ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.156 by root, Wed Nov 28 17:50:13 2007 UTC vs.
Revision 1.330 by root, Tue Mar 9 08:46:17 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
79# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
80# endif 111# endif
81# endif 112# endif
82 113
83# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
85# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
86# else 117# else
87# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
88# endif 119# endif
89# endif 120# endif
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
111#include <fcntl.h> 159#include <fcntl.h>
112#include <stddef.h> 160#include <stddef.h>
113 161
114#include <stdio.h> 162#include <stdio.h>
115 163
116#include <assert.h> 164#include <assert.h>
117#include <errno.h> 165#include <errno.h>
118#include <sys/types.h> 166#include <sys/types.h>
119#include <time.h> 167#include <time.h>
168#include <limits.h>
120 169
121#include <signal.h> 170#include <signal.h>
122 171
123#ifdef EV_H 172#ifdef EV_H
124# include EV_H 173# include EV_H
129#ifndef _WIN32 178#ifndef _WIN32
130# include <sys/time.h> 179# include <sys/time.h>
131# include <sys/wait.h> 180# include <sys/wait.h>
132# include <unistd.h> 181# include <unistd.h>
133#else 182#else
183# include <io.h>
134# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 185# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
138# endif 188# endif
139#endif 189#endif
140 190
141/**/ 191/* this block tries to deduce configuration from header-defined symbols and defaults */
192
193/* try to deduce the maximum number of signals on this platform */
194#if defined (EV_NSIG)
195/* use what's provided */
196#elif defined (NSIG)
197# define EV_NSIG (NSIG)
198#elif defined(_NSIG)
199# define EV_NSIG (_NSIG)
200#elif defined (SIGMAX)
201# define EV_NSIG (SIGMAX+1)
202#elif defined (SIG_MAX)
203# define EV_NSIG (SIG_MAX+1)
204#elif defined (_SIG_MAX)
205# define EV_NSIG (_SIG_MAX+1)
206#elif defined (MAXSIG)
207# define EV_NSIG (MAXSIG+1)
208#elif defined (MAX_SIG)
209# define EV_NSIG (MAX_SIG+1)
210#elif defined (SIGARRAYSIZE)
211# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
212#elif defined (_sys_nsig)
213# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
214#else
215# error "unable to find value for NSIG, please report"
216/* to make it compile regardless, just remove the above line */
217# define EV_NSIG 65
218#endif
219
220#ifndef EV_USE_CLOCK_SYSCALL
221# if __linux && __GLIBC__ >= 2
222# define EV_USE_CLOCK_SYSCALL 1
223# else
224# define EV_USE_CLOCK_SYSCALL 0
225# endif
226#endif
142 227
143#ifndef EV_USE_MONOTONIC 228#ifndef EV_USE_MONOTONIC
229# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
230# define EV_USE_MONOTONIC 1
231# else
144# define EV_USE_MONOTONIC 0 232# define EV_USE_MONOTONIC 0
233# endif
145#endif 234#endif
146 235
147#ifndef EV_USE_REALTIME 236#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 237# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
238#endif
239
240#ifndef EV_USE_NANOSLEEP
241# if _POSIX_C_SOURCE >= 199309L
242# define EV_USE_NANOSLEEP 1
243# else
244# define EV_USE_NANOSLEEP 0
245# endif
149#endif 246#endif
150 247
151#ifndef EV_USE_SELECT 248#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 249# define EV_USE_SELECT 1
153#endif 250#endif
159# define EV_USE_POLL 1 256# define EV_USE_POLL 1
160# endif 257# endif
161#endif 258#endif
162 259
163#ifndef EV_USE_EPOLL 260#ifndef EV_USE_EPOLL
261# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
262# define EV_USE_EPOLL 1
263# else
164# define EV_USE_EPOLL 0 264# define EV_USE_EPOLL 0
265# endif
165#endif 266#endif
166 267
167#ifndef EV_USE_KQUEUE 268#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 269# define EV_USE_KQUEUE 0
169#endif 270#endif
171#ifndef EV_USE_PORT 272#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 273# define EV_USE_PORT 0
173#endif 274#endif
174 275
175#ifndef EV_USE_INOTIFY 276#ifndef EV_USE_INOTIFY
277# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
278# define EV_USE_INOTIFY 1
279# else
176# define EV_USE_INOTIFY 0 280# define EV_USE_INOTIFY 0
281# endif
177#endif 282#endif
178 283
179#ifndef EV_PID_HASHSIZE 284#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 285# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 286# define EV_PID_HASHSIZE 1
190# else 295# else
191# define EV_INOTIFY_HASHSIZE 16 296# define EV_INOTIFY_HASHSIZE 16
192# endif 297# endif
193#endif 298#endif
194 299
195/**/ 300#ifndef EV_USE_EVENTFD
301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
302# define EV_USE_EVENTFD 1
303# else
304# define EV_USE_EVENTFD 0
305# endif
306#endif
307
308#ifndef EV_USE_SIGNALFD
309# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
310# define EV_USE_SIGNALFD 1
311# else
312# define EV_USE_SIGNALFD 0
313# endif
314#endif
315
316#if 0 /* debugging */
317# define EV_VERIFY 3
318# define EV_USE_4HEAP 1
319# define EV_HEAP_CACHE_AT 1
320#endif
321
322#ifndef EV_VERIFY
323# define EV_VERIFY !EV_MINIMAL
324#endif
325
326#ifndef EV_USE_4HEAP
327# define EV_USE_4HEAP !EV_MINIMAL
328#endif
329
330#ifndef EV_HEAP_CACHE_AT
331# define EV_HEAP_CACHE_AT !EV_MINIMAL
332#endif
333
334/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
335/* which makes programs even slower. might work on other unices, too. */
336#if EV_USE_CLOCK_SYSCALL
337# include <syscall.h>
338# ifdef SYS_clock_gettime
339# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
340# undef EV_USE_MONOTONIC
341# define EV_USE_MONOTONIC 1
342# else
343# undef EV_USE_CLOCK_SYSCALL
344# define EV_USE_CLOCK_SYSCALL 0
345# endif
346#endif
347
348/* this block fixes any misconfiguration where we know we run into trouble otherwise */
349
350#ifdef _AIX
351/* AIX has a completely broken poll.h header */
352# undef EV_USE_POLL
353# define EV_USE_POLL 0
354#endif
196 355
197#ifndef CLOCK_MONOTONIC 356#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 357# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 358# define EV_USE_MONOTONIC 0
200#endif 359#endif
202#ifndef CLOCK_REALTIME 361#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 362# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 363# define EV_USE_REALTIME 0
205#endif 364#endif
206 365
366#if !EV_STAT_ENABLE
367# undef EV_USE_INOTIFY
368# define EV_USE_INOTIFY 0
369#endif
370
371#if !EV_USE_NANOSLEEP
372# ifndef _WIN32
373# include <sys/select.h>
374# endif
375#endif
376
377#if EV_USE_INOTIFY
378# include <sys/utsname.h>
379# include <sys/statfs.h>
380# include <sys/inotify.h>
381/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
382# ifndef IN_DONT_FOLLOW
383# undef EV_USE_INOTIFY
384# define EV_USE_INOTIFY 0
385# endif
386#endif
387
207#if EV_SELECT_IS_WINSOCKET 388#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 389# include <winsock.h>
209#endif 390#endif
210 391
211#if !EV_STAT_ENABLE 392#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 393/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
394# include <stdint.h>
395# ifndef EFD_NONBLOCK
396# define EFD_NONBLOCK O_NONBLOCK
213#endif 397# endif
214 398# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 399# ifdef O_CLOEXEC
216# include <sys/inotify.h> 400# define EFD_CLOEXEC O_CLOEXEC
401# else
402# define EFD_CLOEXEC 02000000
403# endif
217#endif 404# endif
405# ifdef __cplusplus
406extern "C" {
407# endif
408int (eventfd) (unsigned int initval, int flags);
409# ifdef __cplusplus
410}
411# endif
412#endif
413
414#if EV_USE_SIGNALFD
415/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
416# include <stdint.h>
417# ifndef SFD_NONBLOCK
418# define SFD_NONBLOCK O_NONBLOCK
419# endif
420# ifndef SFD_CLOEXEC
421# ifdef O_CLOEXEC
422# define SFD_CLOEXEC O_CLOEXEC
423# else
424# define SFD_CLOEXEC 02000000
425# endif
426# endif
427# ifdef __cplusplus
428extern "C" {
429# endif
430int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437# ifdef __cplusplus
438}
439# endif
440#endif
441
218 442
219/**/ 443/**/
444
445#if EV_VERIFY >= 3
446# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
447#else
448# define EV_FREQUENT_CHECK do { } while (0)
449#endif
450
451/*
452 * This is used to avoid floating point rounding problems.
453 * It is added to ev_rt_now when scheduling periodics
454 * to ensure progress, time-wise, even when rounding
455 * errors are against us.
456 * This value is good at least till the year 4000.
457 * Better solutions welcome.
458 */
459#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 460
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 463
225#if __GNUC__ >= 3 464#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 465# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 466# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 467#else
236# define expect(expr,value) (expr) 468# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 469# define noinline
470# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
471# define inline
472# endif
240#endif 473#endif
241 474
242#define expect_false(expr) expect ((expr) != 0, 0) 475#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 476#define expect_true(expr) expect ((expr) != 0, 1)
477#define inline_size static inline
244 478
479#if EV_MINIMAL
480# define inline_speed static noinline
481#else
482# define inline_speed static inline
483#endif
484
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 485#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
486
487#if EV_MINPRI == EV_MAXPRI
488# define ABSPRI(w) (((W)w), 0)
489#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 490# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
491#endif
247 492
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 493#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 494#define EMPTY2(a,b) /* used to suppress some warnings */
250 495
251typedef ev_watcher *W; 496typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 497typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 498typedef ev_watcher_time *WT;
254 499
500#define ev_active(w) ((W)(w))->active
501#define ev_at(w) ((WT)(w))->at
502
503#if EV_USE_REALTIME
504/* sig_atomic_t is used to avoid per-thread variables or locking but still */
505/* giving it a reasonably high chance of working on typical architetcures */
506static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
507#endif
508
509#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 510static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
511#endif
512
513#ifndef EV_FD_TO_WIN32_HANDLE
514# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
515#endif
516#ifndef EV_WIN32_HANDLE_TO_FD
517# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
518#endif
519#ifndef EV_WIN32_CLOSE_FD
520# define EV_WIN32_CLOSE_FD(fd) close (fd)
521#endif
256 522
257#ifdef _WIN32 523#ifdef _WIN32
258# include "ev_win32.c" 524# include "ev_win32.c"
259#endif 525#endif
260 526
267{ 533{
268 syserr_cb = cb; 534 syserr_cb = cb;
269} 535}
270 536
271static void noinline 537static void noinline
272syserr (const char *msg) 538ev_syserr (const char *msg)
273{ 539{
274 if (!msg) 540 if (!msg)
275 msg = "(libev) system error"; 541 msg = "(libev) system error";
276 542
277 if (syserr_cb) 543 if (syserr_cb)
278 syserr_cb (msg); 544 syserr_cb (msg);
279 else 545 else
280 { 546 {
547#if EV_AVOID_STDIO
548 write (STDERR_FILENO, msg, strlen (msg));
549 write (STDERR_FILENO, ": ", 2);
550 msg = strerror (errno);
551 write (STDERR_FILENO, msg, strlen (msg));
552 write (STDERR_FILENO, "\n", 1);
553#else
281 perror (msg); 554 perror (msg);
555#endif
282 abort (); 556 abort ();
283 } 557 }
284} 558}
285 559
560static void *
561ev_realloc_emul (void *ptr, long size)
562{
563 /* some systems, notably openbsd and darwin, fail to properly
564 * implement realloc (x, 0) (as required by both ansi c-98 and
565 * the single unix specification, so work around them here.
566 */
567
568 if (size)
569 return realloc (ptr, size);
570
571 free (ptr);
572 return 0;
573}
574
286static void *(*alloc)(void *ptr, long size); 575static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 576
288void 577void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 578ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 579{
291 alloc = cb; 580 alloc = cb;
292} 581}
293 582
294inline_speed void * 583inline_speed void *
295ev_realloc (void *ptr, long size) 584ev_realloc (void *ptr, long size)
296{ 585{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 586 ptr = alloc (ptr, size);
298 587
299 if (!ptr && size) 588 if (!ptr && size)
300 { 589 {
590#if EV_AVOID_STDIO
591 write (STDERR_FILENO, "libev: memory allocation failed, aborting.",
592 sizeof ("libev: memory allocation failed, aborting.") - 1);
593#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 594 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
595#endif
302 abort (); 596 abort ();
303 } 597 }
304 598
305 return ptr; 599 return ptr;
306} 600}
308#define ev_malloc(size) ev_realloc (0, (size)) 602#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 603#define ev_free(ptr) ev_realloc ((ptr), 0)
310 604
311/*****************************************************************************/ 605/*****************************************************************************/
312 606
607/* set in reify when reification needed */
608#define EV_ANFD_REIFY 1
609
610/* file descriptor info structure */
313typedef struct 611typedef struct
314{ 612{
315 WL head; 613 WL head;
316 unsigned char events; 614 unsigned char events; /* the events watched for */
615 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
616 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 617 unsigned char unused;
618#if EV_USE_EPOLL
619 unsigned int egen; /* generation counter to counter epoll bugs */
620#endif
318#if EV_SELECT_IS_WINSOCKET 621#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 622 SOCKET handle;
320#endif 623#endif
321} ANFD; 624} ANFD;
322 625
626/* stores the pending event set for a given watcher */
323typedef struct 627typedef struct
324{ 628{
325 W w; 629 W w;
326 int events; 630 int events; /* the pending event set for the given watcher */
327} ANPENDING; 631} ANPENDING;
328 632
329#if EV_USE_INOTIFY 633#if EV_USE_INOTIFY
634/* hash table entry per inotify-id */
330typedef struct 635typedef struct
331{ 636{
332 WL head; 637 WL head;
333} ANFS; 638} ANFS;
639#endif
640
641/* Heap Entry */
642#if EV_HEAP_CACHE_AT
643 /* a heap element */
644 typedef struct {
645 ev_tstamp at;
646 WT w;
647 } ANHE;
648
649 #define ANHE_w(he) (he).w /* access watcher, read-write */
650 #define ANHE_at(he) (he).at /* access cached at, read-only */
651 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
652#else
653 /* a heap element */
654 typedef WT ANHE;
655
656 #define ANHE_w(he) (he)
657 #define ANHE_at(he) (he)->at
658 #define ANHE_at_cache(he)
334#endif 659#endif
335 660
336#if EV_MULTIPLICITY 661#if EV_MULTIPLICITY
337 662
338 struct ev_loop 663 struct ev_loop
357 682
358 static int ev_default_loop_ptr; 683 static int ev_default_loop_ptr;
359 684
360#endif 685#endif
361 686
687#if EV_MINIMAL < 2
688# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
689# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
690# define EV_INVOKE_PENDING invoke_cb (EV_A)
691#else
692# define EV_RELEASE_CB (void)0
693# define EV_ACQUIRE_CB (void)0
694# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
695#endif
696
697#define EVUNLOOP_RECURSE 0x80
698
362/*****************************************************************************/ 699/*****************************************************************************/
363 700
701#ifndef EV_HAVE_EV_TIME
364ev_tstamp 702ev_tstamp
365ev_time (void) 703ev_time (void)
366{ 704{
367#if EV_USE_REALTIME 705#if EV_USE_REALTIME
706 if (expect_true (have_realtime))
707 {
368 struct timespec ts; 708 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 709 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 710 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 711 }
712#endif
713
372 struct timeval tv; 714 struct timeval tv;
373 gettimeofday (&tv, 0); 715 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 716 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 717}
718#endif
377 719
378ev_tstamp inline_size 720inline_size ev_tstamp
379get_clock (void) 721get_clock (void)
380{ 722{
381#if EV_USE_MONOTONIC 723#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 724 if (expect_true (have_monotonic))
383 { 725 {
396{ 738{
397 return ev_rt_now; 739 return ev_rt_now;
398} 740}
399#endif 741#endif
400 742
401#define array_roundsize(type,n) (((n) | 4) & ~3) 743void
744ev_sleep (ev_tstamp delay)
745{
746 if (delay > 0.)
747 {
748#if EV_USE_NANOSLEEP
749 struct timespec ts;
750
751 ts.tv_sec = (time_t)delay;
752 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
753
754 nanosleep (&ts, 0);
755#elif defined(_WIN32)
756 Sleep ((unsigned long)(delay * 1e3));
757#else
758 struct timeval tv;
759
760 tv.tv_sec = (time_t)delay;
761 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
762
763 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
764 /* something not guaranteed by newer posix versions, but guaranteed */
765 /* by older ones */
766 select (0, 0, 0, 0, &tv);
767#endif
768 }
769}
770
771/*****************************************************************************/
772
773#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
774
775/* find a suitable new size for the given array, */
776/* hopefully by rounding to a ncie-to-malloc size */
777inline_size int
778array_nextsize (int elem, int cur, int cnt)
779{
780 int ncur = cur + 1;
781
782 do
783 ncur <<= 1;
784 while (cnt > ncur);
785
786 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
787 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
788 {
789 ncur *= elem;
790 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
791 ncur = ncur - sizeof (void *) * 4;
792 ncur /= elem;
793 }
794
795 return ncur;
796}
797
798static noinline void *
799array_realloc (int elem, void *base, int *cur, int cnt)
800{
801 *cur = array_nextsize (elem, *cur, cnt);
802 return ev_realloc (base, elem * *cur);
803}
804
805#define array_init_zero(base,count) \
806 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 807
403#define array_needsize(type,base,cur,cnt,init) \ 808#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 809 if (expect_false ((cnt) > (cur))) \
405 { \ 810 { \
406 int newcnt = cur; \ 811 int ocur_ = (cur); \
407 do \ 812 (base) = (type *)array_realloc \
408 { \ 813 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 814 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 815 }
417 816
817#if 0
418#define array_slim(type,stem) \ 818#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 819 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 820 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 821 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 822 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 823 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 824 }
825#endif
425 826
426#define array_free(stem, idx) \ 827#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 828 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 829
429/*****************************************************************************/ 830/*****************************************************************************/
831
832/* dummy callback for pending events */
833static void noinline
834pendingcb (EV_P_ ev_prepare *w, int revents)
835{
836}
430 837
431void noinline 838void noinline
432ev_feed_event (EV_P_ void *w, int revents) 839ev_feed_event (EV_P_ void *w, int revents)
433{ 840{
434 W w_ = (W)w; 841 W w_ = (W)w;
842 int pri = ABSPRI (w_);
435 843
436 if (expect_false (w_->pending)) 844 if (expect_false (w_->pending))
845 pendings [pri][w_->pending - 1].events |= revents;
846 else
437 { 847 {
848 w_->pending = ++pendingcnt [pri];
849 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
850 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 851 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 852 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 853}
447 854
448void inline_size 855inline_speed void
856feed_reverse (EV_P_ W w)
857{
858 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
859 rfeeds [rfeedcnt++] = w;
860}
861
862inline_size void
863feed_reverse_done (EV_P_ int revents)
864{
865 do
866 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
867 while (rfeedcnt);
868}
869
870inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 871queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 872{
451 int i; 873 int i;
452 874
453 for (i = 0; i < eventcnt; ++i) 875 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 876 ev_feed_event (EV_A_ events [i], type);
455} 877}
456 878
457/*****************************************************************************/ 879/*****************************************************************************/
458 880
459void inline_size 881inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 882fd_event_nc (EV_P_ int fd, int revents)
474{ 883{
475 ANFD *anfd = anfds + fd; 884 ANFD *anfd = anfds + fd;
476 ev_io *w; 885 ev_io *w;
477 886
478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 887 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
482 if (ev) 891 if (ev)
483 ev_feed_event (EV_A_ (W)w, ev); 892 ev_feed_event (EV_A_ (W)w, ev);
484 } 893 }
485} 894}
486 895
896/* do not submit kernel events for fds that have reify set */
897/* because that means they changed while we were polling for new events */
898inline_speed void
899fd_event (EV_P_ int fd, int revents)
900{
901 ANFD *anfd = anfds + fd;
902
903 if (expect_true (!anfd->reify))
904 fd_event_nc (EV_A_ fd, revents);
905}
906
487void 907void
488ev_feed_fd_event (EV_P_ int fd, int revents) 908ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 909{
910 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 911 fd_event_nc (EV_A_ fd, revents);
491} 912}
492 913
493void inline_size 914/* make sure the external fd watch events are in-sync */
915/* with the kernel/libev internal state */
916inline_size void
494fd_reify (EV_P) 917fd_reify (EV_P)
495{ 918{
496 int i; 919 int i;
497 920
498 for (i = 0; i < fdchangecnt; ++i) 921 for (i = 0; i < fdchangecnt; ++i)
499 { 922 {
500 int fd = fdchanges [i]; 923 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 924 ANFD *anfd = anfds + fd;
502 ev_io *w; 925 ev_io *w;
503 926
504 int events = 0; 927 unsigned char events = 0;
505 928
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 929 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 930 events |= (unsigned char)w->events;
508 931
509#if EV_SELECT_IS_WINSOCKET 932#if EV_SELECT_IS_WINSOCKET
510 if (events) 933 if (events)
511 { 934 {
512 unsigned long argp; 935 unsigned long arg;
513 anfd->handle = _get_osfhandle (fd); 936 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 937 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 938 }
516#endif 939#endif
517 940
941 {
942 unsigned char o_events = anfd->events;
943 unsigned char o_reify = anfd->reify;
944
518 anfd->reify = 0; 945 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 946 anfd->events = events;
947
948 if (o_events != events || o_reify & EV__IOFDSET)
949 backend_modify (EV_A_ fd, o_events, events);
950 }
522 } 951 }
523 952
524 fdchangecnt = 0; 953 fdchangecnt = 0;
525} 954}
526 955
527void inline_size 956/* something about the given fd changed */
957inline_size void
528fd_change (EV_P_ int fd) 958fd_change (EV_P_ int fd, int flags)
529{ 959{
530 if (expect_false (anfds [fd].reify)) 960 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 961 anfds [fd].reify |= flags;
534 962
963 if (expect_true (!reify))
964 {
535 ++fdchangecnt; 965 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 966 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 967 fdchanges [fdchangecnt - 1] = fd;
968 }
538} 969}
539 970
540void inline_speed 971/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
972inline_speed void
541fd_kill (EV_P_ int fd) 973fd_kill (EV_P_ int fd)
542{ 974{
543 ev_io *w; 975 ev_io *w;
544 976
545 while ((w = (ev_io *)anfds [fd].head)) 977 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 979 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 980 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 981 }
550} 982}
551 983
552int inline_size 984/* check whether the given fd is atcually valid, for error recovery */
985inline_size int
553fd_valid (int fd) 986fd_valid (int fd)
554{ 987{
555#ifdef _WIN32 988#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 989 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
557#else 990#else
558 return fcntl (fd, F_GETFD) != -1; 991 return fcntl (fd, F_GETFD) != -1;
559#endif 992#endif
560} 993}
561 994
565{ 998{
566 int fd; 999 int fd;
567 1000
568 for (fd = 0; fd < anfdmax; ++fd) 1001 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 1002 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 1003 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 1004 fd_kill (EV_A_ fd);
572} 1005}
573 1006
574/* called on ENOMEM in select/poll to kill some fds and retry */ 1007/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 1008static void noinline
579 1012
580 for (fd = anfdmax; fd--; ) 1013 for (fd = anfdmax; fd--; )
581 if (anfds [fd].events) 1014 if (anfds [fd].events)
582 { 1015 {
583 fd_kill (EV_A_ fd); 1016 fd_kill (EV_A_ fd);
584 return; 1017 break;
585 } 1018 }
586} 1019}
587 1020
588/* usually called after fork if backend needs to re-arm all fds from scratch */ 1021/* usually called after fork if backend needs to re-arm all fds from scratch */
589static void noinline 1022static void noinline
590fd_rearm_all (EV_P) 1023fd_rearm_all (EV_P)
591{ 1024{
592 int fd; 1025 int fd;
593 1026
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 1027 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 1028 if (anfds [fd].events)
597 { 1029 {
598 anfds [fd].events = 0; 1030 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 1031 anfds [fd].emask = 0;
1032 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
600 } 1033 }
601} 1034}
602 1035
603/*****************************************************************************/ 1036/*****************************************************************************/
604 1037
605void inline_speed 1038/*
606upheap (WT *heap, int k) 1039 * the heap functions want a real array index. array index 0 uis guaranteed to not
607{ 1040 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
608 WT w = heap [k]; 1041 * the branching factor of the d-tree.
1042 */
609 1043
610 while (k && heap [k >> 1]->at > w->at) 1044/*
611 { 1045 * at the moment we allow libev the luxury of two heaps,
612 heap [k] = heap [k >> 1]; 1046 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
613 ((W)heap [k])->active = k + 1; 1047 * which is more cache-efficient.
614 k >>= 1; 1048 * the difference is about 5% with 50000+ watchers.
615 } 1049 */
1050#if EV_USE_4HEAP
616 1051
617 heap [k] = w; 1052#define DHEAP 4
618 ((W)heap [k])->active = k + 1; 1053#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1054#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1055#define UPHEAP_DONE(p,k) ((p) == (k))
619 1056
620} 1057/* away from the root */
621 1058inline_speed void
622void inline_speed
623downheap (WT *heap, int N, int k) 1059downheap (ANHE *heap, int N, int k)
624{ 1060{
625 WT w = heap [k]; 1061 ANHE he = heap [k];
1062 ANHE *E = heap + N + HEAP0;
626 1063
627 while (k < (N >> 1)) 1064 for (;;)
628 { 1065 {
629 int j = k << 1; 1066 ev_tstamp minat;
1067 ANHE *minpos;
1068 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
630 1069
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1070 /* find minimum child */
1071 if (expect_true (pos + DHEAP - 1 < E))
632 ++j; 1072 {
633 1073 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
634 if (w->at <= heap [j]->at) 1074 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1075 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1076 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1077 }
1078 else if (pos < E)
1079 {
1080 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1081 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1082 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1083 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1084 }
1085 else
635 break; 1086 break;
636 1087
1088 if (ANHE_at (he) <= minat)
1089 break;
1090
1091 heap [k] = *minpos;
1092 ev_active (ANHE_w (*minpos)) = k;
1093
1094 k = minpos - heap;
1095 }
1096
1097 heap [k] = he;
1098 ev_active (ANHE_w (he)) = k;
1099}
1100
1101#else /* 4HEAP */
1102
1103#define HEAP0 1
1104#define HPARENT(k) ((k) >> 1)
1105#define UPHEAP_DONE(p,k) (!(p))
1106
1107/* away from the root */
1108inline_speed void
1109downheap (ANHE *heap, int N, int k)
1110{
1111 ANHE he = heap [k];
1112
1113 for (;;)
1114 {
1115 int c = k << 1;
1116
1117 if (c >= N + HEAP0)
1118 break;
1119
1120 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1121 ? 1 : 0;
1122
1123 if (ANHE_at (he) <= ANHE_at (heap [c]))
1124 break;
1125
637 heap [k] = heap [j]; 1126 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 1127 ev_active (ANHE_w (heap [k])) = k;
1128
639 k = j; 1129 k = c;
640 } 1130 }
641 1131
642 heap [k] = w; 1132 heap [k] = he;
643 ((W)heap [k])->active = k + 1; 1133 ev_active (ANHE_w (he)) = k;
644} 1134}
1135#endif
645 1136
646void inline_size 1137/* towards the root */
1138inline_speed void
1139upheap (ANHE *heap, int k)
1140{
1141 ANHE he = heap [k];
1142
1143 for (;;)
1144 {
1145 int p = HPARENT (k);
1146
1147 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1148 break;
1149
1150 heap [k] = heap [p];
1151 ev_active (ANHE_w (heap [k])) = k;
1152 k = p;
1153 }
1154
1155 heap [k] = he;
1156 ev_active (ANHE_w (he)) = k;
1157}
1158
1159/* move an element suitably so it is in a correct place */
1160inline_size void
647adjustheap (WT *heap, int N, int k) 1161adjustheap (ANHE *heap, int N, int k)
648{ 1162{
1163 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
649 upheap (heap, k); 1164 upheap (heap, k);
1165 else
650 downheap (heap, N, k); 1166 downheap (heap, N, k);
1167}
1168
1169/* rebuild the heap: this function is used only once and executed rarely */
1170inline_size void
1171reheap (ANHE *heap, int N)
1172{
1173 int i;
1174
1175 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1176 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1177 for (i = 0; i < N; ++i)
1178 upheap (heap, i + HEAP0);
651} 1179}
652 1180
653/*****************************************************************************/ 1181/*****************************************************************************/
654 1182
1183/* associate signal watchers to a signal signal */
655typedef struct 1184typedef struct
656{ 1185{
1186 EV_ATOMIC_T pending;
1187#if EV_MULTIPLICITY
1188 EV_P;
1189#endif
657 WL head; 1190 WL head;
658 sig_atomic_t volatile gotsig;
659} ANSIG; 1191} ANSIG;
660 1192
661static ANSIG *signals; 1193static ANSIG signals [EV_NSIG - 1];
662static int signalmax;
663 1194
664static int sigpipe [2]; 1195/*****************************************************************************/
665static sig_atomic_t volatile gotsig;
666static ev_io sigev;
667 1196
668void inline_size 1197/* used to prepare libev internal fd's */
669signals_init (ANSIG *base, int count) 1198/* this is not fork-safe */
670{ 1199inline_speed void
671 while (count--)
672 {
673 base->head = 0;
674 base->gotsig = 0;
675
676 ++base;
677 }
678}
679
680static void
681sighandler (int signum)
682{
683#if _WIN32
684 signal (signum, sighandler);
685#endif
686
687 signals [signum - 1].gotsig = 1;
688
689 if (!gotsig)
690 {
691 int old_errno = errno;
692 gotsig = 1;
693 write (sigpipe [1], &signum, 1);
694 errno = old_errno;
695 }
696}
697
698void noinline
699ev_feed_signal_event (EV_P_ int signum)
700{
701 WL w;
702
703#if EV_MULTIPLICITY
704 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
705#endif
706
707 --signum;
708
709 if (signum < 0 || signum >= signalmax)
710 return;
711
712 signals [signum].gotsig = 0;
713
714 for (w = signals [signum].head; w; w = w->next)
715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
716}
717
718static void
719sigcb (EV_P_ ev_io *iow, int revents)
720{
721 int signum;
722
723 read (sigpipe [0], &revents, 1);
724 gotsig = 0;
725
726 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1);
729}
730
731void inline_size
732fd_intern (int fd) 1200fd_intern (int fd)
733{ 1201{
734#ifdef _WIN32 1202#ifdef _WIN32
735 int arg = 1; 1203 unsigned long arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1204 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
737#else 1205#else
738 fcntl (fd, F_SETFD, FD_CLOEXEC); 1206 fcntl (fd, F_SETFD, FD_CLOEXEC);
739 fcntl (fd, F_SETFL, O_NONBLOCK); 1207 fcntl (fd, F_SETFL, O_NONBLOCK);
740#endif 1208#endif
741} 1209}
742 1210
743static void noinline 1211static void noinline
744siginit (EV_P) 1212evpipe_init (EV_P)
745{ 1213{
1214 if (!ev_is_active (&pipe_w))
1215 {
1216#if EV_USE_EVENTFD
1217 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1218 if (evfd < 0 && errno == EINVAL)
1219 evfd = eventfd (0, 0);
1220
1221 if (evfd >= 0)
1222 {
1223 evpipe [0] = -1;
1224 fd_intern (evfd); /* doing it twice doesn't hurt */
1225 ev_io_set (&pipe_w, evfd, EV_READ);
1226 }
1227 else
1228#endif
1229 {
1230 while (pipe (evpipe))
1231 ev_syserr ("(libev) error creating signal/async pipe");
1232
746 fd_intern (sigpipe [0]); 1233 fd_intern (evpipe [0]);
747 fd_intern (sigpipe [1]); 1234 fd_intern (evpipe [1]);
1235 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1236 }
748 1237
749 ev_io_set (&sigev, sigpipe [0], EV_READ);
750 ev_io_start (EV_A_ &sigev); 1238 ev_io_start (EV_A_ &pipe_w);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1239 ev_unref (EV_A); /* watcher should not keep loop alive */
1240 }
1241}
1242
1243inline_size void
1244evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1245{
1246 if (!*flag)
1247 {
1248 int old_errno = errno; /* save errno because write might clobber it */
1249
1250 *flag = 1;
1251
1252#if EV_USE_EVENTFD
1253 if (evfd >= 0)
1254 {
1255 uint64_t counter = 1;
1256 write (evfd, &counter, sizeof (uint64_t));
1257 }
1258 else
1259#endif
1260 write (evpipe [1], &old_errno, 1);
1261
1262 errno = old_errno;
1263 }
1264}
1265
1266/* called whenever the libev signal pipe */
1267/* got some events (signal, async) */
1268static void
1269pipecb (EV_P_ ev_io *iow, int revents)
1270{
1271 int i;
1272
1273#if EV_USE_EVENTFD
1274 if (evfd >= 0)
1275 {
1276 uint64_t counter;
1277 read (evfd, &counter, sizeof (uint64_t));
1278 }
1279 else
1280#endif
1281 {
1282 char dummy;
1283 read (evpipe [0], &dummy, 1);
1284 }
1285
1286 if (sig_pending)
1287 {
1288 sig_pending = 0;
1289
1290 for (i = EV_NSIG - 1; i--; )
1291 if (expect_false (signals [i].pending))
1292 ev_feed_signal_event (EV_A_ i + 1);
1293 }
1294
1295#if EV_ASYNC_ENABLE
1296 if (async_pending)
1297 {
1298 async_pending = 0;
1299
1300 for (i = asynccnt; i--; )
1301 if (asyncs [i]->sent)
1302 {
1303 asyncs [i]->sent = 0;
1304 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1305 }
1306 }
1307#endif
752} 1308}
753 1309
754/*****************************************************************************/ 1310/*****************************************************************************/
755 1311
1312static void
1313ev_sighandler (int signum)
1314{
1315#if EV_MULTIPLICITY
1316 EV_P = signals [signum - 1].loop;
1317#endif
1318
1319#ifdef _WIN32
1320 signal (signum, ev_sighandler);
1321#endif
1322
1323 signals [signum - 1].pending = 1;
1324 evpipe_write (EV_A_ &sig_pending);
1325}
1326
1327void noinline
1328ev_feed_signal_event (EV_P_ int signum)
1329{
1330 WL w;
1331
1332 if (expect_false (signum <= 0 || signum > EV_NSIG))
1333 return;
1334
1335 --signum;
1336
1337#if EV_MULTIPLICITY
1338 /* it is permissible to try to feed a signal to the wrong loop */
1339 /* or, likely more useful, feeding a signal nobody is waiting for */
1340
1341 if (expect_false (signals [signum].loop != EV_A))
1342 return;
1343#endif
1344
1345 signals [signum].pending = 0;
1346
1347 for (w = signals [signum].head; w; w = w->next)
1348 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1349}
1350
1351#if EV_USE_SIGNALFD
1352static void
1353sigfdcb (EV_P_ ev_io *iow, int revents)
1354{
1355 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1356
1357 for (;;)
1358 {
1359 ssize_t res = read (sigfd, si, sizeof (si));
1360
1361 /* not ISO-C, as res might be -1, but works with SuS */
1362 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1363 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1364
1365 if (res < (ssize_t)sizeof (si))
1366 break;
1367 }
1368}
1369#endif
1370
1371/*****************************************************************************/
1372
756static ev_child *childs [EV_PID_HASHSIZE]; 1373static WL childs [EV_PID_HASHSIZE];
757 1374
758#ifndef _WIN32 1375#ifndef _WIN32
759 1376
760static ev_signal childev; 1377static ev_signal childev;
761 1378
762void inline_speed 1379#ifndef WIFCONTINUED
1380# define WIFCONTINUED(status) 0
1381#endif
1382
1383/* handle a single child status event */
1384inline_speed void
763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1385child_reap (EV_P_ int chain, int pid, int status)
764{ 1386{
765 ev_child *w; 1387 ev_child *w;
1388 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
766 1389
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1390 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1391 {
768 if (w->pid == pid || !w->pid) 1392 if ((w->pid == pid || !w->pid)
1393 && (!traced || (w->flags & 1)))
769 { 1394 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1395 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
771 w->rpid = pid; 1396 w->rpid = pid;
772 w->rstatus = status; 1397 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1398 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 1399 }
1400 }
775} 1401}
776 1402
777#ifndef WCONTINUED 1403#ifndef WCONTINUED
778# define WCONTINUED 0 1404# define WCONTINUED 0
779#endif 1405#endif
780 1406
1407/* called on sigchld etc., calls waitpid */
781static void 1408static void
782childcb (EV_P_ ev_signal *sw, int revents) 1409childcb (EV_P_ ev_signal *sw, int revents)
783{ 1410{
784 int pid, status; 1411 int pid, status;
785 1412
788 if (!WCONTINUED 1415 if (!WCONTINUED
789 || errno != EINVAL 1416 || errno != EINVAL
790 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1417 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
791 return; 1418 return;
792 1419
793 /* make sure we are called again until all childs have been reaped */ 1420 /* make sure we are called again until all children have been reaped */
794 /* we need to do it this way so that the callback gets called before we continue */ 1421 /* we need to do it this way so that the callback gets called before we continue */
795 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1422 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
796 1423
797 child_reap (EV_A_ sw, pid, pid, status); 1424 child_reap (EV_A_ pid, pid, status);
798 if (EV_PID_HASHSIZE > 1) 1425 if (EV_PID_HASHSIZE > 1)
799 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1426 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
800} 1427}
801 1428
802#endif 1429#endif
803 1430
804/*****************************************************************************/ 1431/*****************************************************************************/
866 /* kqueue is borked on everything but netbsd apparently */ 1493 /* kqueue is borked on everything but netbsd apparently */
867 /* it usually doesn't work correctly on anything but sockets and pipes */ 1494 /* it usually doesn't work correctly on anything but sockets and pipes */
868 flags &= ~EVBACKEND_KQUEUE; 1495 flags &= ~EVBACKEND_KQUEUE;
869#endif 1496#endif
870#ifdef __APPLE__ 1497#ifdef __APPLE__
871 // flags &= ~EVBACKEND_KQUEUE; for documentation 1498 /* only select works correctly on that "unix-certified" platform */
872 flags &= ~EVBACKEND_POLL; 1499 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1500 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
873#endif 1501#endif
874 1502
875 return flags; 1503 return flags;
876} 1504}
877 1505
878unsigned int 1506unsigned int
879ev_embeddable_backends (void) 1507ev_embeddable_backends (void)
880{ 1508{
881 return EVBACKEND_EPOLL 1509 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
882 | EVBACKEND_KQUEUE 1510
883 | EVBACKEND_PORT; 1511 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1512 /* please fix it and tell me how to detect the fix */
1513 flags &= ~EVBACKEND_EPOLL;
1514
1515 return flags;
884} 1516}
885 1517
886unsigned int 1518unsigned int
887ev_backend (EV_P) 1519ev_backend (EV_P)
888{ 1520{
889 return backend; 1521 return backend;
890} 1522}
891 1523
1524#if EV_MINIMAL < 2
1525unsigned int
1526ev_loop_count (EV_P)
1527{
1528 return loop_count;
1529}
1530
1531unsigned int
1532ev_loop_depth (EV_P)
1533{
1534 return loop_depth;
1535}
1536
1537void
1538ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1539{
1540 io_blocktime = interval;
1541}
1542
1543void
1544ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1545{
1546 timeout_blocktime = interval;
1547}
1548
1549void
1550ev_set_userdata (EV_P_ void *data)
1551{
1552 userdata = data;
1553}
1554
1555void *
1556ev_userdata (EV_P)
1557{
1558 return userdata;
1559}
1560
1561void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1562{
1563 invoke_cb = invoke_pending_cb;
1564}
1565
1566void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1567{
1568 release_cb = release;
1569 acquire_cb = acquire;
1570}
1571#endif
1572
1573/* initialise a loop structure, must be zero-initialised */
892static void noinline 1574static void noinline
893loop_init (EV_P_ unsigned int flags) 1575loop_init (EV_P_ unsigned int flags)
894{ 1576{
895 if (!backend) 1577 if (!backend)
896 { 1578 {
1579#if EV_USE_REALTIME
1580 if (!have_realtime)
1581 {
1582 struct timespec ts;
1583
1584 if (!clock_gettime (CLOCK_REALTIME, &ts))
1585 have_realtime = 1;
1586 }
1587#endif
1588
897#if EV_USE_MONOTONIC 1589#if EV_USE_MONOTONIC
1590 if (!have_monotonic)
898 { 1591 {
899 struct timespec ts; 1592 struct timespec ts;
1593
900 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1594 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
901 have_monotonic = 1; 1595 have_monotonic = 1;
902 } 1596 }
903#endif 1597#endif
904 1598
905 ev_rt_now = ev_time (); 1599 /* pid check not overridable via env */
906 mn_now = get_clock (); 1600#ifndef _WIN32
907 now_floor = mn_now; 1601 if (flags & EVFLAG_FORKCHECK)
908 rtmn_diff = ev_rt_now - mn_now; 1602 curpid = getpid ();
1603#endif
909 1604
910 if (!(flags & EVFLAG_NOENV) 1605 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1606 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1607 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1608 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1609
1610 ev_rt_now = ev_time ();
1611 mn_now = get_clock ();
1612 now_floor = mn_now;
1613 rtmn_diff = ev_rt_now - mn_now;
1614#if EV_MINIMAL < 2
1615 invoke_cb = ev_invoke_pending;
1616#endif
1617
1618 io_blocktime = 0.;
1619 timeout_blocktime = 0.;
1620 backend = 0;
1621 backend_fd = -1;
1622 sig_pending = 0;
1623#if EV_ASYNC_ENABLE
1624 async_pending = 0;
1625#endif
1626#if EV_USE_INOTIFY
1627 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1628#endif
1629#if EV_USE_SIGNALFD
1630 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1631#endif
1632
915 if (!(flags & 0x0000ffffUL)) 1633 if (!(flags & 0x0000ffffU))
916 flags |= ev_recommended_backends (); 1634 flags |= ev_recommended_backends ();
917
918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY
921 fs_fd = -2;
922#endif
923 1635
924#if EV_USE_PORT 1636#if EV_USE_PORT
925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1637 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
926#endif 1638#endif
927#if EV_USE_KQUEUE 1639#if EV_USE_KQUEUE
935#endif 1647#endif
936#if EV_USE_SELECT 1648#if EV_USE_SELECT
937 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1649 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
938#endif 1650#endif
939 1651
1652 ev_prepare_init (&pending_w, pendingcb);
1653
940 ev_init (&sigev, sigcb); 1654 ev_init (&pipe_w, pipecb);
941 ev_set_priority (&sigev, EV_MAXPRI); 1655 ev_set_priority (&pipe_w, EV_MAXPRI);
942 } 1656 }
943} 1657}
944 1658
1659/* free up a loop structure */
945static void noinline 1660static void noinline
946loop_destroy (EV_P) 1661loop_destroy (EV_P)
947{ 1662{
948 int i; 1663 int i;
1664
1665 if (ev_is_active (&pipe_w))
1666 {
1667 /*ev_ref (EV_A);*/
1668 /*ev_io_stop (EV_A_ &pipe_w);*/
1669
1670#if EV_USE_EVENTFD
1671 if (evfd >= 0)
1672 close (evfd);
1673#endif
1674
1675 if (evpipe [0] >= 0)
1676 {
1677 EV_WIN32_CLOSE_FD (evpipe [0]);
1678 EV_WIN32_CLOSE_FD (evpipe [1]);
1679 }
1680 }
1681
1682#if EV_USE_SIGNALFD
1683 if (ev_is_active (&sigfd_w))
1684 close (sigfd);
1685#endif
949 1686
950#if EV_USE_INOTIFY 1687#if EV_USE_INOTIFY
951 if (fs_fd >= 0) 1688 if (fs_fd >= 0)
952 close (fs_fd); 1689 close (fs_fd);
953#endif 1690#endif
970#if EV_USE_SELECT 1707#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1708 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1709#endif
973 1710
974 for (i = NUMPRI; i--; ) 1711 for (i = NUMPRI; i--; )
1712 {
975 array_free (pending, [i]); 1713 array_free (pending, [i]);
1714#if EV_IDLE_ENABLE
1715 array_free (idle, [i]);
1716#endif
1717 }
1718
1719 ev_free (anfds); anfds = 0; anfdmax = 0;
976 1720
977 /* have to use the microsoft-never-gets-it-right macro */ 1721 /* have to use the microsoft-never-gets-it-right macro */
1722 array_free (rfeed, EMPTY);
978 array_free (fdchange, EMPTY0); 1723 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1724 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1725#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1726 array_free (periodic, EMPTY);
982#endif 1727#endif
1728#if EV_FORK_ENABLE
983 array_free (idle, EMPTY0); 1729 array_free (fork, EMPTY);
1730#endif
984 array_free (prepare, EMPTY0); 1731 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1732 array_free (check, EMPTY);
1733#if EV_ASYNC_ENABLE
1734 array_free (async, EMPTY);
1735#endif
986 1736
987 backend = 0; 1737 backend = 0;
988} 1738}
989 1739
1740#if EV_USE_INOTIFY
990void inline_size infy_fork (EV_P); 1741inline_size void infy_fork (EV_P);
1742#endif
991 1743
992void inline_size 1744inline_size void
993loop_fork (EV_P) 1745loop_fork (EV_P)
994{ 1746{
995#if EV_USE_PORT 1747#if EV_USE_PORT
996 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1748 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
997#endif 1749#endif
1003#endif 1755#endif
1004#if EV_USE_INOTIFY 1756#if EV_USE_INOTIFY
1005 infy_fork (EV_A); 1757 infy_fork (EV_A);
1006#endif 1758#endif
1007 1759
1008 if (ev_is_active (&sigev)) 1760 if (ev_is_active (&pipe_w))
1009 { 1761 {
1010 /* default loop */ 1762 /* this "locks" the handlers against writing to the pipe */
1763 /* while we modify the fd vars */
1764 sig_pending = 1;
1765#if EV_ASYNC_ENABLE
1766 async_pending = 1;
1767#endif
1011 1768
1012 ev_ref (EV_A); 1769 ev_ref (EV_A);
1013 ev_io_stop (EV_A_ &sigev); 1770 ev_io_stop (EV_A_ &pipe_w);
1014 close (sigpipe [0]);
1015 close (sigpipe [1]);
1016 1771
1017 while (pipe (sigpipe)) 1772#if EV_USE_EVENTFD
1018 syserr ("(libev) error creating pipe"); 1773 if (evfd >= 0)
1774 close (evfd);
1775#endif
1019 1776
1777 if (evpipe [0] >= 0)
1778 {
1779 EV_WIN32_CLOSE_FD (evpipe [0]);
1780 EV_WIN32_CLOSE_FD (evpipe [1]);
1781 }
1782
1020 siginit (EV_A); 1783 evpipe_init (EV_A);
1784 /* now iterate over everything, in case we missed something */
1785 pipecb (EV_A_ &pipe_w, EV_READ);
1021 } 1786 }
1022 1787
1023 postfork = 0; 1788 postfork = 0;
1024} 1789}
1025 1790
1026#if EV_MULTIPLICITY 1791#if EV_MULTIPLICITY
1792
1027struct ev_loop * 1793struct ev_loop *
1028ev_loop_new (unsigned int flags) 1794ev_loop_new (unsigned int flags)
1029{ 1795{
1030 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1796 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1031 1797
1032 memset (loop, 0, sizeof (struct ev_loop)); 1798 memset (EV_A, 0, sizeof (struct ev_loop));
1033
1034 loop_init (EV_A_ flags); 1799 loop_init (EV_A_ flags);
1035 1800
1036 if (ev_backend (EV_A)) 1801 if (ev_backend (EV_A))
1037 return loop; 1802 return EV_A;
1038 1803
1039 return 0; 1804 return 0;
1040} 1805}
1041 1806
1042void 1807void
1047} 1812}
1048 1813
1049void 1814void
1050ev_loop_fork (EV_P) 1815ev_loop_fork (EV_P)
1051{ 1816{
1052 postfork = 1; 1817 postfork = 1; /* must be in line with ev_default_fork */
1053} 1818}
1819#endif /* multiplicity */
1054 1820
1821#if EV_VERIFY
1822static void noinline
1823verify_watcher (EV_P_ W w)
1824{
1825 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1826
1827 if (w->pending)
1828 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1829}
1830
1831static void noinline
1832verify_heap (EV_P_ ANHE *heap, int N)
1833{
1834 int i;
1835
1836 for (i = HEAP0; i < N + HEAP0; ++i)
1837 {
1838 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1839 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1840 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1841
1842 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1843 }
1844}
1845
1846static void noinline
1847array_verify (EV_P_ W *ws, int cnt)
1848{
1849 while (cnt--)
1850 {
1851 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1852 verify_watcher (EV_A_ ws [cnt]);
1853 }
1854}
1855#endif
1856
1857#if EV_MINIMAL < 2
1858void
1859ev_loop_verify (EV_P)
1860{
1861#if EV_VERIFY
1862 int i;
1863 WL w;
1864
1865 assert (activecnt >= -1);
1866
1867 assert (fdchangemax >= fdchangecnt);
1868 for (i = 0; i < fdchangecnt; ++i)
1869 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1870
1871 assert (anfdmax >= 0);
1872 for (i = 0; i < anfdmax; ++i)
1873 for (w = anfds [i].head; w; w = w->next)
1874 {
1875 verify_watcher (EV_A_ (W)w);
1876 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1877 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1878 }
1879
1880 assert (timermax >= timercnt);
1881 verify_heap (EV_A_ timers, timercnt);
1882
1883#if EV_PERIODIC_ENABLE
1884 assert (periodicmax >= periodiccnt);
1885 verify_heap (EV_A_ periodics, periodiccnt);
1886#endif
1887
1888 for (i = NUMPRI; i--; )
1889 {
1890 assert (pendingmax [i] >= pendingcnt [i]);
1891#if EV_IDLE_ENABLE
1892 assert (idleall >= 0);
1893 assert (idlemax [i] >= idlecnt [i]);
1894 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1895#endif
1896 }
1897
1898#if EV_FORK_ENABLE
1899 assert (forkmax >= forkcnt);
1900 array_verify (EV_A_ (W *)forks, forkcnt);
1901#endif
1902
1903#if EV_ASYNC_ENABLE
1904 assert (asyncmax >= asynccnt);
1905 array_verify (EV_A_ (W *)asyncs, asynccnt);
1906#endif
1907
1908 assert (preparemax >= preparecnt);
1909 array_verify (EV_A_ (W *)prepares, preparecnt);
1910
1911 assert (checkmax >= checkcnt);
1912 array_verify (EV_A_ (W *)checks, checkcnt);
1913
1914# if 0
1915 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1916 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1917# endif
1918#endif
1919}
1055#endif 1920#endif
1056 1921
1057#if EV_MULTIPLICITY 1922#if EV_MULTIPLICITY
1058struct ev_loop * 1923struct ev_loop *
1059ev_default_loop_init (unsigned int flags) 1924ev_default_loop_init (unsigned int flags)
1060#else 1925#else
1061int 1926int
1062ev_default_loop (unsigned int flags) 1927ev_default_loop (unsigned int flags)
1063#endif 1928#endif
1064{ 1929{
1065 if (sigpipe [0] == sigpipe [1])
1066 if (pipe (sigpipe))
1067 return 0;
1068
1069 if (!ev_default_loop_ptr) 1930 if (!ev_default_loop_ptr)
1070 { 1931 {
1071#if EV_MULTIPLICITY 1932#if EV_MULTIPLICITY
1072 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1933 EV_P = ev_default_loop_ptr = &default_loop_struct;
1073#else 1934#else
1074 ev_default_loop_ptr = 1; 1935 ev_default_loop_ptr = 1;
1075#endif 1936#endif
1076 1937
1077 loop_init (EV_A_ flags); 1938 loop_init (EV_A_ flags);
1078 1939
1079 if (ev_backend (EV_A)) 1940 if (ev_backend (EV_A))
1080 { 1941 {
1081 siginit (EV_A);
1082
1083#ifndef _WIN32 1942#ifndef _WIN32
1084 ev_signal_init (&childev, childcb, SIGCHLD); 1943 ev_signal_init (&childev, childcb, SIGCHLD);
1085 ev_set_priority (&childev, EV_MAXPRI); 1944 ev_set_priority (&childev, EV_MAXPRI);
1086 ev_signal_start (EV_A_ &childev); 1945 ev_signal_start (EV_A_ &childev);
1087 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1946 ev_unref (EV_A); /* child watcher should not keep loop alive */
1096 1955
1097void 1956void
1098ev_default_destroy (void) 1957ev_default_destroy (void)
1099{ 1958{
1100#if EV_MULTIPLICITY 1959#if EV_MULTIPLICITY
1101 struct ev_loop *loop = ev_default_loop_ptr; 1960 EV_P = ev_default_loop_ptr;
1102#endif 1961#endif
1962
1963 ev_default_loop_ptr = 0;
1103 1964
1104#ifndef _WIN32 1965#ifndef _WIN32
1105 ev_ref (EV_A); /* child watcher */ 1966 ev_ref (EV_A); /* child watcher */
1106 ev_signal_stop (EV_A_ &childev); 1967 ev_signal_stop (EV_A_ &childev);
1107#endif 1968#endif
1108 1969
1109 ev_ref (EV_A); /* signal watcher */
1110 ev_io_stop (EV_A_ &sigev);
1111
1112 close (sigpipe [0]); sigpipe [0] = 0;
1113 close (sigpipe [1]); sigpipe [1] = 0;
1114
1115 loop_destroy (EV_A); 1970 loop_destroy (EV_A);
1116} 1971}
1117 1972
1118void 1973void
1119ev_default_fork (void) 1974ev_default_fork (void)
1120{ 1975{
1121#if EV_MULTIPLICITY 1976#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr; 1977 EV_P = ev_default_loop_ptr;
1123#endif 1978#endif
1124 1979
1125 if (backend) 1980 postfork = 1; /* must be in line with ev_loop_fork */
1126 postfork = 1;
1127} 1981}
1128 1982
1129/*****************************************************************************/ 1983/*****************************************************************************/
1130 1984
1131int inline_size 1985void
1132any_pending (EV_P) 1986ev_invoke (EV_P_ void *w, int revents)
1987{
1988 EV_CB_INVOKE ((W)w, revents);
1989}
1990
1991unsigned int
1992ev_pending_count (EV_P)
1133{ 1993{
1134 int pri; 1994 int pri;
1995 unsigned int count = 0;
1135 1996
1136 for (pri = NUMPRI; pri--; ) 1997 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri]) 1998 count += pendingcnt [pri];
1138 return 1;
1139 1999
1140 return 0; 2000 return count;
1141} 2001}
1142 2002
1143void inline_speed 2003void noinline
1144call_pending (EV_P) 2004ev_invoke_pending (EV_P)
1145{ 2005{
1146 int pri; 2006 int pri;
1147 2007
1148 for (pri = NUMPRI; pri--; ) 2008 for (pri = NUMPRI; pri--; )
1149 while (pendingcnt [pri]) 2009 while (pendingcnt [pri])
1150 { 2010 {
1151 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2011 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1152 2012
1153 if (expect_true (p->w))
1154 {
1155 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2013 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2014 /* ^ this is no longer true, as pending_w could be here */
1156 2015
1157 p->w->pending = 0; 2016 p->w->pending = 0;
1158 EV_CB_INVOKE (p->w, p->events); 2017 EV_CB_INVOKE (p->w, p->events);
1159 } 2018 EV_FREQUENT_CHECK;
1160 } 2019 }
1161} 2020}
1162 2021
1163void inline_size 2022#if EV_IDLE_ENABLE
2023/* make idle watchers pending. this handles the "call-idle */
2024/* only when higher priorities are idle" logic */
2025inline_size void
2026idle_reify (EV_P)
2027{
2028 if (expect_false (idleall))
2029 {
2030 int pri;
2031
2032 for (pri = NUMPRI; pri--; )
2033 {
2034 if (pendingcnt [pri])
2035 break;
2036
2037 if (idlecnt [pri])
2038 {
2039 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2040 break;
2041 }
2042 }
2043 }
2044}
2045#endif
2046
2047/* make timers pending */
2048inline_size void
1164timers_reify (EV_P) 2049timers_reify (EV_P)
1165{ 2050{
2051 EV_FREQUENT_CHECK;
2052
1166 while (timercnt && ((WT)timers [0])->at <= mn_now) 2053 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1167 { 2054 {
1168 ev_timer *w = timers [0]; 2055 do
1169
1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1171
1172 /* first reschedule or stop timer */
1173 if (w->repeat)
1174 { 2056 {
2057 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2058
2059 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2060
2061 /* first reschedule or stop timer */
2062 if (w->repeat)
2063 {
2064 ev_at (w) += w->repeat;
2065 if (ev_at (w) < mn_now)
2066 ev_at (w) = mn_now;
2067
1175 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2068 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1176 2069
1177 ((WT)w)->at += w->repeat; 2070 ANHE_at_cache (timers [HEAP0]);
1178 if (((WT)w)->at < mn_now)
1179 ((WT)w)->at = mn_now;
1180
1181 downheap ((WT *)timers, timercnt, 0); 2071 downheap (timers, timercnt, HEAP0);
2072 }
2073 else
2074 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2075
2076 EV_FREQUENT_CHECK;
2077 feed_reverse (EV_A_ (W)w);
1182 } 2078 }
1183 else 2079 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1185 2080
1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2081 feed_reverse_done (EV_A_ EV_TIMEOUT);
1187 } 2082 }
1188} 2083}
1189 2084
1190#if EV_PERIODIC_ENABLE 2085#if EV_PERIODIC_ENABLE
1191void inline_size 2086/* make periodics pending */
2087inline_size void
1192periodics_reify (EV_P) 2088periodics_reify (EV_P)
1193{ 2089{
2090 EV_FREQUENT_CHECK;
2091
1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2092 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1195 { 2093 {
1196 ev_periodic *w = periodics [0]; 2094 int feed_count = 0;
1197 2095
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2096 do
1199
1200 /* first reschedule or stop timer */
1201 if (w->reschedule_cb)
1202 { 2097 {
2098 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2099
2100 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2101
2102 /* first reschedule or stop timer */
2103 if (w->reschedule_cb)
2104 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2105 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2106
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2107 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2108
2109 ANHE_at_cache (periodics [HEAP0]);
1205 downheap ((WT *)periodics, periodiccnt, 0); 2110 downheap (periodics, periodiccnt, HEAP0);
2111 }
2112 else if (w->interval)
2113 {
2114 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2115 /* if next trigger time is not sufficiently in the future, put it there */
2116 /* this might happen because of floating point inexactness */
2117 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2118 {
2119 ev_at (w) += w->interval;
2120
2121 /* if interval is unreasonably low we might still have a time in the past */
2122 /* so correct this. this will make the periodic very inexact, but the user */
2123 /* has effectively asked to get triggered more often than possible */
2124 if (ev_at (w) < ev_rt_now)
2125 ev_at (w) = ev_rt_now;
2126 }
2127
2128 ANHE_at_cache (periodics [HEAP0]);
2129 downheap (periodics, periodiccnt, HEAP0);
2130 }
2131 else
2132 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2133
2134 EV_FREQUENT_CHECK;
2135 feed_reverse (EV_A_ (W)w);
1206 } 2136 }
1207 else if (w->interval) 2137 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1208 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1211 downheap ((WT *)periodics, periodiccnt, 0);
1212 }
1213 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1215 2138
1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2139 feed_reverse_done (EV_A_ EV_PERIODIC);
1217 } 2140 }
1218} 2141}
1219 2142
2143/* simply recalculate all periodics */
2144/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1220static void noinline 2145static void noinline
1221periodics_reschedule (EV_P) 2146periodics_reschedule (EV_P)
1222{ 2147{
1223 int i; 2148 int i;
1224 2149
1225 /* adjust periodics after time jump */ 2150 /* adjust periodics after time jump */
1226 for (i = 0; i < periodiccnt; ++i) 2151 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1227 { 2152 {
1228 ev_periodic *w = periodics [i]; 2153 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1229 2154
1230 if (w->reschedule_cb) 2155 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2156 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval) 2157 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2158 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2159
2160 ANHE_at_cache (periodics [i]);
2161 }
2162
2163 reheap (periodics, periodiccnt);
2164}
2165#endif
2166
2167/* adjust all timers by a given offset */
2168static void noinline
2169timers_reschedule (EV_P_ ev_tstamp adjust)
2170{
2171 int i;
2172
2173 for (i = 0; i < timercnt; ++i)
1234 } 2174 {
1235 2175 ANHE *he = timers + i + HEAP0;
1236 /* now rebuild the heap */ 2176 ANHE_w (*he)->at += adjust;
1237 for (i = periodiccnt >> 1; i--; ) 2177 ANHE_at_cache (*he);
1238 downheap ((WT *)periodics, periodiccnt, i); 2178 }
1239} 2179}
1240#endif
1241 2180
1242int inline_size 2181/* fetch new monotonic and realtime times from the kernel */
1243time_update_monotonic (EV_P) 2182/* also detect if there was a timejump, and act accordingly */
2183inline_speed void
2184time_update (EV_P_ ev_tstamp max_block)
1244{ 2185{
2186#if EV_USE_MONOTONIC
2187 if (expect_true (have_monotonic))
2188 {
2189 int i;
2190 ev_tstamp odiff = rtmn_diff;
2191
1245 mn_now = get_clock (); 2192 mn_now = get_clock ();
1246 2193
2194 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2195 /* interpolate in the meantime */
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2196 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 { 2197 {
1249 ev_rt_now = rtmn_diff + mn_now; 2198 ev_rt_now = rtmn_diff + mn_now;
1250 return 0; 2199 return;
1251 } 2200 }
1252 else 2201
1253 {
1254 now_floor = mn_now; 2202 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 2203 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 2204
1260void inline_size 2205 /* loop a few times, before making important decisions.
1261time_update (EV_P) 2206 * on the choice of "4": one iteration isn't enough,
1262{ 2207 * in case we get preempted during the calls to
1263 int i; 2208 * ev_time and get_clock. a second call is almost guaranteed
1264 2209 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 2210 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 2211 * in the unlikely event of having been preempted here.
1267 { 2212 */
1268 if (time_update_monotonic (EV_A)) 2213 for (i = 4; --i; )
1269 { 2214 {
1270 ev_tstamp odiff = rtmn_diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 2215 rtmn_diff = ev_rt_now - mn_now;
1283 2216
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2217 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1285 return; /* all is well */ 2218 return; /* all is well */
1286 2219
1287 ev_rt_now = ev_time (); 2220 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 2221 mn_now = get_clock ();
1289 now_floor = mn_now; 2222 now_floor = mn_now;
1290 } 2223 }
1291 2224
2225 /* no timer adjustment, as the monotonic clock doesn't jump */
2226 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1292# if EV_PERIODIC_ENABLE 2227# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 2228 periodics_reschedule (EV_A);
1294# endif 2229# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 2230 }
1299 else 2231 else
1300#endif 2232#endif
1301 { 2233 {
1302 ev_rt_now = ev_time (); 2234 ev_rt_now = ev_time ();
1303 2235
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2236 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 2237 {
2238 /* adjust timers. this is easy, as the offset is the same for all of them */
2239 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1306#if EV_PERIODIC_ENABLE 2240#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 2241 periodics_reschedule (EV_A);
1308#endif 2242#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */
1311 for (i = 0; i < timercnt; ++i)
1312 ((WT)timers [i])->at += ev_rt_now - mn_now;
1313 } 2243 }
1314 2244
1315 mn_now = ev_rt_now; 2245 mn_now = ev_rt_now;
1316 } 2246 }
1317} 2247}
1318 2248
1319void 2249void
1320ev_ref (EV_P)
1321{
1322 ++activecnt;
1323}
1324
1325void
1326ev_unref (EV_P)
1327{
1328 --activecnt;
1329}
1330
1331static int loop_done;
1332
1333void
1334ev_loop (EV_P_ int flags) 2250ev_loop (EV_P_ int flags)
1335{ 2251{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2252#if EV_MINIMAL < 2
1337 ? EVUNLOOP_ONE 2253 ++loop_depth;
1338 : EVUNLOOP_CANCEL; 2254#endif
1339 2255
1340 while (activecnt) 2256 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2257
2258 loop_done = EVUNLOOP_CANCEL;
2259
2260 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2261
2262 do
1341 { 2263 {
1342 /* we might have forked, so reify kernel state if necessary */ 2264#if EV_VERIFY >= 2
2265 ev_loop_verify (EV_A);
2266#endif
2267
2268#ifndef _WIN32
2269 if (expect_false (curpid)) /* penalise the forking check even more */
2270 if (expect_false (getpid () != curpid))
2271 {
2272 curpid = getpid ();
2273 postfork = 1;
2274 }
2275#endif
2276
1343 #if EV_FORK_ENABLE 2277#if EV_FORK_ENABLE
2278 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 2279 if (expect_false (postfork))
1345 if (forkcnt) 2280 if (forkcnt)
1346 { 2281 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2282 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 2283 EV_INVOKE_PENDING;
1349 } 2284 }
1350 #endif 2285#endif
1351 2286
1352 /* queue check watchers (and execute them) */ 2287 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 2288 if (expect_false (preparecnt))
1354 { 2289 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2290 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 2291 EV_INVOKE_PENDING;
1357 } 2292 }
2293
2294 if (expect_false (loop_done))
2295 break;
1358 2296
1359 /* we might have forked, so reify kernel state if necessary */ 2297 /* we might have forked, so reify kernel state if necessary */
1360 if (expect_false (postfork)) 2298 if (expect_false (postfork))
1361 loop_fork (EV_A); 2299 loop_fork (EV_A);
1362 2300
1363 /* update fd-related kernel structures */ 2301 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 2302 fd_reify (EV_A);
1365 2303
1366 /* calculate blocking time */ 2304 /* calculate blocking time */
1367 { 2305 {
1368 double block; 2306 ev_tstamp waittime = 0.;
2307 ev_tstamp sleeptime = 0.;
1369 2308
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 2309 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1371 block = 0.; /* do not block at all */
1372 else
1373 { 2310 {
2311 /* remember old timestamp for io_blocktime calculation */
2312 ev_tstamp prev_mn_now = mn_now;
2313
1374 /* update time to cancel out callback processing overhead */ 2314 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A); 2315 time_update (EV_A_ 1e100);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384 2316
1385 block = MAX_BLOCKTIME; 2317 waittime = MAX_BLOCKTIME;
1386 2318
1387 if (timercnt) 2319 if (timercnt)
1388 { 2320 {
1389 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2321 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1390 if (block > to) block = to; 2322 if (waittime > to) waittime = to;
1391 } 2323 }
1392 2324
1393#if EV_PERIODIC_ENABLE 2325#if EV_PERIODIC_ENABLE
1394 if (periodiccnt) 2326 if (periodiccnt)
1395 { 2327 {
1396 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2328 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1397 if (block > to) block = to; 2329 if (waittime > to) waittime = to;
1398 } 2330 }
1399#endif 2331#endif
1400 2332
2333 /* don't let timeouts decrease the waittime below timeout_blocktime */
2334 if (expect_false (waittime < timeout_blocktime))
2335 waittime = timeout_blocktime;
2336
2337 /* extra check because io_blocktime is commonly 0 */
1401 if (expect_false (block < 0.)) block = 0.; 2338 if (expect_false (io_blocktime))
2339 {
2340 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2341
2342 if (sleeptime > waittime - backend_fudge)
2343 sleeptime = waittime - backend_fudge;
2344
2345 if (expect_true (sleeptime > 0.))
2346 {
2347 ev_sleep (sleeptime);
2348 waittime -= sleeptime;
2349 }
2350 }
1402 } 2351 }
1403 2352
2353#if EV_MINIMAL < 2
2354 ++loop_count;
2355#endif
2356 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1404 backend_poll (EV_A_ block); 2357 backend_poll (EV_A_ waittime);
2358 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2359
2360 /* update ev_rt_now, do magic */
2361 time_update (EV_A_ waittime + sleeptime);
1405 } 2362 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 2363
1410 /* queue pending timers and reschedule them */ 2364 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 2365 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 2366#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 2367 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 2368#endif
1415 2369
2370#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 2371 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 2372 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2373#endif
1419 2374
1420 /* queue check watchers, to be executed first */ 2375 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 2376 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2377 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1423 2378
1424 call_pending (EV_A); 2379 EV_INVOKE_PENDING;
1425
1426 if (expect_false (loop_done))
1427 break;
1428 } 2380 }
2381 while (expect_true (
2382 activecnt
2383 && !loop_done
2384 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2385 ));
1429 2386
1430 if (loop_done == EVUNLOOP_ONE) 2387 if (loop_done == EVUNLOOP_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 2388 loop_done = EVUNLOOP_CANCEL;
2389
2390#if EV_MINIMAL < 2
2391 --loop_depth;
2392#endif
1432} 2393}
1433 2394
1434void 2395void
1435ev_unloop (EV_P_ int how) 2396ev_unloop (EV_P_ int how)
1436{ 2397{
1437 loop_done = how; 2398 loop_done = how;
1438} 2399}
1439 2400
2401void
2402ev_ref (EV_P)
2403{
2404 ++activecnt;
2405}
2406
2407void
2408ev_unref (EV_P)
2409{
2410 --activecnt;
2411}
2412
2413void
2414ev_now_update (EV_P)
2415{
2416 time_update (EV_A_ 1e100);
2417}
2418
2419void
2420ev_suspend (EV_P)
2421{
2422 ev_now_update (EV_A);
2423}
2424
2425void
2426ev_resume (EV_P)
2427{
2428 ev_tstamp mn_prev = mn_now;
2429
2430 ev_now_update (EV_A);
2431 timers_reschedule (EV_A_ mn_now - mn_prev);
2432#if EV_PERIODIC_ENABLE
2433 /* TODO: really do this? */
2434 periodics_reschedule (EV_A);
2435#endif
2436}
2437
1440/*****************************************************************************/ 2438/*****************************************************************************/
2439/* singly-linked list management, used when the expected list length is short */
1441 2440
1442void inline_size 2441inline_size void
1443wlist_add (WL *head, WL elem) 2442wlist_add (WL *head, WL elem)
1444{ 2443{
1445 elem->next = *head; 2444 elem->next = *head;
1446 *head = elem; 2445 *head = elem;
1447} 2446}
1448 2447
1449void inline_size 2448inline_size void
1450wlist_del (WL *head, WL elem) 2449wlist_del (WL *head, WL elem)
1451{ 2450{
1452 while (*head) 2451 while (*head)
1453 { 2452 {
1454 if (*head == elem) 2453 if (expect_true (*head == elem))
1455 { 2454 {
1456 *head = elem->next; 2455 *head = elem->next;
1457 return; 2456 break;
1458 } 2457 }
1459 2458
1460 head = &(*head)->next; 2459 head = &(*head)->next;
1461 } 2460 }
1462} 2461}
1463 2462
1464void inline_speed 2463/* internal, faster, version of ev_clear_pending */
2464inline_speed void
1465ev_clear_pending (EV_P_ W w) 2465clear_pending (EV_P_ W w)
1466{ 2466{
1467 if (w->pending) 2467 if (w->pending)
1468 { 2468 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2469 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1470 w->pending = 0; 2470 w->pending = 0;
1471 } 2471 }
1472} 2472}
1473 2473
1474void inline_speed 2474int
2475ev_clear_pending (EV_P_ void *w)
2476{
2477 W w_ = (W)w;
2478 int pending = w_->pending;
2479
2480 if (expect_true (pending))
2481 {
2482 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2483 p->w = (W)&pending_w;
2484 w_->pending = 0;
2485 return p->events;
2486 }
2487 else
2488 return 0;
2489}
2490
2491inline_size void
2492pri_adjust (EV_P_ W w)
2493{
2494 int pri = ev_priority (w);
2495 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2496 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2497 ev_set_priority (w, pri);
2498}
2499
2500inline_speed void
1475ev_start (EV_P_ W w, int active) 2501ev_start (EV_P_ W w, int active)
1476{ 2502{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2503 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 2504 w->active = active;
1481 ev_ref (EV_A); 2505 ev_ref (EV_A);
1482} 2506}
1483 2507
1484void inline_size 2508inline_size void
1485ev_stop (EV_P_ W w) 2509ev_stop (EV_P_ W w)
1486{ 2510{
1487 ev_unref (EV_A); 2511 ev_unref (EV_A);
1488 w->active = 0; 2512 w->active = 0;
1489} 2513}
1490 2514
1491/*****************************************************************************/ 2515/*****************************************************************************/
1492 2516
1493void 2517void noinline
1494ev_io_start (EV_P_ ev_io *w) 2518ev_io_start (EV_P_ ev_io *w)
1495{ 2519{
1496 int fd = w->fd; 2520 int fd = w->fd;
1497 2521
1498 if (expect_false (ev_is_active (w))) 2522 if (expect_false (ev_is_active (w)))
1499 return; 2523 return;
1500 2524
1501 assert (("ev_io_start called with negative fd", fd >= 0)); 2525 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2526 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2527
2528 EV_FREQUENT_CHECK;
1502 2529
1503 ev_start (EV_A_ (W)w, 1); 2530 ev_start (EV_A_ (W)w, 1);
1504 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2531 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2532 wlist_add (&anfds[fd].head, (WL)w);
1506 2533
1507 fd_change (EV_A_ fd); 2534 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1508} 2535 w->events &= ~EV__IOFDSET;
1509 2536
1510void 2537 EV_FREQUENT_CHECK;
2538}
2539
2540void noinline
1511ev_io_stop (EV_P_ ev_io *w) 2541ev_io_stop (EV_P_ ev_io *w)
1512{ 2542{
1513 ev_clear_pending (EV_A_ (W)w); 2543 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 2544 if (expect_false (!ev_is_active (w)))
1515 return; 2545 return;
1516 2546
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2547 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 2548
2549 EV_FREQUENT_CHECK;
2550
1519 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2551 wlist_del (&anfds[w->fd].head, (WL)w);
1520 ev_stop (EV_A_ (W)w); 2552 ev_stop (EV_A_ (W)w);
1521 2553
1522 fd_change (EV_A_ w->fd); 2554 fd_change (EV_A_ w->fd, 1);
1523}
1524 2555
1525void 2556 EV_FREQUENT_CHECK;
2557}
2558
2559void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 2560ev_timer_start (EV_P_ ev_timer *w)
1527{ 2561{
1528 if (expect_false (ev_is_active (w))) 2562 if (expect_false (ev_is_active (w)))
1529 return; 2563 return;
1530 2564
1531 ((WT)w)->at += mn_now; 2565 ev_at (w) += mn_now;
1532 2566
1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2567 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1534 2568
2569 EV_FREQUENT_CHECK;
2570
2571 ++timercnt;
1535 ev_start (EV_A_ (W)w, ++timercnt); 2572 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2573 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1537 timers [timercnt - 1] = w; 2574 ANHE_w (timers [ev_active (w)]) = (WT)w;
1538 upheap ((WT *)timers, timercnt - 1); 2575 ANHE_at_cache (timers [ev_active (w)]);
2576 upheap (timers, ev_active (w));
1539 2577
2578 EV_FREQUENT_CHECK;
2579
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2580 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1541} 2581}
1542 2582
1543void 2583void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 2584ev_timer_stop (EV_P_ ev_timer *w)
1545{ 2585{
1546 ev_clear_pending (EV_A_ (W)w); 2586 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 2587 if (expect_false (!ev_is_active (w)))
1548 return; 2588 return;
1549 2589
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2590 EV_FREQUENT_CHECK;
1551 2591
1552 { 2592 {
1553 int active = ((W)w)->active; 2593 int active = ev_active (w);
1554 2594
2595 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2596
2597 --timercnt;
2598
1555 if (expect_true (--active < --timercnt)) 2599 if (expect_true (active < timercnt + HEAP0))
1556 { 2600 {
1557 timers [active] = timers [timercnt]; 2601 timers [active] = timers [timercnt + HEAP0];
1558 adjustheap ((WT *)timers, timercnt, active); 2602 adjustheap (timers, timercnt, active);
1559 } 2603 }
1560 } 2604 }
1561 2605
1562 ((WT)w)->at -= mn_now; 2606 ev_at (w) -= mn_now;
1563 2607
1564 ev_stop (EV_A_ (W)w); 2608 ev_stop (EV_A_ (W)w);
1565}
1566 2609
1567void 2610 EV_FREQUENT_CHECK;
2611}
2612
2613void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 2614ev_timer_again (EV_P_ ev_timer *w)
1569{ 2615{
2616 EV_FREQUENT_CHECK;
2617
1570 if (ev_is_active (w)) 2618 if (ev_is_active (w))
1571 { 2619 {
1572 if (w->repeat) 2620 if (w->repeat)
1573 { 2621 {
1574 ((WT)w)->at = mn_now + w->repeat; 2622 ev_at (w) = mn_now + w->repeat;
2623 ANHE_at_cache (timers [ev_active (w)]);
1575 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2624 adjustheap (timers, timercnt, ev_active (w));
1576 } 2625 }
1577 else 2626 else
1578 ev_timer_stop (EV_A_ w); 2627 ev_timer_stop (EV_A_ w);
1579 } 2628 }
1580 else if (w->repeat) 2629 else if (w->repeat)
1581 { 2630 {
1582 w->at = w->repeat; 2631 ev_at (w) = w->repeat;
1583 ev_timer_start (EV_A_ w); 2632 ev_timer_start (EV_A_ w);
1584 } 2633 }
2634
2635 EV_FREQUENT_CHECK;
2636}
2637
2638ev_tstamp
2639ev_timer_remaining (EV_P_ ev_timer *w)
2640{
2641 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1585} 2642}
1586 2643
1587#if EV_PERIODIC_ENABLE 2644#if EV_PERIODIC_ENABLE
1588void 2645void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 2646ev_periodic_start (EV_P_ ev_periodic *w)
1590{ 2647{
1591 if (expect_false (ev_is_active (w))) 2648 if (expect_false (ev_is_active (w)))
1592 return; 2649 return;
1593 2650
1594 if (w->reschedule_cb) 2651 if (w->reschedule_cb)
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2652 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 2653 else if (w->interval)
1597 { 2654 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2655 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 2656 /* this formula differs from the one in periodic_reify because we do not always round up */
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1601 } 2658 }
2659 else
2660 ev_at (w) = w->offset;
1602 2661
2662 EV_FREQUENT_CHECK;
2663
2664 ++periodiccnt;
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 2665 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2666 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 2667 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 2668 ANHE_at_cache (periodics [ev_active (w)]);
2669 upheap (periodics, ev_active (w));
1607 2670
2671 EV_FREQUENT_CHECK;
2672
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2673 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1609} 2674}
1610 2675
1611void 2676void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 2677ev_periodic_stop (EV_P_ ev_periodic *w)
1613{ 2678{
1614 ev_clear_pending (EV_A_ (W)w); 2679 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 2680 if (expect_false (!ev_is_active (w)))
1616 return; 2681 return;
1617 2682
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2683 EV_FREQUENT_CHECK;
1619 2684
1620 { 2685 {
1621 int active = ((W)w)->active; 2686 int active = ev_active (w);
1622 2687
2688 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2689
2690 --periodiccnt;
2691
1623 if (expect_true (--active < --periodiccnt)) 2692 if (expect_true (active < periodiccnt + HEAP0))
1624 { 2693 {
1625 periodics [active] = periodics [periodiccnt]; 2694 periodics [active] = periodics [periodiccnt + HEAP0];
1626 adjustheap ((WT *)periodics, periodiccnt, active); 2695 adjustheap (periodics, periodiccnt, active);
1627 } 2696 }
1628 } 2697 }
1629 2698
1630 ev_stop (EV_A_ (W)w); 2699 ev_stop (EV_A_ (W)w);
1631}
1632 2700
1633void 2701 EV_FREQUENT_CHECK;
2702}
2703
2704void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 2705ev_periodic_again (EV_P_ ev_periodic *w)
1635{ 2706{
1636 /* TODO: use adjustheap and recalculation */ 2707 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 2708 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 2709 ev_periodic_start (EV_A_ w);
1641 2712
1642#ifndef SA_RESTART 2713#ifndef SA_RESTART
1643# define SA_RESTART 0 2714# define SA_RESTART 0
1644#endif 2715#endif
1645 2716
1646void 2717void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 2718ev_signal_start (EV_P_ ev_signal *w)
1648{ 2719{
1649#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif
1652 if (expect_false (ev_is_active (w))) 2720 if (expect_false (ev_is_active (w)))
1653 return; 2721 return;
1654 2722
1655 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2723 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2724
2725#if EV_MULTIPLICITY
2726 assert (("libev: a signal must not be attached to two different loops",
2727 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2728
2729 signals [w->signum - 1].loop = EV_A;
2730#endif
2731
2732 EV_FREQUENT_CHECK;
2733
2734#if EV_USE_SIGNALFD
2735 if (sigfd == -2)
2736 {
2737 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2738 if (sigfd < 0 && errno == EINVAL)
2739 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2740
2741 if (sigfd >= 0)
2742 {
2743 fd_intern (sigfd); /* doing it twice will not hurt */
2744
2745 sigemptyset (&sigfd_set);
2746
2747 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2748 ev_set_priority (&sigfd_w, EV_MAXPRI);
2749 ev_io_start (EV_A_ &sigfd_w);
2750 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2751 }
2752 }
2753
2754 if (sigfd >= 0)
2755 {
2756 /* TODO: check .head */
2757 sigaddset (&sigfd_set, w->signum);
2758 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2759
2760 signalfd (sigfd, &sigfd_set, 0);
2761 }
2762#endif
1656 2763
1657 ev_start (EV_A_ (W)w, 1); 2764 ev_start (EV_A_ (W)w, 1);
1658 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1659 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2765 wlist_add (&signals [w->signum - 1].head, (WL)w);
1660 2766
1661 if (!((WL)w)->next) 2767 if (!((WL)w)->next)
2768# if EV_USE_SIGNALFD
2769 if (sigfd < 0) /*TODO*/
2770# endif
1662 { 2771 {
1663#if _WIN32 2772# ifdef _WIN32
2773 evpipe_init (EV_A);
2774
1664 signal (w->signum, sighandler); 2775 signal (w->signum, ev_sighandler);
1665#else 2776# else
1666 struct sigaction sa; 2777 struct sigaction sa;
2778
2779 evpipe_init (EV_A);
2780
1667 sa.sa_handler = sighandler; 2781 sa.sa_handler = ev_sighandler;
1668 sigfillset (&sa.sa_mask); 2782 sigfillset (&sa.sa_mask);
1669 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2783 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1670 sigaction (w->signum, &sa, 0); 2784 sigaction (w->signum, &sa, 0);
2785
2786 sigemptyset (&sa.sa_mask);
2787 sigaddset (&sa.sa_mask, w->signum);
2788 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1671#endif 2789#endif
1672 } 2790 }
1673}
1674 2791
1675void 2792 EV_FREQUENT_CHECK;
2793}
2794
2795void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 2796ev_signal_stop (EV_P_ ev_signal *w)
1677{ 2797{
1678 ev_clear_pending (EV_A_ (W)w); 2798 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 2799 if (expect_false (!ev_is_active (w)))
1680 return; 2800 return;
1681 2801
2802 EV_FREQUENT_CHECK;
2803
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2804 wlist_del (&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 2805 ev_stop (EV_A_ (W)w);
1684 2806
1685 if (!signals [w->signum - 1].head) 2807 if (!signals [w->signum - 1].head)
2808 {
2809#if EV_MULTIPLICITY
2810 signals [w->signum - 1].loop = 0; /* unattach from signal */
2811#endif
2812#if EV_USE_SIGNALFD
2813 if (sigfd >= 0)
2814 {
2815 sigset_t ss;
2816
2817 sigemptyset (&ss);
2818 sigaddset (&ss, w->signum);
2819 sigdelset (&sigfd_set, w->signum);
2820
2821 signalfd (sigfd, &sigfd_set, 0);
2822 sigprocmask (SIG_UNBLOCK, &ss, 0);
2823 }
2824 else
2825#endif
1686 signal (w->signum, SIG_DFL); 2826 signal (w->signum, SIG_DFL);
2827 }
2828
2829 EV_FREQUENT_CHECK;
1687} 2830}
1688 2831
1689void 2832void
1690ev_child_start (EV_P_ ev_child *w) 2833ev_child_start (EV_P_ ev_child *w)
1691{ 2834{
1692#if EV_MULTIPLICITY 2835#if EV_MULTIPLICITY
1693 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2836 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1694#endif 2837#endif
1695 if (expect_false (ev_is_active (w))) 2838 if (expect_false (ev_is_active (w)))
1696 return; 2839 return;
1697 2840
2841 EV_FREQUENT_CHECK;
2842
1698 ev_start (EV_A_ (W)w, 1); 2843 ev_start (EV_A_ (W)w, 1);
1699 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2844 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2845
2846 EV_FREQUENT_CHECK;
1700} 2847}
1701 2848
1702void 2849void
1703ev_child_stop (EV_P_ ev_child *w) 2850ev_child_stop (EV_P_ ev_child *w)
1704{ 2851{
1705 ev_clear_pending (EV_A_ (W)w); 2852 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 2853 if (expect_false (!ev_is_active (w)))
1707 return; 2854 return;
1708 2855
2856 EV_FREQUENT_CHECK;
2857
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2858 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 2859 ev_stop (EV_A_ (W)w);
2860
2861 EV_FREQUENT_CHECK;
1711} 2862}
1712 2863
1713#if EV_STAT_ENABLE 2864#if EV_STAT_ENABLE
1714 2865
1715# ifdef _WIN32 2866# ifdef _WIN32
1716# undef lstat 2867# undef lstat
1717# define lstat(a,b) _stati64 (a,b) 2868# define lstat(a,b) _stati64 (a,b)
1718# endif 2869# endif
1719 2870
1720#define DEF_STAT_INTERVAL 5.0074891 2871#define DEF_STAT_INTERVAL 5.0074891
2872#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1721#define MIN_STAT_INTERVAL 0.1074891 2873#define MIN_STAT_INTERVAL 0.1074891
1722 2874
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2875static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 2876
1725#if EV_USE_INOTIFY 2877#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 2878
2879/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2880# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1727 2881
1728static void noinline 2882static void noinline
1729infy_add (EV_P_ ev_stat *w) 2883infy_add (EV_P_ ev_stat *w)
1730{ 2884{
1731 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2885 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1732 2886
1733 if (w->wd < 0) 2887 if (w->wd >= 0)
2888 {
2889 struct statfs sfs;
2890
2891 /* now local changes will be tracked by inotify, but remote changes won't */
2892 /* unless the filesystem is known to be local, we therefore still poll */
2893 /* also do poll on <2.6.25, but with normal frequency */
2894
2895 if (!fs_2625)
2896 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2897 else if (!statfs (w->path, &sfs)
2898 && (sfs.f_type == 0x1373 /* devfs */
2899 || sfs.f_type == 0xEF53 /* ext2/3 */
2900 || sfs.f_type == 0x3153464a /* jfs */
2901 || sfs.f_type == 0x52654973 /* reiser3 */
2902 || sfs.f_type == 0x01021994 /* tempfs */
2903 || sfs.f_type == 0x58465342 /* xfs */))
2904 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2905 else
2906 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1734 { 2907 }
1735 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2908 else
2909 {
2910 /* can't use inotify, continue to stat */
2911 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1736 2912
1737 /* monitor some parent directory for speedup hints */ 2913 /* if path is not there, monitor some parent directory for speedup hints */
2914 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2915 /* but an efficiency issue only */
1738 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2916 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1739 { 2917 {
1740 char path [4096]; 2918 char path [4096];
1741 strcpy (path, w->path); 2919 strcpy (path, w->path);
1742 2920
1745 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2923 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1746 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2924 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1747 2925
1748 char *pend = strrchr (path, '/'); 2926 char *pend = strrchr (path, '/');
1749 2927
1750 if (!pend) 2928 if (!pend || pend == path)
1751 break; /* whoops, no '/', complain to your admin */ 2929 break;
1752 2930
1753 *pend = 0; 2931 *pend = 0;
1754 w->wd = inotify_add_watch (fs_fd, path, mask); 2932 w->wd = inotify_add_watch (fs_fd, path, mask);
1755 } 2933 }
1756 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2934 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1757 } 2935 }
1758 } 2936 }
1759 else
1760 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1761 2937
1762 if (w->wd >= 0) 2938 if (w->wd >= 0)
1763 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2939 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2940
2941 /* now re-arm timer, if required */
2942 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2943 ev_timer_again (EV_A_ &w->timer);
2944 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1764} 2945}
1765 2946
1766static void noinline 2947static void noinline
1767infy_del (EV_P_ ev_stat *w) 2948infy_del (EV_P_ ev_stat *w)
1768{ 2949{
1782 2963
1783static void noinline 2964static void noinline
1784infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2965infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1785{ 2966{
1786 if (slot < 0) 2967 if (slot < 0)
1787 /* overflow, need to check for all hahs slots */ 2968 /* overflow, need to check for all hash slots */
1788 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2969 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1789 infy_wd (EV_A_ slot, wd, ev); 2970 infy_wd (EV_A_ slot, wd, ev);
1790 else 2971 else
1791 { 2972 {
1792 WL w_; 2973 WL w_;
1798 2979
1799 if (w->wd == wd || wd == -1) 2980 if (w->wd == wd || wd == -1)
1800 { 2981 {
1801 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2982 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1802 { 2983 {
2984 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1803 w->wd = -1; 2985 w->wd = -1;
1804 infy_add (EV_A_ w); /* re-add, no matter what */ 2986 infy_add (EV_A_ w); /* re-add, no matter what */
1805 } 2987 }
1806 2988
1807 stat_timer_cb (EV_A_ &w->timer, 0); 2989 stat_timer_cb (EV_A_ &w->timer, 0);
1812 2994
1813static void 2995static void
1814infy_cb (EV_P_ ev_io *w, int revents) 2996infy_cb (EV_P_ ev_io *w, int revents)
1815{ 2997{
1816 char buf [EV_INOTIFY_BUFSIZE]; 2998 char buf [EV_INOTIFY_BUFSIZE];
1817 struct inotify_event *ev = (struct inotify_event *)buf;
1818 int ofs; 2999 int ofs;
1819 int len = read (fs_fd, buf, sizeof (buf)); 3000 int len = read (fs_fd, buf, sizeof (buf));
1820 3001
1821 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3002 for (ofs = 0; ofs < len; )
3003 {
3004 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1822 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3005 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3006 ofs += sizeof (struct inotify_event) + ev->len;
3007 }
1823} 3008}
1824 3009
1825void inline_size 3010inline_size unsigned int
3011ev_linux_version (void)
3012{
3013 struct utsname buf;
3014 unsigned int v;
3015 int i;
3016 char *p = buf.release;
3017
3018 if (uname (&buf))
3019 return 0;
3020
3021 for (i = 3+1; --i; )
3022 {
3023 unsigned int c = 0;
3024
3025 for (;;)
3026 {
3027 if (*p >= '0' && *p <= '9')
3028 c = c * 10 + *p++ - '0';
3029 else
3030 {
3031 p += *p == '.';
3032 break;
3033 }
3034 }
3035
3036 v = (v << 8) | c;
3037 }
3038
3039 return v;
3040}
3041
3042inline_size void
3043ev_check_2625 (EV_P)
3044{
3045 /* kernels < 2.6.25 are borked
3046 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3047 */
3048 if (ev_linux_version () < 0x020619)
3049 return;
3050
3051 fs_2625 = 1;
3052}
3053
3054inline_size int
3055infy_newfd (void)
3056{
3057#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3058 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3059 if (fd >= 0)
3060 return fd;
3061#endif
3062 return inotify_init ();
3063}
3064
3065inline_size void
1826infy_init (EV_P) 3066infy_init (EV_P)
1827{ 3067{
1828 if (fs_fd != -2) 3068 if (fs_fd != -2)
1829 return; 3069 return;
1830 3070
3071 fs_fd = -1;
3072
3073 ev_check_2625 (EV_A);
3074
1831 fs_fd = inotify_init (); 3075 fs_fd = infy_newfd ();
1832 3076
1833 if (fs_fd >= 0) 3077 if (fs_fd >= 0)
1834 { 3078 {
3079 fd_intern (fs_fd);
1835 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3080 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1836 ev_set_priority (&fs_w, EV_MAXPRI); 3081 ev_set_priority (&fs_w, EV_MAXPRI);
1837 ev_io_start (EV_A_ &fs_w); 3082 ev_io_start (EV_A_ &fs_w);
3083 ev_unref (EV_A);
1838 } 3084 }
1839} 3085}
1840 3086
1841void inline_size 3087inline_size void
1842infy_fork (EV_P) 3088infy_fork (EV_P)
1843{ 3089{
1844 int slot; 3090 int slot;
1845 3091
1846 if (fs_fd < 0) 3092 if (fs_fd < 0)
1847 return; 3093 return;
1848 3094
3095 ev_ref (EV_A);
3096 ev_io_stop (EV_A_ &fs_w);
1849 close (fs_fd); 3097 close (fs_fd);
1850 fs_fd = inotify_init (); 3098 fs_fd = infy_newfd ();
3099
3100 if (fs_fd >= 0)
3101 {
3102 fd_intern (fs_fd);
3103 ev_io_set (&fs_w, fs_fd, EV_READ);
3104 ev_io_start (EV_A_ &fs_w);
3105 ev_unref (EV_A);
3106 }
1851 3107
1852 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3108 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1853 { 3109 {
1854 WL w_ = fs_hash [slot].head; 3110 WL w_ = fs_hash [slot].head;
1855 fs_hash [slot].head = 0; 3111 fs_hash [slot].head = 0;
1862 w->wd = -1; 3118 w->wd = -1;
1863 3119
1864 if (fs_fd >= 0) 3120 if (fs_fd >= 0)
1865 infy_add (EV_A_ w); /* re-add, no matter what */ 3121 infy_add (EV_A_ w); /* re-add, no matter what */
1866 else 3122 else
3123 {
3124 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3125 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1867 ev_timer_start (EV_A_ &w->timer); 3126 ev_timer_again (EV_A_ &w->timer);
3127 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3128 }
1868 } 3129 }
1869
1870 } 3130 }
1871} 3131}
1872 3132
3133#endif
3134
3135#ifdef _WIN32
3136# define EV_LSTAT(p,b) _stati64 (p, b)
3137#else
3138# define EV_LSTAT(p,b) lstat (p, b)
1873#endif 3139#endif
1874 3140
1875void 3141void
1876ev_stat_stat (EV_P_ ev_stat *w) 3142ev_stat_stat (EV_P_ ev_stat *w)
1877{ 3143{
1879 w->attr.st_nlink = 0; 3145 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 3146 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 3147 w->attr.st_nlink = 1;
1882} 3148}
1883 3149
1884void noinline 3150static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3151stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 3152{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3153 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 3154
1889 /* we copy this here each the time so that */ 3155 ev_statdata prev = w->attr;
1890 /* prev has the old value when the callback gets invoked */
1891 w->prev = w->attr;
1892 ev_stat_stat (EV_A_ w); 3156 ev_stat_stat (EV_A_ w);
1893 3157
1894 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3158 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1895 if ( 3159 if (
1896 w->prev.st_dev != w->attr.st_dev 3160 prev.st_dev != w->attr.st_dev
1897 || w->prev.st_ino != w->attr.st_ino 3161 || prev.st_ino != w->attr.st_ino
1898 || w->prev.st_mode != w->attr.st_mode 3162 || prev.st_mode != w->attr.st_mode
1899 || w->prev.st_nlink != w->attr.st_nlink 3163 || prev.st_nlink != w->attr.st_nlink
1900 || w->prev.st_uid != w->attr.st_uid 3164 || prev.st_uid != w->attr.st_uid
1901 || w->prev.st_gid != w->attr.st_gid 3165 || prev.st_gid != w->attr.st_gid
1902 || w->prev.st_rdev != w->attr.st_rdev 3166 || prev.st_rdev != w->attr.st_rdev
1903 || w->prev.st_size != w->attr.st_size 3167 || prev.st_size != w->attr.st_size
1904 || w->prev.st_atime != w->attr.st_atime 3168 || prev.st_atime != w->attr.st_atime
1905 || w->prev.st_mtime != w->attr.st_mtime 3169 || prev.st_mtime != w->attr.st_mtime
1906 || w->prev.st_ctime != w->attr.st_ctime 3170 || prev.st_ctime != w->attr.st_ctime
1907 ) { 3171 ) {
3172 /* we only update w->prev on actual differences */
3173 /* in case we test more often than invoke the callback, */
3174 /* to ensure that prev is always different to attr */
3175 w->prev = prev;
3176
1908 #if EV_USE_INOTIFY 3177 #if EV_USE_INOTIFY
3178 if (fs_fd >= 0)
3179 {
1909 infy_del (EV_A_ w); 3180 infy_del (EV_A_ w);
1910 infy_add (EV_A_ w); 3181 infy_add (EV_A_ w);
1911 ev_stat_stat (EV_A_ w); /* avoid race... */ 3182 ev_stat_stat (EV_A_ w); /* avoid race... */
3183 }
1912 #endif 3184 #endif
1913 3185
1914 ev_feed_event (EV_A_ w, EV_STAT); 3186 ev_feed_event (EV_A_ w, EV_STAT);
1915 } 3187 }
1916} 3188}
1919ev_stat_start (EV_P_ ev_stat *w) 3191ev_stat_start (EV_P_ ev_stat *w)
1920{ 3192{
1921 if (expect_false (ev_is_active (w))) 3193 if (expect_false (ev_is_active (w)))
1922 return; 3194 return;
1923 3195
1924 /* since we use memcmp, we need to clear any padding data etc. */
1925 memset (&w->prev, 0, sizeof (ev_statdata));
1926 memset (&w->attr, 0, sizeof (ev_statdata));
1927
1928 ev_stat_stat (EV_A_ w); 3196 ev_stat_stat (EV_A_ w);
1929 3197
3198 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1930 if (w->interval < MIN_STAT_INTERVAL) 3199 w->interval = MIN_STAT_INTERVAL;
1931 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1932 3200
1933 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3201 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1934 ev_set_priority (&w->timer, ev_priority (w)); 3202 ev_set_priority (&w->timer, ev_priority (w));
1935 3203
1936#if EV_USE_INOTIFY 3204#if EV_USE_INOTIFY
1937 infy_init (EV_A); 3205 infy_init (EV_A);
1938 3206
1939 if (fs_fd >= 0) 3207 if (fs_fd >= 0)
1940 infy_add (EV_A_ w); 3208 infy_add (EV_A_ w);
1941 else 3209 else
1942#endif 3210#endif
3211 {
1943 ev_timer_start (EV_A_ &w->timer); 3212 ev_timer_again (EV_A_ &w->timer);
3213 ev_unref (EV_A);
3214 }
1944 3215
1945 ev_start (EV_A_ (W)w, 1); 3216 ev_start (EV_A_ (W)w, 1);
3217
3218 EV_FREQUENT_CHECK;
1946} 3219}
1947 3220
1948void 3221void
1949ev_stat_stop (EV_P_ ev_stat *w) 3222ev_stat_stop (EV_P_ ev_stat *w)
1950{ 3223{
1951 ev_clear_pending (EV_A_ (W)w); 3224 clear_pending (EV_A_ (W)w);
1952 if (expect_false (!ev_is_active (w))) 3225 if (expect_false (!ev_is_active (w)))
1953 return; 3226 return;
1954 3227
3228 EV_FREQUENT_CHECK;
3229
1955#if EV_USE_INOTIFY 3230#if EV_USE_INOTIFY
1956 infy_del (EV_A_ w); 3231 infy_del (EV_A_ w);
1957#endif 3232#endif
3233
3234 if (ev_is_active (&w->timer))
3235 {
3236 ev_ref (EV_A);
1958 ev_timer_stop (EV_A_ &w->timer); 3237 ev_timer_stop (EV_A_ &w->timer);
3238 }
1959 3239
1960 ev_stop (EV_A_ (W)w); 3240 ev_stop (EV_A_ (W)w);
1961}
1962#endif
1963 3241
3242 EV_FREQUENT_CHECK;
3243}
3244#endif
3245
3246#if EV_IDLE_ENABLE
1964void 3247void
1965ev_idle_start (EV_P_ ev_idle *w) 3248ev_idle_start (EV_P_ ev_idle *w)
1966{ 3249{
1967 if (expect_false (ev_is_active (w))) 3250 if (expect_false (ev_is_active (w)))
1968 return; 3251 return;
1969 3252
3253 pri_adjust (EV_A_ (W)w);
3254
3255 EV_FREQUENT_CHECK;
3256
3257 {
3258 int active = ++idlecnt [ABSPRI (w)];
3259
3260 ++idleall;
1970 ev_start (EV_A_ (W)w, ++idlecnt); 3261 ev_start (EV_A_ (W)w, active);
3262
1971 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3263 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1972 idles [idlecnt - 1] = w; 3264 idles [ABSPRI (w)][active - 1] = w;
3265 }
3266
3267 EV_FREQUENT_CHECK;
1973} 3268}
1974 3269
1975void 3270void
1976ev_idle_stop (EV_P_ ev_idle *w) 3271ev_idle_stop (EV_P_ ev_idle *w)
1977{ 3272{
1978 ev_clear_pending (EV_A_ (W)w); 3273 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 3274 if (expect_false (!ev_is_active (w)))
1980 return; 3275 return;
1981 3276
3277 EV_FREQUENT_CHECK;
3278
1982 { 3279 {
1983 int active = ((W)w)->active; 3280 int active = ev_active (w);
1984 idles [active - 1] = idles [--idlecnt]; 3281
1985 ((W)idles [active - 1])->active = active; 3282 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3283 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3284
3285 ev_stop (EV_A_ (W)w);
3286 --idleall;
1986 } 3287 }
1987 3288
1988 ev_stop (EV_A_ (W)w); 3289 EV_FREQUENT_CHECK;
1989} 3290}
3291#endif
1990 3292
1991void 3293void
1992ev_prepare_start (EV_P_ ev_prepare *w) 3294ev_prepare_start (EV_P_ ev_prepare *w)
1993{ 3295{
1994 if (expect_false (ev_is_active (w))) 3296 if (expect_false (ev_is_active (w)))
1995 return; 3297 return;
3298
3299 EV_FREQUENT_CHECK;
1996 3300
1997 ev_start (EV_A_ (W)w, ++preparecnt); 3301 ev_start (EV_A_ (W)w, ++preparecnt);
1998 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3302 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1999 prepares [preparecnt - 1] = w; 3303 prepares [preparecnt - 1] = w;
3304
3305 EV_FREQUENT_CHECK;
2000} 3306}
2001 3307
2002void 3308void
2003ev_prepare_stop (EV_P_ ev_prepare *w) 3309ev_prepare_stop (EV_P_ ev_prepare *w)
2004{ 3310{
2005 ev_clear_pending (EV_A_ (W)w); 3311 clear_pending (EV_A_ (W)w);
2006 if (expect_false (!ev_is_active (w))) 3312 if (expect_false (!ev_is_active (w)))
2007 return; 3313 return;
2008 3314
3315 EV_FREQUENT_CHECK;
3316
2009 { 3317 {
2010 int active = ((W)w)->active; 3318 int active = ev_active (w);
3319
2011 prepares [active - 1] = prepares [--preparecnt]; 3320 prepares [active - 1] = prepares [--preparecnt];
2012 ((W)prepares [active - 1])->active = active; 3321 ev_active (prepares [active - 1]) = active;
2013 } 3322 }
2014 3323
2015 ev_stop (EV_A_ (W)w); 3324 ev_stop (EV_A_ (W)w);
3325
3326 EV_FREQUENT_CHECK;
2016} 3327}
2017 3328
2018void 3329void
2019ev_check_start (EV_P_ ev_check *w) 3330ev_check_start (EV_P_ ev_check *w)
2020{ 3331{
2021 if (expect_false (ev_is_active (w))) 3332 if (expect_false (ev_is_active (w)))
2022 return; 3333 return;
3334
3335 EV_FREQUENT_CHECK;
2023 3336
2024 ev_start (EV_A_ (W)w, ++checkcnt); 3337 ev_start (EV_A_ (W)w, ++checkcnt);
2025 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3338 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2026 checks [checkcnt - 1] = w; 3339 checks [checkcnt - 1] = w;
3340
3341 EV_FREQUENT_CHECK;
2027} 3342}
2028 3343
2029void 3344void
2030ev_check_stop (EV_P_ ev_check *w) 3345ev_check_stop (EV_P_ ev_check *w)
2031{ 3346{
2032 ev_clear_pending (EV_A_ (W)w); 3347 clear_pending (EV_A_ (W)w);
2033 if (expect_false (!ev_is_active (w))) 3348 if (expect_false (!ev_is_active (w)))
2034 return; 3349 return;
2035 3350
3351 EV_FREQUENT_CHECK;
3352
2036 { 3353 {
2037 int active = ((W)w)->active; 3354 int active = ev_active (w);
3355
2038 checks [active - 1] = checks [--checkcnt]; 3356 checks [active - 1] = checks [--checkcnt];
2039 ((W)checks [active - 1])->active = active; 3357 ev_active (checks [active - 1]) = active;
2040 } 3358 }
2041 3359
2042 ev_stop (EV_A_ (W)w); 3360 ev_stop (EV_A_ (W)w);
3361
3362 EV_FREQUENT_CHECK;
2043} 3363}
2044 3364
2045#if EV_EMBED_ENABLE 3365#if EV_EMBED_ENABLE
2046void noinline 3366void noinline
2047ev_embed_sweep (EV_P_ ev_embed *w) 3367ev_embed_sweep (EV_P_ ev_embed *w)
2048{ 3368{
2049 ev_loop (w->loop, EVLOOP_NONBLOCK); 3369 ev_loop (w->other, EVLOOP_NONBLOCK);
2050} 3370}
2051 3371
2052static void 3372static void
2053embed_cb (EV_P_ ev_io *io, int revents) 3373embed_io_cb (EV_P_ ev_io *io, int revents)
2054{ 3374{
2055 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3375 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2056 3376
2057 if (ev_cb (w)) 3377 if (ev_cb (w))
2058 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3378 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2059 else 3379 else
2060 ev_embed_sweep (loop, w); 3380 ev_loop (w->other, EVLOOP_NONBLOCK);
2061} 3381}
3382
3383static void
3384embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3385{
3386 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3387
3388 {
3389 EV_P = w->other;
3390
3391 while (fdchangecnt)
3392 {
3393 fd_reify (EV_A);
3394 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3395 }
3396 }
3397}
3398
3399static void
3400embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3401{
3402 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3403
3404 ev_embed_stop (EV_A_ w);
3405
3406 {
3407 EV_P = w->other;
3408
3409 ev_loop_fork (EV_A);
3410 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3411 }
3412
3413 ev_embed_start (EV_A_ w);
3414}
3415
3416#if 0
3417static void
3418embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3419{
3420 ev_idle_stop (EV_A_ idle);
3421}
3422#endif
2062 3423
2063void 3424void
2064ev_embed_start (EV_P_ ev_embed *w) 3425ev_embed_start (EV_P_ ev_embed *w)
2065{ 3426{
2066 if (expect_false (ev_is_active (w))) 3427 if (expect_false (ev_is_active (w)))
2067 return; 3428 return;
2068 3429
2069 { 3430 {
2070 struct ev_loop *loop = w->loop; 3431 EV_P = w->other;
2071 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3432 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2072 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3433 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2073 } 3434 }
3435
3436 EV_FREQUENT_CHECK;
2074 3437
2075 ev_set_priority (&w->io, ev_priority (w)); 3438 ev_set_priority (&w->io, ev_priority (w));
2076 ev_io_start (EV_A_ &w->io); 3439 ev_io_start (EV_A_ &w->io);
2077 3440
3441 ev_prepare_init (&w->prepare, embed_prepare_cb);
3442 ev_set_priority (&w->prepare, EV_MINPRI);
3443 ev_prepare_start (EV_A_ &w->prepare);
3444
3445 ev_fork_init (&w->fork, embed_fork_cb);
3446 ev_fork_start (EV_A_ &w->fork);
3447
3448 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3449
2078 ev_start (EV_A_ (W)w, 1); 3450 ev_start (EV_A_ (W)w, 1);
3451
3452 EV_FREQUENT_CHECK;
2079} 3453}
2080 3454
2081void 3455void
2082ev_embed_stop (EV_P_ ev_embed *w) 3456ev_embed_stop (EV_P_ ev_embed *w)
2083{ 3457{
2084 ev_clear_pending (EV_A_ (W)w); 3458 clear_pending (EV_A_ (W)w);
2085 if (expect_false (!ev_is_active (w))) 3459 if (expect_false (!ev_is_active (w)))
2086 return; 3460 return;
2087 3461
3462 EV_FREQUENT_CHECK;
3463
2088 ev_io_stop (EV_A_ &w->io); 3464 ev_io_stop (EV_A_ &w->io);
3465 ev_prepare_stop (EV_A_ &w->prepare);
3466 ev_fork_stop (EV_A_ &w->fork);
2089 3467
2090 ev_stop (EV_A_ (W)w); 3468 ev_stop (EV_A_ (W)w);
3469
3470 EV_FREQUENT_CHECK;
2091} 3471}
2092#endif 3472#endif
2093 3473
2094#if EV_FORK_ENABLE 3474#if EV_FORK_ENABLE
2095void 3475void
2096ev_fork_start (EV_P_ ev_fork *w) 3476ev_fork_start (EV_P_ ev_fork *w)
2097{ 3477{
2098 if (expect_false (ev_is_active (w))) 3478 if (expect_false (ev_is_active (w)))
2099 return; 3479 return;
3480
3481 EV_FREQUENT_CHECK;
2100 3482
2101 ev_start (EV_A_ (W)w, ++forkcnt); 3483 ev_start (EV_A_ (W)w, ++forkcnt);
2102 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3484 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2103 forks [forkcnt - 1] = w; 3485 forks [forkcnt - 1] = w;
3486
3487 EV_FREQUENT_CHECK;
2104} 3488}
2105 3489
2106void 3490void
2107ev_fork_stop (EV_P_ ev_fork *w) 3491ev_fork_stop (EV_P_ ev_fork *w)
2108{ 3492{
2109 ev_clear_pending (EV_A_ (W)w); 3493 clear_pending (EV_A_ (W)w);
2110 if (expect_false (!ev_is_active (w))) 3494 if (expect_false (!ev_is_active (w)))
2111 return; 3495 return;
2112 3496
3497 EV_FREQUENT_CHECK;
3498
2113 { 3499 {
2114 int active = ((W)w)->active; 3500 int active = ev_active (w);
3501
2115 forks [active - 1] = forks [--forkcnt]; 3502 forks [active - 1] = forks [--forkcnt];
2116 ((W)forks [active - 1])->active = active; 3503 ev_active (forks [active - 1]) = active;
2117 } 3504 }
2118 3505
2119 ev_stop (EV_A_ (W)w); 3506 ev_stop (EV_A_ (W)w);
3507
3508 EV_FREQUENT_CHECK;
3509}
3510#endif
3511
3512#if EV_ASYNC_ENABLE
3513void
3514ev_async_start (EV_P_ ev_async *w)
3515{
3516 if (expect_false (ev_is_active (w)))
3517 return;
3518
3519 evpipe_init (EV_A);
3520
3521 EV_FREQUENT_CHECK;
3522
3523 ev_start (EV_A_ (W)w, ++asynccnt);
3524 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3525 asyncs [asynccnt - 1] = w;
3526
3527 EV_FREQUENT_CHECK;
3528}
3529
3530void
3531ev_async_stop (EV_P_ ev_async *w)
3532{
3533 clear_pending (EV_A_ (W)w);
3534 if (expect_false (!ev_is_active (w)))
3535 return;
3536
3537 EV_FREQUENT_CHECK;
3538
3539 {
3540 int active = ev_active (w);
3541
3542 asyncs [active - 1] = asyncs [--asynccnt];
3543 ev_active (asyncs [active - 1]) = active;
3544 }
3545
3546 ev_stop (EV_A_ (W)w);
3547
3548 EV_FREQUENT_CHECK;
3549}
3550
3551void
3552ev_async_send (EV_P_ ev_async *w)
3553{
3554 w->sent = 1;
3555 evpipe_write (EV_A_ &async_pending);
2120} 3556}
2121#endif 3557#endif
2122 3558
2123/*****************************************************************************/ 3559/*****************************************************************************/
2124 3560
2134once_cb (EV_P_ struct ev_once *once, int revents) 3570once_cb (EV_P_ struct ev_once *once, int revents)
2135{ 3571{
2136 void (*cb)(int revents, void *arg) = once->cb; 3572 void (*cb)(int revents, void *arg) = once->cb;
2137 void *arg = once->arg; 3573 void *arg = once->arg;
2138 3574
2139 ev_io_stop (EV_A_ &once->io); 3575 ev_io_stop (EV_A_ &once->io);
2140 ev_timer_stop (EV_A_ &once->to); 3576 ev_timer_stop (EV_A_ &once->to);
2141 ev_free (once); 3577 ev_free (once);
2142 3578
2143 cb (revents, arg); 3579 cb (revents, arg);
2144} 3580}
2145 3581
2146static void 3582static void
2147once_cb_io (EV_P_ ev_io *w, int revents) 3583once_cb_io (EV_P_ ev_io *w, int revents)
2148{ 3584{
2149 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3585 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3586
3587 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2150} 3588}
2151 3589
2152static void 3590static void
2153once_cb_to (EV_P_ ev_timer *w, int revents) 3591once_cb_to (EV_P_ ev_timer *w, int revents)
2154{ 3592{
2155 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3593 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3594
3595 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2156} 3596}
2157 3597
2158void 3598void
2159ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3599ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2160{ 3600{
2182 ev_timer_set (&once->to, timeout, 0.); 3622 ev_timer_set (&once->to, timeout, 0.);
2183 ev_timer_start (EV_A_ &once->to); 3623 ev_timer_start (EV_A_ &once->to);
2184 } 3624 }
2185} 3625}
2186 3626
3627/*****************************************************************************/
3628
3629#if EV_WALK_ENABLE
3630void
3631ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3632{
3633 int i, j;
3634 ev_watcher_list *wl, *wn;
3635
3636 if (types & (EV_IO | EV_EMBED))
3637 for (i = 0; i < anfdmax; ++i)
3638 for (wl = anfds [i].head; wl; )
3639 {
3640 wn = wl->next;
3641
3642#if EV_EMBED_ENABLE
3643 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3644 {
3645 if (types & EV_EMBED)
3646 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3647 }
3648 else
3649#endif
3650#if EV_USE_INOTIFY
3651 if (ev_cb ((ev_io *)wl) == infy_cb)
3652 ;
3653 else
3654#endif
3655 if ((ev_io *)wl != &pipe_w)
3656 if (types & EV_IO)
3657 cb (EV_A_ EV_IO, wl);
3658
3659 wl = wn;
3660 }
3661
3662 if (types & (EV_TIMER | EV_STAT))
3663 for (i = timercnt + HEAP0; i-- > HEAP0; )
3664#if EV_STAT_ENABLE
3665 /*TODO: timer is not always active*/
3666 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3667 {
3668 if (types & EV_STAT)
3669 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3670 }
3671 else
3672#endif
3673 if (types & EV_TIMER)
3674 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3675
3676#if EV_PERIODIC_ENABLE
3677 if (types & EV_PERIODIC)
3678 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3679 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3680#endif
3681
3682#if EV_IDLE_ENABLE
3683 if (types & EV_IDLE)
3684 for (j = NUMPRI; i--; )
3685 for (i = idlecnt [j]; i--; )
3686 cb (EV_A_ EV_IDLE, idles [j][i]);
3687#endif
3688
3689#if EV_FORK_ENABLE
3690 if (types & EV_FORK)
3691 for (i = forkcnt; i--; )
3692 if (ev_cb (forks [i]) != embed_fork_cb)
3693 cb (EV_A_ EV_FORK, forks [i]);
3694#endif
3695
3696#if EV_ASYNC_ENABLE
3697 if (types & EV_ASYNC)
3698 for (i = asynccnt; i--; )
3699 cb (EV_A_ EV_ASYNC, asyncs [i]);
3700#endif
3701
3702 if (types & EV_PREPARE)
3703 for (i = preparecnt; i--; )
3704#if EV_EMBED_ENABLE
3705 if (ev_cb (prepares [i]) != embed_prepare_cb)
3706#endif
3707 cb (EV_A_ EV_PREPARE, prepares [i]);
3708
3709 if (types & EV_CHECK)
3710 for (i = checkcnt; i--; )
3711 cb (EV_A_ EV_CHECK, checks [i]);
3712
3713 if (types & EV_SIGNAL)
3714 for (i = 0; i < EV_NSIG - 1; ++i)
3715 for (wl = signals [i].head; wl; )
3716 {
3717 wn = wl->next;
3718 cb (EV_A_ EV_SIGNAL, wl);
3719 wl = wn;
3720 }
3721
3722 if (types & EV_CHILD)
3723 for (i = EV_PID_HASHSIZE; i--; )
3724 for (wl = childs [i]; wl; )
3725 {
3726 wn = wl->next;
3727 cb (EV_A_ EV_CHILD, wl);
3728 wl = wn;
3729 }
3730/* EV_STAT 0x00001000 /* stat data changed */
3731/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3732}
3733#endif
3734
3735#if EV_MULTIPLICITY
3736 #include "ev_wrap.h"
3737#endif
3738
2187#ifdef __cplusplus 3739#ifdef __cplusplus
2188} 3740}
2189#endif 3741#endif
2190 3742

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines