ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.156 by root, Wed Nov 28 17:50:13 2007 UTC vs.
Revision 1.368 by root, Mon Jan 17 12:11:11 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
65# endif 85# endif
66 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
73# endif 103# endif
74 104
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
78# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
81# endif 112# endif
82 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
89# endif 121# endif
90 122
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
94# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
97# endif 130# endif
98 131
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
105# endif 139# endif
106 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
107#endif 159#endif
108 160
109#include <math.h> 161#include <math.h>
110#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
111#include <fcntl.h> 164#include <fcntl.h>
112#include <stddef.h> 165#include <stddef.h>
113 166
114#include <stdio.h> 167#include <stdio.h>
115 168
116#include <assert.h> 169#include <assert.h>
117#include <errno.h> 170#include <errno.h>
118#include <sys/types.h> 171#include <sys/types.h>
119#include <time.h> 172#include <time.h>
173#include <limits.h>
120 174
121#include <signal.h> 175#include <signal.h>
122 176
123#ifdef EV_H 177#ifdef EV_H
124# include EV_H 178# include EV_H
125#else 179#else
126# include "ev.h" 180# include "ev.h"
127#endif 181#endif
182
183EV_CPP(extern "C" {)
128 184
129#ifndef _WIN32 185#ifndef _WIN32
130# include <sys/time.h> 186# include <sys/time.h>
131# include <sys/wait.h> 187# include <sys/wait.h>
132# include <unistd.h> 188# include <unistd.h>
133#else 189#else
190# include <io.h>
134# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 192# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
138# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
139#endif 242# endif
140 243#endif
141/**/
142 244
143#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
144# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
145#endif 251#endif
146 252
147#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
149#endif 263#endif
150 264
151#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 267#endif
154 268
155#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
156# ifdef _WIN32 270# ifdef _WIN32
157# define EV_USE_POLL 0 271# define EV_USE_POLL 0
158# else 272# else
159# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 274# endif
161#endif 275#endif
162 276
163#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
164# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
165#endif 283#endif
166 284
167#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
169#endif 287#endif
171#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 290# define EV_USE_PORT 0
173#endif 291#endif
174 292
175#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
176# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
298# endif
177#endif 299#endif
178 300
179#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 312# else
183# define EV_PID_HASHSIZE 16 313# define EV_USE_EVENTFD 0
184# endif 314# endif
185#endif 315#endif
186 316
187#ifndef EV_INOTIFY_HASHSIZE 317#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 319# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 320# else
191# define EV_INOTIFY_HASHSIZE 16 321# define EV_USE_SIGNALFD 0
192# endif 322# endif
193#endif 323#endif
194 324
195/**/ 325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
196 364
197#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
200#endif 368#endif
202#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
205#endif 373#endif
206 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
207#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 397# include <winsock.h>
209#endif 398#endif
210 399
211#if !EV_STAT_ENABLE 400#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
213#endif 405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
214 415
215#if EV_USE_INOTIFY 416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
217#endif 436#endif
218 437
219/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 455
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461
225#if __GNUC__ >= 3 462#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 465#else
236# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
240#endif 471#endif
241 472
242#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
244 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
247 490
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
250 493
251typedef ev_watcher *W; 494typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
254 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
256 520
257#ifdef _WIN32 521#ifdef _WIN32
258# include "ev_win32.c" 522# include "ev_win32.c"
259#endif 523#endif
260 524
261/*****************************************************************************/ 525/*****************************************************************************/
262 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
263static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
264 578
265void 579void
266ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
267{ 581{
268 syserr_cb = cb; 582 syserr_cb = cb;
269} 583}
270 584
271static void noinline 585static void noinline
272syserr (const char *msg) 586ev_syserr (const char *msg)
273{ 587{
274 if (!msg) 588 if (!msg)
275 msg = "(libev) system error"; 589 msg = "(libev) system error";
276 590
277 if (syserr_cb) 591 if (syserr_cb)
278 syserr_cb (msg); 592 syserr_cb (msg);
279 else 593 else
280 { 594 {
595#if EV_AVOID_STDIO
596 ev_printerr (msg);
597 ev_printerr (": ");
598 ev_printerr (strerror (errno));
599 ev_printerr ("\n");
600#else
281 perror (msg); 601 perror (msg);
602#endif
282 abort (); 603 abort ();
283 } 604 }
284} 605}
285 606
607static void *
608ev_realloc_emul (void *ptr, long size)
609{
610#if __GLIBC__
611 return realloc (ptr, size);
612#else
613 /* some systems, notably openbsd and darwin, fail to properly
614 * implement realloc (x, 0) (as required by both ansi c-89 and
615 * the single unix specification, so work around them here.
616 */
617
618 if (size)
619 return realloc (ptr, size);
620
621 free (ptr);
622 return 0;
623#endif
624}
625
286static void *(*alloc)(void *ptr, long size); 626static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 627
288void 628void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 629ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 630{
291 alloc = cb; 631 alloc = cb;
292} 632}
293 633
294inline_speed void * 634inline_speed void *
295ev_realloc (void *ptr, long size) 635ev_realloc (void *ptr, long size)
296{ 636{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 637 ptr = alloc (ptr, size);
298 638
299 if (!ptr && size) 639 if (!ptr && size)
300 { 640 {
641#if EV_AVOID_STDIO
642 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 644 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645#endif
302 abort (); 646 abort ();
303 } 647 }
304 648
305 return ptr; 649 return ptr;
306} 650}
308#define ev_malloc(size) ev_realloc (0, (size)) 652#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 653#define ev_free(ptr) ev_realloc ((ptr), 0)
310 654
311/*****************************************************************************/ 655/*****************************************************************************/
312 656
657/* set in reify when reification needed */
658#define EV_ANFD_REIFY 1
659
660/* file descriptor info structure */
313typedef struct 661typedef struct
314{ 662{
315 WL head; 663 WL head;
316 unsigned char events; 664 unsigned char events; /* the events watched for */
665 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
666 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 667 unsigned char unused;
668#if EV_USE_EPOLL
669 unsigned int egen; /* generation counter to counter epoll bugs */
670#endif
318#if EV_SELECT_IS_WINSOCKET 671#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
319 SOCKET handle; 672 SOCKET handle;
320#endif 673#endif
674#if EV_USE_IOCP
675 OVERLAPPED or, ow;
676#endif
321} ANFD; 677} ANFD;
322 678
679/* stores the pending event set for a given watcher */
323typedef struct 680typedef struct
324{ 681{
325 W w; 682 W w;
326 int events; 683 int events; /* the pending event set for the given watcher */
327} ANPENDING; 684} ANPENDING;
328 685
329#if EV_USE_INOTIFY 686#if EV_USE_INOTIFY
687/* hash table entry per inotify-id */
330typedef struct 688typedef struct
331{ 689{
332 WL head; 690 WL head;
333} ANFS; 691} ANFS;
692#endif
693
694/* Heap Entry */
695#if EV_HEAP_CACHE_AT
696 /* a heap element */
697 typedef struct {
698 ev_tstamp at;
699 WT w;
700 } ANHE;
701
702 #define ANHE_w(he) (he).w /* access watcher, read-write */
703 #define ANHE_at(he) (he).at /* access cached at, read-only */
704 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
705#else
706 /* a heap element */
707 typedef WT ANHE;
708
709 #define ANHE_w(he) (he)
710 #define ANHE_at(he) (he)->at
711 #define ANHE_at_cache(he)
334#endif 712#endif
335 713
336#if EV_MULTIPLICITY 714#if EV_MULTIPLICITY
337 715
338 struct ev_loop 716 struct ev_loop
357 735
358 static int ev_default_loop_ptr; 736 static int ev_default_loop_ptr;
359 737
360#endif 738#endif
361 739
740#if EV_FEATURE_API
741# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743# define EV_INVOKE_PENDING invoke_cb (EV_A)
744#else
745# define EV_RELEASE_CB (void)0
746# define EV_ACQUIRE_CB (void)0
747# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748#endif
749
750#define EVBREAK_RECURSE 0x80
751
362/*****************************************************************************/ 752/*****************************************************************************/
363 753
754#ifndef EV_HAVE_EV_TIME
364ev_tstamp 755ev_tstamp
365ev_time (void) 756ev_time (void)
366{ 757{
367#if EV_USE_REALTIME 758#if EV_USE_REALTIME
759 if (expect_true (have_realtime))
760 {
368 struct timespec ts; 761 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 762 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 763 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 764 }
765#endif
766
372 struct timeval tv; 767 struct timeval tv;
373 gettimeofday (&tv, 0); 768 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 769 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 770}
771#endif
377 772
378ev_tstamp inline_size 773inline_size ev_tstamp
379get_clock (void) 774get_clock (void)
380{ 775{
381#if EV_USE_MONOTONIC 776#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 777 if (expect_true (have_monotonic))
383 { 778 {
396{ 791{
397 return ev_rt_now; 792 return ev_rt_now;
398} 793}
399#endif 794#endif
400 795
401#define array_roundsize(type,n) (((n) | 4) & ~3) 796void
797ev_sleep (ev_tstamp delay)
798{
799 if (delay > 0.)
800 {
801#if EV_USE_NANOSLEEP
802 struct timespec ts;
803
804 EV_TS_SET (ts, delay);
805 nanosleep (&ts, 0);
806#elif defined(_WIN32)
807 Sleep ((unsigned long)(delay * 1e3));
808#else
809 struct timeval tv;
810
811 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
812 /* something not guaranteed by newer posix versions, but guaranteed */
813 /* by older ones */
814 EV_TV_SET (tv, delay);
815 select (0, 0, 0, 0, &tv);
816#endif
817 }
818}
819
820inline_speed int
821ev_timeout_to_ms (ev_tstamp timeout)
822{
823 int ms = timeout * 1000. + .999999;
824
825 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
826}
827
828/*****************************************************************************/
829
830#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
831
832/* find a suitable new size for the given array, */
833/* hopefully by rounding to a nice-to-malloc size */
834inline_size int
835array_nextsize (int elem, int cur, int cnt)
836{
837 int ncur = cur + 1;
838
839 do
840 ncur <<= 1;
841 while (cnt > ncur);
842
843 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
844 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
845 {
846 ncur *= elem;
847 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
848 ncur = ncur - sizeof (void *) * 4;
849 ncur /= elem;
850 }
851
852 return ncur;
853}
854
855static noinline void *
856array_realloc (int elem, void *base, int *cur, int cnt)
857{
858 *cur = array_nextsize (elem, *cur, cnt);
859 return ev_realloc (base, elem * *cur);
860}
861
862#define array_init_zero(base,count) \
863 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 864
403#define array_needsize(type,base,cur,cnt,init) \ 865#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 866 if (expect_false ((cnt) > (cur))) \
405 { \ 867 { \
406 int newcnt = cur; \ 868 int ocur_ = (cur); \
407 do \ 869 (base) = (type *)array_realloc \
408 { \ 870 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 871 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 872 }
417 873
874#if 0
418#define array_slim(type,stem) \ 875#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 876 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 877 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 878 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 879 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 880 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 881 }
882#endif
425 883
426#define array_free(stem, idx) \ 884#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 885 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 886
429/*****************************************************************************/ 887/*****************************************************************************/
888
889/* dummy callback for pending events */
890static void noinline
891pendingcb (EV_P_ ev_prepare *w, int revents)
892{
893}
430 894
431void noinline 895void noinline
432ev_feed_event (EV_P_ void *w, int revents) 896ev_feed_event (EV_P_ void *w, int revents)
433{ 897{
434 W w_ = (W)w; 898 W w_ = (W)w;
899 int pri = ABSPRI (w_);
435 900
436 if (expect_false (w_->pending)) 901 if (expect_false (w_->pending))
902 pendings [pri][w_->pending - 1].events |= revents;
903 else
437 { 904 {
905 w_->pending = ++pendingcnt [pri];
906 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
907 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 908 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 909 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 910}
447 911
448void inline_size 912inline_speed void
913feed_reverse (EV_P_ W w)
914{
915 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
916 rfeeds [rfeedcnt++] = w;
917}
918
919inline_size void
920feed_reverse_done (EV_P_ int revents)
921{
922 do
923 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
924 while (rfeedcnt);
925}
926
927inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 928queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 929{
451 int i; 930 int i;
452 931
453 for (i = 0; i < eventcnt; ++i) 932 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 933 ev_feed_event (EV_A_ events [i], type);
455} 934}
456 935
457/*****************************************************************************/ 936/*****************************************************************************/
458 937
459void inline_size 938inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 939fd_event_nocheck (EV_P_ int fd, int revents)
474{ 940{
475 ANFD *anfd = anfds + fd; 941 ANFD *anfd = anfds + fd;
476 ev_io *w; 942 ev_io *w;
477 943
478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 944 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
482 if (ev) 948 if (ev)
483 ev_feed_event (EV_A_ (W)w, ev); 949 ev_feed_event (EV_A_ (W)w, ev);
484 } 950 }
485} 951}
486 952
953/* do not submit kernel events for fds that have reify set */
954/* because that means they changed while we were polling for new events */
955inline_speed void
956fd_event (EV_P_ int fd, int revents)
957{
958 ANFD *anfd = anfds + fd;
959
960 if (expect_true (!anfd->reify))
961 fd_event_nocheck (EV_A_ fd, revents);
962}
963
487void 964void
488ev_feed_fd_event (EV_P_ int fd, int revents) 965ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 966{
967 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 968 fd_event_nocheck (EV_A_ fd, revents);
491} 969}
492 970
493void inline_size 971/* make sure the external fd watch events are in-sync */
972/* with the kernel/libev internal state */
973inline_size void
494fd_reify (EV_P) 974fd_reify (EV_P)
495{ 975{
496 int i; 976 int i;
497 977
498 for (i = 0; i < fdchangecnt; ++i) 978 for (i = 0; i < fdchangecnt; ++i)
499 { 979 {
500 int fd = fdchanges [i]; 980 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 981 ANFD *anfd = anfds + fd;
502 ev_io *w; 982 ev_io *w;
503 983
504 int events = 0; 984 unsigned char o_events = anfd->events;
985 unsigned char o_reify = anfd->reify;
505 986
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 987 anfd->reify = 0;
507 events |= w->events;
508 988
509#if EV_SELECT_IS_WINSOCKET 989#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
510 if (events) 990 if (o_reify & EV__IOFDSET)
511 { 991 {
512 unsigned long argp; 992 unsigned long arg;
513 anfd->handle = _get_osfhandle (fd); 993 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 994 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
995 printf ("oi %d %x\n", fd, anfd->handle);//D
515 } 996 }
516#endif 997#endif
517 998
518 anfd->reify = 0; 999 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1000 {
1001 anfd->events = 0;
519 1002
1003 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1004 anfd->events |= (unsigned char)w->events;
1005
1006 if (o_events != anfd->events)
1007 o_reify = EV__IOFDSET; /* actually |= */
1008 }
1009
1010 if (o_reify & EV__IOFDSET)
520 backend_modify (EV_A_ fd, anfd->events, events); 1011 backend_modify (EV_A_ fd, o_events, anfd->events);
521 anfd->events = events;
522 } 1012 }
523 1013
524 fdchangecnt = 0; 1014 fdchangecnt = 0;
525} 1015}
526 1016
527void inline_size 1017/* something about the given fd changed */
1018inline_size void
528fd_change (EV_P_ int fd) 1019fd_change (EV_P_ int fd, int flags)
529{ 1020{
530 if (expect_false (anfds [fd].reify)) 1021 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 1022 anfds [fd].reify |= flags;
534 1023
1024 if (expect_true (!reify))
1025 {
535 ++fdchangecnt; 1026 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1027 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 1028 fdchanges [fdchangecnt - 1] = fd;
1029 }
538} 1030}
539 1031
540void inline_speed 1032/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1033inline_speed void
541fd_kill (EV_P_ int fd) 1034fd_kill (EV_P_ int fd)
542{ 1035{
543 ev_io *w; 1036 ev_io *w;
544 1037
545 while ((w = (ev_io *)anfds [fd].head)) 1038 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 1040 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1041 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 1042 }
550} 1043}
551 1044
552int inline_size 1045/* check whether the given fd is actually valid, for error recovery */
1046inline_size int
553fd_valid (int fd) 1047fd_valid (int fd)
554{ 1048{
555#ifdef _WIN32 1049#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 1050 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
557#else 1051#else
558 return fcntl (fd, F_GETFD) != -1; 1052 return fcntl (fd, F_GETFD) != -1;
559#endif 1053#endif
560} 1054}
561 1055
565{ 1059{
566 int fd; 1060 int fd;
567 1061
568 for (fd = 0; fd < anfdmax; ++fd) 1062 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 1063 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 1064 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 1065 fd_kill (EV_A_ fd);
572} 1066}
573 1067
574/* called on ENOMEM in select/poll to kill some fds and retry */ 1068/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 1069static void noinline
579 1073
580 for (fd = anfdmax; fd--; ) 1074 for (fd = anfdmax; fd--; )
581 if (anfds [fd].events) 1075 if (anfds [fd].events)
582 { 1076 {
583 fd_kill (EV_A_ fd); 1077 fd_kill (EV_A_ fd);
584 return; 1078 break;
585 } 1079 }
586} 1080}
587 1081
588/* usually called after fork if backend needs to re-arm all fds from scratch */ 1082/* usually called after fork if backend needs to re-arm all fds from scratch */
589static void noinline 1083static void noinline
590fd_rearm_all (EV_P) 1084fd_rearm_all (EV_P)
591{ 1085{
592 int fd; 1086 int fd;
593 1087
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 1088 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 1089 if (anfds [fd].events)
597 { 1090 {
598 anfds [fd].events = 0; 1091 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 1092 anfds [fd].emask = 0;
1093 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
600 } 1094 }
601} 1095}
602 1096
603/*****************************************************************************/ 1097/* used to prepare libev internal fd's */
604 1098/* this is not fork-safe */
605void inline_speed 1099inline_speed void
606upheap (WT *heap, int k)
607{
608 WT w = heap [k];
609
610 while (k && heap [k >> 1]->at > w->at)
611 {
612 heap [k] = heap [k >> 1];
613 ((W)heap [k])->active = k + 1;
614 k >>= 1;
615 }
616
617 heap [k] = w;
618 ((W)heap [k])->active = k + 1;
619
620}
621
622void inline_speed
623downheap (WT *heap, int N, int k)
624{
625 WT w = heap [k];
626
627 while (k < (N >> 1))
628 {
629 int j = k << 1;
630
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
632 ++j;
633
634 if (w->at <= heap [j]->at)
635 break;
636
637 heap [k] = heap [j];
638 ((W)heap [k])->active = k + 1;
639 k = j;
640 }
641
642 heap [k] = w;
643 ((W)heap [k])->active = k + 1;
644}
645
646void inline_size
647adjustheap (WT *heap, int N, int k)
648{
649 upheap (heap, k);
650 downheap (heap, N, k);
651}
652
653/*****************************************************************************/
654
655typedef struct
656{
657 WL head;
658 sig_atomic_t volatile gotsig;
659} ANSIG;
660
661static ANSIG *signals;
662static int signalmax;
663
664static int sigpipe [2];
665static sig_atomic_t volatile gotsig;
666static ev_io sigev;
667
668void inline_size
669signals_init (ANSIG *base, int count)
670{
671 while (count--)
672 {
673 base->head = 0;
674 base->gotsig = 0;
675
676 ++base;
677 }
678}
679
680static void
681sighandler (int signum)
682{
683#if _WIN32
684 signal (signum, sighandler);
685#endif
686
687 signals [signum - 1].gotsig = 1;
688
689 if (!gotsig)
690 {
691 int old_errno = errno;
692 gotsig = 1;
693 write (sigpipe [1], &signum, 1);
694 errno = old_errno;
695 }
696}
697
698void noinline
699ev_feed_signal_event (EV_P_ int signum)
700{
701 WL w;
702
703#if EV_MULTIPLICITY
704 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
705#endif
706
707 --signum;
708
709 if (signum < 0 || signum >= signalmax)
710 return;
711
712 signals [signum].gotsig = 0;
713
714 for (w = signals [signum].head; w; w = w->next)
715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
716}
717
718static void
719sigcb (EV_P_ ev_io *iow, int revents)
720{
721 int signum;
722
723 read (sigpipe [0], &revents, 1);
724 gotsig = 0;
725
726 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1);
729}
730
731void inline_size
732fd_intern (int fd) 1100fd_intern (int fd)
733{ 1101{
734#ifdef _WIN32 1102#ifdef _WIN32
735 int arg = 1; 1103 unsigned long arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1104 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
737#else 1105#else
738 fcntl (fd, F_SETFD, FD_CLOEXEC); 1106 fcntl (fd, F_SETFD, FD_CLOEXEC);
739 fcntl (fd, F_SETFL, O_NONBLOCK); 1107 fcntl (fd, F_SETFL, O_NONBLOCK);
740#endif 1108#endif
741} 1109}
742 1110
1111/*****************************************************************************/
1112
1113/*
1114 * the heap functions want a real array index. array index 0 is guaranteed to not
1115 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1116 * the branching factor of the d-tree.
1117 */
1118
1119/*
1120 * at the moment we allow libev the luxury of two heaps,
1121 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1122 * which is more cache-efficient.
1123 * the difference is about 5% with 50000+ watchers.
1124 */
1125#if EV_USE_4HEAP
1126
1127#define DHEAP 4
1128#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1129#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1130#define UPHEAP_DONE(p,k) ((p) == (k))
1131
1132/* away from the root */
1133inline_speed void
1134downheap (ANHE *heap, int N, int k)
1135{
1136 ANHE he = heap [k];
1137 ANHE *E = heap + N + HEAP0;
1138
1139 for (;;)
1140 {
1141 ev_tstamp minat;
1142 ANHE *minpos;
1143 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1144
1145 /* find minimum child */
1146 if (expect_true (pos + DHEAP - 1 < E))
1147 {
1148 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1149 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1150 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1151 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1152 }
1153 else if (pos < E)
1154 {
1155 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1156 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1157 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1158 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1159 }
1160 else
1161 break;
1162
1163 if (ANHE_at (he) <= minat)
1164 break;
1165
1166 heap [k] = *minpos;
1167 ev_active (ANHE_w (*minpos)) = k;
1168
1169 k = minpos - heap;
1170 }
1171
1172 heap [k] = he;
1173 ev_active (ANHE_w (he)) = k;
1174}
1175
1176#else /* 4HEAP */
1177
1178#define HEAP0 1
1179#define HPARENT(k) ((k) >> 1)
1180#define UPHEAP_DONE(p,k) (!(p))
1181
1182/* away from the root */
1183inline_speed void
1184downheap (ANHE *heap, int N, int k)
1185{
1186 ANHE he = heap [k];
1187
1188 for (;;)
1189 {
1190 int c = k << 1;
1191
1192 if (c >= N + HEAP0)
1193 break;
1194
1195 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1196 ? 1 : 0;
1197
1198 if (ANHE_at (he) <= ANHE_at (heap [c]))
1199 break;
1200
1201 heap [k] = heap [c];
1202 ev_active (ANHE_w (heap [k])) = k;
1203
1204 k = c;
1205 }
1206
1207 heap [k] = he;
1208 ev_active (ANHE_w (he)) = k;
1209}
1210#endif
1211
1212/* towards the root */
1213inline_speed void
1214upheap (ANHE *heap, int k)
1215{
1216 ANHE he = heap [k];
1217
1218 for (;;)
1219 {
1220 int p = HPARENT (k);
1221
1222 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1223 break;
1224
1225 heap [k] = heap [p];
1226 ev_active (ANHE_w (heap [k])) = k;
1227 k = p;
1228 }
1229
1230 heap [k] = he;
1231 ev_active (ANHE_w (he)) = k;
1232}
1233
1234/* move an element suitably so it is in a correct place */
1235inline_size void
1236adjustheap (ANHE *heap, int N, int k)
1237{
1238 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1239 upheap (heap, k);
1240 else
1241 downheap (heap, N, k);
1242}
1243
1244/* rebuild the heap: this function is used only once and executed rarely */
1245inline_size void
1246reheap (ANHE *heap, int N)
1247{
1248 int i;
1249
1250 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1251 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1252 for (i = 0; i < N; ++i)
1253 upheap (heap, i + HEAP0);
1254}
1255
1256/*****************************************************************************/
1257
1258/* associate signal watchers to a signal signal */
1259typedef struct
1260{
1261 EV_ATOMIC_T pending;
1262#if EV_MULTIPLICITY
1263 EV_P;
1264#endif
1265 WL head;
1266} ANSIG;
1267
1268static ANSIG signals [EV_NSIG - 1];
1269
1270/*****************************************************************************/
1271
1272#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1273
743static void noinline 1274static void noinline
744siginit (EV_P) 1275evpipe_init (EV_P)
745{ 1276{
1277 if (!ev_is_active (&pipe_w))
1278 {
1279# if EV_USE_EVENTFD
1280 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1281 if (evfd < 0 && errno == EINVAL)
1282 evfd = eventfd (0, 0);
1283
1284 if (evfd >= 0)
1285 {
1286 evpipe [0] = -1;
1287 fd_intern (evfd); /* doing it twice doesn't hurt */
1288 ev_io_set (&pipe_w, evfd, EV_READ);
1289 }
1290 else
1291# endif
1292 {
1293 while (pipe (evpipe))
1294 ev_syserr ("(libev) error creating signal/async pipe");
1295
746 fd_intern (sigpipe [0]); 1296 fd_intern (evpipe [0]);
747 fd_intern (sigpipe [1]); 1297 fd_intern (evpipe [1]);
1298 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1299 }
748 1300
749 ev_io_set (&sigev, sigpipe [0], EV_READ);
750 ev_io_start (EV_A_ &sigev); 1301 ev_io_start (EV_A_ &pipe_w);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1302 ev_unref (EV_A); /* watcher should not keep loop alive */
1303 }
1304}
1305
1306inline_size void
1307evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1308{
1309 if (!*flag)
1310 {
1311 int old_errno = errno; /* save errno because write might clobber it */
1312 char dummy;
1313
1314 *flag = 1;
1315
1316#if EV_USE_EVENTFD
1317 if (evfd >= 0)
1318 {
1319 uint64_t counter = 1;
1320 write (evfd, &counter, sizeof (uint64_t));
1321 }
1322 else
1323#endif
1324 /* win32 people keep sending patches that change this write() to send() */
1325 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1326 /* so when you think this write should be a send instead, please find out */
1327 /* where your send() is from - it's definitely not the microsoft send, and */
1328 /* tell me. thank you. */
1329 write (evpipe [1], &dummy, 1);
1330
1331 errno = old_errno;
1332 }
1333}
1334
1335/* called whenever the libev signal pipe */
1336/* got some events (signal, async) */
1337static void
1338pipecb (EV_P_ ev_io *iow, int revents)
1339{
1340 int i;
1341
1342#if EV_USE_EVENTFD
1343 if (evfd >= 0)
1344 {
1345 uint64_t counter;
1346 read (evfd, &counter, sizeof (uint64_t));
1347 }
1348 else
1349#endif
1350 {
1351 char dummy;
1352 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1353 read (evpipe [0], &dummy, 1);
1354 }
1355
1356 if (sig_pending)
1357 {
1358 sig_pending = 0;
1359
1360 for (i = EV_NSIG - 1; i--; )
1361 if (expect_false (signals [i].pending))
1362 ev_feed_signal_event (EV_A_ i + 1);
1363 }
1364
1365#if EV_ASYNC_ENABLE
1366 if (async_pending)
1367 {
1368 async_pending = 0;
1369
1370 for (i = asynccnt; i--; )
1371 if (asyncs [i]->sent)
1372 {
1373 asyncs [i]->sent = 0;
1374 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1375 }
1376 }
1377#endif
752} 1378}
753 1379
754/*****************************************************************************/ 1380/*****************************************************************************/
755 1381
756static ev_child *childs [EV_PID_HASHSIZE]; 1382void
1383ev_feed_signal (int signum)
1384{
1385#if EV_MULTIPLICITY
1386 EV_P = signals [signum - 1].loop;
757 1387
1388 if (!EV_A)
1389 return;
1390#endif
1391
1392 signals [signum - 1].pending = 1;
1393 evpipe_write (EV_A_ &sig_pending);
1394}
1395
1396static void
1397ev_sighandler (int signum)
1398{
758#ifndef _WIN32 1399#ifdef _WIN32
1400 signal (signum, ev_sighandler);
1401#endif
1402
1403 ev_feed_signal (signum);
1404}
1405
1406void noinline
1407ev_feed_signal_event (EV_P_ int signum)
1408{
1409 WL w;
1410
1411 if (expect_false (signum <= 0 || signum > EV_NSIG))
1412 return;
1413
1414 --signum;
1415
1416#if EV_MULTIPLICITY
1417 /* it is permissible to try to feed a signal to the wrong loop */
1418 /* or, likely more useful, feeding a signal nobody is waiting for */
1419
1420 if (expect_false (signals [signum].loop != EV_A))
1421 return;
1422#endif
1423
1424 signals [signum].pending = 0;
1425
1426 for (w = signals [signum].head; w; w = w->next)
1427 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1428}
1429
1430#if EV_USE_SIGNALFD
1431static void
1432sigfdcb (EV_P_ ev_io *iow, int revents)
1433{
1434 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1435
1436 for (;;)
1437 {
1438 ssize_t res = read (sigfd, si, sizeof (si));
1439
1440 /* not ISO-C, as res might be -1, but works with SuS */
1441 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1442 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1443
1444 if (res < (ssize_t)sizeof (si))
1445 break;
1446 }
1447}
1448#endif
1449
1450#endif
1451
1452/*****************************************************************************/
1453
1454#if EV_CHILD_ENABLE
1455static WL childs [EV_PID_HASHSIZE];
759 1456
760static ev_signal childev; 1457static ev_signal childev;
761 1458
762void inline_speed 1459#ifndef WIFCONTINUED
1460# define WIFCONTINUED(status) 0
1461#endif
1462
1463/* handle a single child status event */
1464inline_speed void
763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1465child_reap (EV_P_ int chain, int pid, int status)
764{ 1466{
765 ev_child *w; 1467 ev_child *w;
1468 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
766 1469
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1470 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1471 {
768 if (w->pid == pid || !w->pid) 1472 if ((w->pid == pid || !w->pid)
1473 && (!traced || (w->flags & 1)))
769 { 1474 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1475 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
771 w->rpid = pid; 1476 w->rpid = pid;
772 w->rstatus = status; 1477 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1478 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 1479 }
1480 }
775} 1481}
776 1482
777#ifndef WCONTINUED 1483#ifndef WCONTINUED
778# define WCONTINUED 0 1484# define WCONTINUED 0
779#endif 1485#endif
780 1486
1487/* called on sigchld etc., calls waitpid */
781static void 1488static void
782childcb (EV_P_ ev_signal *sw, int revents) 1489childcb (EV_P_ ev_signal *sw, int revents)
783{ 1490{
784 int pid, status; 1491 int pid, status;
785 1492
788 if (!WCONTINUED 1495 if (!WCONTINUED
789 || errno != EINVAL 1496 || errno != EINVAL
790 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1497 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
791 return; 1498 return;
792 1499
793 /* make sure we are called again until all childs have been reaped */ 1500 /* make sure we are called again until all children have been reaped */
794 /* we need to do it this way so that the callback gets called before we continue */ 1501 /* we need to do it this way so that the callback gets called before we continue */
795 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1502 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
796 1503
797 child_reap (EV_A_ sw, pid, pid, status); 1504 child_reap (EV_A_ pid, pid, status);
798 if (EV_PID_HASHSIZE > 1) 1505 if ((EV_PID_HASHSIZE) > 1)
799 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1506 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
800} 1507}
801 1508
802#endif 1509#endif
803 1510
804/*****************************************************************************/ 1511/*****************************************************************************/
805 1512
1513#if EV_USE_IOCP
1514# include "ev_iocp.c"
1515#endif
806#if EV_USE_PORT 1516#if EV_USE_PORT
807# include "ev_port.c" 1517# include "ev_port.c"
808#endif 1518#endif
809#if EV_USE_KQUEUE 1519#if EV_USE_KQUEUE
810# include "ev_kqueue.c" 1520# include "ev_kqueue.c"
866 /* kqueue is borked on everything but netbsd apparently */ 1576 /* kqueue is borked on everything but netbsd apparently */
867 /* it usually doesn't work correctly on anything but sockets and pipes */ 1577 /* it usually doesn't work correctly on anything but sockets and pipes */
868 flags &= ~EVBACKEND_KQUEUE; 1578 flags &= ~EVBACKEND_KQUEUE;
869#endif 1579#endif
870#ifdef __APPLE__ 1580#ifdef __APPLE__
871 // flags &= ~EVBACKEND_KQUEUE; for documentation 1581 /* only select works correctly on that "unix-certified" platform */
872 flags &= ~EVBACKEND_POLL; 1582 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1583 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1584#endif
1585#ifdef __FreeBSD__
1586 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
873#endif 1587#endif
874 1588
875 return flags; 1589 return flags;
876} 1590}
877 1591
878unsigned int 1592unsigned int
879ev_embeddable_backends (void) 1593ev_embeddable_backends (void)
880{ 1594{
881 return EVBACKEND_EPOLL 1595 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
882 | EVBACKEND_KQUEUE 1596
883 | EVBACKEND_PORT; 1597 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1598 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1599 flags &= ~EVBACKEND_EPOLL;
1600
1601 return flags;
884} 1602}
885 1603
886unsigned int 1604unsigned int
887ev_backend (EV_P) 1605ev_backend (EV_P)
888{ 1606{
889 return backend; 1607 return backend;
890} 1608}
891 1609
1610#if EV_FEATURE_API
1611unsigned int
1612ev_iteration (EV_P)
1613{
1614 return loop_count;
1615}
1616
1617unsigned int
1618ev_depth (EV_P)
1619{
1620 return loop_depth;
1621}
1622
1623void
1624ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1625{
1626 io_blocktime = interval;
1627}
1628
1629void
1630ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1631{
1632 timeout_blocktime = interval;
1633}
1634
1635void
1636ev_set_userdata (EV_P_ void *data)
1637{
1638 userdata = data;
1639}
1640
1641void *
1642ev_userdata (EV_P)
1643{
1644 return userdata;
1645}
1646
1647void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1648{
1649 invoke_cb = invoke_pending_cb;
1650}
1651
1652void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1653{
1654 release_cb = release;
1655 acquire_cb = acquire;
1656}
1657#endif
1658
1659/* initialise a loop structure, must be zero-initialised */
892static void noinline 1660static void noinline
893loop_init (EV_P_ unsigned int flags) 1661loop_init (EV_P_ unsigned int flags)
894{ 1662{
895 if (!backend) 1663 if (!backend)
896 { 1664 {
1665 origflags = flags;
1666
1667#if EV_USE_REALTIME
1668 if (!have_realtime)
1669 {
1670 struct timespec ts;
1671
1672 if (!clock_gettime (CLOCK_REALTIME, &ts))
1673 have_realtime = 1;
1674 }
1675#endif
1676
897#if EV_USE_MONOTONIC 1677#if EV_USE_MONOTONIC
1678 if (!have_monotonic)
898 { 1679 {
899 struct timespec ts; 1680 struct timespec ts;
1681
900 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1682 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
901 have_monotonic = 1; 1683 have_monotonic = 1;
902 } 1684 }
903#endif 1685#endif
904 1686
905 ev_rt_now = ev_time (); 1687 /* pid check not overridable via env */
906 mn_now = get_clock (); 1688#ifndef _WIN32
907 now_floor = mn_now; 1689 if (flags & EVFLAG_FORKCHECK)
908 rtmn_diff = ev_rt_now - mn_now; 1690 curpid = getpid ();
1691#endif
909 1692
910 if (!(flags & EVFLAG_NOENV) 1693 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1694 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1695 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1696 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1697
915 if (!(flags & 0x0000ffffUL)) 1698 ev_rt_now = ev_time ();
1699 mn_now = get_clock ();
1700 now_floor = mn_now;
1701 rtmn_diff = ev_rt_now - mn_now;
1702#if EV_FEATURE_API
1703 invoke_cb = ev_invoke_pending;
1704#endif
1705
1706 io_blocktime = 0.;
1707 timeout_blocktime = 0.;
1708 backend = 0;
1709 backend_fd = -1;
1710 sig_pending = 0;
1711#if EV_ASYNC_ENABLE
1712 async_pending = 0;
1713#endif
1714#if EV_USE_INOTIFY
1715 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1716#endif
1717#if EV_USE_SIGNALFD
1718 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1719#endif
1720
1721 if (!(flags & EVBACKEND_MASK))
916 flags |= ev_recommended_backends (); 1722 flags |= ev_recommended_backends ();
917 1723
918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY 1724#if EV_USE_IOCP
921 fs_fd = -2; 1725 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
922#endif 1726#endif
923
924#if EV_USE_PORT 1727#if EV_USE_PORT
925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1728 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
926#endif 1729#endif
927#if EV_USE_KQUEUE 1730#if EV_USE_KQUEUE
928 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1731 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
935#endif 1738#endif
936#if EV_USE_SELECT 1739#if EV_USE_SELECT
937 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1740 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
938#endif 1741#endif
939 1742
1743 ev_prepare_init (&pending_w, pendingcb);
1744
1745#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
940 ev_init (&sigev, sigcb); 1746 ev_init (&pipe_w, pipecb);
941 ev_set_priority (&sigev, EV_MAXPRI); 1747 ev_set_priority (&pipe_w, EV_MAXPRI);
1748#endif
942 } 1749 }
943} 1750}
944 1751
945static void noinline 1752/* free up a loop structure */
1753void
946loop_destroy (EV_P) 1754ev_loop_destroy (EV_P)
947{ 1755{
948 int i; 1756 int i;
1757
1758#if EV_MULTIPLICITY
1759 /* mimic free (0) */
1760 if (!EV_A)
1761 return;
1762#endif
1763
1764#if EV_CLEANUP_ENABLE
1765 /* queue cleanup watchers (and execute them) */
1766 if (expect_false (cleanupcnt))
1767 {
1768 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1769 EV_INVOKE_PENDING;
1770 }
1771#endif
1772
1773#if EV_CHILD_ENABLE
1774 if (ev_is_active (&childev))
1775 {
1776 ev_ref (EV_A); /* child watcher */
1777 ev_signal_stop (EV_A_ &childev);
1778 }
1779#endif
1780
1781 if (ev_is_active (&pipe_w))
1782 {
1783 /*ev_ref (EV_A);*/
1784 /*ev_io_stop (EV_A_ &pipe_w);*/
1785
1786#if EV_USE_EVENTFD
1787 if (evfd >= 0)
1788 close (evfd);
1789#endif
1790
1791 if (evpipe [0] >= 0)
1792 {
1793 EV_WIN32_CLOSE_FD (evpipe [0]);
1794 EV_WIN32_CLOSE_FD (evpipe [1]);
1795 }
1796 }
1797
1798#if EV_USE_SIGNALFD
1799 if (ev_is_active (&sigfd_w))
1800 close (sigfd);
1801#endif
949 1802
950#if EV_USE_INOTIFY 1803#if EV_USE_INOTIFY
951 if (fs_fd >= 0) 1804 if (fs_fd >= 0)
952 close (fs_fd); 1805 close (fs_fd);
953#endif 1806#endif
954 1807
955 if (backend_fd >= 0) 1808 if (backend_fd >= 0)
956 close (backend_fd); 1809 close (backend_fd);
957 1810
1811#if EV_USE_IOCP
1812 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1813#endif
958#if EV_USE_PORT 1814#if EV_USE_PORT
959 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1815 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
960#endif 1816#endif
961#if EV_USE_KQUEUE 1817#if EV_USE_KQUEUE
962 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1818 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
970#if EV_USE_SELECT 1826#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1827 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1828#endif
973 1829
974 for (i = NUMPRI; i--; ) 1830 for (i = NUMPRI; i--; )
1831 {
975 array_free (pending, [i]); 1832 array_free (pending, [i]);
1833#if EV_IDLE_ENABLE
1834 array_free (idle, [i]);
1835#endif
1836 }
1837
1838 ev_free (anfds); anfds = 0; anfdmax = 0;
976 1839
977 /* have to use the microsoft-never-gets-it-right macro */ 1840 /* have to use the microsoft-never-gets-it-right macro */
1841 array_free (rfeed, EMPTY);
978 array_free (fdchange, EMPTY0); 1842 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1843 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1844#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1845 array_free (periodic, EMPTY);
982#endif 1846#endif
1847#if EV_FORK_ENABLE
1848 array_free (fork, EMPTY);
1849#endif
1850#if EV_CLEANUP_ENABLE
983 array_free (idle, EMPTY0); 1851 array_free (cleanup, EMPTY);
1852#endif
984 array_free (prepare, EMPTY0); 1853 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1854 array_free (check, EMPTY);
1855#if EV_ASYNC_ENABLE
1856 array_free (async, EMPTY);
1857#endif
986 1858
987 backend = 0; 1859 backend = 0;
988}
989 1860
1861#if EV_MULTIPLICITY
1862 if (ev_is_default_loop (EV_A))
1863#endif
1864 ev_default_loop_ptr = 0;
1865#if EV_MULTIPLICITY
1866 else
1867 ev_free (EV_A);
1868#endif
1869}
1870
1871#if EV_USE_INOTIFY
990void inline_size infy_fork (EV_P); 1872inline_size void infy_fork (EV_P);
1873#endif
991 1874
992void inline_size 1875inline_size void
993loop_fork (EV_P) 1876loop_fork (EV_P)
994{ 1877{
995#if EV_USE_PORT 1878#if EV_USE_PORT
996 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1879 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
997#endif 1880#endif
1003#endif 1886#endif
1004#if EV_USE_INOTIFY 1887#if EV_USE_INOTIFY
1005 infy_fork (EV_A); 1888 infy_fork (EV_A);
1006#endif 1889#endif
1007 1890
1008 if (ev_is_active (&sigev)) 1891 if (ev_is_active (&pipe_w))
1009 { 1892 {
1010 /* default loop */ 1893 /* this "locks" the handlers against writing to the pipe */
1894 /* while we modify the fd vars */
1895 sig_pending = 1;
1896#if EV_ASYNC_ENABLE
1897 async_pending = 1;
1898#endif
1011 1899
1012 ev_ref (EV_A); 1900 ev_ref (EV_A);
1013 ev_io_stop (EV_A_ &sigev); 1901 ev_io_stop (EV_A_ &pipe_w);
1014 close (sigpipe [0]);
1015 close (sigpipe [1]);
1016 1902
1017 while (pipe (sigpipe)) 1903#if EV_USE_EVENTFD
1018 syserr ("(libev) error creating pipe"); 1904 if (evfd >= 0)
1905 close (evfd);
1906#endif
1019 1907
1908 if (evpipe [0] >= 0)
1909 {
1910 EV_WIN32_CLOSE_FD (evpipe [0]);
1911 EV_WIN32_CLOSE_FD (evpipe [1]);
1912 }
1913
1914#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1020 siginit (EV_A); 1915 evpipe_init (EV_A);
1916 /* now iterate over everything, in case we missed something */
1917 pipecb (EV_A_ &pipe_w, EV_READ);
1918#endif
1021 } 1919 }
1022 1920
1023 postfork = 0; 1921 postfork = 0;
1024} 1922}
1923
1924#if EV_MULTIPLICITY
1925
1926struct ev_loop *
1927ev_loop_new (unsigned int flags)
1928{
1929 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1930
1931 memset (EV_A, 0, sizeof (struct ev_loop));
1932 loop_init (EV_A_ flags);
1933
1934 if (ev_backend (EV_A))
1935 return EV_A;
1936
1937 ev_free (EV_A);
1938 return 0;
1939}
1940
1941#endif /* multiplicity */
1942
1943#if EV_VERIFY
1944static void noinline
1945verify_watcher (EV_P_ W w)
1946{
1947 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1948
1949 if (w->pending)
1950 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1951}
1952
1953static void noinline
1954verify_heap (EV_P_ ANHE *heap, int N)
1955{
1956 int i;
1957
1958 for (i = HEAP0; i < N + HEAP0; ++i)
1959 {
1960 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1961 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1962 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1963
1964 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1965 }
1966}
1967
1968static void noinline
1969array_verify (EV_P_ W *ws, int cnt)
1970{
1971 while (cnt--)
1972 {
1973 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1974 verify_watcher (EV_A_ ws [cnt]);
1975 }
1976}
1977#endif
1978
1979#if EV_FEATURE_API
1980void
1981ev_verify (EV_P)
1982{
1983#if EV_VERIFY
1984 int i;
1985 WL w;
1986
1987 assert (activecnt >= -1);
1988
1989 assert (fdchangemax >= fdchangecnt);
1990 for (i = 0; i < fdchangecnt; ++i)
1991 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1992
1993 assert (anfdmax >= 0);
1994 for (i = 0; i < anfdmax; ++i)
1995 for (w = anfds [i].head; w; w = w->next)
1996 {
1997 verify_watcher (EV_A_ (W)w);
1998 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1999 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2000 }
2001
2002 assert (timermax >= timercnt);
2003 verify_heap (EV_A_ timers, timercnt);
2004
2005#if EV_PERIODIC_ENABLE
2006 assert (periodicmax >= periodiccnt);
2007 verify_heap (EV_A_ periodics, periodiccnt);
2008#endif
2009
2010 for (i = NUMPRI; i--; )
2011 {
2012 assert (pendingmax [i] >= pendingcnt [i]);
2013#if EV_IDLE_ENABLE
2014 assert (idleall >= 0);
2015 assert (idlemax [i] >= idlecnt [i]);
2016 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2017#endif
2018 }
2019
2020#if EV_FORK_ENABLE
2021 assert (forkmax >= forkcnt);
2022 array_verify (EV_A_ (W *)forks, forkcnt);
2023#endif
2024
2025#if EV_CLEANUP_ENABLE
2026 assert (cleanupmax >= cleanupcnt);
2027 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2028#endif
2029
2030#if EV_ASYNC_ENABLE
2031 assert (asyncmax >= asynccnt);
2032 array_verify (EV_A_ (W *)asyncs, asynccnt);
2033#endif
2034
2035#if EV_PREPARE_ENABLE
2036 assert (preparemax >= preparecnt);
2037 array_verify (EV_A_ (W *)prepares, preparecnt);
2038#endif
2039
2040#if EV_CHECK_ENABLE
2041 assert (checkmax >= checkcnt);
2042 array_verify (EV_A_ (W *)checks, checkcnt);
2043#endif
2044
2045# if 0
2046#if EV_CHILD_ENABLE
2047 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2048 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2049#endif
2050# endif
2051#endif
2052}
2053#endif
1025 2054
1026#if EV_MULTIPLICITY 2055#if EV_MULTIPLICITY
1027struct ev_loop * 2056struct ev_loop *
1028ev_loop_new (unsigned int flags)
1029{
1030 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1031
1032 memset (loop, 0, sizeof (struct ev_loop));
1033
1034 loop_init (EV_A_ flags);
1035
1036 if (ev_backend (EV_A))
1037 return loop;
1038
1039 return 0;
1040}
1041
1042void
1043ev_loop_destroy (EV_P)
1044{
1045 loop_destroy (EV_A);
1046 ev_free (loop);
1047}
1048
1049void
1050ev_loop_fork (EV_P)
1051{
1052 postfork = 1;
1053}
1054
1055#endif
1056
1057#if EV_MULTIPLICITY
1058struct ev_loop *
1059ev_default_loop_init (unsigned int flags)
1060#else 2057#else
1061int 2058int
2059#endif
1062ev_default_loop (unsigned int flags) 2060ev_default_loop (unsigned int flags)
1063#endif
1064{ 2061{
1065 if (sigpipe [0] == sigpipe [1])
1066 if (pipe (sigpipe))
1067 return 0;
1068
1069 if (!ev_default_loop_ptr) 2062 if (!ev_default_loop_ptr)
1070 { 2063 {
1071#if EV_MULTIPLICITY 2064#if EV_MULTIPLICITY
1072 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2065 EV_P = ev_default_loop_ptr = &default_loop_struct;
1073#else 2066#else
1074 ev_default_loop_ptr = 1; 2067 ev_default_loop_ptr = 1;
1075#endif 2068#endif
1076 2069
1077 loop_init (EV_A_ flags); 2070 loop_init (EV_A_ flags);
1078 2071
1079 if (ev_backend (EV_A)) 2072 if (ev_backend (EV_A))
1080 { 2073 {
1081 siginit (EV_A); 2074#if EV_CHILD_ENABLE
1082
1083#ifndef _WIN32
1084 ev_signal_init (&childev, childcb, SIGCHLD); 2075 ev_signal_init (&childev, childcb, SIGCHLD);
1085 ev_set_priority (&childev, EV_MAXPRI); 2076 ev_set_priority (&childev, EV_MAXPRI);
1086 ev_signal_start (EV_A_ &childev); 2077 ev_signal_start (EV_A_ &childev);
1087 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2078 ev_unref (EV_A); /* child watcher should not keep loop alive */
1088#endif 2079#endif
1093 2084
1094 return ev_default_loop_ptr; 2085 return ev_default_loop_ptr;
1095} 2086}
1096 2087
1097void 2088void
1098ev_default_destroy (void) 2089ev_loop_fork (EV_P)
1099{ 2090{
1100#if EV_MULTIPLICITY 2091 postfork = 1; /* must be in line with ev_default_fork */
1101 struct ev_loop *loop = ev_default_loop_ptr;
1102#endif
1103
1104#ifndef _WIN32
1105 ev_ref (EV_A); /* child watcher */
1106 ev_signal_stop (EV_A_ &childev);
1107#endif
1108
1109 ev_ref (EV_A); /* signal watcher */
1110 ev_io_stop (EV_A_ &sigev);
1111
1112 close (sigpipe [0]); sigpipe [0] = 0;
1113 close (sigpipe [1]); sigpipe [1] = 0;
1114
1115 loop_destroy (EV_A);
1116}
1117
1118void
1119ev_default_fork (void)
1120{
1121#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr;
1123#endif
1124
1125 if (backend)
1126 postfork = 1;
1127} 2092}
1128 2093
1129/*****************************************************************************/ 2094/*****************************************************************************/
1130 2095
1131int inline_size 2096void
1132any_pending (EV_P) 2097ev_invoke (EV_P_ void *w, int revents)
2098{
2099 EV_CB_INVOKE ((W)w, revents);
2100}
2101
2102unsigned int
2103ev_pending_count (EV_P)
1133{ 2104{
1134 int pri; 2105 int pri;
2106 unsigned int count = 0;
1135 2107
1136 for (pri = NUMPRI; pri--; ) 2108 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri]) 2109 count += pendingcnt [pri];
1138 return 1;
1139 2110
1140 return 0; 2111 return count;
1141} 2112}
1142 2113
1143void inline_speed 2114void noinline
1144call_pending (EV_P) 2115ev_invoke_pending (EV_P)
1145{ 2116{
1146 int pri; 2117 int pri;
1147 2118
1148 for (pri = NUMPRI; pri--; ) 2119 for (pri = NUMPRI; pri--; )
1149 while (pendingcnt [pri]) 2120 while (pendingcnt [pri])
1150 { 2121 {
1151 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2122 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1152 2123
1153 if (expect_true (p->w))
1154 {
1155 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1156
1157 p->w->pending = 0; 2124 p->w->pending = 0;
1158 EV_CB_INVOKE (p->w, p->events); 2125 EV_CB_INVOKE (p->w, p->events);
1159 } 2126 EV_FREQUENT_CHECK;
1160 } 2127 }
1161} 2128}
1162 2129
1163void inline_size 2130#if EV_IDLE_ENABLE
2131/* make idle watchers pending. this handles the "call-idle */
2132/* only when higher priorities are idle" logic */
2133inline_size void
2134idle_reify (EV_P)
2135{
2136 if (expect_false (idleall))
2137 {
2138 int pri;
2139
2140 for (pri = NUMPRI; pri--; )
2141 {
2142 if (pendingcnt [pri])
2143 break;
2144
2145 if (idlecnt [pri])
2146 {
2147 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2148 break;
2149 }
2150 }
2151 }
2152}
2153#endif
2154
2155/* make timers pending */
2156inline_size void
1164timers_reify (EV_P) 2157timers_reify (EV_P)
1165{ 2158{
2159 EV_FREQUENT_CHECK;
2160
1166 while (timercnt && ((WT)timers [0])->at <= mn_now) 2161 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1167 { 2162 {
1168 ev_timer *w = timers [0]; 2163 do
1169
1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1171
1172 /* first reschedule or stop timer */
1173 if (w->repeat)
1174 { 2164 {
2165 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2166
2167 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2168
2169 /* first reschedule or stop timer */
2170 if (w->repeat)
2171 {
2172 ev_at (w) += w->repeat;
2173 if (ev_at (w) < mn_now)
2174 ev_at (w) = mn_now;
2175
1175 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2176 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1176 2177
1177 ((WT)w)->at += w->repeat; 2178 ANHE_at_cache (timers [HEAP0]);
1178 if (((WT)w)->at < mn_now)
1179 ((WT)w)->at = mn_now;
1180
1181 downheap ((WT *)timers, timercnt, 0); 2179 downheap (timers, timercnt, HEAP0);
2180 }
2181 else
2182 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2183
2184 EV_FREQUENT_CHECK;
2185 feed_reverse (EV_A_ (W)w);
1182 } 2186 }
1183 else 2187 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1185 2188
1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2189 feed_reverse_done (EV_A_ EV_TIMER);
1187 } 2190 }
1188} 2191}
1189 2192
1190#if EV_PERIODIC_ENABLE 2193#if EV_PERIODIC_ENABLE
1191void inline_size 2194/* make periodics pending */
2195inline_size void
1192periodics_reify (EV_P) 2196periodics_reify (EV_P)
1193{ 2197{
2198 EV_FREQUENT_CHECK;
2199
1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2200 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1195 { 2201 {
1196 ev_periodic *w = periodics [0]; 2202 int feed_count = 0;
1197 2203
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2204 do
1199
1200 /* first reschedule or stop timer */
1201 if (w->reschedule_cb)
1202 { 2205 {
2206 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2207
2208 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2209
2210 /* first reschedule or stop timer */
2211 if (w->reschedule_cb)
2212 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2213 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2214
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2215 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2216
2217 ANHE_at_cache (periodics [HEAP0]);
1205 downheap ((WT *)periodics, periodiccnt, 0); 2218 downheap (periodics, periodiccnt, HEAP0);
2219 }
2220 else if (w->interval)
2221 {
2222 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2223 /* if next trigger time is not sufficiently in the future, put it there */
2224 /* this might happen because of floating point inexactness */
2225 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2226 {
2227 ev_at (w) += w->interval;
2228
2229 /* if interval is unreasonably low we might still have a time in the past */
2230 /* so correct this. this will make the periodic very inexact, but the user */
2231 /* has effectively asked to get triggered more often than possible */
2232 if (ev_at (w) < ev_rt_now)
2233 ev_at (w) = ev_rt_now;
2234 }
2235
2236 ANHE_at_cache (periodics [HEAP0]);
2237 downheap (periodics, periodiccnt, HEAP0);
2238 }
2239 else
2240 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2241
2242 EV_FREQUENT_CHECK;
2243 feed_reverse (EV_A_ (W)w);
1206 } 2244 }
1207 else if (w->interval) 2245 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1208 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1211 downheap ((WT *)periodics, periodiccnt, 0);
1212 }
1213 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1215 2246
1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2247 feed_reverse_done (EV_A_ EV_PERIODIC);
1217 } 2248 }
1218} 2249}
1219 2250
2251/* simply recalculate all periodics */
2252/* TODO: maybe ensure that at least one event happens when jumping forward? */
1220static void noinline 2253static void noinline
1221periodics_reschedule (EV_P) 2254periodics_reschedule (EV_P)
1222{ 2255{
1223 int i; 2256 int i;
1224 2257
1225 /* adjust periodics after time jump */ 2258 /* adjust periodics after time jump */
1226 for (i = 0; i < periodiccnt; ++i) 2259 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1227 { 2260 {
1228 ev_periodic *w = periodics [i]; 2261 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1229 2262
1230 if (w->reschedule_cb) 2263 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2264 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval) 2265 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2266 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2267
2268 ANHE_at_cache (periodics [i]);
2269 }
2270
2271 reheap (periodics, periodiccnt);
2272}
2273#endif
2274
2275/* adjust all timers by a given offset */
2276static void noinline
2277timers_reschedule (EV_P_ ev_tstamp adjust)
2278{
2279 int i;
2280
2281 for (i = 0; i < timercnt; ++i)
1234 } 2282 {
1235 2283 ANHE *he = timers + i + HEAP0;
1236 /* now rebuild the heap */ 2284 ANHE_w (*he)->at += adjust;
1237 for (i = periodiccnt >> 1; i--; ) 2285 ANHE_at_cache (*he);
1238 downheap ((WT *)periodics, periodiccnt, i); 2286 }
1239} 2287}
1240#endif
1241 2288
1242int inline_size 2289/* fetch new monotonic and realtime times from the kernel */
1243time_update_monotonic (EV_P) 2290/* also detect if there was a timejump, and act accordingly */
2291inline_speed void
2292time_update (EV_P_ ev_tstamp max_block)
1244{ 2293{
2294#if EV_USE_MONOTONIC
2295 if (expect_true (have_monotonic))
2296 {
2297 int i;
2298 ev_tstamp odiff = rtmn_diff;
2299
1245 mn_now = get_clock (); 2300 mn_now = get_clock ();
1246 2301
2302 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2303 /* interpolate in the meantime */
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2304 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 { 2305 {
1249 ev_rt_now = rtmn_diff + mn_now; 2306 ev_rt_now = rtmn_diff + mn_now;
1250 return 0; 2307 return;
1251 } 2308 }
1252 else 2309
1253 {
1254 now_floor = mn_now; 2310 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 2311 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 2312
1260void inline_size 2313 /* loop a few times, before making important decisions.
1261time_update (EV_P) 2314 * on the choice of "4": one iteration isn't enough,
1262{ 2315 * in case we get preempted during the calls to
1263 int i; 2316 * ev_time and get_clock. a second call is almost guaranteed
1264 2317 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 2318 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 2319 * in the unlikely event of having been preempted here.
1267 { 2320 */
1268 if (time_update_monotonic (EV_A)) 2321 for (i = 4; --i; )
1269 { 2322 {
1270 ev_tstamp odiff = rtmn_diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 2323 rtmn_diff = ev_rt_now - mn_now;
1283 2324
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2325 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1285 return; /* all is well */ 2326 return; /* all is well */
1286 2327
1287 ev_rt_now = ev_time (); 2328 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 2329 mn_now = get_clock ();
1289 now_floor = mn_now; 2330 now_floor = mn_now;
1290 } 2331 }
1291 2332
2333 /* no timer adjustment, as the monotonic clock doesn't jump */
2334 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1292# if EV_PERIODIC_ENABLE 2335# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 2336 periodics_reschedule (EV_A);
1294# endif 2337# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 2338 }
1299 else 2339 else
1300#endif 2340#endif
1301 { 2341 {
1302 ev_rt_now = ev_time (); 2342 ev_rt_now = ev_time ();
1303 2343
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2344 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 2345 {
2346 /* adjust timers. this is easy, as the offset is the same for all of them */
2347 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1306#if EV_PERIODIC_ENABLE 2348#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 2349 periodics_reschedule (EV_A);
1308#endif 2350#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */
1311 for (i = 0; i < timercnt; ++i)
1312 ((WT)timers [i])->at += ev_rt_now - mn_now;
1313 } 2351 }
1314 2352
1315 mn_now = ev_rt_now; 2353 mn_now = ev_rt_now;
1316 } 2354 }
1317} 2355}
1318 2356
1319void 2357void
1320ev_ref (EV_P)
1321{
1322 ++activecnt;
1323}
1324
1325void
1326ev_unref (EV_P)
1327{
1328 --activecnt;
1329}
1330
1331static int loop_done;
1332
1333void
1334ev_loop (EV_P_ int flags) 2358ev_run (EV_P_ int flags)
1335{ 2359{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2360#if EV_FEATURE_API
1337 ? EVUNLOOP_ONE 2361 ++loop_depth;
1338 : EVUNLOOP_CANCEL; 2362#endif
1339 2363
1340 while (activecnt) 2364 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2365
2366 loop_done = EVBREAK_CANCEL;
2367
2368 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2369
2370 do
1341 { 2371 {
1342 /* we might have forked, so reify kernel state if necessary */ 2372#if EV_VERIFY >= 2
2373 ev_verify (EV_A);
2374#endif
2375
2376#ifndef _WIN32
2377 if (expect_false (curpid)) /* penalise the forking check even more */
2378 if (expect_false (getpid () != curpid))
2379 {
2380 curpid = getpid ();
2381 postfork = 1;
2382 }
2383#endif
2384
1343 #if EV_FORK_ENABLE 2385#if EV_FORK_ENABLE
2386 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 2387 if (expect_false (postfork))
1345 if (forkcnt) 2388 if (forkcnt)
1346 { 2389 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2390 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 2391 EV_INVOKE_PENDING;
1349 } 2392 }
1350 #endif 2393#endif
1351 2394
2395#if EV_PREPARE_ENABLE
1352 /* queue check watchers (and execute them) */ 2396 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 2397 if (expect_false (preparecnt))
1354 { 2398 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 2400 EV_INVOKE_PENDING;
1357 } 2401 }
2402#endif
2403
2404 if (expect_false (loop_done))
2405 break;
1358 2406
1359 /* we might have forked, so reify kernel state if necessary */ 2407 /* we might have forked, so reify kernel state if necessary */
1360 if (expect_false (postfork)) 2408 if (expect_false (postfork))
1361 loop_fork (EV_A); 2409 loop_fork (EV_A);
1362 2410
1363 /* update fd-related kernel structures */ 2411 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 2412 fd_reify (EV_A);
1365 2413
1366 /* calculate blocking time */ 2414 /* calculate blocking time */
1367 { 2415 {
1368 double block; 2416 ev_tstamp waittime = 0.;
2417 ev_tstamp sleeptime = 0.;
1369 2418
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 2419 /* remember old timestamp for io_blocktime calculation */
1371 block = 0.; /* do not block at all */ 2420 ev_tstamp prev_mn_now = mn_now;
1372 else 2421
2422 /* update time to cancel out callback processing overhead */
2423 time_update (EV_A_ 1e100);
2424
2425 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1373 { 2426 {
1374 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384
1385 block = MAX_BLOCKTIME; 2427 waittime = MAX_BLOCKTIME;
1386 2428
1387 if (timercnt) 2429 if (timercnt)
1388 { 2430 {
1389 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2431 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1390 if (block > to) block = to; 2432 if (waittime > to) waittime = to;
1391 } 2433 }
1392 2434
1393#if EV_PERIODIC_ENABLE 2435#if EV_PERIODIC_ENABLE
1394 if (periodiccnt) 2436 if (periodiccnt)
1395 { 2437 {
1396 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2438 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1397 if (block > to) block = to; 2439 if (waittime > to) waittime = to;
1398 } 2440 }
1399#endif 2441#endif
1400 2442
2443 /* don't let timeouts decrease the waittime below timeout_blocktime */
2444 if (expect_false (waittime < timeout_blocktime))
2445 waittime = timeout_blocktime;
2446
2447 /* extra check because io_blocktime is commonly 0 */
1401 if (expect_false (block < 0.)) block = 0.; 2448 if (expect_false (io_blocktime))
2449 {
2450 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2451
2452 if (sleeptime > waittime - backend_fudge)
2453 sleeptime = waittime - backend_fudge;
2454
2455 if (expect_true (sleeptime > 0.))
2456 {
2457 ev_sleep (sleeptime);
2458 waittime -= sleeptime;
2459 }
2460 }
1402 } 2461 }
1403 2462
2463#if EV_FEATURE_API
2464 ++loop_count;
2465#endif
2466 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1404 backend_poll (EV_A_ block); 2467 backend_poll (EV_A_ waittime);
2468 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2469
2470 /* update ev_rt_now, do magic */
2471 time_update (EV_A_ waittime + sleeptime);
1405 } 2472 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 2473
1410 /* queue pending timers and reschedule them */ 2474 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 2475 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 2476#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 2477 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 2478#endif
1415 2479
2480#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 2481 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 2482 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2483#endif
1419 2484
2485#if EV_CHECK_ENABLE
1420 /* queue check watchers, to be executed first */ 2486 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 2487 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2488 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2489#endif
1423 2490
1424 call_pending (EV_A); 2491 EV_INVOKE_PENDING;
1425
1426 if (expect_false (loop_done))
1427 break;
1428 } 2492 }
2493 while (expect_true (
2494 activecnt
2495 && !loop_done
2496 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2497 ));
1429 2498
1430 if (loop_done == EVUNLOOP_ONE) 2499 if (loop_done == EVBREAK_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 2500 loop_done = EVBREAK_CANCEL;
1432}
1433 2501
2502#if EV_FEATURE_API
2503 --loop_depth;
2504#endif
2505}
2506
1434void 2507void
1435ev_unloop (EV_P_ int how) 2508ev_break (EV_P_ int how)
1436{ 2509{
1437 loop_done = how; 2510 loop_done = how;
1438} 2511}
1439 2512
2513void
2514ev_ref (EV_P)
2515{
2516 ++activecnt;
2517}
2518
2519void
2520ev_unref (EV_P)
2521{
2522 --activecnt;
2523}
2524
2525void
2526ev_now_update (EV_P)
2527{
2528 time_update (EV_A_ 1e100);
2529}
2530
2531void
2532ev_suspend (EV_P)
2533{
2534 ev_now_update (EV_A);
2535}
2536
2537void
2538ev_resume (EV_P)
2539{
2540 ev_tstamp mn_prev = mn_now;
2541
2542 ev_now_update (EV_A);
2543 timers_reschedule (EV_A_ mn_now - mn_prev);
2544#if EV_PERIODIC_ENABLE
2545 /* TODO: really do this? */
2546 periodics_reschedule (EV_A);
2547#endif
2548}
2549
1440/*****************************************************************************/ 2550/*****************************************************************************/
2551/* singly-linked list management, used when the expected list length is short */
1441 2552
1442void inline_size 2553inline_size void
1443wlist_add (WL *head, WL elem) 2554wlist_add (WL *head, WL elem)
1444{ 2555{
1445 elem->next = *head; 2556 elem->next = *head;
1446 *head = elem; 2557 *head = elem;
1447} 2558}
1448 2559
1449void inline_size 2560inline_size void
1450wlist_del (WL *head, WL elem) 2561wlist_del (WL *head, WL elem)
1451{ 2562{
1452 while (*head) 2563 while (*head)
1453 { 2564 {
1454 if (*head == elem) 2565 if (expect_true (*head == elem))
1455 { 2566 {
1456 *head = elem->next; 2567 *head = elem->next;
1457 return; 2568 break;
1458 } 2569 }
1459 2570
1460 head = &(*head)->next; 2571 head = &(*head)->next;
1461 } 2572 }
1462} 2573}
1463 2574
1464void inline_speed 2575/* internal, faster, version of ev_clear_pending */
2576inline_speed void
1465ev_clear_pending (EV_P_ W w) 2577clear_pending (EV_P_ W w)
1466{ 2578{
1467 if (w->pending) 2579 if (w->pending)
1468 { 2580 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2581 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1470 w->pending = 0; 2582 w->pending = 0;
1471 } 2583 }
1472} 2584}
1473 2585
1474void inline_speed 2586int
2587ev_clear_pending (EV_P_ void *w)
2588{
2589 W w_ = (W)w;
2590 int pending = w_->pending;
2591
2592 if (expect_true (pending))
2593 {
2594 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2595 p->w = (W)&pending_w;
2596 w_->pending = 0;
2597 return p->events;
2598 }
2599 else
2600 return 0;
2601}
2602
2603inline_size void
2604pri_adjust (EV_P_ W w)
2605{
2606 int pri = ev_priority (w);
2607 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2608 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2609 ev_set_priority (w, pri);
2610}
2611
2612inline_speed void
1475ev_start (EV_P_ W w, int active) 2613ev_start (EV_P_ W w, int active)
1476{ 2614{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2615 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 2616 w->active = active;
1481 ev_ref (EV_A); 2617 ev_ref (EV_A);
1482} 2618}
1483 2619
1484void inline_size 2620inline_size void
1485ev_stop (EV_P_ W w) 2621ev_stop (EV_P_ W w)
1486{ 2622{
1487 ev_unref (EV_A); 2623 ev_unref (EV_A);
1488 w->active = 0; 2624 w->active = 0;
1489} 2625}
1490 2626
1491/*****************************************************************************/ 2627/*****************************************************************************/
1492 2628
1493void 2629void noinline
1494ev_io_start (EV_P_ ev_io *w) 2630ev_io_start (EV_P_ ev_io *w)
1495{ 2631{
1496 int fd = w->fd; 2632 int fd = w->fd;
1497 2633
1498 if (expect_false (ev_is_active (w))) 2634 if (expect_false (ev_is_active (w)))
1499 return; 2635 return;
1500 2636
1501 assert (("ev_io_start called with negative fd", fd >= 0)); 2637 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2638 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2639
2640 EV_FREQUENT_CHECK;
1502 2641
1503 ev_start (EV_A_ (W)w, 1); 2642 ev_start (EV_A_ (W)w, 1);
1504 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2643 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2644 wlist_add (&anfds[fd].head, (WL)w);
1506 2645
1507 fd_change (EV_A_ fd); 2646 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1508} 2647 w->events &= ~EV__IOFDSET;
1509 2648
1510void 2649 EV_FREQUENT_CHECK;
2650}
2651
2652void noinline
1511ev_io_stop (EV_P_ ev_io *w) 2653ev_io_stop (EV_P_ ev_io *w)
1512{ 2654{
1513 ev_clear_pending (EV_A_ (W)w); 2655 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 2656 if (expect_false (!ev_is_active (w)))
1515 return; 2657 return;
1516 2658
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2659 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 2660
2661 EV_FREQUENT_CHECK;
2662
1519 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2663 wlist_del (&anfds[w->fd].head, (WL)w);
1520 ev_stop (EV_A_ (W)w); 2664 ev_stop (EV_A_ (W)w);
1521 2665
1522 fd_change (EV_A_ w->fd); 2666 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1523}
1524 2667
1525void 2668 EV_FREQUENT_CHECK;
2669}
2670
2671void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 2672ev_timer_start (EV_P_ ev_timer *w)
1527{ 2673{
1528 if (expect_false (ev_is_active (w))) 2674 if (expect_false (ev_is_active (w)))
1529 return; 2675 return;
1530 2676
1531 ((WT)w)->at += mn_now; 2677 ev_at (w) += mn_now;
1532 2678
1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2679 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1534 2680
2681 EV_FREQUENT_CHECK;
2682
2683 ++timercnt;
1535 ev_start (EV_A_ (W)w, ++timercnt); 2684 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2685 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1537 timers [timercnt - 1] = w; 2686 ANHE_w (timers [ev_active (w)]) = (WT)w;
1538 upheap ((WT *)timers, timercnt - 1); 2687 ANHE_at_cache (timers [ev_active (w)]);
2688 upheap (timers, ev_active (w));
1539 2689
2690 EV_FREQUENT_CHECK;
2691
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2692 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1541} 2693}
1542 2694
1543void 2695void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 2696ev_timer_stop (EV_P_ ev_timer *w)
1545{ 2697{
1546 ev_clear_pending (EV_A_ (W)w); 2698 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 2699 if (expect_false (!ev_is_active (w)))
1548 return; 2700 return;
1549 2701
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2702 EV_FREQUENT_CHECK;
1551 2703
1552 { 2704 {
1553 int active = ((W)w)->active; 2705 int active = ev_active (w);
1554 2706
2707 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2708
2709 --timercnt;
2710
1555 if (expect_true (--active < --timercnt)) 2711 if (expect_true (active < timercnt + HEAP0))
1556 { 2712 {
1557 timers [active] = timers [timercnt]; 2713 timers [active] = timers [timercnt + HEAP0];
1558 adjustheap ((WT *)timers, timercnt, active); 2714 adjustheap (timers, timercnt, active);
1559 } 2715 }
1560 } 2716 }
1561 2717
1562 ((WT)w)->at -= mn_now; 2718 ev_at (w) -= mn_now;
1563 2719
1564 ev_stop (EV_A_ (W)w); 2720 ev_stop (EV_A_ (W)w);
1565}
1566 2721
1567void 2722 EV_FREQUENT_CHECK;
2723}
2724
2725void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 2726ev_timer_again (EV_P_ ev_timer *w)
1569{ 2727{
2728 EV_FREQUENT_CHECK;
2729
1570 if (ev_is_active (w)) 2730 if (ev_is_active (w))
1571 { 2731 {
1572 if (w->repeat) 2732 if (w->repeat)
1573 { 2733 {
1574 ((WT)w)->at = mn_now + w->repeat; 2734 ev_at (w) = mn_now + w->repeat;
2735 ANHE_at_cache (timers [ev_active (w)]);
1575 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2736 adjustheap (timers, timercnt, ev_active (w));
1576 } 2737 }
1577 else 2738 else
1578 ev_timer_stop (EV_A_ w); 2739 ev_timer_stop (EV_A_ w);
1579 } 2740 }
1580 else if (w->repeat) 2741 else if (w->repeat)
1581 { 2742 {
1582 w->at = w->repeat; 2743 ev_at (w) = w->repeat;
1583 ev_timer_start (EV_A_ w); 2744 ev_timer_start (EV_A_ w);
1584 } 2745 }
2746
2747 EV_FREQUENT_CHECK;
2748}
2749
2750ev_tstamp
2751ev_timer_remaining (EV_P_ ev_timer *w)
2752{
2753 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1585} 2754}
1586 2755
1587#if EV_PERIODIC_ENABLE 2756#if EV_PERIODIC_ENABLE
1588void 2757void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 2758ev_periodic_start (EV_P_ ev_periodic *w)
1590{ 2759{
1591 if (expect_false (ev_is_active (w))) 2760 if (expect_false (ev_is_active (w)))
1592 return; 2761 return;
1593 2762
1594 if (w->reschedule_cb) 2763 if (w->reschedule_cb)
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2764 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 2765 else if (w->interval)
1597 { 2766 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2767 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 2768 /* this formula differs from the one in periodic_reify because we do not always round up */
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2769 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1601 } 2770 }
2771 else
2772 ev_at (w) = w->offset;
1602 2773
2774 EV_FREQUENT_CHECK;
2775
2776 ++periodiccnt;
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 2777 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2778 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 2779 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 2780 ANHE_at_cache (periodics [ev_active (w)]);
2781 upheap (periodics, ev_active (w));
1607 2782
2783 EV_FREQUENT_CHECK;
2784
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2785 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1609} 2786}
1610 2787
1611void 2788void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 2789ev_periodic_stop (EV_P_ ev_periodic *w)
1613{ 2790{
1614 ev_clear_pending (EV_A_ (W)w); 2791 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 2792 if (expect_false (!ev_is_active (w)))
1616 return; 2793 return;
1617 2794
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2795 EV_FREQUENT_CHECK;
1619 2796
1620 { 2797 {
1621 int active = ((W)w)->active; 2798 int active = ev_active (w);
1622 2799
2800 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2801
2802 --periodiccnt;
2803
1623 if (expect_true (--active < --periodiccnt)) 2804 if (expect_true (active < periodiccnt + HEAP0))
1624 { 2805 {
1625 periodics [active] = periodics [periodiccnt]; 2806 periodics [active] = periodics [periodiccnt + HEAP0];
1626 adjustheap ((WT *)periodics, periodiccnt, active); 2807 adjustheap (periodics, periodiccnt, active);
1627 } 2808 }
1628 } 2809 }
1629 2810
1630 ev_stop (EV_A_ (W)w); 2811 ev_stop (EV_A_ (W)w);
1631}
1632 2812
1633void 2813 EV_FREQUENT_CHECK;
2814}
2815
2816void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 2817ev_periodic_again (EV_P_ ev_periodic *w)
1635{ 2818{
1636 /* TODO: use adjustheap and recalculation */ 2819 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 2820 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 2821 ev_periodic_start (EV_A_ w);
1641 2824
1642#ifndef SA_RESTART 2825#ifndef SA_RESTART
1643# define SA_RESTART 0 2826# define SA_RESTART 0
1644#endif 2827#endif
1645 2828
1646void 2829#if EV_SIGNAL_ENABLE
2830
2831void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 2832ev_signal_start (EV_P_ ev_signal *w)
1648{ 2833{
1649#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif
1652 if (expect_false (ev_is_active (w))) 2834 if (expect_false (ev_is_active (w)))
1653 return; 2835 return;
1654 2836
1655 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2837 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2838
2839#if EV_MULTIPLICITY
2840 assert (("libev: a signal must not be attached to two different loops",
2841 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2842
2843 signals [w->signum - 1].loop = EV_A;
2844#endif
2845
2846 EV_FREQUENT_CHECK;
2847
2848#if EV_USE_SIGNALFD
2849 if (sigfd == -2)
2850 {
2851 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2852 if (sigfd < 0 && errno == EINVAL)
2853 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2854
2855 if (sigfd >= 0)
2856 {
2857 fd_intern (sigfd); /* doing it twice will not hurt */
2858
2859 sigemptyset (&sigfd_set);
2860
2861 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2862 ev_set_priority (&sigfd_w, EV_MAXPRI);
2863 ev_io_start (EV_A_ &sigfd_w);
2864 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2865 }
2866 }
2867
2868 if (sigfd >= 0)
2869 {
2870 /* TODO: check .head */
2871 sigaddset (&sigfd_set, w->signum);
2872 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2873
2874 signalfd (sigfd, &sigfd_set, 0);
2875 }
2876#endif
1656 2877
1657 ev_start (EV_A_ (W)w, 1); 2878 ev_start (EV_A_ (W)w, 1);
1658 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1659 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2879 wlist_add (&signals [w->signum - 1].head, (WL)w);
1660 2880
1661 if (!((WL)w)->next) 2881 if (!((WL)w)->next)
2882# if EV_USE_SIGNALFD
2883 if (sigfd < 0) /*TODO*/
2884# endif
1662 { 2885 {
1663#if _WIN32 2886# ifdef _WIN32
2887 evpipe_init (EV_A);
2888
1664 signal (w->signum, sighandler); 2889 signal (w->signum, ev_sighandler);
1665#else 2890# else
1666 struct sigaction sa; 2891 struct sigaction sa;
2892
2893 evpipe_init (EV_A);
2894
1667 sa.sa_handler = sighandler; 2895 sa.sa_handler = ev_sighandler;
1668 sigfillset (&sa.sa_mask); 2896 sigfillset (&sa.sa_mask);
1669 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2897 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1670 sigaction (w->signum, &sa, 0); 2898 sigaction (w->signum, &sa, 0);
2899
2900 if (origflags & EVFLAG_NOSIGMASK)
2901 {
2902 sigemptyset (&sa.sa_mask);
2903 sigaddset (&sa.sa_mask, w->signum);
2904 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2905 }
1671#endif 2906#endif
1672 } 2907 }
1673}
1674 2908
1675void 2909 EV_FREQUENT_CHECK;
2910}
2911
2912void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 2913ev_signal_stop (EV_P_ ev_signal *w)
1677{ 2914{
1678 ev_clear_pending (EV_A_ (W)w); 2915 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 2916 if (expect_false (!ev_is_active (w)))
1680 return; 2917 return;
1681 2918
2919 EV_FREQUENT_CHECK;
2920
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2921 wlist_del (&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 2922 ev_stop (EV_A_ (W)w);
1684 2923
1685 if (!signals [w->signum - 1].head) 2924 if (!signals [w->signum - 1].head)
2925 {
2926#if EV_MULTIPLICITY
2927 signals [w->signum - 1].loop = 0; /* unattach from signal */
2928#endif
2929#if EV_USE_SIGNALFD
2930 if (sigfd >= 0)
2931 {
2932 sigset_t ss;
2933
2934 sigemptyset (&ss);
2935 sigaddset (&ss, w->signum);
2936 sigdelset (&sigfd_set, w->signum);
2937
2938 signalfd (sigfd, &sigfd_set, 0);
2939 sigprocmask (SIG_UNBLOCK, &ss, 0);
2940 }
2941 else
2942#endif
1686 signal (w->signum, SIG_DFL); 2943 signal (w->signum, SIG_DFL);
2944 }
2945
2946 EV_FREQUENT_CHECK;
1687} 2947}
2948
2949#endif
2950
2951#if EV_CHILD_ENABLE
1688 2952
1689void 2953void
1690ev_child_start (EV_P_ ev_child *w) 2954ev_child_start (EV_P_ ev_child *w)
1691{ 2955{
1692#if EV_MULTIPLICITY 2956#if EV_MULTIPLICITY
1693 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2957 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1694#endif 2958#endif
1695 if (expect_false (ev_is_active (w))) 2959 if (expect_false (ev_is_active (w)))
1696 return; 2960 return;
1697 2961
2962 EV_FREQUENT_CHECK;
2963
1698 ev_start (EV_A_ (W)w, 1); 2964 ev_start (EV_A_ (W)w, 1);
1699 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2965 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2966
2967 EV_FREQUENT_CHECK;
1700} 2968}
1701 2969
1702void 2970void
1703ev_child_stop (EV_P_ ev_child *w) 2971ev_child_stop (EV_P_ ev_child *w)
1704{ 2972{
1705 ev_clear_pending (EV_A_ (W)w); 2973 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 2974 if (expect_false (!ev_is_active (w)))
1707 return; 2975 return;
1708 2976
2977 EV_FREQUENT_CHECK;
2978
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2979 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 2980 ev_stop (EV_A_ (W)w);
2981
2982 EV_FREQUENT_CHECK;
1711} 2983}
2984
2985#endif
1712 2986
1713#if EV_STAT_ENABLE 2987#if EV_STAT_ENABLE
1714 2988
1715# ifdef _WIN32 2989# ifdef _WIN32
1716# undef lstat 2990# undef lstat
1717# define lstat(a,b) _stati64 (a,b) 2991# define lstat(a,b) _stati64 (a,b)
1718# endif 2992# endif
1719 2993
1720#define DEF_STAT_INTERVAL 5.0074891 2994#define DEF_STAT_INTERVAL 5.0074891
2995#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1721#define MIN_STAT_INTERVAL 0.1074891 2996#define MIN_STAT_INTERVAL 0.1074891
1722 2997
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2998static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 2999
1725#if EV_USE_INOTIFY 3000#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 3001
3002/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3003# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1727 3004
1728static void noinline 3005static void noinline
1729infy_add (EV_P_ ev_stat *w) 3006infy_add (EV_P_ ev_stat *w)
1730{ 3007{
1731 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3008 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1732 3009
1733 if (w->wd < 0) 3010 if (w->wd >= 0)
3011 {
3012 struct statfs sfs;
3013
3014 /* now local changes will be tracked by inotify, but remote changes won't */
3015 /* unless the filesystem is known to be local, we therefore still poll */
3016 /* also do poll on <2.6.25, but with normal frequency */
3017
3018 if (!fs_2625)
3019 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3020 else if (!statfs (w->path, &sfs)
3021 && (sfs.f_type == 0x1373 /* devfs */
3022 || sfs.f_type == 0xEF53 /* ext2/3 */
3023 || sfs.f_type == 0x3153464a /* jfs */
3024 || sfs.f_type == 0x52654973 /* reiser3 */
3025 || sfs.f_type == 0x01021994 /* tempfs */
3026 || sfs.f_type == 0x58465342 /* xfs */))
3027 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3028 else
3029 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1734 { 3030 }
1735 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3031 else
3032 {
3033 /* can't use inotify, continue to stat */
3034 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1736 3035
1737 /* monitor some parent directory for speedup hints */ 3036 /* if path is not there, monitor some parent directory for speedup hints */
3037 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3038 /* but an efficiency issue only */
1738 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3039 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1739 { 3040 {
1740 char path [4096]; 3041 char path [4096];
1741 strcpy (path, w->path); 3042 strcpy (path, w->path);
1742 3043
1745 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3046 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1746 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3047 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1747 3048
1748 char *pend = strrchr (path, '/'); 3049 char *pend = strrchr (path, '/');
1749 3050
1750 if (!pend) 3051 if (!pend || pend == path)
1751 break; /* whoops, no '/', complain to your admin */ 3052 break;
1752 3053
1753 *pend = 0; 3054 *pend = 0;
1754 w->wd = inotify_add_watch (fs_fd, path, mask); 3055 w->wd = inotify_add_watch (fs_fd, path, mask);
1755 } 3056 }
1756 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3057 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1757 } 3058 }
1758 } 3059 }
1759 else
1760 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1761 3060
1762 if (w->wd >= 0) 3061 if (w->wd >= 0)
1763 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3062 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3063
3064 /* now re-arm timer, if required */
3065 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3066 ev_timer_again (EV_A_ &w->timer);
3067 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1764} 3068}
1765 3069
1766static void noinline 3070static void noinline
1767infy_del (EV_P_ ev_stat *w) 3071infy_del (EV_P_ ev_stat *w)
1768{ 3072{
1771 3075
1772 if (wd < 0) 3076 if (wd < 0)
1773 return; 3077 return;
1774 3078
1775 w->wd = -2; 3079 w->wd = -2;
1776 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3080 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1777 wlist_del (&fs_hash [slot].head, (WL)w); 3081 wlist_del (&fs_hash [slot].head, (WL)w);
1778 3082
1779 /* remove this watcher, if others are watching it, they will rearm */ 3083 /* remove this watcher, if others are watching it, they will rearm */
1780 inotify_rm_watch (fs_fd, wd); 3084 inotify_rm_watch (fs_fd, wd);
1781} 3085}
1782 3086
1783static void noinline 3087static void noinline
1784infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3088infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1785{ 3089{
1786 if (slot < 0) 3090 if (slot < 0)
1787 /* overflow, need to check for all hahs slots */ 3091 /* overflow, need to check for all hash slots */
1788 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3092 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1789 infy_wd (EV_A_ slot, wd, ev); 3093 infy_wd (EV_A_ slot, wd, ev);
1790 else 3094 else
1791 { 3095 {
1792 WL w_; 3096 WL w_;
1793 3097
1794 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3098 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1795 { 3099 {
1796 ev_stat *w = (ev_stat *)w_; 3100 ev_stat *w = (ev_stat *)w_;
1797 w_ = w_->next; /* lets us remove this watcher and all before it */ 3101 w_ = w_->next; /* lets us remove this watcher and all before it */
1798 3102
1799 if (w->wd == wd || wd == -1) 3103 if (w->wd == wd || wd == -1)
1800 { 3104 {
1801 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3105 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1802 { 3106 {
3107 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1803 w->wd = -1; 3108 w->wd = -1;
1804 infy_add (EV_A_ w); /* re-add, no matter what */ 3109 infy_add (EV_A_ w); /* re-add, no matter what */
1805 } 3110 }
1806 3111
1807 stat_timer_cb (EV_A_ &w->timer, 0); 3112 stat_timer_cb (EV_A_ &w->timer, 0);
1812 3117
1813static void 3118static void
1814infy_cb (EV_P_ ev_io *w, int revents) 3119infy_cb (EV_P_ ev_io *w, int revents)
1815{ 3120{
1816 char buf [EV_INOTIFY_BUFSIZE]; 3121 char buf [EV_INOTIFY_BUFSIZE];
1817 struct inotify_event *ev = (struct inotify_event *)buf;
1818 int ofs; 3122 int ofs;
1819 int len = read (fs_fd, buf, sizeof (buf)); 3123 int len = read (fs_fd, buf, sizeof (buf));
1820 3124
1821 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3125 for (ofs = 0; ofs < len; )
3126 {
3127 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1822 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3128 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3129 ofs += sizeof (struct inotify_event) + ev->len;
3130 }
1823} 3131}
1824 3132
1825void inline_size 3133inline_size void
3134ev_check_2625 (EV_P)
3135{
3136 /* kernels < 2.6.25 are borked
3137 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3138 */
3139 if (ev_linux_version () < 0x020619)
3140 return;
3141
3142 fs_2625 = 1;
3143}
3144
3145inline_size int
3146infy_newfd (void)
3147{
3148#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3149 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3150 if (fd >= 0)
3151 return fd;
3152#endif
3153 return inotify_init ();
3154}
3155
3156inline_size void
1826infy_init (EV_P) 3157infy_init (EV_P)
1827{ 3158{
1828 if (fs_fd != -2) 3159 if (fs_fd != -2)
1829 return; 3160 return;
1830 3161
3162 fs_fd = -1;
3163
3164 ev_check_2625 (EV_A);
3165
1831 fs_fd = inotify_init (); 3166 fs_fd = infy_newfd ();
1832 3167
1833 if (fs_fd >= 0) 3168 if (fs_fd >= 0)
1834 { 3169 {
3170 fd_intern (fs_fd);
1835 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3171 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1836 ev_set_priority (&fs_w, EV_MAXPRI); 3172 ev_set_priority (&fs_w, EV_MAXPRI);
1837 ev_io_start (EV_A_ &fs_w); 3173 ev_io_start (EV_A_ &fs_w);
3174 ev_unref (EV_A);
1838 } 3175 }
1839} 3176}
1840 3177
1841void inline_size 3178inline_size void
1842infy_fork (EV_P) 3179infy_fork (EV_P)
1843{ 3180{
1844 int slot; 3181 int slot;
1845 3182
1846 if (fs_fd < 0) 3183 if (fs_fd < 0)
1847 return; 3184 return;
1848 3185
3186 ev_ref (EV_A);
3187 ev_io_stop (EV_A_ &fs_w);
1849 close (fs_fd); 3188 close (fs_fd);
1850 fs_fd = inotify_init (); 3189 fs_fd = infy_newfd ();
1851 3190
3191 if (fs_fd >= 0)
3192 {
3193 fd_intern (fs_fd);
3194 ev_io_set (&fs_w, fs_fd, EV_READ);
3195 ev_io_start (EV_A_ &fs_w);
3196 ev_unref (EV_A);
3197 }
3198
1852 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3199 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1853 { 3200 {
1854 WL w_ = fs_hash [slot].head; 3201 WL w_ = fs_hash [slot].head;
1855 fs_hash [slot].head = 0; 3202 fs_hash [slot].head = 0;
1856 3203
1857 while (w_) 3204 while (w_)
1862 w->wd = -1; 3209 w->wd = -1;
1863 3210
1864 if (fs_fd >= 0) 3211 if (fs_fd >= 0)
1865 infy_add (EV_A_ w); /* re-add, no matter what */ 3212 infy_add (EV_A_ w); /* re-add, no matter what */
1866 else 3213 else
3214 {
3215 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3216 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1867 ev_timer_start (EV_A_ &w->timer); 3217 ev_timer_again (EV_A_ &w->timer);
3218 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3219 }
1868 } 3220 }
1869
1870 } 3221 }
1871} 3222}
1872 3223
3224#endif
3225
3226#ifdef _WIN32
3227# define EV_LSTAT(p,b) _stati64 (p, b)
3228#else
3229# define EV_LSTAT(p,b) lstat (p, b)
1873#endif 3230#endif
1874 3231
1875void 3232void
1876ev_stat_stat (EV_P_ ev_stat *w) 3233ev_stat_stat (EV_P_ ev_stat *w)
1877{ 3234{
1879 w->attr.st_nlink = 0; 3236 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 3237 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 3238 w->attr.st_nlink = 1;
1882} 3239}
1883 3240
1884void noinline 3241static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3242stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 3243{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3244 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 3245
1889 /* we copy this here each the time so that */ 3246 ev_statdata prev = w->attr;
1890 /* prev has the old value when the callback gets invoked */
1891 w->prev = w->attr;
1892 ev_stat_stat (EV_A_ w); 3247 ev_stat_stat (EV_A_ w);
1893 3248
1894 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3249 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1895 if ( 3250 if (
1896 w->prev.st_dev != w->attr.st_dev 3251 prev.st_dev != w->attr.st_dev
1897 || w->prev.st_ino != w->attr.st_ino 3252 || prev.st_ino != w->attr.st_ino
1898 || w->prev.st_mode != w->attr.st_mode 3253 || prev.st_mode != w->attr.st_mode
1899 || w->prev.st_nlink != w->attr.st_nlink 3254 || prev.st_nlink != w->attr.st_nlink
1900 || w->prev.st_uid != w->attr.st_uid 3255 || prev.st_uid != w->attr.st_uid
1901 || w->prev.st_gid != w->attr.st_gid 3256 || prev.st_gid != w->attr.st_gid
1902 || w->prev.st_rdev != w->attr.st_rdev 3257 || prev.st_rdev != w->attr.st_rdev
1903 || w->prev.st_size != w->attr.st_size 3258 || prev.st_size != w->attr.st_size
1904 || w->prev.st_atime != w->attr.st_atime 3259 || prev.st_atime != w->attr.st_atime
1905 || w->prev.st_mtime != w->attr.st_mtime 3260 || prev.st_mtime != w->attr.st_mtime
1906 || w->prev.st_ctime != w->attr.st_ctime 3261 || prev.st_ctime != w->attr.st_ctime
1907 ) { 3262 ) {
3263 /* we only update w->prev on actual differences */
3264 /* in case we test more often than invoke the callback, */
3265 /* to ensure that prev is always different to attr */
3266 w->prev = prev;
3267
1908 #if EV_USE_INOTIFY 3268 #if EV_USE_INOTIFY
3269 if (fs_fd >= 0)
3270 {
1909 infy_del (EV_A_ w); 3271 infy_del (EV_A_ w);
1910 infy_add (EV_A_ w); 3272 infy_add (EV_A_ w);
1911 ev_stat_stat (EV_A_ w); /* avoid race... */ 3273 ev_stat_stat (EV_A_ w); /* avoid race... */
3274 }
1912 #endif 3275 #endif
1913 3276
1914 ev_feed_event (EV_A_ w, EV_STAT); 3277 ev_feed_event (EV_A_ w, EV_STAT);
1915 } 3278 }
1916} 3279}
1919ev_stat_start (EV_P_ ev_stat *w) 3282ev_stat_start (EV_P_ ev_stat *w)
1920{ 3283{
1921 if (expect_false (ev_is_active (w))) 3284 if (expect_false (ev_is_active (w)))
1922 return; 3285 return;
1923 3286
1924 /* since we use memcmp, we need to clear any padding data etc. */
1925 memset (&w->prev, 0, sizeof (ev_statdata));
1926 memset (&w->attr, 0, sizeof (ev_statdata));
1927
1928 ev_stat_stat (EV_A_ w); 3287 ev_stat_stat (EV_A_ w);
1929 3288
3289 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1930 if (w->interval < MIN_STAT_INTERVAL) 3290 w->interval = MIN_STAT_INTERVAL;
1931 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1932 3291
1933 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3292 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1934 ev_set_priority (&w->timer, ev_priority (w)); 3293 ev_set_priority (&w->timer, ev_priority (w));
1935 3294
1936#if EV_USE_INOTIFY 3295#if EV_USE_INOTIFY
1937 infy_init (EV_A); 3296 infy_init (EV_A);
1938 3297
1939 if (fs_fd >= 0) 3298 if (fs_fd >= 0)
1940 infy_add (EV_A_ w); 3299 infy_add (EV_A_ w);
1941 else 3300 else
1942#endif 3301#endif
3302 {
1943 ev_timer_start (EV_A_ &w->timer); 3303 ev_timer_again (EV_A_ &w->timer);
3304 ev_unref (EV_A);
3305 }
1944 3306
1945 ev_start (EV_A_ (W)w, 1); 3307 ev_start (EV_A_ (W)w, 1);
3308
3309 EV_FREQUENT_CHECK;
1946} 3310}
1947 3311
1948void 3312void
1949ev_stat_stop (EV_P_ ev_stat *w) 3313ev_stat_stop (EV_P_ ev_stat *w)
1950{ 3314{
1951 ev_clear_pending (EV_A_ (W)w); 3315 clear_pending (EV_A_ (W)w);
1952 if (expect_false (!ev_is_active (w))) 3316 if (expect_false (!ev_is_active (w)))
1953 return; 3317 return;
1954 3318
3319 EV_FREQUENT_CHECK;
3320
1955#if EV_USE_INOTIFY 3321#if EV_USE_INOTIFY
1956 infy_del (EV_A_ w); 3322 infy_del (EV_A_ w);
1957#endif 3323#endif
3324
3325 if (ev_is_active (&w->timer))
3326 {
3327 ev_ref (EV_A);
1958 ev_timer_stop (EV_A_ &w->timer); 3328 ev_timer_stop (EV_A_ &w->timer);
3329 }
1959 3330
1960 ev_stop (EV_A_ (W)w); 3331 ev_stop (EV_A_ (W)w);
1961}
1962#endif
1963 3332
3333 EV_FREQUENT_CHECK;
3334}
3335#endif
3336
3337#if EV_IDLE_ENABLE
1964void 3338void
1965ev_idle_start (EV_P_ ev_idle *w) 3339ev_idle_start (EV_P_ ev_idle *w)
1966{ 3340{
1967 if (expect_false (ev_is_active (w))) 3341 if (expect_false (ev_is_active (w)))
1968 return; 3342 return;
1969 3343
3344 pri_adjust (EV_A_ (W)w);
3345
3346 EV_FREQUENT_CHECK;
3347
3348 {
3349 int active = ++idlecnt [ABSPRI (w)];
3350
3351 ++idleall;
1970 ev_start (EV_A_ (W)w, ++idlecnt); 3352 ev_start (EV_A_ (W)w, active);
3353
1971 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3354 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1972 idles [idlecnt - 1] = w; 3355 idles [ABSPRI (w)][active - 1] = w;
3356 }
3357
3358 EV_FREQUENT_CHECK;
1973} 3359}
1974 3360
1975void 3361void
1976ev_idle_stop (EV_P_ ev_idle *w) 3362ev_idle_stop (EV_P_ ev_idle *w)
1977{ 3363{
1978 ev_clear_pending (EV_A_ (W)w); 3364 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 3365 if (expect_false (!ev_is_active (w)))
1980 return; 3366 return;
1981 3367
3368 EV_FREQUENT_CHECK;
3369
1982 { 3370 {
1983 int active = ((W)w)->active; 3371 int active = ev_active (w);
1984 idles [active - 1] = idles [--idlecnt]; 3372
1985 ((W)idles [active - 1])->active = active; 3373 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3374 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3375
3376 ev_stop (EV_A_ (W)w);
3377 --idleall;
1986 } 3378 }
1987 3379
1988 ev_stop (EV_A_ (W)w); 3380 EV_FREQUENT_CHECK;
1989} 3381}
3382#endif
1990 3383
3384#if EV_PREPARE_ENABLE
1991void 3385void
1992ev_prepare_start (EV_P_ ev_prepare *w) 3386ev_prepare_start (EV_P_ ev_prepare *w)
1993{ 3387{
1994 if (expect_false (ev_is_active (w))) 3388 if (expect_false (ev_is_active (w)))
1995 return; 3389 return;
3390
3391 EV_FREQUENT_CHECK;
1996 3392
1997 ev_start (EV_A_ (W)w, ++preparecnt); 3393 ev_start (EV_A_ (W)w, ++preparecnt);
1998 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3394 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1999 prepares [preparecnt - 1] = w; 3395 prepares [preparecnt - 1] = w;
3396
3397 EV_FREQUENT_CHECK;
2000} 3398}
2001 3399
2002void 3400void
2003ev_prepare_stop (EV_P_ ev_prepare *w) 3401ev_prepare_stop (EV_P_ ev_prepare *w)
2004{ 3402{
2005 ev_clear_pending (EV_A_ (W)w); 3403 clear_pending (EV_A_ (W)w);
2006 if (expect_false (!ev_is_active (w))) 3404 if (expect_false (!ev_is_active (w)))
2007 return; 3405 return;
2008 3406
3407 EV_FREQUENT_CHECK;
3408
2009 { 3409 {
2010 int active = ((W)w)->active; 3410 int active = ev_active (w);
3411
2011 prepares [active - 1] = prepares [--preparecnt]; 3412 prepares [active - 1] = prepares [--preparecnt];
2012 ((W)prepares [active - 1])->active = active; 3413 ev_active (prepares [active - 1]) = active;
2013 } 3414 }
2014 3415
2015 ev_stop (EV_A_ (W)w); 3416 ev_stop (EV_A_ (W)w);
2016}
2017 3417
3418 EV_FREQUENT_CHECK;
3419}
3420#endif
3421
3422#if EV_CHECK_ENABLE
2018void 3423void
2019ev_check_start (EV_P_ ev_check *w) 3424ev_check_start (EV_P_ ev_check *w)
2020{ 3425{
2021 if (expect_false (ev_is_active (w))) 3426 if (expect_false (ev_is_active (w)))
2022 return; 3427 return;
3428
3429 EV_FREQUENT_CHECK;
2023 3430
2024 ev_start (EV_A_ (W)w, ++checkcnt); 3431 ev_start (EV_A_ (W)w, ++checkcnt);
2025 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3432 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2026 checks [checkcnt - 1] = w; 3433 checks [checkcnt - 1] = w;
3434
3435 EV_FREQUENT_CHECK;
2027} 3436}
2028 3437
2029void 3438void
2030ev_check_stop (EV_P_ ev_check *w) 3439ev_check_stop (EV_P_ ev_check *w)
2031{ 3440{
2032 ev_clear_pending (EV_A_ (W)w); 3441 clear_pending (EV_A_ (W)w);
2033 if (expect_false (!ev_is_active (w))) 3442 if (expect_false (!ev_is_active (w)))
2034 return; 3443 return;
2035 3444
3445 EV_FREQUENT_CHECK;
3446
2036 { 3447 {
2037 int active = ((W)w)->active; 3448 int active = ev_active (w);
3449
2038 checks [active - 1] = checks [--checkcnt]; 3450 checks [active - 1] = checks [--checkcnt];
2039 ((W)checks [active - 1])->active = active; 3451 ev_active (checks [active - 1]) = active;
2040 } 3452 }
2041 3453
2042 ev_stop (EV_A_ (W)w); 3454 ev_stop (EV_A_ (W)w);
3455
3456 EV_FREQUENT_CHECK;
2043} 3457}
3458#endif
2044 3459
2045#if EV_EMBED_ENABLE 3460#if EV_EMBED_ENABLE
2046void noinline 3461void noinline
2047ev_embed_sweep (EV_P_ ev_embed *w) 3462ev_embed_sweep (EV_P_ ev_embed *w)
2048{ 3463{
2049 ev_loop (w->loop, EVLOOP_NONBLOCK); 3464 ev_run (w->other, EVRUN_NOWAIT);
2050} 3465}
2051 3466
2052static void 3467static void
2053embed_cb (EV_P_ ev_io *io, int revents) 3468embed_io_cb (EV_P_ ev_io *io, int revents)
2054{ 3469{
2055 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3470 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2056 3471
2057 if (ev_cb (w)) 3472 if (ev_cb (w))
2058 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3473 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2059 else 3474 else
2060 ev_embed_sweep (loop, w); 3475 ev_run (w->other, EVRUN_NOWAIT);
2061} 3476}
3477
3478static void
3479embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3480{
3481 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3482
3483 {
3484 EV_P = w->other;
3485
3486 while (fdchangecnt)
3487 {
3488 fd_reify (EV_A);
3489 ev_run (EV_A_ EVRUN_NOWAIT);
3490 }
3491 }
3492}
3493
3494static void
3495embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3496{
3497 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3498
3499 ev_embed_stop (EV_A_ w);
3500
3501 {
3502 EV_P = w->other;
3503
3504 ev_loop_fork (EV_A);
3505 ev_run (EV_A_ EVRUN_NOWAIT);
3506 }
3507
3508 ev_embed_start (EV_A_ w);
3509}
3510
3511#if 0
3512static void
3513embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3514{
3515 ev_idle_stop (EV_A_ idle);
3516}
3517#endif
2062 3518
2063void 3519void
2064ev_embed_start (EV_P_ ev_embed *w) 3520ev_embed_start (EV_P_ ev_embed *w)
2065{ 3521{
2066 if (expect_false (ev_is_active (w))) 3522 if (expect_false (ev_is_active (w)))
2067 return; 3523 return;
2068 3524
2069 { 3525 {
2070 struct ev_loop *loop = w->loop; 3526 EV_P = w->other;
2071 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3527 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2072 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3528 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2073 } 3529 }
3530
3531 EV_FREQUENT_CHECK;
2074 3532
2075 ev_set_priority (&w->io, ev_priority (w)); 3533 ev_set_priority (&w->io, ev_priority (w));
2076 ev_io_start (EV_A_ &w->io); 3534 ev_io_start (EV_A_ &w->io);
2077 3535
3536 ev_prepare_init (&w->prepare, embed_prepare_cb);
3537 ev_set_priority (&w->prepare, EV_MINPRI);
3538 ev_prepare_start (EV_A_ &w->prepare);
3539
3540 ev_fork_init (&w->fork, embed_fork_cb);
3541 ev_fork_start (EV_A_ &w->fork);
3542
3543 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3544
2078 ev_start (EV_A_ (W)w, 1); 3545 ev_start (EV_A_ (W)w, 1);
3546
3547 EV_FREQUENT_CHECK;
2079} 3548}
2080 3549
2081void 3550void
2082ev_embed_stop (EV_P_ ev_embed *w) 3551ev_embed_stop (EV_P_ ev_embed *w)
2083{ 3552{
2084 ev_clear_pending (EV_A_ (W)w); 3553 clear_pending (EV_A_ (W)w);
2085 if (expect_false (!ev_is_active (w))) 3554 if (expect_false (!ev_is_active (w)))
2086 return; 3555 return;
2087 3556
3557 EV_FREQUENT_CHECK;
3558
2088 ev_io_stop (EV_A_ &w->io); 3559 ev_io_stop (EV_A_ &w->io);
3560 ev_prepare_stop (EV_A_ &w->prepare);
3561 ev_fork_stop (EV_A_ &w->fork);
2089 3562
2090 ev_stop (EV_A_ (W)w); 3563 ev_stop (EV_A_ (W)w);
3564
3565 EV_FREQUENT_CHECK;
2091} 3566}
2092#endif 3567#endif
2093 3568
2094#if EV_FORK_ENABLE 3569#if EV_FORK_ENABLE
2095void 3570void
2096ev_fork_start (EV_P_ ev_fork *w) 3571ev_fork_start (EV_P_ ev_fork *w)
2097{ 3572{
2098 if (expect_false (ev_is_active (w))) 3573 if (expect_false (ev_is_active (w)))
2099 return; 3574 return;
3575
3576 EV_FREQUENT_CHECK;
2100 3577
2101 ev_start (EV_A_ (W)w, ++forkcnt); 3578 ev_start (EV_A_ (W)w, ++forkcnt);
2102 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3579 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2103 forks [forkcnt - 1] = w; 3580 forks [forkcnt - 1] = w;
3581
3582 EV_FREQUENT_CHECK;
2104} 3583}
2105 3584
2106void 3585void
2107ev_fork_stop (EV_P_ ev_fork *w) 3586ev_fork_stop (EV_P_ ev_fork *w)
2108{ 3587{
2109 ev_clear_pending (EV_A_ (W)w); 3588 clear_pending (EV_A_ (W)w);
2110 if (expect_false (!ev_is_active (w))) 3589 if (expect_false (!ev_is_active (w)))
2111 return; 3590 return;
2112 3591
3592 EV_FREQUENT_CHECK;
3593
2113 { 3594 {
2114 int active = ((W)w)->active; 3595 int active = ev_active (w);
3596
2115 forks [active - 1] = forks [--forkcnt]; 3597 forks [active - 1] = forks [--forkcnt];
2116 ((W)forks [active - 1])->active = active; 3598 ev_active (forks [active - 1]) = active;
2117 } 3599 }
2118 3600
2119 ev_stop (EV_A_ (W)w); 3601 ev_stop (EV_A_ (W)w);
3602
3603 EV_FREQUENT_CHECK;
3604}
3605#endif
3606
3607#if EV_CLEANUP_ENABLE
3608void
3609ev_cleanup_start (EV_P_ ev_cleanup *w)
3610{
3611 if (expect_false (ev_is_active (w)))
3612 return;
3613
3614 EV_FREQUENT_CHECK;
3615
3616 ev_start (EV_A_ (W)w, ++cleanupcnt);
3617 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3618 cleanups [cleanupcnt - 1] = w;
3619
3620 /* cleanup watchers should never keep a refcount on the loop */
3621 ev_unref (EV_A);
3622 EV_FREQUENT_CHECK;
3623}
3624
3625void
3626ev_cleanup_stop (EV_P_ ev_cleanup *w)
3627{
3628 clear_pending (EV_A_ (W)w);
3629 if (expect_false (!ev_is_active (w)))
3630 return;
3631
3632 EV_FREQUENT_CHECK;
3633 ev_ref (EV_A);
3634
3635 {
3636 int active = ev_active (w);
3637
3638 cleanups [active - 1] = cleanups [--cleanupcnt];
3639 ev_active (cleanups [active - 1]) = active;
3640 }
3641
3642 ev_stop (EV_A_ (W)w);
3643
3644 EV_FREQUENT_CHECK;
3645}
3646#endif
3647
3648#if EV_ASYNC_ENABLE
3649void
3650ev_async_start (EV_P_ ev_async *w)
3651{
3652 if (expect_false (ev_is_active (w)))
3653 return;
3654
3655 w->sent = 0;
3656
3657 evpipe_init (EV_A);
3658
3659 EV_FREQUENT_CHECK;
3660
3661 ev_start (EV_A_ (W)w, ++asynccnt);
3662 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3663 asyncs [asynccnt - 1] = w;
3664
3665 EV_FREQUENT_CHECK;
3666}
3667
3668void
3669ev_async_stop (EV_P_ ev_async *w)
3670{
3671 clear_pending (EV_A_ (W)w);
3672 if (expect_false (!ev_is_active (w)))
3673 return;
3674
3675 EV_FREQUENT_CHECK;
3676
3677 {
3678 int active = ev_active (w);
3679
3680 asyncs [active - 1] = asyncs [--asynccnt];
3681 ev_active (asyncs [active - 1]) = active;
3682 }
3683
3684 ev_stop (EV_A_ (W)w);
3685
3686 EV_FREQUENT_CHECK;
3687}
3688
3689void
3690ev_async_send (EV_P_ ev_async *w)
3691{
3692 w->sent = 1;
3693 evpipe_write (EV_A_ &async_pending);
2120} 3694}
2121#endif 3695#endif
2122 3696
2123/*****************************************************************************/ 3697/*****************************************************************************/
2124 3698
2134once_cb (EV_P_ struct ev_once *once, int revents) 3708once_cb (EV_P_ struct ev_once *once, int revents)
2135{ 3709{
2136 void (*cb)(int revents, void *arg) = once->cb; 3710 void (*cb)(int revents, void *arg) = once->cb;
2137 void *arg = once->arg; 3711 void *arg = once->arg;
2138 3712
2139 ev_io_stop (EV_A_ &once->io); 3713 ev_io_stop (EV_A_ &once->io);
2140 ev_timer_stop (EV_A_ &once->to); 3714 ev_timer_stop (EV_A_ &once->to);
2141 ev_free (once); 3715 ev_free (once);
2142 3716
2143 cb (revents, arg); 3717 cb (revents, arg);
2144} 3718}
2145 3719
2146static void 3720static void
2147once_cb_io (EV_P_ ev_io *w, int revents) 3721once_cb_io (EV_P_ ev_io *w, int revents)
2148{ 3722{
2149 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3723 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3724
3725 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2150} 3726}
2151 3727
2152static void 3728static void
2153once_cb_to (EV_P_ ev_timer *w, int revents) 3729once_cb_to (EV_P_ ev_timer *w, int revents)
2154{ 3730{
2155 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3731 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3732
3733 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2156} 3734}
2157 3735
2158void 3736void
2159ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3737ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2160{ 3738{
2161 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3739 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2162 3740
2163 if (expect_false (!once)) 3741 if (expect_false (!once))
2164 { 3742 {
2165 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3743 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2166 return; 3744 return;
2167 } 3745 }
2168 3746
2169 once->cb = cb; 3747 once->cb = cb;
2170 once->arg = arg; 3748 once->arg = arg;
2182 ev_timer_set (&once->to, timeout, 0.); 3760 ev_timer_set (&once->to, timeout, 0.);
2183 ev_timer_start (EV_A_ &once->to); 3761 ev_timer_start (EV_A_ &once->to);
2184 } 3762 }
2185} 3763}
2186 3764
2187#ifdef __cplusplus 3765/*****************************************************************************/
2188} 3766
3767#if EV_WALK_ENABLE
3768void
3769ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3770{
3771 int i, j;
3772 ev_watcher_list *wl, *wn;
3773
3774 if (types & (EV_IO | EV_EMBED))
3775 for (i = 0; i < anfdmax; ++i)
3776 for (wl = anfds [i].head; wl; )
3777 {
3778 wn = wl->next;
3779
3780#if EV_EMBED_ENABLE
3781 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3782 {
3783 if (types & EV_EMBED)
3784 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3785 }
3786 else
3787#endif
3788#if EV_USE_INOTIFY
3789 if (ev_cb ((ev_io *)wl) == infy_cb)
3790 ;
3791 else
3792#endif
3793 if ((ev_io *)wl != &pipe_w)
3794 if (types & EV_IO)
3795 cb (EV_A_ EV_IO, wl);
3796
3797 wl = wn;
3798 }
3799
3800 if (types & (EV_TIMER | EV_STAT))
3801 for (i = timercnt + HEAP0; i-- > HEAP0; )
3802#if EV_STAT_ENABLE
3803 /*TODO: timer is not always active*/
3804 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3805 {
3806 if (types & EV_STAT)
3807 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3808 }
3809 else
3810#endif
3811 if (types & EV_TIMER)
3812 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3813
3814#if EV_PERIODIC_ENABLE
3815 if (types & EV_PERIODIC)
3816 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3817 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3818#endif
3819
3820#if EV_IDLE_ENABLE
3821 if (types & EV_IDLE)
3822 for (j = NUMPRI; i--; )
3823 for (i = idlecnt [j]; i--; )
3824 cb (EV_A_ EV_IDLE, idles [j][i]);
3825#endif
3826
3827#if EV_FORK_ENABLE
3828 if (types & EV_FORK)
3829 for (i = forkcnt; i--; )
3830 if (ev_cb (forks [i]) != embed_fork_cb)
3831 cb (EV_A_ EV_FORK, forks [i]);
3832#endif
3833
3834#if EV_ASYNC_ENABLE
3835 if (types & EV_ASYNC)
3836 for (i = asynccnt; i--; )
3837 cb (EV_A_ EV_ASYNC, asyncs [i]);
3838#endif
3839
3840#if EV_PREPARE_ENABLE
3841 if (types & EV_PREPARE)
3842 for (i = preparecnt; i--; )
3843# if EV_EMBED_ENABLE
3844 if (ev_cb (prepares [i]) != embed_prepare_cb)
2189#endif 3845# endif
3846 cb (EV_A_ EV_PREPARE, prepares [i]);
3847#endif
2190 3848
3849#if EV_CHECK_ENABLE
3850 if (types & EV_CHECK)
3851 for (i = checkcnt; i--; )
3852 cb (EV_A_ EV_CHECK, checks [i]);
3853#endif
3854
3855#if EV_SIGNAL_ENABLE
3856 if (types & EV_SIGNAL)
3857 for (i = 0; i < EV_NSIG - 1; ++i)
3858 for (wl = signals [i].head; wl; )
3859 {
3860 wn = wl->next;
3861 cb (EV_A_ EV_SIGNAL, wl);
3862 wl = wn;
3863 }
3864#endif
3865
3866#if EV_CHILD_ENABLE
3867 if (types & EV_CHILD)
3868 for (i = (EV_PID_HASHSIZE); i--; )
3869 for (wl = childs [i]; wl; )
3870 {
3871 wn = wl->next;
3872 cb (EV_A_ EV_CHILD, wl);
3873 wl = wn;
3874 }
3875#endif
3876/* EV_STAT 0x00001000 /* stat data changed */
3877/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3878}
3879#endif
3880
3881#if EV_MULTIPLICITY
3882 #include "ev_wrap.h"
3883#endif
3884
3885EV_CPP(})
3886

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines