ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.156 by root, Wed Nov 28 17:50:13 2007 UTC vs.
Revision 1.333 by root, Tue Mar 9 08:58:22 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
79# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
80# endif 111# endif
81# endif 112# endif
82 113
83# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
85# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
86# else 117# else
87# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
88# endif 119# endif
89# endif 120# endif
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
111#include <fcntl.h> 159#include <fcntl.h>
112#include <stddef.h> 160#include <stddef.h>
113 161
114#include <stdio.h> 162#include <stdio.h>
115 163
116#include <assert.h> 164#include <assert.h>
117#include <errno.h> 165#include <errno.h>
118#include <sys/types.h> 166#include <sys/types.h>
119#include <time.h> 167#include <time.h>
168#include <limits.h>
120 169
121#include <signal.h> 170#include <signal.h>
122 171
123#ifdef EV_H 172#ifdef EV_H
124# include EV_H 173# include EV_H
129#ifndef _WIN32 178#ifndef _WIN32
130# include <sys/time.h> 179# include <sys/time.h>
131# include <sys/wait.h> 180# include <sys/wait.h>
132# include <unistd.h> 181# include <unistd.h>
133#else 182#else
183# include <io.h>
134# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 185# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
138# endif 188# endif
189# undef EV_AVOID_STDIO
190#endif
191
192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line */
218# define EV_NSIG 65
219#endif
220
221#ifndef EV_USE_CLOCK_SYSCALL
222# if __linux && __GLIBC__ >= 2
223# define EV_USE_CLOCK_SYSCALL 1
224# else
225# define EV_USE_CLOCK_SYSCALL 0
139#endif 226# endif
140 227#endif
141/**/
142 228
143#ifndef EV_USE_MONOTONIC 229#ifndef EV_USE_MONOTONIC
230# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
231# define EV_USE_MONOTONIC 1
232# else
144# define EV_USE_MONOTONIC 0 233# define EV_USE_MONOTONIC 0
234# endif
145#endif 235#endif
146 236
147#ifndef EV_USE_REALTIME 237#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 238# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
239#endif
240
241#ifndef EV_USE_NANOSLEEP
242# if _POSIX_C_SOURCE >= 199309L
243# define EV_USE_NANOSLEEP 1
244# else
245# define EV_USE_NANOSLEEP 0
246# endif
149#endif 247#endif
150 248
151#ifndef EV_USE_SELECT 249#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 250# define EV_USE_SELECT 1
153#endif 251#endif
159# define EV_USE_POLL 1 257# define EV_USE_POLL 1
160# endif 258# endif
161#endif 259#endif
162 260
163#ifndef EV_USE_EPOLL 261#ifndef EV_USE_EPOLL
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
263# define EV_USE_EPOLL 1
264# else
164# define EV_USE_EPOLL 0 265# define EV_USE_EPOLL 0
266# endif
165#endif 267#endif
166 268
167#ifndef EV_USE_KQUEUE 269#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 270# define EV_USE_KQUEUE 0
169#endif 271#endif
171#ifndef EV_USE_PORT 273#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 274# define EV_USE_PORT 0
173#endif 275#endif
174 276
175#ifndef EV_USE_INOTIFY 277#ifndef EV_USE_INOTIFY
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_INOTIFY 1
280# else
176# define EV_USE_INOTIFY 0 281# define EV_USE_INOTIFY 0
282# endif
177#endif 283#endif
178 284
179#ifndef EV_PID_HASHSIZE 285#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 286# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 287# define EV_PID_HASHSIZE 1
190# else 296# else
191# define EV_INOTIFY_HASHSIZE 16 297# define EV_INOTIFY_HASHSIZE 16
192# endif 298# endif
193#endif 299#endif
194 300
195/**/ 301#ifndef EV_USE_EVENTFD
302# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
303# define EV_USE_EVENTFD 1
304# else
305# define EV_USE_EVENTFD 0
306# endif
307#endif
308
309#ifndef EV_USE_SIGNALFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_SIGNALFD 1
312# else
313# define EV_USE_SIGNALFD 0
314# endif
315#endif
316
317#if 0 /* debugging */
318# define EV_VERIFY 3
319# define EV_USE_4HEAP 1
320# define EV_HEAP_CACHE_AT 1
321#endif
322
323#ifndef EV_VERIFY
324# define EV_VERIFY !EV_MINIMAL
325#endif
326
327#ifndef EV_USE_4HEAP
328# define EV_USE_4HEAP !EV_MINIMAL
329#endif
330
331#ifndef EV_HEAP_CACHE_AT
332# define EV_HEAP_CACHE_AT !EV_MINIMAL
333#endif
334
335/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
336/* which makes programs even slower. might work on other unices, too. */
337#if EV_USE_CLOCK_SYSCALL
338# include <syscall.h>
339# ifdef SYS_clock_gettime
340# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
341# undef EV_USE_MONOTONIC
342# define EV_USE_MONOTONIC 1
343# else
344# undef EV_USE_CLOCK_SYSCALL
345# define EV_USE_CLOCK_SYSCALL 0
346# endif
347#endif
348
349/* this block fixes any misconfiguration where we know we run into trouble otherwise */
350
351#ifdef _AIX
352/* AIX has a completely broken poll.h header */
353# undef EV_USE_POLL
354# define EV_USE_POLL 0
355#endif
196 356
197#ifndef CLOCK_MONOTONIC 357#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 358# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 359# define EV_USE_MONOTONIC 0
200#endif 360#endif
202#ifndef CLOCK_REALTIME 362#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 363# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 364# define EV_USE_REALTIME 0
205#endif 365#endif
206 366
367#if !EV_STAT_ENABLE
368# undef EV_USE_INOTIFY
369# define EV_USE_INOTIFY 0
370#endif
371
372#if !EV_USE_NANOSLEEP
373# ifndef _WIN32
374# include <sys/select.h>
375# endif
376#endif
377
378#if EV_USE_INOTIFY
379# include <sys/utsname.h>
380# include <sys/statfs.h>
381# include <sys/inotify.h>
382/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
383# ifndef IN_DONT_FOLLOW
384# undef EV_USE_INOTIFY
385# define EV_USE_INOTIFY 0
386# endif
387#endif
388
207#if EV_SELECT_IS_WINSOCKET 389#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 390# include <winsock.h>
209#endif 391#endif
210 392
211#if !EV_STAT_ENABLE 393#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 394/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
395# include <stdint.h>
396# ifndef EFD_NONBLOCK
397# define EFD_NONBLOCK O_NONBLOCK
213#endif 398# endif
214 399# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 400# ifdef O_CLOEXEC
216# include <sys/inotify.h> 401# define EFD_CLOEXEC O_CLOEXEC
402# else
403# define EFD_CLOEXEC 02000000
404# endif
217#endif 405# endif
406# ifdef __cplusplus
407extern "C" {
408# endif
409int (eventfd) (unsigned int initval, int flags);
410# ifdef __cplusplus
411}
412# endif
413#endif
414
415#if EV_USE_SIGNALFD
416/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
417# include <stdint.h>
418# ifndef SFD_NONBLOCK
419# define SFD_NONBLOCK O_NONBLOCK
420# endif
421# ifndef SFD_CLOEXEC
422# ifdef O_CLOEXEC
423# define SFD_CLOEXEC O_CLOEXEC
424# else
425# define SFD_CLOEXEC 02000000
426# endif
427# endif
428# ifdef __cplusplus
429extern "C" {
430# endif
431int signalfd (int fd, const sigset_t *mask, int flags);
432
433struct signalfd_siginfo
434{
435 uint32_t ssi_signo;
436 char pad[128 - sizeof (uint32_t)];
437};
438# ifdef __cplusplus
439}
440# endif
441#endif
442
218 443
219/**/ 444/**/
445
446#if EV_VERIFY >= 3
447# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
448#else
449# define EV_FREQUENT_CHECK do { } while (0)
450#endif
451
452/*
453 * This is used to avoid floating point rounding problems.
454 * It is added to ev_rt_now when scheduling periodics
455 * to ensure progress, time-wise, even when rounding
456 * errors are against us.
457 * This value is good at least till the year 4000.
458 * Better solutions welcome.
459 */
460#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 461
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 462#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 463#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 464
225#if __GNUC__ >= 3 465#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 466# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 467# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 468#else
236# define expect(expr,value) (expr) 469# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 470# define noinline
471# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
472# define inline
473# endif
240#endif 474#endif
241 475
242#define expect_false(expr) expect ((expr) != 0, 0) 476#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 477#define expect_true(expr) expect ((expr) != 0, 1)
478#define inline_size static inline
244 479
480#if EV_MINIMAL
481# define inline_speed static noinline
482#else
483# define inline_speed static inline
484#endif
485
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 486#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
487
488#if EV_MINPRI == EV_MAXPRI
489# define ABSPRI(w) (((W)w), 0)
490#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 491# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
492#endif
247 493
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 494#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 495#define EMPTY2(a,b) /* used to suppress some warnings */
250 496
251typedef ev_watcher *W; 497typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 498typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 499typedef ev_watcher_time *WT;
254 500
501#define ev_active(w) ((W)(w))->active
502#define ev_at(w) ((WT)(w))->at
503
504#if EV_USE_REALTIME
505/* sig_atomic_t is used to avoid per-thread variables or locking but still */
506/* giving it a reasonably high chance of working on typical architetcures */
507static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
508#endif
509
510#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 511static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
512#endif
513
514#ifndef EV_FD_TO_WIN32_HANDLE
515# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
516#endif
517#ifndef EV_WIN32_HANDLE_TO_FD
518# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
519#endif
520#ifndef EV_WIN32_CLOSE_FD
521# define EV_WIN32_CLOSE_FD(fd) close (fd)
522#endif
256 523
257#ifdef _WIN32 524#ifdef _WIN32
258# include "ev_win32.c" 525# include "ev_win32.c"
259#endif 526#endif
260 527
261/*****************************************************************************/ 528/*****************************************************************************/
262 529
530#if EV_AVOID_STDIO
531static void noinline
532ev_printerr (const char *msg)
533{
534 write (STDERR_FILENO, msg, strlen (msg));
535}
536#endif
537
263static void (*syserr_cb)(const char *msg); 538static void (*syserr_cb)(const char *msg);
264 539
265void 540void
266ev_set_syserr_cb (void (*cb)(const char *msg)) 541ev_set_syserr_cb (void (*cb)(const char *msg))
267{ 542{
268 syserr_cb = cb; 543 syserr_cb = cb;
269} 544}
270 545
271static void noinline 546static void noinline
272syserr (const char *msg) 547ev_syserr (const char *msg)
273{ 548{
274 if (!msg) 549 if (!msg)
275 msg = "(libev) system error"; 550 msg = "(libev) system error";
276 551
277 if (syserr_cb) 552 if (syserr_cb)
278 syserr_cb (msg); 553 syserr_cb (msg);
279 else 554 else
280 { 555 {
556#if EV_AVOID_STDIO
557 const char *err = strerror (errno);
558
559 ev_printerr (msg);
560 ev_printerr (": ");
561 ev_printerr (err);
562 ev_printerr ("\n");
563#else
281 perror (msg); 564 perror (msg);
565#endif
282 abort (); 566 abort ();
283 } 567 }
284} 568}
285 569
570static void *
571ev_realloc_emul (void *ptr, long size)
572{
573 /* some systems, notably openbsd and darwin, fail to properly
574 * implement realloc (x, 0) (as required by both ansi c-98 and
575 * the single unix specification, so work around them here.
576 */
577
578 if (size)
579 return realloc (ptr, size);
580
581 free (ptr);
582 return 0;
583}
584
286static void *(*alloc)(void *ptr, long size); 585static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 586
288void 587void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 588ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 589{
291 alloc = cb; 590 alloc = cb;
292} 591}
293 592
294inline_speed void * 593inline_speed void *
295ev_realloc (void *ptr, long size) 594ev_realloc (void *ptr, long size)
296{ 595{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 596 ptr = alloc (ptr, size);
298 597
299 if (!ptr && size) 598 if (!ptr && size)
300 { 599 {
600#if EV_AVOID_STDIO
601 ev_printerr ("libev: memory allocation failed, aborting.\n");
602#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 603 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
604#endif
302 abort (); 605 abort ();
303 } 606 }
304 607
305 return ptr; 608 return ptr;
306} 609}
308#define ev_malloc(size) ev_realloc (0, (size)) 611#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 612#define ev_free(ptr) ev_realloc ((ptr), 0)
310 613
311/*****************************************************************************/ 614/*****************************************************************************/
312 615
616/* set in reify when reification needed */
617#define EV_ANFD_REIFY 1
618
619/* file descriptor info structure */
313typedef struct 620typedef struct
314{ 621{
315 WL head; 622 WL head;
316 unsigned char events; 623 unsigned char events; /* the events watched for */
624 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
625 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 626 unsigned char unused;
627#if EV_USE_EPOLL
628 unsigned int egen; /* generation counter to counter epoll bugs */
629#endif
318#if EV_SELECT_IS_WINSOCKET 630#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 631 SOCKET handle;
320#endif 632#endif
321} ANFD; 633} ANFD;
322 634
635/* stores the pending event set for a given watcher */
323typedef struct 636typedef struct
324{ 637{
325 W w; 638 W w;
326 int events; 639 int events; /* the pending event set for the given watcher */
327} ANPENDING; 640} ANPENDING;
328 641
329#if EV_USE_INOTIFY 642#if EV_USE_INOTIFY
643/* hash table entry per inotify-id */
330typedef struct 644typedef struct
331{ 645{
332 WL head; 646 WL head;
333} ANFS; 647} ANFS;
648#endif
649
650/* Heap Entry */
651#if EV_HEAP_CACHE_AT
652 /* a heap element */
653 typedef struct {
654 ev_tstamp at;
655 WT w;
656 } ANHE;
657
658 #define ANHE_w(he) (he).w /* access watcher, read-write */
659 #define ANHE_at(he) (he).at /* access cached at, read-only */
660 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
661#else
662 /* a heap element */
663 typedef WT ANHE;
664
665 #define ANHE_w(he) (he)
666 #define ANHE_at(he) (he)->at
667 #define ANHE_at_cache(he)
334#endif 668#endif
335 669
336#if EV_MULTIPLICITY 670#if EV_MULTIPLICITY
337 671
338 struct ev_loop 672 struct ev_loop
357 691
358 static int ev_default_loop_ptr; 692 static int ev_default_loop_ptr;
359 693
360#endif 694#endif
361 695
696#if EV_MINIMAL < 2
697# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
698# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
699# define EV_INVOKE_PENDING invoke_cb (EV_A)
700#else
701# define EV_RELEASE_CB (void)0
702# define EV_ACQUIRE_CB (void)0
703# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
704#endif
705
706#define EVUNLOOP_RECURSE 0x80
707
362/*****************************************************************************/ 708/*****************************************************************************/
363 709
710#ifndef EV_HAVE_EV_TIME
364ev_tstamp 711ev_tstamp
365ev_time (void) 712ev_time (void)
366{ 713{
367#if EV_USE_REALTIME 714#if EV_USE_REALTIME
715 if (expect_true (have_realtime))
716 {
368 struct timespec ts; 717 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 718 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 719 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 720 }
721#endif
722
372 struct timeval tv; 723 struct timeval tv;
373 gettimeofday (&tv, 0); 724 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 725 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 726}
727#endif
377 728
378ev_tstamp inline_size 729inline_size ev_tstamp
379get_clock (void) 730get_clock (void)
380{ 731{
381#if EV_USE_MONOTONIC 732#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 733 if (expect_true (have_monotonic))
383 { 734 {
396{ 747{
397 return ev_rt_now; 748 return ev_rt_now;
398} 749}
399#endif 750#endif
400 751
401#define array_roundsize(type,n) (((n) | 4) & ~3) 752void
753ev_sleep (ev_tstamp delay)
754{
755 if (delay > 0.)
756 {
757#if EV_USE_NANOSLEEP
758 struct timespec ts;
759
760 ts.tv_sec = (time_t)delay;
761 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
762
763 nanosleep (&ts, 0);
764#elif defined(_WIN32)
765 Sleep ((unsigned long)(delay * 1e3));
766#else
767 struct timeval tv;
768
769 tv.tv_sec = (time_t)delay;
770 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
771
772 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
773 /* something not guaranteed by newer posix versions, but guaranteed */
774 /* by older ones */
775 select (0, 0, 0, 0, &tv);
776#endif
777 }
778}
779
780/*****************************************************************************/
781
782#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
783
784/* find a suitable new size for the given array, */
785/* hopefully by rounding to a ncie-to-malloc size */
786inline_size int
787array_nextsize (int elem, int cur, int cnt)
788{
789 int ncur = cur + 1;
790
791 do
792 ncur <<= 1;
793 while (cnt > ncur);
794
795 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
796 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
797 {
798 ncur *= elem;
799 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
800 ncur = ncur - sizeof (void *) * 4;
801 ncur /= elem;
802 }
803
804 return ncur;
805}
806
807static noinline void *
808array_realloc (int elem, void *base, int *cur, int cnt)
809{
810 *cur = array_nextsize (elem, *cur, cnt);
811 return ev_realloc (base, elem * *cur);
812}
813
814#define array_init_zero(base,count) \
815 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 816
403#define array_needsize(type,base,cur,cnt,init) \ 817#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 818 if (expect_false ((cnt) > (cur))) \
405 { \ 819 { \
406 int newcnt = cur; \ 820 int ocur_ = (cur); \
407 do \ 821 (base) = (type *)array_realloc \
408 { \ 822 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 823 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 824 }
417 825
826#if 0
418#define array_slim(type,stem) \ 827#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 828 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 829 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 830 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 831 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 832 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 833 }
834#endif
425 835
426#define array_free(stem, idx) \ 836#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 837 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 838
429/*****************************************************************************/ 839/*****************************************************************************/
840
841/* dummy callback for pending events */
842static void noinline
843pendingcb (EV_P_ ev_prepare *w, int revents)
844{
845}
430 846
431void noinline 847void noinline
432ev_feed_event (EV_P_ void *w, int revents) 848ev_feed_event (EV_P_ void *w, int revents)
433{ 849{
434 W w_ = (W)w; 850 W w_ = (W)w;
851 int pri = ABSPRI (w_);
435 852
436 if (expect_false (w_->pending)) 853 if (expect_false (w_->pending))
854 pendings [pri][w_->pending - 1].events |= revents;
855 else
437 { 856 {
857 w_->pending = ++pendingcnt [pri];
858 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
859 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 860 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 861 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 862}
447 863
448void inline_size 864inline_speed void
865feed_reverse (EV_P_ W w)
866{
867 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
868 rfeeds [rfeedcnt++] = w;
869}
870
871inline_size void
872feed_reverse_done (EV_P_ int revents)
873{
874 do
875 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
876 while (rfeedcnt);
877}
878
879inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 880queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 881{
451 int i; 882 int i;
452 883
453 for (i = 0; i < eventcnt; ++i) 884 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 885 ev_feed_event (EV_A_ events [i], type);
455} 886}
456 887
457/*****************************************************************************/ 888/*****************************************************************************/
458 889
459void inline_size 890inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 891fd_event_nc (EV_P_ int fd, int revents)
474{ 892{
475 ANFD *anfd = anfds + fd; 893 ANFD *anfd = anfds + fd;
476 ev_io *w; 894 ev_io *w;
477 895
478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 896 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
482 if (ev) 900 if (ev)
483 ev_feed_event (EV_A_ (W)w, ev); 901 ev_feed_event (EV_A_ (W)w, ev);
484 } 902 }
485} 903}
486 904
905/* do not submit kernel events for fds that have reify set */
906/* because that means they changed while we were polling for new events */
907inline_speed void
908fd_event (EV_P_ int fd, int revents)
909{
910 ANFD *anfd = anfds + fd;
911
912 if (expect_true (!anfd->reify))
913 fd_event_nc (EV_A_ fd, revents);
914}
915
487void 916void
488ev_feed_fd_event (EV_P_ int fd, int revents) 917ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 918{
919 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 920 fd_event_nc (EV_A_ fd, revents);
491} 921}
492 922
493void inline_size 923/* make sure the external fd watch events are in-sync */
924/* with the kernel/libev internal state */
925inline_size void
494fd_reify (EV_P) 926fd_reify (EV_P)
495{ 927{
496 int i; 928 int i;
497 929
498 for (i = 0; i < fdchangecnt; ++i) 930 for (i = 0; i < fdchangecnt; ++i)
499 { 931 {
500 int fd = fdchanges [i]; 932 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 933 ANFD *anfd = anfds + fd;
502 ev_io *w; 934 ev_io *w;
503 935
504 int events = 0; 936 unsigned char events = 0;
505 937
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 939 events |= (unsigned char)w->events;
508 940
509#if EV_SELECT_IS_WINSOCKET 941#if EV_SELECT_IS_WINSOCKET
510 if (events) 942 if (events)
511 { 943 {
512 unsigned long argp; 944 unsigned long arg;
513 anfd->handle = _get_osfhandle (fd); 945 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 946 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 947 }
516#endif 948#endif
517 949
950 {
951 unsigned char o_events = anfd->events;
952 unsigned char o_reify = anfd->reify;
953
518 anfd->reify = 0; 954 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 955 anfd->events = events;
956
957 if (o_events != events || o_reify & EV__IOFDSET)
958 backend_modify (EV_A_ fd, o_events, events);
959 }
522 } 960 }
523 961
524 fdchangecnt = 0; 962 fdchangecnt = 0;
525} 963}
526 964
527void inline_size 965/* something about the given fd changed */
966inline_size void
528fd_change (EV_P_ int fd) 967fd_change (EV_P_ int fd, int flags)
529{ 968{
530 if (expect_false (anfds [fd].reify)) 969 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 970 anfds [fd].reify |= flags;
534 971
972 if (expect_true (!reify))
973 {
535 ++fdchangecnt; 974 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 975 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 976 fdchanges [fdchangecnt - 1] = fd;
977 }
538} 978}
539 979
540void inline_speed 980/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
981inline_speed void
541fd_kill (EV_P_ int fd) 982fd_kill (EV_P_ int fd)
542{ 983{
543 ev_io *w; 984 ev_io *w;
544 985
545 while ((w = (ev_io *)anfds [fd].head)) 986 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 988 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 989 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 990 }
550} 991}
551 992
552int inline_size 993/* check whether the given fd is atcually valid, for error recovery */
994inline_size int
553fd_valid (int fd) 995fd_valid (int fd)
554{ 996{
555#ifdef _WIN32 997#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 998 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
557#else 999#else
558 return fcntl (fd, F_GETFD) != -1; 1000 return fcntl (fd, F_GETFD) != -1;
559#endif 1001#endif
560} 1002}
561 1003
565{ 1007{
566 int fd; 1008 int fd;
567 1009
568 for (fd = 0; fd < anfdmax; ++fd) 1010 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 1011 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 1012 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 1013 fd_kill (EV_A_ fd);
572} 1014}
573 1015
574/* called on ENOMEM in select/poll to kill some fds and retry */ 1016/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 1017static void noinline
579 1021
580 for (fd = anfdmax; fd--; ) 1022 for (fd = anfdmax; fd--; )
581 if (anfds [fd].events) 1023 if (anfds [fd].events)
582 { 1024 {
583 fd_kill (EV_A_ fd); 1025 fd_kill (EV_A_ fd);
584 return; 1026 break;
585 } 1027 }
586} 1028}
587 1029
588/* usually called after fork if backend needs to re-arm all fds from scratch */ 1030/* usually called after fork if backend needs to re-arm all fds from scratch */
589static void noinline 1031static void noinline
590fd_rearm_all (EV_P) 1032fd_rearm_all (EV_P)
591{ 1033{
592 int fd; 1034 int fd;
593 1035
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 1036 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 1037 if (anfds [fd].events)
597 { 1038 {
598 anfds [fd].events = 0; 1039 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 1040 anfds [fd].emask = 0;
1041 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
600 } 1042 }
601} 1043}
602 1044
603/*****************************************************************************/ 1045/*****************************************************************************/
604 1046
605void inline_speed 1047/*
606upheap (WT *heap, int k) 1048 * the heap functions want a real array index. array index 0 uis guaranteed to not
607{ 1049 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
608 WT w = heap [k]; 1050 * the branching factor of the d-tree.
1051 */
609 1052
610 while (k && heap [k >> 1]->at > w->at) 1053/*
611 { 1054 * at the moment we allow libev the luxury of two heaps,
612 heap [k] = heap [k >> 1]; 1055 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
613 ((W)heap [k])->active = k + 1; 1056 * which is more cache-efficient.
614 k >>= 1; 1057 * the difference is about 5% with 50000+ watchers.
615 } 1058 */
1059#if EV_USE_4HEAP
616 1060
617 heap [k] = w; 1061#define DHEAP 4
618 ((W)heap [k])->active = k + 1; 1062#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1063#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1064#define UPHEAP_DONE(p,k) ((p) == (k))
619 1065
620} 1066/* away from the root */
621 1067inline_speed void
622void inline_speed
623downheap (WT *heap, int N, int k) 1068downheap (ANHE *heap, int N, int k)
624{ 1069{
625 WT w = heap [k]; 1070 ANHE he = heap [k];
1071 ANHE *E = heap + N + HEAP0;
626 1072
627 while (k < (N >> 1)) 1073 for (;;)
628 { 1074 {
629 int j = k << 1; 1075 ev_tstamp minat;
1076 ANHE *minpos;
1077 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
630 1078
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1079 /* find minimum child */
1080 if (expect_true (pos + DHEAP - 1 < E))
632 ++j; 1081 {
633 1082 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
634 if (w->at <= heap [j]->at) 1083 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1084 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1085 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1086 }
1087 else if (pos < E)
1088 {
1089 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1090 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1091 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1092 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1093 }
1094 else
635 break; 1095 break;
636 1096
1097 if (ANHE_at (he) <= minat)
1098 break;
1099
1100 heap [k] = *minpos;
1101 ev_active (ANHE_w (*minpos)) = k;
1102
1103 k = minpos - heap;
1104 }
1105
1106 heap [k] = he;
1107 ev_active (ANHE_w (he)) = k;
1108}
1109
1110#else /* 4HEAP */
1111
1112#define HEAP0 1
1113#define HPARENT(k) ((k) >> 1)
1114#define UPHEAP_DONE(p,k) (!(p))
1115
1116/* away from the root */
1117inline_speed void
1118downheap (ANHE *heap, int N, int k)
1119{
1120 ANHE he = heap [k];
1121
1122 for (;;)
1123 {
1124 int c = k << 1;
1125
1126 if (c >= N + HEAP0)
1127 break;
1128
1129 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1130 ? 1 : 0;
1131
1132 if (ANHE_at (he) <= ANHE_at (heap [c]))
1133 break;
1134
637 heap [k] = heap [j]; 1135 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 1136 ev_active (ANHE_w (heap [k])) = k;
1137
639 k = j; 1138 k = c;
640 } 1139 }
641 1140
642 heap [k] = w; 1141 heap [k] = he;
643 ((W)heap [k])->active = k + 1; 1142 ev_active (ANHE_w (he)) = k;
644} 1143}
1144#endif
645 1145
646void inline_size 1146/* towards the root */
1147inline_speed void
1148upheap (ANHE *heap, int k)
1149{
1150 ANHE he = heap [k];
1151
1152 for (;;)
1153 {
1154 int p = HPARENT (k);
1155
1156 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1157 break;
1158
1159 heap [k] = heap [p];
1160 ev_active (ANHE_w (heap [k])) = k;
1161 k = p;
1162 }
1163
1164 heap [k] = he;
1165 ev_active (ANHE_w (he)) = k;
1166}
1167
1168/* move an element suitably so it is in a correct place */
1169inline_size void
647adjustheap (WT *heap, int N, int k) 1170adjustheap (ANHE *heap, int N, int k)
648{ 1171{
1172 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
649 upheap (heap, k); 1173 upheap (heap, k);
1174 else
650 downheap (heap, N, k); 1175 downheap (heap, N, k);
1176}
1177
1178/* rebuild the heap: this function is used only once and executed rarely */
1179inline_size void
1180reheap (ANHE *heap, int N)
1181{
1182 int i;
1183
1184 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1185 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1186 for (i = 0; i < N; ++i)
1187 upheap (heap, i + HEAP0);
651} 1188}
652 1189
653/*****************************************************************************/ 1190/*****************************************************************************/
654 1191
1192/* associate signal watchers to a signal signal */
655typedef struct 1193typedef struct
656{ 1194{
1195 EV_ATOMIC_T pending;
1196#if EV_MULTIPLICITY
1197 EV_P;
1198#endif
657 WL head; 1199 WL head;
658 sig_atomic_t volatile gotsig;
659} ANSIG; 1200} ANSIG;
660 1201
661static ANSIG *signals; 1202static ANSIG signals [EV_NSIG - 1];
662static int signalmax;
663 1203
664static int sigpipe [2]; 1204/*****************************************************************************/
665static sig_atomic_t volatile gotsig;
666static ev_io sigev;
667 1205
668void inline_size 1206/* used to prepare libev internal fd's */
669signals_init (ANSIG *base, int count) 1207/* this is not fork-safe */
670{ 1208inline_speed void
671 while (count--)
672 {
673 base->head = 0;
674 base->gotsig = 0;
675
676 ++base;
677 }
678}
679
680static void
681sighandler (int signum)
682{
683#if _WIN32
684 signal (signum, sighandler);
685#endif
686
687 signals [signum - 1].gotsig = 1;
688
689 if (!gotsig)
690 {
691 int old_errno = errno;
692 gotsig = 1;
693 write (sigpipe [1], &signum, 1);
694 errno = old_errno;
695 }
696}
697
698void noinline
699ev_feed_signal_event (EV_P_ int signum)
700{
701 WL w;
702
703#if EV_MULTIPLICITY
704 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
705#endif
706
707 --signum;
708
709 if (signum < 0 || signum >= signalmax)
710 return;
711
712 signals [signum].gotsig = 0;
713
714 for (w = signals [signum].head; w; w = w->next)
715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
716}
717
718static void
719sigcb (EV_P_ ev_io *iow, int revents)
720{
721 int signum;
722
723 read (sigpipe [0], &revents, 1);
724 gotsig = 0;
725
726 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1);
729}
730
731void inline_size
732fd_intern (int fd) 1209fd_intern (int fd)
733{ 1210{
734#ifdef _WIN32 1211#ifdef _WIN32
735 int arg = 1; 1212 unsigned long arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1213 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
737#else 1214#else
738 fcntl (fd, F_SETFD, FD_CLOEXEC); 1215 fcntl (fd, F_SETFD, FD_CLOEXEC);
739 fcntl (fd, F_SETFL, O_NONBLOCK); 1216 fcntl (fd, F_SETFL, O_NONBLOCK);
740#endif 1217#endif
741} 1218}
742 1219
743static void noinline 1220static void noinline
744siginit (EV_P) 1221evpipe_init (EV_P)
745{ 1222{
1223 if (!ev_is_active (&pipe_w))
1224 {
1225#if EV_USE_EVENTFD
1226 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1227 if (evfd < 0 && errno == EINVAL)
1228 evfd = eventfd (0, 0);
1229
1230 if (evfd >= 0)
1231 {
1232 evpipe [0] = -1;
1233 fd_intern (evfd); /* doing it twice doesn't hurt */
1234 ev_io_set (&pipe_w, evfd, EV_READ);
1235 }
1236 else
1237#endif
1238 {
1239 while (pipe (evpipe))
1240 ev_syserr ("(libev) error creating signal/async pipe");
1241
746 fd_intern (sigpipe [0]); 1242 fd_intern (evpipe [0]);
747 fd_intern (sigpipe [1]); 1243 fd_intern (evpipe [1]);
1244 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1245 }
748 1246
749 ev_io_set (&sigev, sigpipe [0], EV_READ);
750 ev_io_start (EV_A_ &sigev); 1247 ev_io_start (EV_A_ &pipe_w);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1248 ev_unref (EV_A); /* watcher should not keep loop alive */
1249 }
1250}
1251
1252inline_size void
1253evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1254{
1255 if (!*flag)
1256 {
1257 int old_errno = errno; /* save errno because write might clobber it */
1258
1259 *flag = 1;
1260
1261#if EV_USE_EVENTFD
1262 if (evfd >= 0)
1263 {
1264 uint64_t counter = 1;
1265 write (evfd, &counter, sizeof (uint64_t));
1266 }
1267 else
1268#endif
1269 write (evpipe [1], &old_errno, 1);
1270
1271 errno = old_errno;
1272 }
1273}
1274
1275/* called whenever the libev signal pipe */
1276/* got some events (signal, async) */
1277static void
1278pipecb (EV_P_ ev_io *iow, int revents)
1279{
1280 int i;
1281
1282#if EV_USE_EVENTFD
1283 if (evfd >= 0)
1284 {
1285 uint64_t counter;
1286 read (evfd, &counter, sizeof (uint64_t));
1287 }
1288 else
1289#endif
1290 {
1291 char dummy;
1292 read (evpipe [0], &dummy, 1);
1293 }
1294
1295 if (sig_pending)
1296 {
1297 sig_pending = 0;
1298
1299 for (i = EV_NSIG - 1; i--; )
1300 if (expect_false (signals [i].pending))
1301 ev_feed_signal_event (EV_A_ i + 1);
1302 }
1303
1304#if EV_ASYNC_ENABLE
1305 if (async_pending)
1306 {
1307 async_pending = 0;
1308
1309 for (i = asynccnt; i--; )
1310 if (asyncs [i]->sent)
1311 {
1312 asyncs [i]->sent = 0;
1313 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1314 }
1315 }
1316#endif
752} 1317}
753 1318
754/*****************************************************************************/ 1319/*****************************************************************************/
755 1320
1321static void
1322ev_sighandler (int signum)
1323{
1324#if EV_MULTIPLICITY
1325 EV_P = signals [signum - 1].loop;
1326#endif
1327
1328#ifdef _WIN32
1329 signal (signum, ev_sighandler);
1330#endif
1331
1332 signals [signum - 1].pending = 1;
1333 evpipe_write (EV_A_ &sig_pending);
1334}
1335
1336void noinline
1337ev_feed_signal_event (EV_P_ int signum)
1338{
1339 WL w;
1340
1341 if (expect_false (signum <= 0 || signum > EV_NSIG))
1342 return;
1343
1344 --signum;
1345
1346#if EV_MULTIPLICITY
1347 /* it is permissible to try to feed a signal to the wrong loop */
1348 /* or, likely more useful, feeding a signal nobody is waiting for */
1349
1350 if (expect_false (signals [signum].loop != EV_A))
1351 return;
1352#endif
1353
1354 signals [signum].pending = 0;
1355
1356 for (w = signals [signum].head; w; w = w->next)
1357 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1358}
1359
1360#if EV_USE_SIGNALFD
1361static void
1362sigfdcb (EV_P_ ev_io *iow, int revents)
1363{
1364 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1365
1366 for (;;)
1367 {
1368 ssize_t res = read (sigfd, si, sizeof (si));
1369
1370 /* not ISO-C, as res might be -1, but works with SuS */
1371 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1372 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1373
1374 if (res < (ssize_t)sizeof (si))
1375 break;
1376 }
1377}
1378#endif
1379
1380/*****************************************************************************/
1381
756static ev_child *childs [EV_PID_HASHSIZE]; 1382static WL childs [EV_PID_HASHSIZE];
757 1383
758#ifndef _WIN32 1384#ifndef _WIN32
759 1385
760static ev_signal childev; 1386static ev_signal childev;
761 1387
762void inline_speed 1388#ifndef WIFCONTINUED
1389# define WIFCONTINUED(status) 0
1390#endif
1391
1392/* handle a single child status event */
1393inline_speed void
763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1394child_reap (EV_P_ int chain, int pid, int status)
764{ 1395{
765 ev_child *w; 1396 ev_child *w;
1397 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
766 1398
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1399 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1400 {
768 if (w->pid == pid || !w->pid) 1401 if ((w->pid == pid || !w->pid)
1402 && (!traced || (w->flags & 1)))
769 { 1403 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1404 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
771 w->rpid = pid; 1405 w->rpid = pid;
772 w->rstatus = status; 1406 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1407 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 1408 }
1409 }
775} 1410}
776 1411
777#ifndef WCONTINUED 1412#ifndef WCONTINUED
778# define WCONTINUED 0 1413# define WCONTINUED 0
779#endif 1414#endif
780 1415
1416/* called on sigchld etc., calls waitpid */
781static void 1417static void
782childcb (EV_P_ ev_signal *sw, int revents) 1418childcb (EV_P_ ev_signal *sw, int revents)
783{ 1419{
784 int pid, status; 1420 int pid, status;
785 1421
788 if (!WCONTINUED 1424 if (!WCONTINUED
789 || errno != EINVAL 1425 || errno != EINVAL
790 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1426 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
791 return; 1427 return;
792 1428
793 /* make sure we are called again until all childs have been reaped */ 1429 /* make sure we are called again until all children have been reaped */
794 /* we need to do it this way so that the callback gets called before we continue */ 1430 /* we need to do it this way so that the callback gets called before we continue */
795 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1431 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
796 1432
797 child_reap (EV_A_ sw, pid, pid, status); 1433 child_reap (EV_A_ pid, pid, status);
798 if (EV_PID_HASHSIZE > 1) 1434 if (EV_PID_HASHSIZE > 1)
799 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1435 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
800} 1436}
801 1437
802#endif 1438#endif
803 1439
804/*****************************************************************************/ 1440/*****************************************************************************/
866 /* kqueue is borked on everything but netbsd apparently */ 1502 /* kqueue is borked on everything but netbsd apparently */
867 /* it usually doesn't work correctly on anything but sockets and pipes */ 1503 /* it usually doesn't work correctly on anything but sockets and pipes */
868 flags &= ~EVBACKEND_KQUEUE; 1504 flags &= ~EVBACKEND_KQUEUE;
869#endif 1505#endif
870#ifdef __APPLE__ 1506#ifdef __APPLE__
871 // flags &= ~EVBACKEND_KQUEUE; for documentation 1507 /* only select works correctly on that "unix-certified" platform */
872 flags &= ~EVBACKEND_POLL; 1508 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1509 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
873#endif 1510#endif
874 1511
875 return flags; 1512 return flags;
876} 1513}
877 1514
878unsigned int 1515unsigned int
879ev_embeddable_backends (void) 1516ev_embeddable_backends (void)
880{ 1517{
881 return EVBACKEND_EPOLL 1518 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
882 | EVBACKEND_KQUEUE 1519
883 | EVBACKEND_PORT; 1520 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1521 /* please fix it and tell me how to detect the fix */
1522 flags &= ~EVBACKEND_EPOLL;
1523
1524 return flags;
884} 1525}
885 1526
886unsigned int 1527unsigned int
887ev_backend (EV_P) 1528ev_backend (EV_P)
888{ 1529{
889 return backend; 1530 return backend;
890} 1531}
891 1532
1533#if EV_MINIMAL < 2
1534unsigned int
1535ev_loop_count (EV_P)
1536{
1537 return loop_count;
1538}
1539
1540unsigned int
1541ev_loop_depth (EV_P)
1542{
1543 return loop_depth;
1544}
1545
1546void
1547ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1548{
1549 io_blocktime = interval;
1550}
1551
1552void
1553ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1554{
1555 timeout_blocktime = interval;
1556}
1557
1558void
1559ev_set_userdata (EV_P_ void *data)
1560{
1561 userdata = data;
1562}
1563
1564void *
1565ev_userdata (EV_P)
1566{
1567 return userdata;
1568}
1569
1570void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1571{
1572 invoke_cb = invoke_pending_cb;
1573}
1574
1575void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1576{
1577 release_cb = release;
1578 acquire_cb = acquire;
1579}
1580#endif
1581
1582/* initialise a loop structure, must be zero-initialised */
892static void noinline 1583static void noinline
893loop_init (EV_P_ unsigned int flags) 1584loop_init (EV_P_ unsigned int flags)
894{ 1585{
895 if (!backend) 1586 if (!backend)
896 { 1587 {
1588#if EV_USE_REALTIME
1589 if (!have_realtime)
1590 {
1591 struct timespec ts;
1592
1593 if (!clock_gettime (CLOCK_REALTIME, &ts))
1594 have_realtime = 1;
1595 }
1596#endif
1597
897#if EV_USE_MONOTONIC 1598#if EV_USE_MONOTONIC
1599 if (!have_monotonic)
898 { 1600 {
899 struct timespec ts; 1601 struct timespec ts;
1602
900 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1603 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
901 have_monotonic = 1; 1604 have_monotonic = 1;
902 } 1605 }
903#endif 1606#endif
904 1607
905 ev_rt_now = ev_time (); 1608 /* pid check not overridable via env */
906 mn_now = get_clock (); 1609#ifndef _WIN32
907 now_floor = mn_now; 1610 if (flags & EVFLAG_FORKCHECK)
908 rtmn_diff = ev_rt_now - mn_now; 1611 curpid = getpid ();
1612#endif
909 1613
910 if (!(flags & EVFLAG_NOENV) 1614 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1615 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1616 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1617 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1618
1619 ev_rt_now = ev_time ();
1620 mn_now = get_clock ();
1621 now_floor = mn_now;
1622 rtmn_diff = ev_rt_now - mn_now;
1623#if EV_MINIMAL < 2
1624 invoke_cb = ev_invoke_pending;
1625#endif
1626
1627 io_blocktime = 0.;
1628 timeout_blocktime = 0.;
1629 backend = 0;
1630 backend_fd = -1;
1631 sig_pending = 0;
1632#if EV_ASYNC_ENABLE
1633 async_pending = 0;
1634#endif
1635#if EV_USE_INOTIFY
1636 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1637#endif
1638#if EV_USE_SIGNALFD
1639 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1640#endif
1641
915 if (!(flags & 0x0000ffffUL)) 1642 if (!(flags & 0x0000ffffU))
916 flags |= ev_recommended_backends (); 1643 flags |= ev_recommended_backends ();
917
918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY
921 fs_fd = -2;
922#endif
923 1644
924#if EV_USE_PORT 1645#if EV_USE_PORT
925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1646 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
926#endif 1647#endif
927#if EV_USE_KQUEUE 1648#if EV_USE_KQUEUE
935#endif 1656#endif
936#if EV_USE_SELECT 1657#if EV_USE_SELECT
937 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1658 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
938#endif 1659#endif
939 1660
1661 ev_prepare_init (&pending_w, pendingcb);
1662
940 ev_init (&sigev, sigcb); 1663 ev_init (&pipe_w, pipecb);
941 ev_set_priority (&sigev, EV_MAXPRI); 1664 ev_set_priority (&pipe_w, EV_MAXPRI);
942 } 1665 }
943} 1666}
944 1667
1668/* free up a loop structure */
945static void noinline 1669static void noinline
946loop_destroy (EV_P) 1670loop_destroy (EV_P)
947{ 1671{
948 int i; 1672 int i;
1673
1674 if (ev_is_active (&pipe_w))
1675 {
1676 /*ev_ref (EV_A);*/
1677 /*ev_io_stop (EV_A_ &pipe_w);*/
1678
1679#if EV_USE_EVENTFD
1680 if (evfd >= 0)
1681 close (evfd);
1682#endif
1683
1684 if (evpipe [0] >= 0)
1685 {
1686 EV_WIN32_CLOSE_FD (evpipe [0]);
1687 EV_WIN32_CLOSE_FD (evpipe [1]);
1688 }
1689 }
1690
1691#if EV_USE_SIGNALFD
1692 if (ev_is_active (&sigfd_w))
1693 close (sigfd);
1694#endif
949 1695
950#if EV_USE_INOTIFY 1696#if EV_USE_INOTIFY
951 if (fs_fd >= 0) 1697 if (fs_fd >= 0)
952 close (fs_fd); 1698 close (fs_fd);
953#endif 1699#endif
970#if EV_USE_SELECT 1716#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1717 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1718#endif
973 1719
974 for (i = NUMPRI; i--; ) 1720 for (i = NUMPRI; i--; )
1721 {
975 array_free (pending, [i]); 1722 array_free (pending, [i]);
1723#if EV_IDLE_ENABLE
1724 array_free (idle, [i]);
1725#endif
1726 }
1727
1728 ev_free (anfds); anfds = 0; anfdmax = 0;
976 1729
977 /* have to use the microsoft-never-gets-it-right macro */ 1730 /* have to use the microsoft-never-gets-it-right macro */
1731 array_free (rfeed, EMPTY);
978 array_free (fdchange, EMPTY0); 1732 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1733 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1734#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1735 array_free (periodic, EMPTY);
982#endif 1736#endif
1737#if EV_FORK_ENABLE
983 array_free (idle, EMPTY0); 1738 array_free (fork, EMPTY);
1739#endif
984 array_free (prepare, EMPTY0); 1740 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1741 array_free (check, EMPTY);
1742#if EV_ASYNC_ENABLE
1743 array_free (async, EMPTY);
1744#endif
986 1745
987 backend = 0; 1746 backend = 0;
988} 1747}
989 1748
1749#if EV_USE_INOTIFY
990void inline_size infy_fork (EV_P); 1750inline_size void infy_fork (EV_P);
1751#endif
991 1752
992void inline_size 1753inline_size void
993loop_fork (EV_P) 1754loop_fork (EV_P)
994{ 1755{
995#if EV_USE_PORT 1756#if EV_USE_PORT
996 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1757 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
997#endif 1758#endif
1003#endif 1764#endif
1004#if EV_USE_INOTIFY 1765#if EV_USE_INOTIFY
1005 infy_fork (EV_A); 1766 infy_fork (EV_A);
1006#endif 1767#endif
1007 1768
1008 if (ev_is_active (&sigev)) 1769 if (ev_is_active (&pipe_w))
1009 { 1770 {
1010 /* default loop */ 1771 /* this "locks" the handlers against writing to the pipe */
1772 /* while we modify the fd vars */
1773 sig_pending = 1;
1774#if EV_ASYNC_ENABLE
1775 async_pending = 1;
1776#endif
1011 1777
1012 ev_ref (EV_A); 1778 ev_ref (EV_A);
1013 ev_io_stop (EV_A_ &sigev); 1779 ev_io_stop (EV_A_ &pipe_w);
1014 close (sigpipe [0]);
1015 close (sigpipe [1]);
1016 1780
1017 while (pipe (sigpipe)) 1781#if EV_USE_EVENTFD
1018 syserr ("(libev) error creating pipe"); 1782 if (evfd >= 0)
1783 close (evfd);
1784#endif
1019 1785
1786 if (evpipe [0] >= 0)
1787 {
1788 EV_WIN32_CLOSE_FD (evpipe [0]);
1789 EV_WIN32_CLOSE_FD (evpipe [1]);
1790 }
1791
1020 siginit (EV_A); 1792 evpipe_init (EV_A);
1793 /* now iterate over everything, in case we missed something */
1794 pipecb (EV_A_ &pipe_w, EV_READ);
1021 } 1795 }
1022 1796
1023 postfork = 0; 1797 postfork = 0;
1024} 1798}
1025 1799
1026#if EV_MULTIPLICITY 1800#if EV_MULTIPLICITY
1801
1027struct ev_loop * 1802struct ev_loop *
1028ev_loop_new (unsigned int flags) 1803ev_loop_new (unsigned int flags)
1029{ 1804{
1030 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1805 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1031 1806
1032 memset (loop, 0, sizeof (struct ev_loop)); 1807 memset (EV_A, 0, sizeof (struct ev_loop));
1033
1034 loop_init (EV_A_ flags); 1808 loop_init (EV_A_ flags);
1035 1809
1036 if (ev_backend (EV_A)) 1810 if (ev_backend (EV_A))
1037 return loop; 1811 return EV_A;
1038 1812
1039 return 0; 1813 return 0;
1040} 1814}
1041 1815
1042void 1816void
1047} 1821}
1048 1822
1049void 1823void
1050ev_loop_fork (EV_P) 1824ev_loop_fork (EV_P)
1051{ 1825{
1052 postfork = 1; 1826 postfork = 1; /* must be in line with ev_default_fork */
1053} 1827}
1828#endif /* multiplicity */
1054 1829
1830#if EV_VERIFY
1831static void noinline
1832verify_watcher (EV_P_ W w)
1833{
1834 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1835
1836 if (w->pending)
1837 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1838}
1839
1840static void noinline
1841verify_heap (EV_P_ ANHE *heap, int N)
1842{
1843 int i;
1844
1845 for (i = HEAP0; i < N + HEAP0; ++i)
1846 {
1847 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1848 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1849 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1850
1851 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1852 }
1853}
1854
1855static void noinline
1856array_verify (EV_P_ W *ws, int cnt)
1857{
1858 while (cnt--)
1859 {
1860 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1861 verify_watcher (EV_A_ ws [cnt]);
1862 }
1863}
1864#endif
1865
1866#if EV_MINIMAL < 2
1867void
1868ev_loop_verify (EV_P)
1869{
1870#if EV_VERIFY
1871 int i;
1872 WL w;
1873
1874 assert (activecnt >= -1);
1875
1876 assert (fdchangemax >= fdchangecnt);
1877 for (i = 0; i < fdchangecnt; ++i)
1878 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1879
1880 assert (anfdmax >= 0);
1881 for (i = 0; i < anfdmax; ++i)
1882 for (w = anfds [i].head; w; w = w->next)
1883 {
1884 verify_watcher (EV_A_ (W)w);
1885 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1886 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1887 }
1888
1889 assert (timermax >= timercnt);
1890 verify_heap (EV_A_ timers, timercnt);
1891
1892#if EV_PERIODIC_ENABLE
1893 assert (periodicmax >= periodiccnt);
1894 verify_heap (EV_A_ periodics, periodiccnt);
1895#endif
1896
1897 for (i = NUMPRI; i--; )
1898 {
1899 assert (pendingmax [i] >= pendingcnt [i]);
1900#if EV_IDLE_ENABLE
1901 assert (idleall >= 0);
1902 assert (idlemax [i] >= idlecnt [i]);
1903 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1904#endif
1905 }
1906
1907#if EV_FORK_ENABLE
1908 assert (forkmax >= forkcnt);
1909 array_verify (EV_A_ (W *)forks, forkcnt);
1910#endif
1911
1912#if EV_ASYNC_ENABLE
1913 assert (asyncmax >= asynccnt);
1914 array_verify (EV_A_ (W *)asyncs, asynccnt);
1915#endif
1916
1917 assert (preparemax >= preparecnt);
1918 array_verify (EV_A_ (W *)prepares, preparecnt);
1919
1920 assert (checkmax >= checkcnt);
1921 array_verify (EV_A_ (W *)checks, checkcnt);
1922
1923# if 0
1924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1925 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1926# endif
1927#endif
1928}
1055#endif 1929#endif
1056 1930
1057#if EV_MULTIPLICITY 1931#if EV_MULTIPLICITY
1058struct ev_loop * 1932struct ev_loop *
1059ev_default_loop_init (unsigned int flags) 1933ev_default_loop_init (unsigned int flags)
1060#else 1934#else
1061int 1935int
1062ev_default_loop (unsigned int flags) 1936ev_default_loop (unsigned int flags)
1063#endif 1937#endif
1064{ 1938{
1065 if (sigpipe [0] == sigpipe [1])
1066 if (pipe (sigpipe))
1067 return 0;
1068
1069 if (!ev_default_loop_ptr) 1939 if (!ev_default_loop_ptr)
1070 { 1940 {
1071#if EV_MULTIPLICITY 1941#if EV_MULTIPLICITY
1072 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1942 EV_P = ev_default_loop_ptr = &default_loop_struct;
1073#else 1943#else
1074 ev_default_loop_ptr = 1; 1944 ev_default_loop_ptr = 1;
1075#endif 1945#endif
1076 1946
1077 loop_init (EV_A_ flags); 1947 loop_init (EV_A_ flags);
1078 1948
1079 if (ev_backend (EV_A)) 1949 if (ev_backend (EV_A))
1080 { 1950 {
1081 siginit (EV_A);
1082
1083#ifndef _WIN32 1951#ifndef _WIN32
1084 ev_signal_init (&childev, childcb, SIGCHLD); 1952 ev_signal_init (&childev, childcb, SIGCHLD);
1085 ev_set_priority (&childev, EV_MAXPRI); 1953 ev_set_priority (&childev, EV_MAXPRI);
1086 ev_signal_start (EV_A_ &childev); 1954 ev_signal_start (EV_A_ &childev);
1087 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1955 ev_unref (EV_A); /* child watcher should not keep loop alive */
1096 1964
1097void 1965void
1098ev_default_destroy (void) 1966ev_default_destroy (void)
1099{ 1967{
1100#if EV_MULTIPLICITY 1968#if EV_MULTIPLICITY
1101 struct ev_loop *loop = ev_default_loop_ptr; 1969 EV_P = ev_default_loop_ptr;
1102#endif 1970#endif
1971
1972 ev_default_loop_ptr = 0;
1103 1973
1104#ifndef _WIN32 1974#ifndef _WIN32
1105 ev_ref (EV_A); /* child watcher */ 1975 ev_ref (EV_A); /* child watcher */
1106 ev_signal_stop (EV_A_ &childev); 1976 ev_signal_stop (EV_A_ &childev);
1107#endif 1977#endif
1108 1978
1109 ev_ref (EV_A); /* signal watcher */
1110 ev_io_stop (EV_A_ &sigev);
1111
1112 close (sigpipe [0]); sigpipe [0] = 0;
1113 close (sigpipe [1]); sigpipe [1] = 0;
1114
1115 loop_destroy (EV_A); 1979 loop_destroy (EV_A);
1116} 1980}
1117 1981
1118void 1982void
1119ev_default_fork (void) 1983ev_default_fork (void)
1120{ 1984{
1121#if EV_MULTIPLICITY 1985#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr; 1986 EV_P = ev_default_loop_ptr;
1123#endif 1987#endif
1124 1988
1125 if (backend) 1989 postfork = 1; /* must be in line with ev_loop_fork */
1126 postfork = 1;
1127} 1990}
1128 1991
1129/*****************************************************************************/ 1992/*****************************************************************************/
1130 1993
1131int inline_size 1994void
1132any_pending (EV_P) 1995ev_invoke (EV_P_ void *w, int revents)
1996{
1997 EV_CB_INVOKE ((W)w, revents);
1998}
1999
2000unsigned int
2001ev_pending_count (EV_P)
1133{ 2002{
1134 int pri; 2003 int pri;
2004 unsigned int count = 0;
1135 2005
1136 for (pri = NUMPRI; pri--; ) 2006 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri]) 2007 count += pendingcnt [pri];
1138 return 1;
1139 2008
1140 return 0; 2009 return count;
1141} 2010}
1142 2011
1143void inline_speed 2012void noinline
1144call_pending (EV_P) 2013ev_invoke_pending (EV_P)
1145{ 2014{
1146 int pri; 2015 int pri;
1147 2016
1148 for (pri = NUMPRI; pri--; ) 2017 for (pri = NUMPRI; pri--; )
1149 while (pendingcnt [pri]) 2018 while (pendingcnt [pri])
1150 { 2019 {
1151 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2020 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1152 2021
1153 if (expect_true (p->w))
1154 {
1155 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2022 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2023 /* ^ this is no longer true, as pending_w could be here */
1156 2024
1157 p->w->pending = 0; 2025 p->w->pending = 0;
1158 EV_CB_INVOKE (p->w, p->events); 2026 EV_CB_INVOKE (p->w, p->events);
1159 } 2027 EV_FREQUENT_CHECK;
1160 } 2028 }
1161} 2029}
1162 2030
1163void inline_size 2031#if EV_IDLE_ENABLE
2032/* make idle watchers pending. this handles the "call-idle */
2033/* only when higher priorities are idle" logic */
2034inline_size void
2035idle_reify (EV_P)
2036{
2037 if (expect_false (idleall))
2038 {
2039 int pri;
2040
2041 for (pri = NUMPRI; pri--; )
2042 {
2043 if (pendingcnt [pri])
2044 break;
2045
2046 if (idlecnt [pri])
2047 {
2048 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2049 break;
2050 }
2051 }
2052 }
2053}
2054#endif
2055
2056/* make timers pending */
2057inline_size void
1164timers_reify (EV_P) 2058timers_reify (EV_P)
1165{ 2059{
2060 EV_FREQUENT_CHECK;
2061
1166 while (timercnt && ((WT)timers [0])->at <= mn_now) 2062 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1167 { 2063 {
1168 ev_timer *w = timers [0]; 2064 do
1169
1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1171
1172 /* first reschedule or stop timer */
1173 if (w->repeat)
1174 { 2065 {
2066 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2067
2068 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2069
2070 /* first reschedule or stop timer */
2071 if (w->repeat)
2072 {
2073 ev_at (w) += w->repeat;
2074 if (ev_at (w) < mn_now)
2075 ev_at (w) = mn_now;
2076
1175 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2077 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1176 2078
1177 ((WT)w)->at += w->repeat; 2079 ANHE_at_cache (timers [HEAP0]);
1178 if (((WT)w)->at < mn_now)
1179 ((WT)w)->at = mn_now;
1180
1181 downheap ((WT *)timers, timercnt, 0); 2080 downheap (timers, timercnt, HEAP0);
2081 }
2082 else
2083 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2084
2085 EV_FREQUENT_CHECK;
2086 feed_reverse (EV_A_ (W)w);
1182 } 2087 }
1183 else 2088 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1185 2089
1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2090 feed_reverse_done (EV_A_ EV_TIMEOUT);
1187 } 2091 }
1188} 2092}
1189 2093
1190#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1191void inline_size 2095/* make periodics pending */
2096inline_size void
1192periodics_reify (EV_P) 2097periodics_reify (EV_P)
1193{ 2098{
2099 EV_FREQUENT_CHECK;
2100
1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2101 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1195 { 2102 {
1196 ev_periodic *w = periodics [0]; 2103 int feed_count = 0;
1197 2104
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2105 do
1199
1200 /* first reschedule or stop timer */
1201 if (w->reschedule_cb)
1202 { 2106 {
2107 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2108
2109 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2110
2111 /* first reschedule or stop timer */
2112 if (w->reschedule_cb)
2113 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2114 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2115
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2116 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2117
2118 ANHE_at_cache (periodics [HEAP0]);
1205 downheap ((WT *)periodics, periodiccnt, 0); 2119 downheap (periodics, periodiccnt, HEAP0);
2120 }
2121 else if (w->interval)
2122 {
2123 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2124 /* if next trigger time is not sufficiently in the future, put it there */
2125 /* this might happen because of floating point inexactness */
2126 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2127 {
2128 ev_at (w) += w->interval;
2129
2130 /* if interval is unreasonably low we might still have a time in the past */
2131 /* so correct this. this will make the periodic very inexact, but the user */
2132 /* has effectively asked to get triggered more often than possible */
2133 if (ev_at (w) < ev_rt_now)
2134 ev_at (w) = ev_rt_now;
2135 }
2136
2137 ANHE_at_cache (periodics [HEAP0]);
2138 downheap (periodics, periodiccnt, HEAP0);
2139 }
2140 else
2141 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2142
2143 EV_FREQUENT_CHECK;
2144 feed_reverse (EV_A_ (W)w);
1206 } 2145 }
1207 else if (w->interval) 2146 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1208 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1211 downheap ((WT *)periodics, periodiccnt, 0);
1212 }
1213 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1215 2147
1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2148 feed_reverse_done (EV_A_ EV_PERIODIC);
1217 } 2149 }
1218} 2150}
1219 2151
2152/* simply recalculate all periodics */
2153/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1220static void noinline 2154static void noinline
1221periodics_reschedule (EV_P) 2155periodics_reschedule (EV_P)
1222{ 2156{
1223 int i; 2157 int i;
1224 2158
1225 /* adjust periodics after time jump */ 2159 /* adjust periodics after time jump */
1226 for (i = 0; i < periodiccnt; ++i) 2160 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1227 { 2161 {
1228 ev_periodic *w = periodics [i]; 2162 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1229 2163
1230 if (w->reschedule_cb) 2164 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2165 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval) 2166 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2167 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2168
2169 ANHE_at_cache (periodics [i]);
2170 }
2171
2172 reheap (periodics, periodiccnt);
2173}
2174#endif
2175
2176/* adjust all timers by a given offset */
2177static void noinline
2178timers_reschedule (EV_P_ ev_tstamp adjust)
2179{
2180 int i;
2181
2182 for (i = 0; i < timercnt; ++i)
1234 } 2183 {
1235 2184 ANHE *he = timers + i + HEAP0;
1236 /* now rebuild the heap */ 2185 ANHE_w (*he)->at += adjust;
1237 for (i = periodiccnt >> 1; i--; ) 2186 ANHE_at_cache (*he);
1238 downheap ((WT *)periodics, periodiccnt, i); 2187 }
1239} 2188}
1240#endif
1241 2189
1242int inline_size 2190/* fetch new monotonic and realtime times from the kernel */
1243time_update_monotonic (EV_P) 2191/* also detect if there was a timejump, and act accordingly */
2192inline_speed void
2193time_update (EV_P_ ev_tstamp max_block)
1244{ 2194{
2195#if EV_USE_MONOTONIC
2196 if (expect_true (have_monotonic))
2197 {
2198 int i;
2199 ev_tstamp odiff = rtmn_diff;
2200
1245 mn_now = get_clock (); 2201 mn_now = get_clock ();
1246 2202
2203 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2204 /* interpolate in the meantime */
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2205 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 { 2206 {
1249 ev_rt_now = rtmn_diff + mn_now; 2207 ev_rt_now = rtmn_diff + mn_now;
1250 return 0; 2208 return;
1251 } 2209 }
1252 else 2210
1253 {
1254 now_floor = mn_now; 2211 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 2212 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 2213
1260void inline_size 2214 /* loop a few times, before making important decisions.
1261time_update (EV_P) 2215 * on the choice of "4": one iteration isn't enough,
1262{ 2216 * in case we get preempted during the calls to
1263 int i; 2217 * ev_time and get_clock. a second call is almost guaranteed
1264 2218 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 2219 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 2220 * in the unlikely event of having been preempted here.
1267 { 2221 */
1268 if (time_update_monotonic (EV_A)) 2222 for (i = 4; --i; )
1269 { 2223 {
1270 ev_tstamp odiff = rtmn_diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 2224 rtmn_diff = ev_rt_now - mn_now;
1283 2225
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2226 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1285 return; /* all is well */ 2227 return; /* all is well */
1286 2228
1287 ev_rt_now = ev_time (); 2229 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 2230 mn_now = get_clock ();
1289 now_floor = mn_now; 2231 now_floor = mn_now;
1290 } 2232 }
1291 2233
2234 /* no timer adjustment, as the monotonic clock doesn't jump */
2235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1292# if EV_PERIODIC_ENABLE 2236# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 2237 periodics_reschedule (EV_A);
1294# endif 2238# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 2239 }
1299 else 2240 else
1300#endif 2241#endif
1301 { 2242 {
1302 ev_rt_now = ev_time (); 2243 ev_rt_now = ev_time ();
1303 2244
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2245 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 2246 {
2247 /* adjust timers. this is easy, as the offset is the same for all of them */
2248 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1306#if EV_PERIODIC_ENABLE 2249#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 2250 periodics_reschedule (EV_A);
1308#endif 2251#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */
1311 for (i = 0; i < timercnt; ++i)
1312 ((WT)timers [i])->at += ev_rt_now - mn_now;
1313 } 2252 }
1314 2253
1315 mn_now = ev_rt_now; 2254 mn_now = ev_rt_now;
1316 } 2255 }
1317} 2256}
1318 2257
1319void 2258void
1320ev_ref (EV_P)
1321{
1322 ++activecnt;
1323}
1324
1325void
1326ev_unref (EV_P)
1327{
1328 --activecnt;
1329}
1330
1331static int loop_done;
1332
1333void
1334ev_loop (EV_P_ int flags) 2259ev_loop (EV_P_ int flags)
1335{ 2260{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2261#if EV_MINIMAL < 2
1337 ? EVUNLOOP_ONE 2262 ++loop_depth;
1338 : EVUNLOOP_CANCEL; 2263#endif
1339 2264
1340 while (activecnt) 2265 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2266
2267 loop_done = EVUNLOOP_CANCEL;
2268
2269 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2270
2271 do
1341 { 2272 {
1342 /* we might have forked, so reify kernel state if necessary */ 2273#if EV_VERIFY >= 2
2274 ev_loop_verify (EV_A);
2275#endif
2276
2277#ifndef _WIN32
2278 if (expect_false (curpid)) /* penalise the forking check even more */
2279 if (expect_false (getpid () != curpid))
2280 {
2281 curpid = getpid ();
2282 postfork = 1;
2283 }
2284#endif
2285
1343 #if EV_FORK_ENABLE 2286#if EV_FORK_ENABLE
2287 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 2288 if (expect_false (postfork))
1345 if (forkcnt) 2289 if (forkcnt)
1346 { 2290 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2291 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 2292 EV_INVOKE_PENDING;
1349 } 2293 }
1350 #endif 2294#endif
1351 2295
1352 /* queue check watchers (and execute them) */ 2296 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 2297 if (expect_false (preparecnt))
1354 { 2298 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2299 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 2300 EV_INVOKE_PENDING;
1357 } 2301 }
2302
2303 if (expect_false (loop_done))
2304 break;
1358 2305
1359 /* we might have forked, so reify kernel state if necessary */ 2306 /* we might have forked, so reify kernel state if necessary */
1360 if (expect_false (postfork)) 2307 if (expect_false (postfork))
1361 loop_fork (EV_A); 2308 loop_fork (EV_A);
1362 2309
1363 /* update fd-related kernel structures */ 2310 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 2311 fd_reify (EV_A);
1365 2312
1366 /* calculate blocking time */ 2313 /* calculate blocking time */
1367 { 2314 {
1368 double block; 2315 ev_tstamp waittime = 0.;
2316 ev_tstamp sleeptime = 0.;
1369 2317
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 2318 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1371 block = 0.; /* do not block at all */
1372 else
1373 { 2319 {
2320 /* remember old timestamp for io_blocktime calculation */
2321 ev_tstamp prev_mn_now = mn_now;
2322
1374 /* update time to cancel out callback processing overhead */ 2323 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A); 2324 time_update (EV_A_ 1e100);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384 2325
1385 block = MAX_BLOCKTIME; 2326 waittime = MAX_BLOCKTIME;
1386 2327
1387 if (timercnt) 2328 if (timercnt)
1388 { 2329 {
1389 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2330 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1390 if (block > to) block = to; 2331 if (waittime > to) waittime = to;
1391 } 2332 }
1392 2333
1393#if EV_PERIODIC_ENABLE 2334#if EV_PERIODIC_ENABLE
1394 if (periodiccnt) 2335 if (periodiccnt)
1395 { 2336 {
1396 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2337 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1397 if (block > to) block = to; 2338 if (waittime > to) waittime = to;
1398 } 2339 }
1399#endif 2340#endif
1400 2341
2342 /* don't let timeouts decrease the waittime below timeout_blocktime */
2343 if (expect_false (waittime < timeout_blocktime))
2344 waittime = timeout_blocktime;
2345
2346 /* extra check because io_blocktime is commonly 0 */
1401 if (expect_false (block < 0.)) block = 0.; 2347 if (expect_false (io_blocktime))
2348 {
2349 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2350
2351 if (sleeptime > waittime - backend_fudge)
2352 sleeptime = waittime - backend_fudge;
2353
2354 if (expect_true (sleeptime > 0.))
2355 {
2356 ev_sleep (sleeptime);
2357 waittime -= sleeptime;
2358 }
2359 }
1402 } 2360 }
1403 2361
2362#if EV_MINIMAL < 2
2363 ++loop_count;
2364#endif
2365 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1404 backend_poll (EV_A_ block); 2366 backend_poll (EV_A_ waittime);
2367 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2368
2369 /* update ev_rt_now, do magic */
2370 time_update (EV_A_ waittime + sleeptime);
1405 } 2371 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 2372
1410 /* queue pending timers and reschedule them */ 2373 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 2374 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 2375#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 2376 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 2377#endif
1415 2378
2379#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 2380 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 2381 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2382#endif
1419 2383
1420 /* queue check watchers, to be executed first */ 2384 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 2385 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2386 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1423 2387
1424 call_pending (EV_A); 2388 EV_INVOKE_PENDING;
1425
1426 if (expect_false (loop_done))
1427 break;
1428 } 2389 }
2390 while (expect_true (
2391 activecnt
2392 && !loop_done
2393 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2394 ));
1429 2395
1430 if (loop_done == EVUNLOOP_ONE) 2396 if (loop_done == EVUNLOOP_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 2397 loop_done = EVUNLOOP_CANCEL;
2398
2399#if EV_MINIMAL < 2
2400 --loop_depth;
2401#endif
1432} 2402}
1433 2403
1434void 2404void
1435ev_unloop (EV_P_ int how) 2405ev_unloop (EV_P_ int how)
1436{ 2406{
1437 loop_done = how; 2407 loop_done = how;
1438} 2408}
1439 2409
2410void
2411ev_ref (EV_P)
2412{
2413 ++activecnt;
2414}
2415
2416void
2417ev_unref (EV_P)
2418{
2419 --activecnt;
2420}
2421
2422void
2423ev_now_update (EV_P)
2424{
2425 time_update (EV_A_ 1e100);
2426}
2427
2428void
2429ev_suspend (EV_P)
2430{
2431 ev_now_update (EV_A);
2432}
2433
2434void
2435ev_resume (EV_P)
2436{
2437 ev_tstamp mn_prev = mn_now;
2438
2439 ev_now_update (EV_A);
2440 timers_reschedule (EV_A_ mn_now - mn_prev);
2441#if EV_PERIODIC_ENABLE
2442 /* TODO: really do this? */
2443 periodics_reschedule (EV_A);
2444#endif
2445}
2446
1440/*****************************************************************************/ 2447/*****************************************************************************/
2448/* singly-linked list management, used when the expected list length is short */
1441 2449
1442void inline_size 2450inline_size void
1443wlist_add (WL *head, WL elem) 2451wlist_add (WL *head, WL elem)
1444{ 2452{
1445 elem->next = *head; 2453 elem->next = *head;
1446 *head = elem; 2454 *head = elem;
1447} 2455}
1448 2456
1449void inline_size 2457inline_size void
1450wlist_del (WL *head, WL elem) 2458wlist_del (WL *head, WL elem)
1451{ 2459{
1452 while (*head) 2460 while (*head)
1453 { 2461 {
1454 if (*head == elem) 2462 if (expect_true (*head == elem))
1455 { 2463 {
1456 *head = elem->next; 2464 *head = elem->next;
1457 return; 2465 break;
1458 } 2466 }
1459 2467
1460 head = &(*head)->next; 2468 head = &(*head)->next;
1461 } 2469 }
1462} 2470}
1463 2471
1464void inline_speed 2472/* internal, faster, version of ev_clear_pending */
2473inline_speed void
1465ev_clear_pending (EV_P_ W w) 2474clear_pending (EV_P_ W w)
1466{ 2475{
1467 if (w->pending) 2476 if (w->pending)
1468 { 2477 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2478 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1470 w->pending = 0; 2479 w->pending = 0;
1471 } 2480 }
1472} 2481}
1473 2482
1474void inline_speed 2483int
2484ev_clear_pending (EV_P_ void *w)
2485{
2486 W w_ = (W)w;
2487 int pending = w_->pending;
2488
2489 if (expect_true (pending))
2490 {
2491 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2492 p->w = (W)&pending_w;
2493 w_->pending = 0;
2494 return p->events;
2495 }
2496 else
2497 return 0;
2498}
2499
2500inline_size void
2501pri_adjust (EV_P_ W w)
2502{
2503 int pri = ev_priority (w);
2504 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2505 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2506 ev_set_priority (w, pri);
2507}
2508
2509inline_speed void
1475ev_start (EV_P_ W w, int active) 2510ev_start (EV_P_ W w, int active)
1476{ 2511{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2512 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 2513 w->active = active;
1481 ev_ref (EV_A); 2514 ev_ref (EV_A);
1482} 2515}
1483 2516
1484void inline_size 2517inline_size void
1485ev_stop (EV_P_ W w) 2518ev_stop (EV_P_ W w)
1486{ 2519{
1487 ev_unref (EV_A); 2520 ev_unref (EV_A);
1488 w->active = 0; 2521 w->active = 0;
1489} 2522}
1490 2523
1491/*****************************************************************************/ 2524/*****************************************************************************/
1492 2525
1493void 2526void noinline
1494ev_io_start (EV_P_ ev_io *w) 2527ev_io_start (EV_P_ ev_io *w)
1495{ 2528{
1496 int fd = w->fd; 2529 int fd = w->fd;
1497 2530
1498 if (expect_false (ev_is_active (w))) 2531 if (expect_false (ev_is_active (w)))
1499 return; 2532 return;
1500 2533
1501 assert (("ev_io_start called with negative fd", fd >= 0)); 2534 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2535 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2536
2537 EV_FREQUENT_CHECK;
1502 2538
1503 ev_start (EV_A_ (W)w, 1); 2539 ev_start (EV_A_ (W)w, 1);
1504 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2540 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2541 wlist_add (&anfds[fd].head, (WL)w);
1506 2542
1507 fd_change (EV_A_ fd); 2543 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1508} 2544 w->events &= ~EV__IOFDSET;
1509 2545
1510void 2546 EV_FREQUENT_CHECK;
2547}
2548
2549void noinline
1511ev_io_stop (EV_P_ ev_io *w) 2550ev_io_stop (EV_P_ ev_io *w)
1512{ 2551{
1513 ev_clear_pending (EV_A_ (W)w); 2552 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 2553 if (expect_false (!ev_is_active (w)))
1515 return; 2554 return;
1516 2555
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2556 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 2557
2558 EV_FREQUENT_CHECK;
2559
1519 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2560 wlist_del (&anfds[w->fd].head, (WL)w);
1520 ev_stop (EV_A_ (W)w); 2561 ev_stop (EV_A_ (W)w);
1521 2562
1522 fd_change (EV_A_ w->fd); 2563 fd_change (EV_A_ w->fd, 1);
1523}
1524 2564
1525void 2565 EV_FREQUENT_CHECK;
2566}
2567
2568void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 2569ev_timer_start (EV_P_ ev_timer *w)
1527{ 2570{
1528 if (expect_false (ev_is_active (w))) 2571 if (expect_false (ev_is_active (w)))
1529 return; 2572 return;
1530 2573
1531 ((WT)w)->at += mn_now; 2574 ev_at (w) += mn_now;
1532 2575
1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2576 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1534 2577
2578 EV_FREQUENT_CHECK;
2579
2580 ++timercnt;
1535 ev_start (EV_A_ (W)w, ++timercnt); 2581 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2582 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1537 timers [timercnt - 1] = w; 2583 ANHE_w (timers [ev_active (w)]) = (WT)w;
1538 upheap ((WT *)timers, timercnt - 1); 2584 ANHE_at_cache (timers [ev_active (w)]);
2585 upheap (timers, ev_active (w));
1539 2586
2587 EV_FREQUENT_CHECK;
2588
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2589 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1541} 2590}
1542 2591
1543void 2592void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 2593ev_timer_stop (EV_P_ ev_timer *w)
1545{ 2594{
1546 ev_clear_pending (EV_A_ (W)w); 2595 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 2596 if (expect_false (!ev_is_active (w)))
1548 return; 2597 return;
1549 2598
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2599 EV_FREQUENT_CHECK;
1551 2600
1552 { 2601 {
1553 int active = ((W)w)->active; 2602 int active = ev_active (w);
1554 2603
2604 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2605
2606 --timercnt;
2607
1555 if (expect_true (--active < --timercnt)) 2608 if (expect_true (active < timercnt + HEAP0))
1556 { 2609 {
1557 timers [active] = timers [timercnt]; 2610 timers [active] = timers [timercnt + HEAP0];
1558 adjustheap ((WT *)timers, timercnt, active); 2611 adjustheap (timers, timercnt, active);
1559 } 2612 }
1560 } 2613 }
1561 2614
1562 ((WT)w)->at -= mn_now; 2615 ev_at (w) -= mn_now;
1563 2616
1564 ev_stop (EV_A_ (W)w); 2617 ev_stop (EV_A_ (W)w);
1565}
1566 2618
1567void 2619 EV_FREQUENT_CHECK;
2620}
2621
2622void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 2623ev_timer_again (EV_P_ ev_timer *w)
1569{ 2624{
2625 EV_FREQUENT_CHECK;
2626
1570 if (ev_is_active (w)) 2627 if (ev_is_active (w))
1571 { 2628 {
1572 if (w->repeat) 2629 if (w->repeat)
1573 { 2630 {
1574 ((WT)w)->at = mn_now + w->repeat; 2631 ev_at (w) = mn_now + w->repeat;
2632 ANHE_at_cache (timers [ev_active (w)]);
1575 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2633 adjustheap (timers, timercnt, ev_active (w));
1576 } 2634 }
1577 else 2635 else
1578 ev_timer_stop (EV_A_ w); 2636 ev_timer_stop (EV_A_ w);
1579 } 2637 }
1580 else if (w->repeat) 2638 else if (w->repeat)
1581 { 2639 {
1582 w->at = w->repeat; 2640 ev_at (w) = w->repeat;
1583 ev_timer_start (EV_A_ w); 2641 ev_timer_start (EV_A_ w);
1584 } 2642 }
2643
2644 EV_FREQUENT_CHECK;
2645}
2646
2647ev_tstamp
2648ev_timer_remaining (EV_P_ ev_timer *w)
2649{
2650 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1585} 2651}
1586 2652
1587#if EV_PERIODIC_ENABLE 2653#if EV_PERIODIC_ENABLE
1588void 2654void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 2655ev_periodic_start (EV_P_ ev_periodic *w)
1590{ 2656{
1591 if (expect_false (ev_is_active (w))) 2657 if (expect_false (ev_is_active (w)))
1592 return; 2658 return;
1593 2659
1594 if (w->reschedule_cb) 2660 if (w->reschedule_cb)
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2661 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 2662 else if (w->interval)
1597 { 2663 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2664 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 2665 /* this formula differs from the one in periodic_reify because we do not always round up */
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2666 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1601 } 2667 }
2668 else
2669 ev_at (w) = w->offset;
1602 2670
2671 EV_FREQUENT_CHECK;
2672
2673 ++periodiccnt;
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 2674 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2675 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 2676 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 2677 ANHE_at_cache (periodics [ev_active (w)]);
2678 upheap (periodics, ev_active (w));
1607 2679
2680 EV_FREQUENT_CHECK;
2681
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2682 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1609} 2683}
1610 2684
1611void 2685void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 2686ev_periodic_stop (EV_P_ ev_periodic *w)
1613{ 2687{
1614 ev_clear_pending (EV_A_ (W)w); 2688 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 2689 if (expect_false (!ev_is_active (w)))
1616 return; 2690 return;
1617 2691
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2692 EV_FREQUENT_CHECK;
1619 2693
1620 { 2694 {
1621 int active = ((W)w)->active; 2695 int active = ev_active (w);
1622 2696
2697 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2698
2699 --periodiccnt;
2700
1623 if (expect_true (--active < --periodiccnt)) 2701 if (expect_true (active < periodiccnt + HEAP0))
1624 { 2702 {
1625 periodics [active] = periodics [periodiccnt]; 2703 periodics [active] = periodics [periodiccnt + HEAP0];
1626 adjustheap ((WT *)periodics, periodiccnt, active); 2704 adjustheap (periodics, periodiccnt, active);
1627 } 2705 }
1628 } 2706 }
1629 2707
1630 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
1631}
1632 2709
1633void 2710 EV_FREQUENT_CHECK;
2711}
2712
2713void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 2714ev_periodic_again (EV_P_ ev_periodic *w)
1635{ 2715{
1636 /* TODO: use adjustheap and recalculation */ 2716 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 2717 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 2718 ev_periodic_start (EV_A_ w);
1641 2721
1642#ifndef SA_RESTART 2722#ifndef SA_RESTART
1643# define SA_RESTART 0 2723# define SA_RESTART 0
1644#endif 2724#endif
1645 2725
1646void 2726void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 2727ev_signal_start (EV_P_ ev_signal *w)
1648{ 2728{
1649#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif
1652 if (expect_false (ev_is_active (w))) 2729 if (expect_false (ev_is_active (w)))
1653 return; 2730 return;
1654 2731
1655 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2732 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2733
2734#if EV_MULTIPLICITY
2735 assert (("libev: a signal must not be attached to two different loops",
2736 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2737
2738 signals [w->signum - 1].loop = EV_A;
2739#endif
2740
2741 EV_FREQUENT_CHECK;
2742
2743#if EV_USE_SIGNALFD
2744 if (sigfd == -2)
2745 {
2746 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2747 if (sigfd < 0 && errno == EINVAL)
2748 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2749
2750 if (sigfd >= 0)
2751 {
2752 fd_intern (sigfd); /* doing it twice will not hurt */
2753
2754 sigemptyset (&sigfd_set);
2755
2756 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2757 ev_set_priority (&sigfd_w, EV_MAXPRI);
2758 ev_io_start (EV_A_ &sigfd_w);
2759 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2760 }
2761 }
2762
2763 if (sigfd >= 0)
2764 {
2765 /* TODO: check .head */
2766 sigaddset (&sigfd_set, w->signum);
2767 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2768
2769 signalfd (sigfd, &sigfd_set, 0);
2770 }
2771#endif
1656 2772
1657 ev_start (EV_A_ (W)w, 1); 2773 ev_start (EV_A_ (W)w, 1);
1658 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1659 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2774 wlist_add (&signals [w->signum - 1].head, (WL)w);
1660 2775
1661 if (!((WL)w)->next) 2776 if (!((WL)w)->next)
2777# if EV_USE_SIGNALFD
2778 if (sigfd < 0) /*TODO*/
2779# endif
1662 { 2780 {
1663#if _WIN32 2781# ifdef _WIN32
2782 evpipe_init (EV_A);
2783
1664 signal (w->signum, sighandler); 2784 signal (w->signum, ev_sighandler);
1665#else 2785# else
1666 struct sigaction sa; 2786 struct sigaction sa;
2787
2788 evpipe_init (EV_A);
2789
1667 sa.sa_handler = sighandler; 2790 sa.sa_handler = ev_sighandler;
1668 sigfillset (&sa.sa_mask); 2791 sigfillset (&sa.sa_mask);
1669 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2792 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1670 sigaction (w->signum, &sa, 0); 2793 sigaction (w->signum, &sa, 0);
2794
2795 sigemptyset (&sa.sa_mask);
2796 sigaddset (&sa.sa_mask, w->signum);
2797 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1671#endif 2798#endif
1672 } 2799 }
1673}
1674 2800
1675void 2801 EV_FREQUENT_CHECK;
2802}
2803
2804void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 2805ev_signal_stop (EV_P_ ev_signal *w)
1677{ 2806{
1678 ev_clear_pending (EV_A_ (W)w); 2807 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 2808 if (expect_false (!ev_is_active (w)))
1680 return; 2809 return;
1681 2810
2811 EV_FREQUENT_CHECK;
2812
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2813 wlist_del (&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 2814 ev_stop (EV_A_ (W)w);
1684 2815
1685 if (!signals [w->signum - 1].head) 2816 if (!signals [w->signum - 1].head)
2817 {
2818#if EV_MULTIPLICITY
2819 signals [w->signum - 1].loop = 0; /* unattach from signal */
2820#endif
2821#if EV_USE_SIGNALFD
2822 if (sigfd >= 0)
2823 {
2824 sigset_t ss;
2825
2826 sigemptyset (&ss);
2827 sigaddset (&ss, w->signum);
2828 sigdelset (&sigfd_set, w->signum);
2829
2830 signalfd (sigfd, &sigfd_set, 0);
2831 sigprocmask (SIG_UNBLOCK, &ss, 0);
2832 }
2833 else
2834#endif
1686 signal (w->signum, SIG_DFL); 2835 signal (w->signum, SIG_DFL);
2836 }
2837
2838 EV_FREQUENT_CHECK;
1687} 2839}
1688 2840
1689void 2841void
1690ev_child_start (EV_P_ ev_child *w) 2842ev_child_start (EV_P_ ev_child *w)
1691{ 2843{
1692#if EV_MULTIPLICITY 2844#if EV_MULTIPLICITY
1693 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2845 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1694#endif 2846#endif
1695 if (expect_false (ev_is_active (w))) 2847 if (expect_false (ev_is_active (w)))
1696 return; 2848 return;
1697 2849
2850 EV_FREQUENT_CHECK;
2851
1698 ev_start (EV_A_ (W)w, 1); 2852 ev_start (EV_A_ (W)w, 1);
1699 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2853 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2854
2855 EV_FREQUENT_CHECK;
1700} 2856}
1701 2857
1702void 2858void
1703ev_child_stop (EV_P_ ev_child *w) 2859ev_child_stop (EV_P_ ev_child *w)
1704{ 2860{
1705 ev_clear_pending (EV_A_ (W)w); 2861 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 2862 if (expect_false (!ev_is_active (w)))
1707 return; 2863 return;
1708 2864
2865 EV_FREQUENT_CHECK;
2866
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2867 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 2868 ev_stop (EV_A_ (W)w);
2869
2870 EV_FREQUENT_CHECK;
1711} 2871}
1712 2872
1713#if EV_STAT_ENABLE 2873#if EV_STAT_ENABLE
1714 2874
1715# ifdef _WIN32 2875# ifdef _WIN32
1716# undef lstat 2876# undef lstat
1717# define lstat(a,b) _stati64 (a,b) 2877# define lstat(a,b) _stati64 (a,b)
1718# endif 2878# endif
1719 2879
1720#define DEF_STAT_INTERVAL 5.0074891 2880#define DEF_STAT_INTERVAL 5.0074891
2881#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1721#define MIN_STAT_INTERVAL 0.1074891 2882#define MIN_STAT_INTERVAL 0.1074891
1722 2883
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2884static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 2885
1725#if EV_USE_INOTIFY 2886#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 2887
2888/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2889# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1727 2890
1728static void noinline 2891static void noinline
1729infy_add (EV_P_ ev_stat *w) 2892infy_add (EV_P_ ev_stat *w)
1730{ 2893{
1731 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2894 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1732 2895
1733 if (w->wd < 0) 2896 if (w->wd >= 0)
2897 {
2898 struct statfs sfs;
2899
2900 /* now local changes will be tracked by inotify, but remote changes won't */
2901 /* unless the filesystem is known to be local, we therefore still poll */
2902 /* also do poll on <2.6.25, but with normal frequency */
2903
2904 if (!fs_2625)
2905 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2906 else if (!statfs (w->path, &sfs)
2907 && (sfs.f_type == 0x1373 /* devfs */
2908 || sfs.f_type == 0xEF53 /* ext2/3 */
2909 || sfs.f_type == 0x3153464a /* jfs */
2910 || sfs.f_type == 0x52654973 /* reiser3 */
2911 || sfs.f_type == 0x01021994 /* tempfs */
2912 || sfs.f_type == 0x58465342 /* xfs */))
2913 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2914 else
2915 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1734 { 2916 }
1735 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2917 else
2918 {
2919 /* can't use inotify, continue to stat */
2920 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1736 2921
1737 /* monitor some parent directory for speedup hints */ 2922 /* if path is not there, monitor some parent directory for speedup hints */
2923 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2924 /* but an efficiency issue only */
1738 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2925 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1739 { 2926 {
1740 char path [4096]; 2927 char path [4096];
1741 strcpy (path, w->path); 2928 strcpy (path, w->path);
1742 2929
1745 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2932 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1746 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2933 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1747 2934
1748 char *pend = strrchr (path, '/'); 2935 char *pend = strrchr (path, '/');
1749 2936
1750 if (!pend) 2937 if (!pend || pend == path)
1751 break; /* whoops, no '/', complain to your admin */ 2938 break;
1752 2939
1753 *pend = 0; 2940 *pend = 0;
1754 w->wd = inotify_add_watch (fs_fd, path, mask); 2941 w->wd = inotify_add_watch (fs_fd, path, mask);
1755 } 2942 }
1756 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2943 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1757 } 2944 }
1758 } 2945 }
1759 else
1760 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1761 2946
1762 if (w->wd >= 0) 2947 if (w->wd >= 0)
1763 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2948 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2949
2950 /* now re-arm timer, if required */
2951 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2952 ev_timer_again (EV_A_ &w->timer);
2953 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1764} 2954}
1765 2955
1766static void noinline 2956static void noinline
1767infy_del (EV_P_ ev_stat *w) 2957infy_del (EV_P_ ev_stat *w)
1768{ 2958{
1782 2972
1783static void noinline 2973static void noinline
1784infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2974infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1785{ 2975{
1786 if (slot < 0) 2976 if (slot < 0)
1787 /* overflow, need to check for all hahs slots */ 2977 /* overflow, need to check for all hash slots */
1788 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2978 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1789 infy_wd (EV_A_ slot, wd, ev); 2979 infy_wd (EV_A_ slot, wd, ev);
1790 else 2980 else
1791 { 2981 {
1792 WL w_; 2982 WL w_;
1798 2988
1799 if (w->wd == wd || wd == -1) 2989 if (w->wd == wd || wd == -1)
1800 { 2990 {
1801 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2991 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1802 { 2992 {
2993 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1803 w->wd = -1; 2994 w->wd = -1;
1804 infy_add (EV_A_ w); /* re-add, no matter what */ 2995 infy_add (EV_A_ w); /* re-add, no matter what */
1805 } 2996 }
1806 2997
1807 stat_timer_cb (EV_A_ &w->timer, 0); 2998 stat_timer_cb (EV_A_ &w->timer, 0);
1812 3003
1813static void 3004static void
1814infy_cb (EV_P_ ev_io *w, int revents) 3005infy_cb (EV_P_ ev_io *w, int revents)
1815{ 3006{
1816 char buf [EV_INOTIFY_BUFSIZE]; 3007 char buf [EV_INOTIFY_BUFSIZE];
1817 struct inotify_event *ev = (struct inotify_event *)buf;
1818 int ofs; 3008 int ofs;
1819 int len = read (fs_fd, buf, sizeof (buf)); 3009 int len = read (fs_fd, buf, sizeof (buf));
1820 3010
1821 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3011 for (ofs = 0; ofs < len; )
3012 {
3013 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1822 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3014 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3015 ofs += sizeof (struct inotify_event) + ev->len;
3016 }
1823} 3017}
1824 3018
1825void inline_size 3019inline_size unsigned int
3020ev_linux_version (void)
3021{
3022 struct utsname buf;
3023 unsigned int v;
3024 int i;
3025 char *p = buf.release;
3026
3027 if (uname (&buf))
3028 return 0;
3029
3030 for (i = 3+1; --i; )
3031 {
3032 unsigned int c = 0;
3033
3034 for (;;)
3035 {
3036 if (*p >= '0' && *p <= '9')
3037 c = c * 10 + *p++ - '0';
3038 else
3039 {
3040 p += *p == '.';
3041 break;
3042 }
3043 }
3044
3045 v = (v << 8) | c;
3046 }
3047
3048 return v;
3049}
3050
3051inline_size void
3052ev_check_2625 (EV_P)
3053{
3054 /* kernels < 2.6.25 are borked
3055 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3056 */
3057 if (ev_linux_version () < 0x020619)
3058 return;
3059
3060 fs_2625 = 1;
3061}
3062
3063inline_size int
3064infy_newfd (void)
3065{
3066#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3067 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3068 if (fd >= 0)
3069 return fd;
3070#endif
3071 return inotify_init ();
3072}
3073
3074inline_size void
1826infy_init (EV_P) 3075infy_init (EV_P)
1827{ 3076{
1828 if (fs_fd != -2) 3077 if (fs_fd != -2)
1829 return; 3078 return;
1830 3079
3080 fs_fd = -1;
3081
3082 ev_check_2625 (EV_A);
3083
1831 fs_fd = inotify_init (); 3084 fs_fd = infy_newfd ();
1832 3085
1833 if (fs_fd >= 0) 3086 if (fs_fd >= 0)
1834 { 3087 {
3088 fd_intern (fs_fd);
1835 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3089 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1836 ev_set_priority (&fs_w, EV_MAXPRI); 3090 ev_set_priority (&fs_w, EV_MAXPRI);
1837 ev_io_start (EV_A_ &fs_w); 3091 ev_io_start (EV_A_ &fs_w);
3092 ev_unref (EV_A);
1838 } 3093 }
1839} 3094}
1840 3095
1841void inline_size 3096inline_size void
1842infy_fork (EV_P) 3097infy_fork (EV_P)
1843{ 3098{
1844 int slot; 3099 int slot;
1845 3100
1846 if (fs_fd < 0) 3101 if (fs_fd < 0)
1847 return; 3102 return;
1848 3103
3104 ev_ref (EV_A);
3105 ev_io_stop (EV_A_ &fs_w);
1849 close (fs_fd); 3106 close (fs_fd);
1850 fs_fd = inotify_init (); 3107 fs_fd = infy_newfd ();
3108
3109 if (fs_fd >= 0)
3110 {
3111 fd_intern (fs_fd);
3112 ev_io_set (&fs_w, fs_fd, EV_READ);
3113 ev_io_start (EV_A_ &fs_w);
3114 ev_unref (EV_A);
3115 }
1851 3116
1852 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3117 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1853 { 3118 {
1854 WL w_ = fs_hash [slot].head; 3119 WL w_ = fs_hash [slot].head;
1855 fs_hash [slot].head = 0; 3120 fs_hash [slot].head = 0;
1862 w->wd = -1; 3127 w->wd = -1;
1863 3128
1864 if (fs_fd >= 0) 3129 if (fs_fd >= 0)
1865 infy_add (EV_A_ w); /* re-add, no matter what */ 3130 infy_add (EV_A_ w); /* re-add, no matter what */
1866 else 3131 else
3132 {
3133 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3134 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1867 ev_timer_start (EV_A_ &w->timer); 3135 ev_timer_again (EV_A_ &w->timer);
3136 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3137 }
1868 } 3138 }
1869
1870 } 3139 }
1871} 3140}
1872 3141
3142#endif
3143
3144#ifdef _WIN32
3145# define EV_LSTAT(p,b) _stati64 (p, b)
3146#else
3147# define EV_LSTAT(p,b) lstat (p, b)
1873#endif 3148#endif
1874 3149
1875void 3150void
1876ev_stat_stat (EV_P_ ev_stat *w) 3151ev_stat_stat (EV_P_ ev_stat *w)
1877{ 3152{
1879 w->attr.st_nlink = 0; 3154 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 3155 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 3156 w->attr.st_nlink = 1;
1882} 3157}
1883 3158
1884void noinline 3159static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3160stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 3161{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3162 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 3163
1889 /* we copy this here each the time so that */ 3164 ev_statdata prev = w->attr;
1890 /* prev has the old value when the callback gets invoked */
1891 w->prev = w->attr;
1892 ev_stat_stat (EV_A_ w); 3165 ev_stat_stat (EV_A_ w);
1893 3166
1894 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3167 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1895 if ( 3168 if (
1896 w->prev.st_dev != w->attr.st_dev 3169 prev.st_dev != w->attr.st_dev
1897 || w->prev.st_ino != w->attr.st_ino 3170 || prev.st_ino != w->attr.st_ino
1898 || w->prev.st_mode != w->attr.st_mode 3171 || prev.st_mode != w->attr.st_mode
1899 || w->prev.st_nlink != w->attr.st_nlink 3172 || prev.st_nlink != w->attr.st_nlink
1900 || w->prev.st_uid != w->attr.st_uid 3173 || prev.st_uid != w->attr.st_uid
1901 || w->prev.st_gid != w->attr.st_gid 3174 || prev.st_gid != w->attr.st_gid
1902 || w->prev.st_rdev != w->attr.st_rdev 3175 || prev.st_rdev != w->attr.st_rdev
1903 || w->prev.st_size != w->attr.st_size 3176 || prev.st_size != w->attr.st_size
1904 || w->prev.st_atime != w->attr.st_atime 3177 || prev.st_atime != w->attr.st_atime
1905 || w->prev.st_mtime != w->attr.st_mtime 3178 || prev.st_mtime != w->attr.st_mtime
1906 || w->prev.st_ctime != w->attr.st_ctime 3179 || prev.st_ctime != w->attr.st_ctime
1907 ) { 3180 ) {
3181 /* we only update w->prev on actual differences */
3182 /* in case we test more often than invoke the callback, */
3183 /* to ensure that prev is always different to attr */
3184 w->prev = prev;
3185
1908 #if EV_USE_INOTIFY 3186 #if EV_USE_INOTIFY
3187 if (fs_fd >= 0)
3188 {
1909 infy_del (EV_A_ w); 3189 infy_del (EV_A_ w);
1910 infy_add (EV_A_ w); 3190 infy_add (EV_A_ w);
1911 ev_stat_stat (EV_A_ w); /* avoid race... */ 3191 ev_stat_stat (EV_A_ w); /* avoid race... */
3192 }
1912 #endif 3193 #endif
1913 3194
1914 ev_feed_event (EV_A_ w, EV_STAT); 3195 ev_feed_event (EV_A_ w, EV_STAT);
1915 } 3196 }
1916} 3197}
1919ev_stat_start (EV_P_ ev_stat *w) 3200ev_stat_start (EV_P_ ev_stat *w)
1920{ 3201{
1921 if (expect_false (ev_is_active (w))) 3202 if (expect_false (ev_is_active (w)))
1922 return; 3203 return;
1923 3204
1924 /* since we use memcmp, we need to clear any padding data etc. */
1925 memset (&w->prev, 0, sizeof (ev_statdata));
1926 memset (&w->attr, 0, sizeof (ev_statdata));
1927
1928 ev_stat_stat (EV_A_ w); 3205 ev_stat_stat (EV_A_ w);
1929 3206
3207 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1930 if (w->interval < MIN_STAT_INTERVAL) 3208 w->interval = MIN_STAT_INTERVAL;
1931 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1932 3209
1933 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3210 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1934 ev_set_priority (&w->timer, ev_priority (w)); 3211 ev_set_priority (&w->timer, ev_priority (w));
1935 3212
1936#if EV_USE_INOTIFY 3213#if EV_USE_INOTIFY
1937 infy_init (EV_A); 3214 infy_init (EV_A);
1938 3215
1939 if (fs_fd >= 0) 3216 if (fs_fd >= 0)
1940 infy_add (EV_A_ w); 3217 infy_add (EV_A_ w);
1941 else 3218 else
1942#endif 3219#endif
3220 {
1943 ev_timer_start (EV_A_ &w->timer); 3221 ev_timer_again (EV_A_ &w->timer);
3222 ev_unref (EV_A);
3223 }
1944 3224
1945 ev_start (EV_A_ (W)w, 1); 3225 ev_start (EV_A_ (W)w, 1);
3226
3227 EV_FREQUENT_CHECK;
1946} 3228}
1947 3229
1948void 3230void
1949ev_stat_stop (EV_P_ ev_stat *w) 3231ev_stat_stop (EV_P_ ev_stat *w)
1950{ 3232{
1951 ev_clear_pending (EV_A_ (W)w); 3233 clear_pending (EV_A_ (W)w);
1952 if (expect_false (!ev_is_active (w))) 3234 if (expect_false (!ev_is_active (w)))
1953 return; 3235 return;
1954 3236
3237 EV_FREQUENT_CHECK;
3238
1955#if EV_USE_INOTIFY 3239#if EV_USE_INOTIFY
1956 infy_del (EV_A_ w); 3240 infy_del (EV_A_ w);
1957#endif 3241#endif
3242
3243 if (ev_is_active (&w->timer))
3244 {
3245 ev_ref (EV_A);
1958 ev_timer_stop (EV_A_ &w->timer); 3246 ev_timer_stop (EV_A_ &w->timer);
3247 }
1959 3248
1960 ev_stop (EV_A_ (W)w); 3249 ev_stop (EV_A_ (W)w);
1961}
1962#endif
1963 3250
3251 EV_FREQUENT_CHECK;
3252}
3253#endif
3254
3255#if EV_IDLE_ENABLE
1964void 3256void
1965ev_idle_start (EV_P_ ev_idle *w) 3257ev_idle_start (EV_P_ ev_idle *w)
1966{ 3258{
1967 if (expect_false (ev_is_active (w))) 3259 if (expect_false (ev_is_active (w)))
1968 return; 3260 return;
1969 3261
3262 pri_adjust (EV_A_ (W)w);
3263
3264 EV_FREQUENT_CHECK;
3265
3266 {
3267 int active = ++idlecnt [ABSPRI (w)];
3268
3269 ++idleall;
1970 ev_start (EV_A_ (W)w, ++idlecnt); 3270 ev_start (EV_A_ (W)w, active);
3271
1971 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3272 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1972 idles [idlecnt - 1] = w; 3273 idles [ABSPRI (w)][active - 1] = w;
3274 }
3275
3276 EV_FREQUENT_CHECK;
1973} 3277}
1974 3278
1975void 3279void
1976ev_idle_stop (EV_P_ ev_idle *w) 3280ev_idle_stop (EV_P_ ev_idle *w)
1977{ 3281{
1978 ev_clear_pending (EV_A_ (W)w); 3282 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 3283 if (expect_false (!ev_is_active (w)))
1980 return; 3284 return;
1981 3285
3286 EV_FREQUENT_CHECK;
3287
1982 { 3288 {
1983 int active = ((W)w)->active; 3289 int active = ev_active (w);
1984 idles [active - 1] = idles [--idlecnt]; 3290
1985 ((W)idles [active - 1])->active = active; 3291 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3292 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3293
3294 ev_stop (EV_A_ (W)w);
3295 --idleall;
1986 } 3296 }
1987 3297
1988 ev_stop (EV_A_ (W)w); 3298 EV_FREQUENT_CHECK;
1989} 3299}
3300#endif
1990 3301
1991void 3302void
1992ev_prepare_start (EV_P_ ev_prepare *w) 3303ev_prepare_start (EV_P_ ev_prepare *w)
1993{ 3304{
1994 if (expect_false (ev_is_active (w))) 3305 if (expect_false (ev_is_active (w)))
1995 return; 3306 return;
3307
3308 EV_FREQUENT_CHECK;
1996 3309
1997 ev_start (EV_A_ (W)w, ++preparecnt); 3310 ev_start (EV_A_ (W)w, ++preparecnt);
1998 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3311 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1999 prepares [preparecnt - 1] = w; 3312 prepares [preparecnt - 1] = w;
3313
3314 EV_FREQUENT_CHECK;
2000} 3315}
2001 3316
2002void 3317void
2003ev_prepare_stop (EV_P_ ev_prepare *w) 3318ev_prepare_stop (EV_P_ ev_prepare *w)
2004{ 3319{
2005 ev_clear_pending (EV_A_ (W)w); 3320 clear_pending (EV_A_ (W)w);
2006 if (expect_false (!ev_is_active (w))) 3321 if (expect_false (!ev_is_active (w)))
2007 return; 3322 return;
2008 3323
3324 EV_FREQUENT_CHECK;
3325
2009 { 3326 {
2010 int active = ((W)w)->active; 3327 int active = ev_active (w);
3328
2011 prepares [active - 1] = prepares [--preparecnt]; 3329 prepares [active - 1] = prepares [--preparecnt];
2012 ((W)prepares [active - 1])->active = active; 3330 ev_active (prepares [active - 1]) = active;
2013 } 3331 }
2014 3332
2015 ev_stop (EV_A_ (W)w); 3333 ev_stop (EV_A_ (W)w);
3334
3335 EV_FREQUENT_CHECK;
2016} 3336}
2017 3337
2018void 3338void
2019ev_check_start (EV_P_ ev_check *w) 3339ev_check_start (EV_P_ ev_check *w)
2020{ 3340{
2021 if (expect_false (ev_is_active (w))) 3341 if (expect_false (ev_is_active (w)))
2022 return; 3342 return;
3343
3344 EV_FREQUENT_CHECK;
2023 3345
2024 ev_start (EV_A_ (W)w, ++checkcnt); 3346 ev_start (EV_A_ (W)w, ++checkcnt);
2025 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3347 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2026 checks [checkcnt - 1] = w; 3348 checks [checkcnt - 1] = w;
3349
3350 EV_FREQUENT_CHECK;
2027} 3351}
2028 3352
2029void 3353void
2030ev_check_stop (EV_P_ ev_check *w) 3354ev_check_stop (EV_P_ ev_check *w)
2031{ 3355{
2032 ev_clear_pending (EV_A_ (W)w); 3356 clear_pending (EV_A_ (W)w);
2033 if (expect_false (!ev_is_active (w))) 3357 if (expect_false (!ev_is_active (w)))
2034 return; 3358 return;
2035 3359
3360 EV_FREQUENT_CHECK;
3361
2036 { 3362 {
2037 int active = ((W)w)->active; 3363 int active = ev_active (w);
3364
2038 checks [active - 1] = checks [--checkcnt]; 3365 checks [active - 1] = checks [--checkcnt];
2039 ((W)checks [active - 1])->active = active; 3366 ev_active (checks [active - 1]) = active;
2040 } 3367 }
2041 3368
2042 ev_stop (EV_A_ (W)w); 3369 ev_stop (EV_A_ (W)w);
3370
3371 EV_FREQUENT_CHECK;
2043} 3372}
2044 3373
2045#if EV_EMBED_ENABLE 3374#if EV_EMBED_ENABLE
2046void noinline 3375void noinline
2047ev_embed_sweep (EV_P_ ev_embed *w) 3376ev_embed_sweep (EV_P_ ev_embed *w)
2048{ 3377{
2049 ev_loop (w->loop, EVLOOP_NONBLOCK); 3378 ev_loop (w->other, EVLOOP_NONBLOCK);
2050} 3379}
2051 3380
2052static void 3381static void
2053embed_cb (EV_P_ ev_io *io, int revents) 3382embed_io_cb (EV_P_ ev_io *io, int revents)
2054{ 3383{
2055 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3384 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2056 3385
2057 if (ev_cb (w)) 3386 if (ev_cb (w))
2058 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3387 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2059 else 3388 else
2060 ev_embed_sweep (loop, w); 3389 ev_loop (w->other, EVLOOP_NONBLOCK);
2061} 3390}
3391
3392static void
3393embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3394{
3395 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3396
3397 {
3398 EV_P = w->other;
3399
3400 while (fdchangecnt)
3401 {
3402 fd_reify (EV_A);
3403 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3404 }
3405 }
3406}
3407
3408static void
3409embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3410{
3411 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3412
3413 ev_embed_stop (EV_A_ w);
3414
3415 {
3416 EV_P = w->other;
3417
3418 ev_loop_fork (EV_A);
3419 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3420 }
3421
3422 ev_embed_start (EV_A_ w);
3423}
3424
3425#if 0
3426static void
3427embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3428{
3429 ev_idle_stop (EV_A_ idle);
3430}
3431#endif
2062 3432
2063void 3433void
2064ev_embed_start (EV_P_ ev_embed *w) 3434ev_embed_start (EV_P_ ev_embed *w)
2065{ 3435{
2066 if (expect_false (ev_is_active (w))) 3436 if (expect_false (ev_is_active (w)))
2067 return; 3437 return;
2068 3438
2069 { 3439 {
2070 struct ev_loop *loop = w->loop; 3440 EV_P = w->other;
2071 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3441 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2072 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3442 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2073 } 3443 }
3444
3445 EV_FREQUENT_CHECK;
2074 3446
2075 ev_set_priority (&w->io, ev_priority (w)); 3447 ev_set_priority (&w->io, ev_priority (w));
2076 ev_io_start (EV_A_ &w->io); 3448 ev_io_start (EV_A_ &w->io);
2077 3449
3450 ev_prepare_init (&w->prepare, embed_prepare_cb);
3451 ev_set_priority (&w->prepare, EV_MINPRI);
3452 ev_prepare_start (EV_A_ &w->prepare);
3453
3454 ev_fork_init (&w->fork, embed_fork_cb);
3455 ev_fork_start (EV_A_ &w->fork);
3456
3457 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3458
2078 ev_start (EV_A_ (W)w, 1); 3459 ev_start (EV_A_ (W)w, 1);
3460
3461 EV_FREQUENT_CHECK;
2079} 3462}
2080 3463
2081void 3464void
2082ev_embed_stop (EV_P_ ev_embed *w) 3465ev_embed_stop (EV_P_ ev_embed *w)
2083{ 3466{
2084 ev_clear_pending (EV_A_ (W)w); 3467 clear_pending (EV_A_ (W)w);
2085 if (expect_false (!ev_is_active (w))) 3468 if (expect_false (!ev_is_active (w)))
2086 return; 3469 return;
2087 3470
3471 EV_FREQUENT_CHECK;
3472
2088 ev_io_stop (EV_A_ &w->io); 3473 ev_io_stop (EV_A_ &w->io);
3474 ev_prepare_stop (EV_A_ &w->prepare);
3475 ev_fork_stop (EV_A_ &w->fork);
2089 3476
2090 ev_stop (EV_A_ (W)w); 3477 ev_stop (EV_A_ (W)w);
3478
3479 EV_FREQUENT_CHECK;
2091} 3480}
2092#endif 3481#endif
2093 3482
2094#if EV_FORK_ENABLE 3483#if EV_FORK_ENABLE
2095void 3484void
2096ev_fork_start (EV_P_ ev_fork *w) 3485ev_fork_start (EV_P_ ev_fork *w)
2097{ 3486{
2098 if (expect_false (ev_is_active (w))) 3487 if (expect_false (ev_is_active (w)))
2099 return; 3488 return;
3489
3490 EV_FREQUENT_CHECK;
2100 3491
2101 ev_start (EV_A_ (W)w, ++forkcnt); 3492 ev_start (EV_A_ (W)w, ++forkcnt);
2102 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3493 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2103 forks [forkcnt - 1] = w; 3494 forks [forkcnt - 1] = w;
3495
3496 EV_FREQUENT_CHECK;
2104} 3497}
2105 3498
2106void 3499void
2107ev_fork_stop (EV_P_ ev_fork *w) 3500ev_fork_stop (EV_P_ ev_fork *w)
2108{ 3501{
2109 ev_clear_pending (EV_A_ (W)w); 3502 clear_pending (EV_A_ (W)w);
2110 if (expect_false (!ev_is_active (w))) 3503 if (expect_false (!ev_is_active (w)))
2111 return; 3504 return;
2112 3505
3506 EV_FREQUENT_CHECK;
3507
2113 { 3508 {
2114 int active = ((W)w)->active; 3509 int active = ev_active (w);
3510
2115 forks [active - 1] = forks [--forkcnt]; 3511 forks [active - 1] = forks [--forkcnt];
2116 ((W)forks [active - 1])->active = active; 3512 ev_active (forks [active - 1]) = active;
2117 } 3513 }
2118 3514
2119 ev_stop (EV_A_ (W)w); 3515 ev_stop (EV_A_ (W)w);
3516
3517 EV_FREQUENT_CHECK;
3518}
3519#endif
3520
3521#if EV_ASYNC_ENABLE
3522void
3523ev_async_start (EV_P_ ev_async *w)
3524{
3525 if (expect_false (ev_is_active (w)))
3526 return;
3527
3528 evpipe_init (EV_A);
3529
3530 EV_FREQUENT_CHECK;
3531
3532 ev_start (EV_A_ (W)w, ++asynccnt);
3533 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3534 asyncs [asynccnt - 1] = w;
3535
3536 EV_FREQUENT_CHECK;
3537}
3538
3539void
3540ev_async_stop (EV_P_ ev_async *w)
3541{
3542 clear_pending (EV_A_ (W)w);
3543 if (expect_false (!ev_is_active (w)))
3544 return;
3545
3546 EV_FREQUENT_CHECK;
3547
3548 {
3549 int active = ev_active (w);
3550
3551 asyncs [active - 1] = asyncs [--asynccnt];
3552 ev_active (asyncs [active - 1]) = active;
3553 }
3554
3555 ev_stop (EV_A_ (W)w);
3556
3557 EV_FREQUENT_CHECK;
3558}
3559
3560void
3561ev_async_send (EV_P_ ev_async *w)
3562{
3563 w->sent = 1;
3564 evpipe_write (EV_A_ &async_pending);
2120} 3565}
2121#endif 3566#endif
2122 3567
2123/*****************************************************************************/ 3568/*****************************************************************************/
2124 3569
2134once_cb (EV_P_ struct ev_once *once, int revents) 3579once_cb (EV_P_ struct ev_once *once, int revents)
2135{ 3580{
2136 void (*cb)(int revents, void *arg) = once->cb; 3581 void (*cb)(int revents, void *arg) = once->cb;
2137 void *arg = once->arg; 3582 void *arg = once->arg;
2138 3583
2139 ev_io_stop (EV_A_ &once->io); 3584 ev_io_stop (EV_A_ &once->io);
2140 ev_timer_stop (EV_A_ &once->to); 3585 ev_timer_stop (EV_A_ &once->to);
2141 ev_free (once); 3586 ev_free (once);
2142 3587
2143 cb (revents, arg); 3588 cb (revents, arg);
2144} 3589}
2145 3590
2146static void 3591static void
2147once_cb_io (EV_P_ ev_io *w, int revents) 3592once_cb_io (EV_P_ ev_io *w, int revents)
2148{ 3593{
2149 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3594 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3595
3596 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2150} 3597}
2151 3598
2152static void 3599static void
2153once_cb_to (EV_P_ ev_timer *w, int revents) 3600once_cb_to (EV_P_ ev_timer *w, int revents)
2154{ 3601{
2155 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3602 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3603
3604 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2156} 3605}
2157 3606
2158void 3607void
2159ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3608ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2160{ 3609{
2182 ev_timer_set (&once->to, timeout, 0.); 3631 ev_timer_set (&once->to, timeout, 0.);
2183 ev_timer_start (EV_A_ &once->to); 3632 ev_timer_start (EV_A_ &once->to);
2184 } 3633 }
2185} 3634}
2186 3635
3636/*****************************************************************************/
3637
3638#if EV_WALK_ENABLE
3639void
3640ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3641{
3642 int i, j;
3643 ev_watcher_list *wl, *wn;
3644
3645 if (types & (EV_IO | EV_EMBED))
3646 for (i = 0; i < anfdmax; ++i)
3647 for (wl = anfds [i].head; wl; )
3648 {
3649 wn = wl->next;
3650
3651#if EV_EMBED_ENABLE
3652 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3653 {
3654 if (types & EV_EMBED)
3655 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3656 }
3657 else
3658#endif
3659#if EV_USE_INOTIFY
3660 if (ev_cb ((ev_io *)wl) == infy_cb)
3661 ;
3662 else
3663#endif
3664 if ((ev_io *)wl != &pipe_w)
3665 if (types & EV_IO)
3666 cb (EV_A_ EV_IO, wl);
3667
3668 wl = wn;
3669 }
3670
3671 if (types & (EV_TIMER | EV_STAT))
3672 for (i = timercnt + HEAP0; i-- > HEAP0; )
3673#if EV_STAT_ENABLE
3674 /*TODO: timer is not always active*/
3675 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3676 {
3677 if (types & EV_STAT)
3678 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3679 }
3680 else
3681#endif
3682 if (types & EV_TIMER)
3683 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3684
3685#if EV_PERIODIC_ENABLE
3686 if (types & EV_PERIODIC)
3687 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3688 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3689#endif
3690
3691#if EV_IDLE_ENABLE
3692 if (types & EV_IDLE)
3693 for (j = NUMPRI; i--; )
3694 for (i = idlecnt [j]; i--; )
3695 cb (EV_A_ EV_IDLE, idles [j][i]);
3696#endif
3697
3698#if EV_FORK_ENABLE
3699 if (types & EV_FORK)
3700 for (i = forkcnt; i--; )
3701 if (ev_cb (forks [i]) != embed_fork_cb)
3702 cb (EV_A_ EV_FORK, forks [i]);
3703#endif
3704
3705#if EV_ASYNC_ENABLE
3706 if (types & EV_ASYNC)
3707 for (i = asynccnt; i--; )
3708 cb (EV_A_ EV_ASYNC, asyncs [i]);
3709#endif
3710
3711 if (types & EV_PREPARE)
3712 for (i = preparecnt; i--; )
3713#if EV_EMBED_ENABLE
3714 if (ev_cb (prepares [i]) != embed_prepare_cb)
3715#endif
3716 cb (EV_A_ EV_PREPARE, prepares [i]);
3717
3718 if (types & EV_CHECK)
3719 for (i = checkcnt; i--; )
3720 cb (EV_A_ EV_CHECK, checks [i]);
3721
3722 if (types & EV_SIGNAL)
3723 for (i = 0; i < EV_NSIG - 1; ++i)
3724 for (wl = signals [i].head; wl; )
3725 {
3726 wn = wl->next;
3727 cb (EV_A_ EV_SIGNAL, wl);
3728 wl = wn;
3729 }
3730
3731 if (types & EV_CHILD)
3732 for (i = EV_PID_HASHSIZE; i--; )
3733 for (wl = childs [i]; wl; )
3734 {
3735 wn = wl->next;
3736 cb (EV_A_ EV_CHILD, wl);
3737 wl = wn;
3738 }
3739/* EV_STAT 0x00001000 /* stat data changed */
3740/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3741}
3742#endif
3743
3744#if EV_MULTIPLICITY
3745 #include "ev_wrap.h"
3746#endif
3747
2187#ifdef __cplusplus 3748#ifdef __cplusplus
2188} 3749}
2189#endif 3750#endif
2190 3751

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines