is_active (w))) 2938 if (expect_false (!ev_is_active (w)))
2007 return; 2939 return;
2008 2940
2941 EV_FREQUENT_CHECK;
2942
2009 { 2943 {
2010 int active = ((W)w)->active; 2944 int active = ev_active (w);
2945
2011 prepares [active - 1] = prepares [--preparecnt]; 2946 prepares [active - 1] = prepares [--preparecnt];
2012 ((W)prepares [active - 1])->active = active; 2947 ev_active (prepares [active - 1]) = active;
2013 } 2948 }
2014 2949
2015 ev_stop (EV_A_ (W)w); 2950 ev_stop (EV_A_ (W)w);
2951
2952 EV_FREQUENT_CHECK;
2016} 2953}
2017 2954
2018void 2955void
2019ev_check_start (EV_P_ ev_check *w) 2956ev_check_start (EV_P_ ev_check *w)
2020{ 2957{
2021 if (expect_false (ev_is_active (w))) 2958 if (expect_false (ev_is_active (w)))
2022 return; 2959 return;
2960
2961 EV_FREQUENT_CHECK;
2023 2962
2024 ev_start (EV_A_ (W)w, ++checkcnt); 2963 ev_start (EV_A_ (W)w, ++checkcnt);
2025 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2964 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2026 checks [checkcnt - 1] = w; 2965 checks [checkcnt - 1] = w;
2966
2967 EV_FREQUENT_CHECK;
2027} 2968}
2028 2969
2029void 2970void
2030ev_check_stop (EV_P_ ev_check *w) 2971ev_check_stop (EV_P_ ev_check *w)
2031{ 2972{
2032 ev_clear_pending (EV_A_ (W)w); 2973 clear_pending (EV_A_ (W)w);
2033 if (expect_false (!ev_is_active (w))) 2974 if (expect_false (!ev_is_active (w)))
2034 return; 2975 return;
2035 2976
2977 EV_FREQUENT_CHECK;
2978
2036 { 2979 {
2037 int active = ((W)w)->active; 2980 int active = ev_active (w);
2981
2038 checks [active - 1] = checks [--checkcnt]; 2982 checks [active - 1] = checks [--checkcnt];
2039 ((W)checks [active - 1])->active = active; 2983 ev_active (checks [active - 1]) = active;
2040 } 2984 }
2041 2985
2042 ev_stop (EV_A_ (W)w); 2986 ev_stop (EV_A_ (W)w);
2987
2988 EV_FREQUENT_CHECK;
2043} 2989}
2044 2990
2045#if EV_EMBED_ENABLE 2991#if EV_EMBED_ENABLE
2046void noinline 2992void noinline
2047ev_embed_sweep (EV_P_ ev_embed *w) 2993ev_embed_sweep (EV_P_ ev_embed *w)
2048{ 2994{
2049 ev_loop (w->loop, EVLOOP_NONBLOCK); 2995 ev_loop (w->other, EVLOOP_NONBLOCK);
2050} 2996}
2051 2997
2052static void 2998static void
2053embed_cb (EV_P_ ev_io *io, int revents) 2999embed_io_cb (EV_P_ ev_io *io, int revents)
2054{ 3000{
2055 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3001 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2056 3002
2057 if (ev_cb (w)) 3003 if (ev_cb (w))
2058 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3004 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2059 else 3005 else
2060 ev_embed_sweep (loop, w); 3006 ev_loop (w->other, EVLOOP_NONBLOCK);
2061} 3007}
3008
3009static void
3010embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3011{
3012 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3013
3014 {
3015 struct ev_loop *loop = w->other;
3016
3017 while (fdchangecnt)
3018 {
3019 fd_reify (EV_A);
3020 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3021 }
3022 }
3023}
3024
3025static void
3026embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3027{
3028 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3029
3030 ev_embed_stop (EV_A_ w);
3031
3032 {
3033 struct ev_loop *loop = w->other;
3034
3035 ev_loop_fork (EV_A);
3036 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3037 }
3038
3039 ev_embed_start (EV_A_ w);
3040}
3041
3042#if 0
3043static void
3044embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3045{
3046 ev_idle_stop (EV_A_ idle);
3047}
3048#endif
2062 3049
2063void 3050void
2064ev_embed_start (EV_P_ ev_embed *w) 3051ev_embed_start (EV_P_ ev_embed *w)
2065{ 3052{
2066 if (expect_false (ev_is_active (w))) 3053 if (expect_false (ev_is_active (w)))
2067 return; 3054 return;
2068 3055
2069 { 3056 {
2070 struct ev_loop *loop = w->loop; 3057 struct ev_loop *loop = w->other;
2071 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3058 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2072 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3059 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2073 } 3060 }
3061
3062 EV_FREQUENT_CHECK;
2074 3063
2075 ev_set_priority (&w->io, ev_priority (w)); 3064 ev_set_priority (&w->io, ev_priority (w));
2076 ev_io_start (EV_A_ &w->io); 3065 ev_io_start (EV_A_ &w->io);
2077 3066
3067 ev_prepare_init (&w->prepare, embed_prepare_cb);
3068 ev_set_priority (&w->prepare, EV_MINPRI);
3069 ev_prepare_start (EV_A_ &w->prepare);
3070
3071 ev_fork_init (&w->fork, embed_fork_cb);
3072 ev_fork_start (EV_A_ &w->fork);
3073
3074 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3075
2078 ev_start (EV_A_ (W)w, 1); 3076 ev_start (EV_A_ (W)w, 1);
3077
3078 EV_FREQUENT_CHECK;
2079} 3079}
2080 3080
2081void 3081void
2082ev_embed_stop (EV_P_ ev_embed *w) 3082ev_embed_stop (EV_P_ ev_embed *w)
2083{ 3083{
2084 ev_clear_pending (EV_A_ (W)w); 3084 clear_pending (EV_A_ (W)w);
2085 if (expect_false (!ev_is_active (w))) 3085 if (expect_false (!ev_is_active (w)))
2086 return; 3086 return;
2087 3087
3088 EV_FREQUENT_CHECK;
3089
2088 ev_io_stop (EV_A_ &w->io); 3090 ev_io_stop (EV_A_ &w->io);
3091 ev_prepare_stop (EV_A_ &w->prepare);
3092 ev_fork_stop (EV_A_ &w->fork);
2089 3093
2090 ev_stop (EV_A_ (W)w); 3094 EV_FREQUENT_CHECK;
2091} 3095}
2092#endif 3096#endif
2093 3097
2094#if EV_FORK_ENABLE 3098#if EV_FORK_ENABLE
2095void 3099void
2096ev_fork_start (EV_P_ ev_fork *w) 3100ev_fork_start (EV_P_ ev_fork *w)
2097{ 3101{
2098 if (expect_false (ev_is_active (w))) 3102 if (expect_false (ev_is_active (w)))
2099 return; 3103 return;
3104
3105 EV_FREQUENT_CHECK;
2100 3106
2101 ev_start (EV_A_ (W)w, ++forkcnt); 3107 ev_start (EV_A_ (W)w, ++forkcnt);
2102 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3108 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2103 forks [forkcnt - 1] = w; 3109 forks [forkcnt - 1] = w;
3110
3111 EV_FREQUENT_CHECK;
2104} 3112}
2105 3113
2106void 3114void
2107ev_fork_stop (EV_P_ ev_fork *w) 3115ev_fork_stop (EV_P_ ev_fork *w)
2108{ 3116{
2109 ev_clear_pending (EV_A_ (W)w); 3117 clear_pending (EV_A_ (W)w);
2110 if (expect_false (!ev_is_active (w))) 3118 if (expect_false (!ev_is_active (w)))
2111 return; 3119 return;
2112 3120
3121 EV_FREQUENT_CHECK;
3122
2113 { 3123 {
2114 int active = ((W)w)->active; 3124 int active = ev_active (w);
3125
2115 forks [active - 1] = forks [--forkcnt]; 3126 forks [active - 1] = forks [--forkcnt];
2116 ((W)forks [active - 1])->active = active; 3127 ev_active (forks [active - 1]) = active;
2117 } 3128 }
2118 3129
2119 ev_stop (EV_A_ (W)w); 3130 ev_stop (EV_A_ (W)w);
3131
3132 EV_FREQUENT_CHECK;
3133}
3134#endif
3135
3136#if EV_ASYNC_ENABLE
3137void
3138ev_async_start (EV_P_ ev_async *w)
3139{
3140 if (expect_false (ev_is_active (w)))
3141 return;
3142
3143 evpipe_init (EV_A);
3144
3145 EV_FREQUENT_CHECK;
3146
3147 ev_start (EV_A_ (W)w, ++asynccnt);
3148 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3149 asyncs [asynccnt - 1] = w;
3150
3151 EV_FREQUENT_CHECK;
3152}
3153
3154void
3155ev_async_stop (EV_P_ ev_async *w)
3156{
3157 clear_pending (EV_A_ (W)w);
3158 if (expect_false (!ev_is_active (w)))
3159 return;
3160
3161 EV_FREQUENT_CHECK;
3162
3163 {
3164 int active = ev_active (w);
3165
3166 asyncs [active - 1] = asyncs [--asynccnt];
3167 ev_active (asyncs [active - 1]) = active;
3168 }
3169
3170 ev_stop (EV_A_ (W)w);
3171
3172 EV_FREQUENT_CHECK;
3173}
3174
3175void
3176ev_async_send (EV_P_ ev_async *w)
3177{
3178 w->sent = 1;
3179 evpipe_write (EV_A_ &gotasync);
2120} 3180}
2121#endif 3181#endif
2122 3182
2123/*****************************************************************************/ 3183/*****************************************************************************/
2124 3184
2134once_cb (EV_P_ struct ev_once *once, int revents) 3194once_cb (EV_P_ struct ev_once *once, int revents)
2135{ 3195{
2136 void (*cb)(int revents, void *arg) = once->cb; 3196 void (*cb)(int revents, void *arg) = once->cb;
2137 void *arg = once->arg; 3197 void *arg = once->arg;
2138 3198
2139 ev_io_stop (EV_A_ &once->io); 3199 ev_io_stop (EV_A_ &once->io);
2140 ev_timer_stop (EV_A_ &once->to); 3200 ev_timer_stop (EV_A_ &once->to);
2141 ev_free (once); 3201 ev_free (once);
2142 3202
2143 cb (revents, arg); 3203 cb (revents, arg);
2144} 3204}
2145 3205
2146static void 3206static void
2147once_cb_io (EV_P_ ev_io *w, int revents) 3207once_cb_io (EV_P_ ev_io *w, int revents)
2148{ 3208{
2149 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3209 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3210
3211 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2150} 3212}
2151 3213
2152static void 3214static void
2153once_cb_to (EV_P_ ev_timer *w, int revents) 3215once_cb_to (EV_P_ ev_timer *w, int revents)
2154{ 3216{
2155 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3217 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3218
3219 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2156} 3220}
2157 3221
2158void 3222void
2159ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3223ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2160{ 3224{
2182 ev_timer_set (&once->to, timeout, 0.); 3246 ev_timer_set (&once->to, timeout, 0.);
2183 ev_timer_start (EV_A_ &once->to); 3247 ev_timer_start (EV_A_ &once->to);
2184 } 3248 }
2185} 3249}
2186 3250
3251/*****************************************************************************/
3252
3253#if EV_WALK_ENABLE
3254void
3255ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3256{
3257 int i, j;
3258 ev_watcher_list *wl, *wn;
3259
3260 if (types & (EV_IO | EV_EMBED))
3261 for (i = 0; i < anfdmax; ++i)
3262 for (wl = anfds [i].head; wl; )
3263 {
3264 wn = wl->next;
3265
3266#if EV_EMBED_ENABLE
3267 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3268 {
3269 if (types & EV_EMBED)
3270 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3271 }
3272 else
3273#endif
3274#if EV_USE_INOTIFY
3275 if (ev_cb ((ev_io *)wl) == infy_cb)
3276 ;
3277 else
3278#endif
3279 if ((ev_io *)wl != &pipe_w)
3280 if (types & EV_IO)
3281 cb (EV_A_ EV_IO, wl);
3282
3283 wl = wn;
3284 }
3285
3286 if (types & (EV_TIMER | EV_STAT))
3287 for (i = timercnt + HEAP0; i-- > HEAP0; )
3288#if EV_STAT_ENABLE
3289 /*TODO: timer is not always active*/
3290 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3291 {
3292 if (types & EV_STAT)
3293 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3294 }
3295 else
3296#endif
3297 if (types & EV_TIMER)
3298 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3299
3300#if EV_PERIODIC_ENABLE
3301 if (types & EV_PERIODIC)
3302 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3303 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3304#endif
3305
3306#if EV_IDLE_ENABLE
3307 if (types & EV_IDLE)
3308 for (j = NUMPRI; i--; )
3309 for (i = idlecnt [j]; i--; )
3310 cb (EV_A_ EV_IDLE, idles [j][i]);
3311#endif
3312
3313#if EV_FORK_ENABLE
3314 if (types & EV_FORK)
3315 for (i = forkcnt; i--; )
3316 if (ev_cb (forks [i]) != embed_fork_cb)
3317 cb (EV_A_ EV_FORK, forks [i]);
3318#endif
3319
3320#if EV_ASYNC_ENABLE
3321 if (types & EV_ASYNC)
3322 for (i = asynccnt; i--; )
3323 cb (EV_A_ EV_ASYNC, asyncs [i]);
3324#endif
3325
3326 if (types & EV_PREPARE)
3327 for (i = preparecnt; i--; )
3328#if EV_EMBED_ENABLE
3329 if (ev_cb (prepares [i]) != embed_prepare_cb)
3330#endif
3331 cb (EV_A_ EV_PREPARE, prepares [i]);
3332
3333 if (types & EV_CHECK)
3334 for (i = checkcnt; i--; )
3335 cb (EV_A_ EV_CHECK, checks [i]);
3336
3337 if (types & EV_SIGNAL)
3338 for (i = 0; i < signalmax; ++i)
3339 for (wl = signals [i].head; wl; )
3340 {
3341 wn = wl->next;
3342 cb (EV_A_ EV_SIGNAL, wl);
3343 wl = wn;
3344 }
3345
3346 if (types & EV_CHILD)
3347 for (i = EV_PID_HASHSIZE; i--; )
3348 for (wl = childs [i]; wl; )
3349 {
3350 wn = wl->next;
3351 cb (EV_A_ EV_CHILD, wl);
3352 wl = wn;
3353 }
3354/* EV_STAT 0x00001000 /* stat data changed */
3355/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3356}
3357#endif
3358
3359#if EV_MULTIPLICITY
3360 #include "ev_wrap.h"
3361#endif
3362
2187#ifdef __cplusplus 3363#ifdef __cplusplus
2188} 3364}
2189#endif 3365#endif
2190 3366

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines