ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.157 by root, Wed Nov 28 20:58:32 2007 UTC vs.
Revision 1.243 by root, Fri May 9 15:52:13 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 249
197#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
200#endif 253#endif
202#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
205#endif 258#endif
206 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
207#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 276# include <winsock.h>
209#endif 277#endif
210 278
211#if !EV_STAT_ENABLE 279#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
213#endif 284# endif
214 285int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 286# ifdef __cplusplus
216# include <sys/inotify.h> 287}
288# endif
217#endif 289#endif
218 290
219/**/ 291/**/
292
293/*
294 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 302
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 306
225#if __GNUC__ >= 3 307#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 309# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 310#else
236# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 312# define noinline
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314# define inline
315# endif
240#endif 316#endif
241 317
242#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 319#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline
321
322#if EV_MINIMAL
323# define inline_speed static noinline
324#else
325# define inline_speed static inline
326#endif
244 327
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 330
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 331#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 332#define EMPTY2(a,b) /* used to suppress some warnings */
250 333
251typedef ev_watcher *W; 334typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
254 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
341#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif
256 346
257#ifdef _WIN32 347#ifdef _WIN32
258# include "ev_win32.c" 348# include "ev_win32.c"
259#endif 349#endif
260 350
281 perror (msg); 371 perror (msg);
282 abort (); 372 abort ();
283 } 373 }
284} 374}
285 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
286static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 392
288void 393void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 395{
291 alloc = cb; 396 alloc = cb;
292} 397}
293 398
294inline_speed void * 399inline_speed void *
295ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
296{ 401{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
298 403
299 if (!ptr && size) 404 if (!ptr && size)
300 { 405 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 407 abort ();
325 W w; 430 W w;
326 int events; 431 int events;
327} ANPENDING; 432} ANPENDING;
328 433
329#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
330typedef struct 436typedef struct
331{ 437{
332 WL head; 438 WL head;
333} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
334#endif 458#endif
335 459
336#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
337 461
338 struct ev_loop 462 struct ev_loop
396{ 520{
397 return ev_rt_now; 521 return ev_rt_now;
398} 522}
399#endif 523#endif
400 524
401#define array_roundsize(type,n) (((n) | 4) & ~3) 525void
526ev_sleep (ev_tstamp delay)
527{
528 if (delay > 0.)
529 {
530#if EV_USE_NANOSLEEP
531 struct timespec ts;
532
533 ts.tv_sec = (time_t)delay;
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0);
537#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3));
539#else
540 struct timeval tv;
541
542 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544
545 select (0, 0, 0, 0, &tv);
546#endif
547 }
548}
549
550/*****************************************************************************/
551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
554int inline_size
555array_nextsize (int elem, int cur, int cnt)
556{
557 int ncur = cur + 1;
558
559 do
560 ncur <<= 1;
561 while (cnt > ncur);
562
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 {
566 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4;
569 ncur /= elem;
570 }
571
572 return ncur;
573}
574
575static noinline void *
576array_realloc (int elem, void *base, int *cur, int cnt)
577{
578 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur);
580}
402 581
403#define array_needsize(type,base,cur,cnt,init) \ 582#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 583 if (expect_false ((cnt) > (cur))) \
405 { \ 584 { \
406 int newcnt = cur; \ 585 int ocur_ = (cur); \
407 do \ 586 (base) = (type *)array_realloc \
408 { \ 587 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 588 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 589 }
417 590
591#if 0
418#define array_slim(type,stem) \ 592#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 593 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 594 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 595 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 596 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 598 }
599#endif
425 600
426#define array_free(stem, idx) \ 601#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 603
429/*****************************************************************************/ 604/*****************************************************************************/
430 605
431void noinline 606void noinline
432ev_feed_event (EV_P_ void *w, int revents) 607ev_feed_event (EV_P_ void *w, int revents)
433{ 608{
434 W w_ = (W)w; 609 W w_ = (W)w;
610 int pri = ABSPRI (w_);
435 611
436 if (expect_false (w_->pending)) 612 if (expect_false (w_->pending))
613 pendings [pri][w_->pending - 1].events |= revents;
614 else
437 { 615 {
616 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 619 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 620 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 621}
447 622
448void inline_size 623void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 624queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 625{
451 int i; 626 int i;
452 627
453 for (i = 0; i < eventcnt; ++i) 628 for (i = 0; i < eventcnt; ++i)
485} 660}
486 661
487void 662void
488ev_feed_fd_event (EV_P_ int fd, int revents) 663ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 664{
665 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 666 fd_event (EV_A_ fd, revents);
491} 667}
492 668
493void inline_size 669void inline_size
494fd_reify (EV_P) 670fd_reify (EV_P)
495{ 671{
499 { 675 {
500 int fd = fdchanges [i]; 676 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 677 ANFD *anfd = anfds + fd;
502 ev_io *w; 678 ev_io *w;
503 679
504 int events = 0; 680 unsigned char events = 0;
505 681
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 683 events |= (unsigned char)w->events;
508 684
509#if EV_SELECT_IS_WINSOCKET 685#if EV_SELECT_IS_WINSOCKET
510 if (events) 686 if (events)
511 { 687 {
512 unsigned long argp; 688 unsigned long argp;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
513 anfd->handle = _get_osfhandle (fd); 692 anfd->handle = _get_osfhandle (fd);
693 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 695 }
516#endif 696#endif
517 697
698 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
518 anfd->reify = 0; 702 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events);
707 }
522 } 708 }
523 709
524 fdchangecnt = 0; 710 fdchangecnt = 0;
525} 711}
526 712
527void inline_size 713void inline_size
528fd_change (EV_P_ int fd) 714fd_change (EV_P_ int fd, int flags)
529{ 715{
530 if (expect_false (anfds [fd].reify)) 716 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 717 anfds [fd].reify |= flags;
534 718
719 if (expect_true (!reify))
720 {
535 ++fdchangecnt; 721 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 723 fdchanges [fdchangecnt - 1] = fd;
724 }
538} 725}
539 726
540void inline_speed 727void inline_speed
541fd_kill (EV_P_ int fd) 728fd_kill (EV_P_ int fd)
542{ 729{
593 780
594 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 782 if (anfds [fd].events)
596 { 783 {
597 anfds [fd].events = 0; 784 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 785 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 786 }
600} 787}
601 788
602/*****************************************************************************/ 789/*****************************************************************************/
603 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807
808/* towards the root */
604void inline_speed 809void inline_speed
605upheap (WT *heap, int k) 810upheap (ANHE *heap, int k)
606{ 811{
607 WT w = heap [k]; 812 ANHE he = heap [k];
608 813
609 while (k && heap [k >> 1]->at > w->at) 814 for (;;)
610 { 815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
611 heap [k] = heap [k >> 1]; 821 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 822 ev_active (ANHE_w (heap [k])) = k;
613 k >>= 1; 823 k = p;
614 } 824 }
615 825
826 ev_active (ANHE_w (he)) = k;
616 heap [k] = w; 827 heap [k] = he;
617 ((W)heap [k])->active = k + 1;
618
619} 828}
620 829
830/* away from the root */
621void inline_speed 831void inline_speed
622downheap (WT *heap, int N, int k) 832downheap (ANHE *heap, int N, int k)
623{ 833{
624 WT w = heap [k]; 834 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0;
625 836
626 while (k < (N >> 1)) 837 for (;;)
627 { 838 {
628 int j = k << 1; 839 ev_tstamp minat;
840 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
629 842
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 843 // find minimum child
844 if (expect_true (pos + DHEAP - 1 < E))
631 ++j; 845 {
632 846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
633 if (w->at <= heap [j]->at) 847 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else
634 break; 859 break;
635 860
861 if (ANHE_at (he) <= minat)
862 break;
863
864 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866
867 k = minpos - heap;
868 }
869
870 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872}
873
874#else // 4HEAP
875
876#define HEAP0 1
877
878/* towards the root */
879void inline_speed
880upheap (ANHE *heap, int k)
881{
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
636 heap [k] = heap [j]; 892 heap [k] = heap [p];
637 ((W)heap [k])->active = k + 1; 893 ev_active (ANHE_w (heap [k])) = k;
638 k = j; 894 k = p;
639 } 895 }
640 896
641 heap [k] = w; 897 heap [k] = he;
642 ((W)heap [k])->active = k + 1; 898 ev_active (ANHE_w (heap [k])) = k;
643} 899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0;
916
917 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break;
919
920 heap [k] = heap [c];
921 ev_active (ANHE_w (heap [k])) = k;
922
923 k = c;
924 }
925
926 heap [k] = he;
927 ev_active (ANHE_w (he)) = k;
928}
929#endif
644 930
645void inline_size 931void inline_size
646adjustheap (WT *heap, int N, int k) 932adjustheap (ANHE *heap, int N, int k)
647{ 933{
648 upheap (heap, k); 934 upheap (heap, k);
649 downheap (heap, N, k); 935 downheap (heap, N, k);
650} 936}
651 937
652/*****************************************************************************/ 938/*****************************************************************************/
653 939
654typedef struct 940typedef struct
655{ 941{
656 WL head; 942 WL head;
657 sig_atomic_t volatile gotsig; 943 EV_ATOMIC_T gotsig;
658} ANSIG; 944} ANSIG;
659 945
660static ANSIG *signals; 946static ANSIG *signals;
661static int signalmax; 947static int signalmax;
662 948
663static int sigpipe [2]; 949static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 950
667void inline_size 951void inline_size
668signals_init (ANSIG *base, int count) 952signals_init (ANSIG *base, int count)
669{ 953{
670 while (count--) 954 while (count--)
674 958
675 ++base; 959 ++base;
676 } 960 }
677} 961}
678 962
679static void 963/*****************************************************************************/
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685 964
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size 965void inline_speed
731fd_intern (int fd) 966fd_intern (int fd)
732{ 967{
733#ifdef _WIN32 968#ifdef _WIN32
734 int arg = 1; 969 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 973 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 974#endif
740} 975}
741 976
742static void noinline 977static void noinline
743siginit (EV_P) 978evpipe_init (EV_P)
744{ 979{
980 if (!ev_is_active (&pipeev))
981 {
982#if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0)
984 {
985 evpipe [0] = -1;
986 fd_intern (evfd);
987 ev_io_set (&pipeev, evfd, EV_READ);
988 }
989 else
990#endif
991 {
992 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe");
994
745 fd_intern (sigpipe [0]); 995 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 996 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ);
998 }
747 999
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1000 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1001 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 }
1003}
1004
1005void inline_size
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{
1008 if (!*flag)
1009 {
1010 int old_errno = errno; /* save errno because write might clobber it */
1011
1012 *flag = 1;
1013
1014#if EV_USE_EVENTFD
1015 if (evfd >= 0)
1016 {
1017 uint64_t counter = 1;
1018 write (evfd, &counter, sizeof (uint64_t));
1019 }
1020 else
1021#endif
1022 write (evpipe [1], &old_errno, 1);
1023
1024 errno = old_errno;
1025 }
1026}
1027
1028static void
1029pipecb (EV_P_ ev_io *iow, int revents)
1030{
1031#if EV_USE_EVENTFD
1032 if (evfd >= 0)
1033 {
1034 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t));
1036 }
1037 else
1038#endif
1039 {
1040 char dummy;
1041 read (evpipe [0], &dummy, 1);
1042 }
1043
1044 if (gotsig && ev_is_default_loop (EV_A))
1045 {
1046 int signum;
1047 gotsig = 0;
1048
1049 for (signum = signalmax; signum--; )
1050 if (signals [signum].gotsig)
1051 ev_feed_signal_event (EV_A_ signum + 1);
1052 }
1053
1054#if EV_ASYNC_ENABLE
1055 if (gotasync)
1056 {
1057 int i;
1058 gotasync = 0;
1059
1060 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent)
1062 {
1063 asyncs [i]->sent = 0;
1064 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1065 }
1066 }
1067#endif
751} 1068}
752 1069
753/*****************************************************************************/ 1070/*****************************************************************************/
754 1071
1072static void
1073ev_sighandler (int signum)
1074{
1075#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct;
1077#endif
1078
1079#if _WIN32
1080 signal (signum, ev_sighandler);
1081#endif
1082
1083 signals [signum - 1].gotsig = 1;
1084 evpipe_write (EV_A_ &gotsig);
1085}
1086
1087void noinline
1088ev_feed_signal_event (EV_P_ int signum)
1089{
1090 WL w;
1091
1092#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094#endif
1095
1096 --signum;
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return;
1100
1101 signals [signum].gotsig = 0;
1102
1103 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105}
1106
1107/*****************************************************************************/
1108
755static ev_child *childs [EV_PID_HASHSIZE]; 1109static WL childs [EV_PID_HASHSIZE];
756 1110
757#ifndef _WIN32 1111#ifndef _WIN32
758 1112
759static ev_signal childev; 1113static ev_signal childev;
760 1114
1115#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0
1117#endif
1118
761void inline_speed 1119void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1120child_reap (EV_P_ int chain, int pid, int status)
763{ 1121{
764 ev_child *w; 1122 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1124
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 {
767 if (w->pid == pid || !w->pid) 1127 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1)))
768 { 1129 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1131 w->rpid = pid;
771 w->rstatus = status; 1132 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1133 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1134 }
1135 }
774} 1136}
775 1137
776#ifndef WCONTINUED 1138#ifndef WCONTINUED
777# define WCONTINUED 0 1139# define WCONTINUED 0
778#endif 1140#endif
787 if (!WCONTINUED 1149 if (!WCONTINUED
788 || errno != EINVAL 1150 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1151 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1152 return;
791 1153
792 /* make sure we are called again until all childs have been reaped */ 1154 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1155 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1157
796 child_reap (EV_A_ sw, pid, pid, status); 1158 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1159 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1161}
800 1162
801#endif 1163#endif
802 1164
803/*****************************************************************************/ 1165/*****************************************************************************/
875} 1237}
876 1238
877unsigned int 1239unsigned int
878ev_embeddable_backends (void) 1240ev_embeddable_backends (void)
879{ 1241{
880 return EVBACKEND_EPOLL 1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1243
882 | EVBACKEND_PORT; 1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */
1246 flags &= ~EVBACKEND_EPOLL;
1247
1248 return flags;
883} 1249}
884 1250
885unsigned int 1251unsigned int
886ev_backend (EV_P) 1252ev_backend (EV_P)
887{ 1253{
888 return backend; 1254 return backend;
1255}
1256
1257unsigned int
1258ev_loop_count (EV_P)
1259{
1260 return loop_count;
1261}
1262
1263void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{
1266 io_blocktime = interval;
1267}
1268
1269void
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{
1272 timeout_blocktime = interval;
889} 1273}
890 1274
891static void noinline 1275static void noinline
892loop_init (EV_P_ unsigned int flags) 1276loop_init (EV_P_ unsigned int flags)
893{ 1277{
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1284 have_monotonic = 1;
901 } 1285 }
902#endif 1286#endif
903 1287
904 ev_rt_now = ev_time (); 1288 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1289 mn_now = get_clock ();
906 now_floor = mn_now; 1290 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1291 rtmn_diff = ev_rt_now - mn_now;
1292
1293 io_blocktime = 0.;
1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298#if EV_USE_INOTIFY
1299 fs_fd = -2;
1300#endif
1301
1302 /* pid check not overridable via env */
1303#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK)
1305 curpid = getpid ();
1306#endif
908 1307
909 if (!(flags & EVFLAG_NOENV) 1308 if (!(flags & EVFLAG_NOENV)
910 && !enable_secure () 1309 && !enable_secure ()
911 && getenv ("LIBEV_FLAGS")) 1310 && getenv ("LIBEV_FLAGS"))
912 flags = atoi (getenv ("LIBEV_FLAGS")); 1311 flags = atoi (getenv ("LIBEV_FLAGS"));
913 1312
914 if (!(flags & 0x0000ffffUL)) 1313 if (!(flags & 0x0000ffffU))
915 flags |= ev_recommended_backends (); 1314 flags |= ev_recommended_backends ();
916
917 backend = 0;
918 backend_fd = -1;
919#if EV_USE_INOTIFY
920 fs_fd = -2;
921#endif
922 1315
923#if EV_USE_PORT 1316#if EV_USE_PORT
924 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
925#endif 1318#endif
926#if EV_USE_KQUEUE 1319#if EV_USE_KQUEUE
934#endif 1327#endif
935#if EV_USE_SELECT 1328#if EV_USE_SELECT
936 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
937#endif 1330#endif
938 1331
939 ev_init (&sigev, sigcb); 1332 ev_init (&pipeev, pipecb);
940 ev_set_priority (&sigev, EV_MAXPRI); 1333 ev_set_priority (&pipeev, EV_MAXPRI);
941 } 1334 }
942} 1335}
943 1336
944static void noinline 1337static void noinline
945loop_destroy (EV_P) 1338loop_destroy (EV_P)
946{ 1339{
947 int i; 1340 int i;
1341
1342 if (ev_is_active (&pipeev))
1343 {
1344 ev_ref (EV_A); /* signal watcher */
1345 ev_io_stop (EV_A_ &pipeev);
1346
1347#if EV_USE_EVENTFD
1348 if (evfd >= 0)
1349 close (evfd);
1350#endif
1351
1352 if (evpipe [0] >= 0)
1353 {
1354 close (evpipe [0]);
1355 close (evpipe [1]);
1356 }
1357 }
948 1358
949#if EV_USE_INOTIFY 1359#if EV_USE_INOTIFY
950 if (fs_fd >= 0) 1360 if (fs_fd >= 0)
951 close (fs_fd); 1361 close (fs_fd);
952#endif 1362#endif
969#if EV_USE_SELECT 1379#if EV_USE_SELECT
970 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1380 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
971#endif 1381#endif
972 1382
973 for (i = NUMPRI; i--; ) 1383 for (i = NUMPRI; i--; )
1384 {
974 array_free (pending, [i]); 1385 array_free (pending, [i]);
1386#if EV_IDLE_ENABLE
1387 array_free (idle, [i]);
1388#endif
1389 }
1390
1391 ev_free (anfds); anfdmax = 0;
975 1392
976 /* have to use the microsoft-never-gets-it-right macro */ 1393 /* have to use the microsoft-never-gets-it-right macro */
977 array_free (fdchange, EMPTY0); 1394 array_free (fdchange, EMPTY);
978 array_free (timer, EMPTY0); 1395 array_free (timer, EMPTY);
979#if EV_PERIODIC_ENABLE 1396#if EV_PERIODIC_ENABLE
980 array_free (periodic, EMPTY0); 1397 array_free (periodic, EMPTY);
981#endif 1398#endif
1399#if EV_FORK_ENABLE
982 array_free (idle, EMPTY0); 1400 array_free (fork, EMPTY);
1401#endif
983 array_free (prepare, EMPTY0); 1402 array_free (prepare, EMPTY);
984 array_free (check, EMPTY0); 1403 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY);
1406#endif
985 1407
986 backend = 0; 1408 backend = 0;
987} 1409}
988 1410
1411#if EV_USE_INOTIFY
989void inline_size infy_fork (EV_P); 1412void inline_size infy_fork (EV_P);
1413#endif
990 1414
991void inline_size 1415void inline_size
992loop_fork (EV_P) 1416loop_fork (EV_P)
993{ 1417{
994#if EV_USE_PORT 1418#if EV_USE_PORT
1002#endif 1426#endif
1003#if EV_USE_INOTIFY 1427#if EV_USE_INOTIFY
1004 infy_fork (EV_A); 1428 infy_fork (EV_A);
1005#endif 1429#endif
1006 1430
1007 if (ev_is_active (&sigev)) 1431 if (ev_is_active (&pipeev))
1008 { 1432 {
1009 /* default loop */ 1433 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */
1435 gotsig = 1;
1436#if EV_ASYNC_ENABLE
1437 gotasync = 1;
1438#endif
1010 1439
1011 ev_ref (EV_A); 1440 ev_ref (EV_A);
1012 ev_io_stop (EV_A_ &sigev); 1441 ev_io_stop (EV_A_ &pipeev);
1442
1443#if EV_USE_EVENTFD
1444 if (evfd >= 0)
1445 close (evfd);
1446#endif
1447
1448 if (evpipe [0] >= 0)
1449 {
1013 close (sigpipe [0]); 1450 close (evpipe [0]);
1014 close (sigpipe [1]); 1451 close (evpipe [1]);
1452 }
1015 1453
1016 while (pipe (sigpipe))
1017 syserr ("(libev) error creating pipe");
1018
1019 siginit (EV_A); 1454 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ);
1020 } 1457 }
1021 1458
1022 postfork = 0; 1459 postfork = 0;
1023} 1460}
1024 1461
1046} 1483}
1047 1484
1048void 1485void
1049ev_loop_fork (EV_P) 1486ev_loop_fork (EV_P)
1050{ 1487{
1051 postfork = 1; 1488 postfork = 1; /* must be in line with ev_default_fork */
1052} 1489}
1053
1054#endif 1490#endif
1055 1491
1056#if EV_MULTIPLICITY 1492#if EV_MULTIPLICITY
1057struct ev_loop * 1493struct ev_loop *
1058ev_default_loop_init (unsigned int flags) 1494ev_default_loop_init (unsigned int flags)
1059#else 1495#else
1060int 1496int
1061ev_default_loop (unsigned int flags) 1497ev_default_loop (unsigned int flags)
1062#endif 1498#endif
1063{ 1499{
1064 if (sigpipe [0] == sigpipe [1])
1065 if (pipe (sigpipe))
1066 return 0;
1067
1068 if (!ev_default_loop_ptr) 1500 if (!ev_default_loop_ptr)
1069 { 1501 {
1070#if EV_MULTIPLICITY 1502#if EV_MULTIPLICITY
1071 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1072#else 1504#else
1075 1507
1076 loop_init (EV_A_ flags); 1508 loop_init (EV_A_ flags);
1077 1509
1078 if (ev_backend (EV_A)) 1510 if (ev_backend (EV_A))
1079 { 1511 {
1080 siginit (EV_A);
1081
1082#ifndef _WIN32 1512#ifndef _WIN32
1083 ev_signal_init (&childev, childcb, SIGCHLD); 1513 ev_signal_init (&childev, childcb, SIGCHLD);
1084 ev_set_priority (&childev, EV_MAXPRI); 1514 ev_set_priority (&childev, EV_MAXPRI);
1085 ev_signal_start (EV_A_ &childev); 1515 ev_signal_start (EV_A_ &childev);
1086 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1516 ev_unref (EV_A); /* child watcher should not keep loop alive */
1103#ifndef _WIN32 1533#ifndef _WIN32
1104 ev_ref (EV_A); /* child watcher */ 1534 ev_ref (EV_A); /* child watcher */
1105 ev_signal_stop (EV_A_ &childev); 1535 ev_signal_stop (EV_A_ &childev);
1106#endif 1536#endif
1107 1537
1108 ev_ref (EV_A); /* signal watcher */
1109 ev_io_stop (EV_A_ &sigev);
1110
1111 close (sigpipe [0]); sigpipe [0] = 0;
1112 close (sigpipe [1]); sigpipe [1] = 0;
1113
1114 loop_destroy (EV_A); 1538 loop_destroy (EV_A);
1115} 1539}
1116 1540
1117void 1541void
1118ev_default_fork (void) 1542ev_default_fork (void)
1120#if EV_MULTIPLICITY 1544#if EV_MULTIPLICITY
1121 struct ev_loop *loop = ev_default_loop_ptr; 1545 struct ev_loop *loop = ev_default_loop_ptr;
1122#endif 1546#endif
1123 1547
1124 if (backend) 1548 if (backend)
1125 postfork = 1; 1549 postfork = 1; /* must be in line with ev_loop_fork */
1126} 1550}
1127 1551
1128/*****************************************************************************/ 1552/*****************************************************************************/
1129 1553
1130int inline_size 1554void
1131any_pending (EV_P) 1555ev_invoke (EV_P_ void *w, int revents)
1132{ 1556{
1133 int pri; 1557 EV_CB_INVOKE ((W)w, revents);
1134
1135 for (pri = NUMPRI; pri--; )
1136 if (pendingcnt [pri])
1137 return 1;
1138
1139 return 0;
1140} 1558}
1141 1559
1142void inline_speed 1560void inline_speed
1143call_pending (EV_P) 1561call_pending (EV_P)
1144{ 1562{
1157 EV_CB_INVOKE (p->w, p->events); 1575 EV_CB_INVOKE (p->w, p->events);
1158 } 1576 }
1159 } 1577 }
1160} 1578}
1161 1579
1580#if EV_IDLE_ENABLE
1581void inline_size
1582idle_reify (EV_P)
1583{
1584 if (expect_false (idleall))
1585 {
1586 int pri;
1587
1588 for (pri = NUMPRI; pri--; )
1589 {
1590 if (pendingcnt [pri])
1591 break;
1592
1593 if (idlecnt [pri])
1594 {
1595 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1596 break;
1597 }
1598 }
1599 }
1600}
1601#endif
1602
1162void inline_size 1603void inline_size
1163timers_reify (EV_P) 1604timers_reify (EV_P)
1164{ 1605{
1165 while (timercnt && ((WT)timers [0])->at <= mn_now) 1606 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
1166 { 1607 {
1167 ev_timer *w = timers [0]; 1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1168 1609
1169 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1170 1611
1171 /* first reschedule or stop timer */ 1612 /* first reschedule or stop timer */
1172 if (w->repeat) 1613 if (w->repeat)
1173 { 1614 {
1615 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now;
1618
1174 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1175 1620
1176 ((WT)w)->at += w->repeat; 1621 ANHE_at_set (timers [HEAP0]);
1177 if (((WT)w)->at < mn_now)
1178 ((WT)w)->at = mn_now;
1179
1180 downheap ((WT *)timers, timercnt, 0); 1622 downheap (timers, timercnt, HEAP0);
1181 } 1623 }
1182 else 1624 else
1183 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1184 1626
1185 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1188 1630
1189#if EV_PERIODIC_ENABLE 1631#if EV_PERIODIC_ENABLE
1190void inline_size 1632void inline_size
1191periodics_reify (EV_P) 1633periodics_reify (EV_P)
1192{ 1634{
1193 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
1194 { 1636 {
1195 ev_periodic *w = periodics [0]; 1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1196 1638
1197 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1198 1640
1199 /* first reschedule or stop timer */ 1641 /* first reschedule or stop timer */
1200 if (w->reschedule_cb) 1642 if (w->reschedule_cb)
1201 { 1643 {
1202 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1645
1203 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
1204 downheap ((WT *)periodics, periodiccnt, 0); 1649 downheap (periodics, periodiccnt, HEAP0);
1205 } 1650 }
1206 else if (w->interval) 1651 else if (w->interval)
1207 { 1652 {
1208 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1655
1209 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1656 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1657
1658 ANHE_at_set (periodics [HEAP0]);
1210 downheap ((WT *)periodics, periodiccnt, 0); 1659 downheap (periodics, periodiccnt, HEAP0);
1211 } 1660 }
1212 else 1661 else
1213 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1662 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1214 1663
1215 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1664 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1220periodics_reschedule (EV_P) 1669periodics_reschedule (EV_P)
1221{ 1670{
1222 int i; 1671 int i;
1223 1672
1224 /* adjust periodics after time jump */ 1673 /* adjust periodics after time jump */
1674 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1675 {
1676 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1677
1678 if (w->reschedule_cb)
1679 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1680 else if (w->interval)
1681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1682
1683 ANHE_at_set (periodics [i]);
1684 }
1685
1686 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1687 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1225 for (i = 0; i < periodiccnt; ++i) 1688 for (i = 0; i < periodiccnt; ++i)
1226 { 1689 upheap (periodics, i + HEAP0);
1227 ev_periodic *w = periodics [i]; 1690}
1691#endif
1228 1692
1229 if (w->reschedule_cb) 1693void inline_speed
1230 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1694time_update (EV_P_ ev_tstamp max_block)
1231 else if (w->interval) 1695{
1232 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1696 int i;
1697
1698#if EV_USE_MONOTONIC
1699 if (expect_true (have_monotonic))
1233 } 1700 {
1701 ev_tstamp odiff = rtmn_diff;
1234 1702
1235 /* now rebuild the heap */
1236 for (i = periodiccnt >> 1; i--; )
1237 downheap ((WT *)periodics, periodiccnt, i);
1238}
1239#endif
1240
1241int inline_size
1242time_update_monotonic (EV_P)
1243{
1244 mn_now = get_clock (); 1703 mn_now = get_clock ();
1245 1704
1705 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1706 /* interpolate in the meantime */
1246 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1707 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1247 { 1708 {
1248 ev_rt_now = rtmn_diff + mn_now; 1709 ev_rt_now = rtmn_diff + mn_now;
1249 return 0; 1710 return;
1250 } 1711 }
1251 else 1712
1252 {
1253 now_floor = mn_now; 1713 now_floor = mn_now;
1254 ev_rt_now = ev_time (); 1714 ev_rt_now = ev_time ();
1255 return 1;
1256 }
1257}
1258 1715
1259void inline_size 1716 /* loop a few times, before making important decisions.
1260time_update (EV_P) 1717 * on the choice of "4": one iteration isn't enough,
1261{ 1718 * in case we get preempted during the calls to
1262 int i; 1719 * ev_time and get_clock. a second call is almost guaranteed
1263 1720 * to succeed in that case, though. and looping a few more times
1264#if EV_USE_MONOTONIC 1721 * doesn't hurt either as we only do this on time-jumps or
1265 if (expect_true (have_monotonic)) 1722 * in the unlikely event of having been preempted here.
1266 { 1723 */
1267 if (time_update_monotonic (EV_A)) 1724 for (i = 4; --i; )
1268 { 1725 {
1269 ev_tstamp odiff = rtmn_diff;
1270
1271 /* loop a few times, before making important decisions.
1272 * on the choice of "4": one iteration isn't enough,
1273 * in case we get preempted during the calls to
1274 * ev_time and get_clock. a second call is almost guaranteed
1275 * to succeed in that case, though. and looping a few more times
1276 * doesn't hurt either as we only do this on time-jumps or
1277 * in the unlikely event of having been preempted here.
1278 */
1279 for (i = 4; --i; )
1280 {
1281 rtmn_diff = ev_rt_now - mn_now; 1726 rtmn_diff = ev_rt_now - mn_now;
1282 1727
1283 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1728 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1284 return; /* all is well */ 1729 return; /* all is well */
1285 1730
1286 ev_rt_now = ev_time (); 1731 ev_rt_now = ev_time ();
1287 mn_now = get_clock (); 1732 mn_now = get_clock ();
1288 now_floor = mn_now; 1733 now_floor = mn_now;
1289 } 1734 }
1290 1735
1291# if EV_PERIODIC_ENABLE 1736# if EV_PERIODIC_ENABLE
1292 periodics_reschedule (EV_A); 1737 periodics_reschedule (EV_A);
1293# endif 1738# endif
1294 /* no timer adjustment, as the monotonic clock doesn't jump */ 1739 /* no timer adjustment, as the monotonic clock doesn't jump */
1295 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1740 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1296 }
1297 } 1741 }
1298 else 1742 else
1299#endif 1743#endif
1300 { 1744 {
1301 ev_rt_now = ev_time (); 1745 ev_rt_now = ev_time ();
1302 1746
1303 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1747 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1304 { 1748 {
1305#if EV_PERIODIC_ENABLE 1749#if EV_PERIODIC_ENABLE
1306 periodics_reschedule (EV_A); 1750 periodics_reschedule (EV_A);
1307#endif 1751#endif
1308
1309 /* adjust timers. this is easy, as the offset is the same for all of them */ 1752 /* adjust timers. this is easy, as the offset is the same for all of them */
1310 for (i = 0; i < timercnt; ++i) 1753 for (i = 0; i < timercnt; ++i)
1754 {
1755 ANHE *he = timers + i + HEAP0;
1311 ((WT)timers [i])->at += ev_rt_now - mn_now; 1756 ANHE_w (*he)->at += ev_rt_now - mn_now;
1757 ANHE_at_set (*he);
1758 }
1312 } 1759 }
1313 1760
1314 mn_now = ev_rt_now; 1761 mn_now = ev_rt_now;
1315 } 1762 }
1316} 1763}
1330static int loop_done; 1777static int loop_done;
1331 1778
1332void 1779void
1333ev_loop (EV_P_ int flags) 1780ev_loop (EV_P_ int flags)
1334{ 1781{
1335 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1782 loop_done = EVUNLOOP_CANCEL;
1336 ? EVUNLOOP_ONE
1337 : EVUNLOOP_CANCEL;
1338 1783
1339 while (activecnt) 1784 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1785
1786 do
1340 { 1787 {
1788#ifndef _WIN32
1789 if (expect_false (curpid)) /* penalise the forking check even more */
1790 if (expect_false (getpid () != curpid))
1791 {
1792 curpid = getpid ();
1793 postfork = 1;
1794 }
1795#endif
1796
1341#if EV_FORK_ENABLE 1797#if EV_FORK_ENABLE
1342 /* we might have forked, so queue fork handlers */ 1798 /* we might have forked, so queue fork handlers */
1343 if (expect_false (postfork)) 1799 if (expect_false (postfork))
1344 if (forkcnt) 1800 if (forkcnt)
1345 { 1801 {
1346 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1802 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1347 call_pending (EV_A); 1803 call_pending (EV_A);
1348 } 1804 }
1349#endif 1805#endif
1350 1806
1351 /* queue check watchers (and execute them) */ 1807 /* queue prepare watchers (and execute them) */
1352 if (expect_false (preparecnt)) 1808 if (expect_false (preparecnt))
1353 { 1809 {
1354 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1355 call_pending (EV_A); 1811 call_pending (EV_A);
1356 } 1812 }
1357 1813
1814 if (expect_false (!activecnt))
1815 break;
1816
1358 /* we might have forked, so reify kernel state if necessary */ 1817 /* we might have forked, so reify kernel state if necessary */
1359 if (expect_false (postfork)) 1818 if (expect_false (postfork))
1360 loop_fork (EV_A); 1819 loop_fork (EV_A);
1361 1820
1362 /* update fd-related kernel structures */ 1821 /* update fd-related kernel structures */
1363 fd_reify (EV_A); 1822 fd_reify (EV_A);
1364 1823
1365 /* calculate blocking time */ 1824 /* calculate blocking time */
1366 { 1825 {
1367 ev_tstamp block; 1826 ev_tstamp waittime = 0.;
1827 ev_tstamp sleeptime = 0.;
1368 1828
1369 if (flags & EVLOOP_NONBLOCK || idlecnt) 1829 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1370 block = 0.; /* do not block at all */
1371 else
1372 { 1830 {
1373 /* update time to cancel out callback processing overhead */ 1831 /* update time to cancel out callback processing overhead */
1374#if EV_USE_MONOTONIC
1375 if (expect_true (have_monotonic))
1376 time_update_monotonic (EV_A); 1832 time_update (EV_A_ 1e100);
1377 else
1378#endif
1379 {
1380 ev_rt_now = ev_time ();
1381 mn_now = ev_rt_now;
1382 }
1383 1833
1384 block = MAX_BLOCKTIME; 1834 waittime = MAX_BLOCKTIME;
1385 1835
1386 if (timercnt) 1836 if (timercnt)
1387 { 1837 {
1388 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1838 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1389 if (block > to) block = to; 1839 if (waittime > to) waittime = to;
1390 } 1840 }
1391 1841
1392#if EV_PERIODIC_ENABLE 1842#if EV_PERIODIC_ENABLE
1393 if (periodiccnt) 1843 if (periodiccnt)
1394 { 1844 {
1395 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1845 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1396 if (block > to) block = to; 1846 if (waittime > to) waittime = to;
1397 } 1847 }
1398#endif 1848#endif
1399 1849
1400 if (expect_false (block < 0.)) block = 0.; 1850 if (expect_false (waittime < timeout_blocktime))
1851 waittime = timeout_blocktime;
1852
1853 sleeptime = waittime - backend_fudge;
1854
1855 if (expect_true (sleeptime > io_blocktime))
1856 sleeptime = io_blocktime;
1857
1858 if (sleeptime)
1859 {
1860 ev_sleep (sleeptime);
1861 waittime -= sleeptime;
1862 }
1401 } 1863 }
1402 1864
1865 ++loop_count;
1403 backend_poll (EV_A_ block); 1866 backend_poll (EV_A_ waittime);
1867
1868 /* update ev_rt_now, do magic */
1869 time_update (EV_A_ waittime + sleeptime);
1404 } 1870 }
1405
1406 /* update ev_rt_now, do magic */
1407 time_update (EV_A);
1408 1871
1409 /* queue pending timers and reschedule them */ 1872 /* queue pending timers and reschedule them */
1410 timers_reify (EV_A); /* relative timers called last */ 1873 timers_reify (EV_A); /* relative timers called last */
1411#if EV_PERIODIC_ENABLE 1874#if EV_PERIODIC_ENABLE
1412 periodics_reify (EV_A); /* absolute timers called first */ 1875 periodics_reify (EV_A); /* absolute timers called first */
1413#endif 1876#endif
1414 1877
1878#if EV_IDLE_ENABLE
1415 /* queue idle watchers unless other events are pending */ 1879 /* queue idle watchers unless other events are pending */
1416 if (idlecnt && !any_pending (EV_A)) 1880 idle_reify (EV_A);
1417 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1881#endif
1418 1882
1419 /* queue check watchers, to be executed first */ 1883 /* queue check watchers, to be executed first */
1420 if (expect_false (checkcnt)) 1884 if (expect_false (checkcnt))
1421 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1885 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1422 1886
1423 call_pending (EV_A); 1887 call_pending (EV_A);
1424
1425 if (expect_false (loop_done))
1426 break;
1427 } 1888 }
1889 while (expect_true (
1890 activecnt
1891 && !loop_done
1892 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1893 ));
1428 1894
1429 if (loop_done == EVUNLOOP_ONE) 1895 if (loop_done == EVUNLOOP_ONE)
1430 loop_done = EVUNLOOP_CANCEL; 1896 loop_done = EVUNLOOP_CANCEL;
1431} 1897}
1432 1898
1459 head = &(*head)->next; 1925 head = &(*head)->next;
1460 } 1926 }
1461} 1927}
1462 1928
1463void inline_speed 1929void inline_speed
1464ev_clear_pending (EV_P_ W w) 1930clear_pending (EV_P_ W w)
1465{ 1931{
1466 if (w->pending) 1932 if (w->pending)
1467 { 1933 {
1468 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1934 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1469 w->pending = 0; 1935 w->pending = 0;
1470 } 1936 }
1471} 1937}
1472 1938
1939int
1940ev_clear_pending (EV_P_ void *w)
1941{
1942 W w_ = (W)w;
1943 int pending = w_->pending;
1944
1945 if (expect_true (pending))
1946 {
1947 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1948 w_->pending = 0;
1949 p->w = 0;
1950 return p->events;
1951 }
1952 else
1953 return 0;
1954}
1955
1956void inline_size
1957pri_adjust (EV_P_ W w)
1958{
1959 int pri = w->priority;
1960 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1961 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1962 w->priority = pri;
1963}
1964
1473void inline_speed 1965void inline_speed
1474ev_start (EV_P_ W w, int active) 1966ev_start (EV_P_ W w, int active)
1475{ 1967{
1476 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1968 pri_adjust (EV_A_ w);
1477 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1478
1479 w->active = active; 1969 w->active = active;
1480 ev_ref (EV_A); 1970 ev_ref (EV_A);
1481} 1971}
1482 1972
1483void inline_size 1973void inline_size
1487 w->active = 0; 1977 w->active = 0;
1488} 1978}
1489 1979
1490/*****************************************************************************/ 1980/*****************************************************************************/
1491 1981
1492void 1982void noinline
1493ev_io_start (EV_P_ ev_io *w) 1983ev_io_start (EV_P_ ev_io *w)
1494{ 1984{
1495 int fd = w->fd; 1985 int fd = w->fd;
1496 1986
1497 if (expect_false (ev_is_active (w))) 1987 if (expect_false (ev_is_active (w)))
1499 1989
1500 assert (("ev_io_start called with negative fd", fd >= 0)); 1990 assert (("ev_io_start called with negative fd", fd >= 0));
1501 1991
1502 ev_start (EV_A_ (W)w, 1); 1992 ev_start (EV_A_ (W)w, 1);
1503 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1993 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1504 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1994 wlist_add (&anfds[fd].head, (WL)w);
1505 1995
1506 fd_change (EV_A_ fd); 1996 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1997 w->events &= ~EV_IOFDSET;
1507} 1998}
1508 1999
1509void 2000void noinline
1510ev_io_stop (EV_P_ ev_io *w) 2001ev_io_stop (EV_P_ ev_io *w)
1511{ 2002{
1512 ev_clear_pending (EV_A_ (W)w); 2003 clear_pending (EV_A_ (W)w);
1513 if (expect_false (!ev_is_active (w))) 2004 if (expect_false (!ev_is_active (w)))
1514 return; 2005 return;
1515 2006
1516 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2007 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1517 2008
1518 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2009 wlist_del (&anfds[w->fd].head, (WL)w);
1519 ev_stop (EV_A_ (W)w); 2010 ev_stop (EV_A_ (W)w);
1520 2011
1521 fd_change (EV_A_ w->fd); 2012 fd_change (EV_A_ w->fd, 1);
1522} 2013}
1523 2014
1524void 2015void noinline
1525ev_timer_start (EV_P_ ev_timer *w) 2016ev_timer_start (EV_P_ ev_timer *w)
1526{ 2017{
1527 if (expect_false (ev_is_active (w))) 2018 if (expect_false (ev_is_active (w)))
1528 return; 2019 return;
1529 2020
1530 ((WT)w)->at += mn_now; 2021 ev_at (w) += mn_now;
1531 2022
1532 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2023 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1533 2024
1534 ev_start (EV_A_ (W)w, ++timercnt); 2025 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1535 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2026 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1536 timers [timercnt - 1] = w; 2027 ANHE_w (timers [ev_active (w)]) = (WT)w;
1537 upheap ((WT *)timers, timercnt - 1); 2028 ANHE_at_set (timers [ev_active (w)]);
2029 upheap (timers, ev_active (w));
1538 2030
1539 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2031 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1540} 2032}
1541 2033
1542void 2034void noinline
1543ev_timer_stop (EV_P_ ev_timer *w) 2035ev_timer_stop (EV_P_ ev_timer *w)
1544{ 2036{
1545 ev_clear_pending (EV_A_ (W)w); 2037 clear_pending (EV_A_ (W)w);
1546 if (expect_false (!ev_is_active (w))) 2038 if (expect_false (!ev_is_active (w)))
1547 return; 2039 return;
1548 2040
1549 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1550
1551 { 2041 {
1552 int active = ((W)w)->active; 2042 int active = ev_active (w);
1553 2043
2044 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2045
1554 if (expect_true (--active < --timercnt)) 2046 if (expect_true (active < timercnt + HEAP0 - 1))
1555 { 2047 {
1556 timers [active] = timers [timercnt]; 2048 timers [active] = timers [timercnt + HEAP0 - 1];
1557 adjustheap ((WT *)timers, timercnt, active); 2049 adjustheap (timers, timercnt, active);
1558 } 2050 }
2051
2052 --timercnt;
1559 } 2053 }
1560 2054
1561 ((WT)w)->at -= mn_now; 2055 ev_at (w) -= mn_now;
1562 2056
1563 ev_stop (EV_A_ (W)w); 2057 ev_stop (EV_A_ (W)w);
1564} 2058}
1565 2059
1566void 2060void noinline
1567ev_timer_again (EV_P_ ev_timer *w) 2061ev_timer_again (EV_P_ ev_timer *w)
1568{ 2062{
1569 if (ev_is_active (w)) 2063 if (ev_is_active (w))
1570 { 2064 {
1571 if (w->repeat) 2065 if (w->repeat)
1572 { 2066 {
1573 ((WT)w)->at = mn_now + w->repeat; 2067 ev_at (w) = mn_now + w->repeat;
2068 ANHE_at_set (timers [ev_active (w)]);
1574 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2069 adjustheap (timers, timercnt, ev_active (w));
1575 } 2070 }
1576 else 2071 else
1577 ev_timer_stop (EV_A_ w); 2072 ev_timer_stop (EV_A_ w);
1578 } 2073 }
1579 else if (w->repeat) 2074 else if (w->repeat)
1580 { 2075 {
1581 w->at = w->repeat; 2076 ev_at (w) = w->repeat;
1582 ev_timer_start (EV_A_ w); 2077 ev_timer_start (EV_A_ w);
1583 } 2078 }
1584} 2079}
1585 2080
1586#if EV_PERIODIC_ENABLE 2081#if EV_PERIODIC_ENABLE
1587void 2082void noinline
1588ev_periodic_start (EV_P_ ev_periodic *w) 2083ev_periodic_start (EV_P_ ev_periodic *w)
1589{ 2084{
1590 if (expect_false (ev_is_active (w))) 2085 if (expect_false (ev_is_active (w)))
1591 return; 2086 return;
1592 2087
1593 if (w->reschedule_cb) 2088 if (w->reschedule_cb)
1594 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1595 else if (w->interval) 2090 else if (w->interval)
1596 { 2091 {
1597 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2092 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1598 /* this formula differs from the one in periodic_reify because we do not always round up */ 2093 /* this formula differs from the one in periodic_reify because we do not always round up */
1599 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1600 } 2095 }
2096 else
2097 ev_at (w) = w->offset;
1601 2098
1602 ev_start (EV_A_ (W)w, ++periodiccnt); 2099 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1603 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2100 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1604 periodics [periodiccnt - 1] = w; 2101 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1605 upheap ((WT *)periodics, periodiccnt - 1); 2102 ANHE_at_set (periodics [ev_active (w)]);
2103 upheap (periodics, ev_active (w));
1606 2104
1607 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2105 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1608} 2106}
1609 2107
1610void 2108void noinline
1611ev_periodic_stop (EV_P_ ev_periodic *w) 2109ev_periodic_stop (EV_P_ ev_periodic *w)
1612{ 2110{
1613 ev_clear_pending (EV_A_ (W)w); 2111 clear_pending (EV_A_ (W)w);
1614 if (expect_false (!ev_is_active (w))) 2112 if (expect_false (!ev_is_active (w)))
1615 return; 2113 return;
1616 2114
1617 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1618
1619 { 2115 {
1620 int active = ((W)w)->active; 2116 int active = ev_active (w);
1621 2117
2118 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2119
1622 if (expect_true (--active < --periodiccnt)) 2120 if (expect_true (active < periodiccnt + HEAP0 - 1))
1623 { 2121 {
1624 periodics [active] = periodics [periodiccnt]; 2122 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1625 adjustheap ((WT *)periodics, periodiccnt, active); 2123 adjustheap (periodics, periodiccnt, active);
1626 } 2124 }
2125
2126 --periodiccnt;
1627 } 2127 }
1628 2128
1629 ev_stop (EV_A_ (W)w); 2129 ev_stop (EV_A_ (W)w);
1630} 2130}
1631 2131
1632void 2132void noinline
1633ev_periodic_again (EV_P_ ev_periodic *w) 2133ev_periodic_again (EV_P_ ev_periodic *w)
1634{ 2134{
1635 /* TODO: use adjustheap and recalculation */ 2135 /* TODO: use adjustheap and recalculation */
1636 ev_periodic_stop (EV_A_ w); 2136 ev_periodic_stop (EV_A_ w);
1637 ev_periodic_start (EV_A_ w); 2137 ev_periodic_start (EV_A_ w);
1640 2140
1641#ifndef SA_RESTART 2141#ifndef SA_RESTART
1642# define SA_RESTART 0 2142# define SA_RESTART 0
1643#endif 2143#endif
1644 2144
1645void 2145void noinline
1646ev_signal_start (EV_P_ ev_signal *w) 2146ev_signal_start (EV_P_ ev_signal *w)
1647{ 2147{
1648#if EV_MULTIPLICITY 2148#if EV_MULTIPLICITY
1649 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2149 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1650#endif 2150#endif
1651 if (expect_false (ev_is_active (w))) 2151 if (expect_false (ev_is_active (w)))
1652 return; 2152 return;
1653 2153
1654 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2154 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1655 2155
2156 evpipe_init (EV_A);
2157
2158 {
2159#ifndef _WIN32
2160 sigset_t full, prev;
2161 sigfillset (&full);
2162 sigprocmask (SIG_SETMASK, &full, &prev);
2163#endif
2164
2165 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2166
2167#ifndef _WIN32
2168 sigprocmask (SIG_SETMASK, &prev, 0);
2169#endif
2170 }
2171
1656 ev_start (EV_A_ (W)w, 1); 2172 ev_start (EV_A_ (W)w, 1);
1657 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1658 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2173 wlist_add (&signals [w->signum - 1].head, (WL)w);
1659 2174
1660 if (!((WL)w)->next) 2175 if (!((WL)w)->next)
1661 { 2176 {
1662#if _WIN32 2177#if _WIN32
1663 signal (w->signum, sighandler); 2178 signal (w->signum, ev_sighandler);
1664#else 2179#else
1665 struct sigaction sa; 2180 struct sigaction sa;
1666 sa.sa_handler = sighandler; 2181 sa.sa_handler = ev_sighandler;
1667 sigfillset (&sa.sa_mask); 2182 sigfillset (&sa.sa_mask);
1668 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2183 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1669 sigaction (w->signum, &sa, 0); 2184 sigaction (w->signum, &sa, 0);
1670#endif 2185#endif
1671 } 2186 }
1672} 2187}
1673 2188
1674void 2189void noinline
1675ev_signal_stop (EV_P_ ev_signal *w) 2190ev_signal_stop (EV_P_ ev_signal *w)
1676{ 2191{
1677 ev_clear_pending (EV_A_ (W)w); 2192 clear_pending (EV_A_ (W)w);
1678 if (expect_false (!ev_is_active (w))) 2193 if (expect_false (!ev_is_active (w)))
1679 return; 2194 return;
1680 2195
1681 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2196 wlist_del (&signals [w->signum - 1].head, (WL)w);
1682 ev_stop (EV_A_ (W)w); 2197 ev_stop (EV_A_ (W)w);
1683 2198
1684 if (!signals [w->signum - 1].head) 2199 if (!signals [w->signum - 1].head)
1685 signal (w->signum, SIG_DFL); 2200 signal (w->signum, SIG_DFL);
1686} 2201}
1693#endif 2208#endif
1694 if (expect_false (ev_is_active (w))) 2209 if (expect_false (ev_is_active (w)))
1695 return; 2210 return;
1696 2211
1697 ev_start (EV_A_ (W)w, 1); 2212 ev_start (EV_A_ (W)w, 1);
1698 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2213 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1699} 2214}
1700 2215
1701void 2216void
1702ev_child_stop (EV_P_ ev_child *w) 2217ev_child_stop (EV_P_ ev_child *w)
1703{ 2218{
1704 ev_clear_pending (EV_A_ (W)w); 2219 clear_pending (EV_A_ (W)w);
1705 if (expect_false (!ev_is_active (w))) 2220 if (expect_false (!ev_is_active (w)))
1706 return; 2221 return;
1707 2222
1708 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2223 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1709 ev_stop (EV_A_ (W)w); 2224 ev_stop (EV_A_ (W)w);
1710} 2225}
1711 2226
1712#if EV_STAT_ENABLE 2227#if EV_STAT_ENABLE
1713 2228
1732 if (w->wd < 0) 2247 if (w->wd < 0)
1733 { 2248 {
1734 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2249 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1735 2250
1736 /* monitor some parent directory for speedup hints */ 2251 /* monitor some parent directory for speedup hints */
2252 /* note that exceeding the hardcoded limit is not a correctness issue, */
2253 /* but an efficiency issue only */
1737 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2254 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1738 { 2255 {
1739 char path [4096]; 2256 char path [4096];
1740 strcpy (path, w->path); 2257 strcpy (path, w->path);
1741 2258
1945} 2462}
1946 2463
1947void 2464void
1948ev_stat_stop (EV_P_ ev_stat *w) 2465ev_stat_stop (EV_P_ ev_stat *w)
1949{ 2466{
1950 ev_clear_pending (EV_A_ (W)w); 2467 clear_pending (EV_A_ (W)w);
1951 if (expect_false (!ev_is_active (w))) 2468 if (expect_false (!ev_is_active (w)))
1952 return; 2469 return;
1953 2470
1954#if EV_USE_INOTIFY 2471#if EV_USE_INOTIFY
1955 infy_del (EV_A_ w); 2472 infy_del (EV_A_ w);
1958 2475
1959 ev_stop (EV_A_ (W)w); 2476 ev_stop (EV_A_ (W)w);
1960} 2477}
1961#endif 2478#endif
1962 2479
2480#if EV_IDLE_ENABLE
1963void 2481void
1964ev_idle_start (EV_P_ ev_idle *w) 2482ev_idle_start (EV_P_ ev_idle *w)
1965{ 2483{
1966 if (expect_false (ev_is_active (w))) 2484 if (expect_false (ev_is_active (w)))
1967 return; 2485 return;
1968 2486
2487 pri_adjust (EV_A_ (W)w);
2488
2489 {
2490 int active = ++idlecnt [ABSPRI (w)];
2491
2492 ++idleall;
1969 ev_start (EV_A_ (W)w, ++idlecnt); 2493 ev_start (EV_A_ (W)w, active);
2494
1970 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2495 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1971 idles [idlecnt - 1] = w; 2496 idles [ABSPRI (w)][active - 1] = w;
2497 }
1972} 2498}
1973 2499
1974void 2500void
1975ev_idle_stop (EV_P_ ev_idle *w) 2501ev_idle_stop (EV_P_ ev_idle *w)
1976{ 2502{
1977 ev_clear_pending (EV_A_ (W)w); 2503 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 2504 if (expect_false (!ev_is_active (w)))
1979 return; 2505 return;
1980 2506
1981 { 2507 {
1982 int active = ((W)w)->active; 2508 int active = ev_active (w);
1983 idles [active - 1] = idles [--idlecnt]; 2509
1984 ((W)idles [active - 1])->active = active; 2510 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2511 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2512
2513 ev_stop (EV_A_ (W)w);
2514 --idleall;
1985 } 2515 }
1986
1987 ev_stop (EV_A_ (W)w);
1988} 2516}
2517#endif
1989 2518
1990void 2519void
1991ev_prepare_start (EV_P_ ev_prepare *w) 2520ev_prepare_start (EV_P_ ev_prepare *w)
1992{ 2521{
1993 if (expect_false (ev_is_active (w))) 2522 if (expect_false (ev_is_active (w)))
1999} 2528}
2000 2529
2001void 2530void
2002ev_prepare_stop (EV_P_ ev_prepare *w) 2531ev_prepare_stop (EV_P_ ev_prepare *w)
2003{ 2532{
2004 ev_clear_pending (EV_A_ (W)w); 2533 clear_pending (EV_A_ (W)w);
2005 if (expect_false (!ev_is_active (w))) 2534 if (expect_false (!ev_is_active (w)))
2006 return; 2535 return;
2007 2536
2008 { 2537 {
2009 int active = ((W)w)->active; 2538 int active = ev_active (w);
2539
2010 prepares [active - 1] = prepares [--preparecnt]; 2540 prepares [active - 1] = prepares [--preparecnt];
2011 ((W)prepares [active - 1])->active = active; 2541 ev_active (prepares [active - 1]) = active;
2012 } 2542 }
2013 2543
2014 ev_stop (EV_A_ (W)w); 2544 ev_stop (EV_A_ (W)w);
2015} 2545}
2016 2546
2026} 2556}
2027 2557
2028void 2558void
2029ev_check_stop (EV_P_ ev_check *w) 2559ev_check_stop (EV_P_ ev_check *w)
2030{ 2560{
2031 ev_clear_pending (EV_A_ (W)w); 2561 clear_pending (EV_A_ (W)w);
2032 if (expect_false (!ev_is_active (w))) 2562 if (expect_false (!ev_is_active (w)))
2033 return; 2563 return;
2034 2564
2035 { 2565 {
2036 int active = ((W)w)->active; 2566 int active = ev_active (w);
2567
2037 checks [active - 1] = checks [--checkcnt]; 2568 checks [active - 1] = checks [--checkcnt];
2038 ((W)checks [active - 1])->active = active; 2569 ev_active (checks [active - 1]) = active;
2039 } 2570 }
2040 2571
2041 ev_stop (EV_A_ (W)w); 2572 ev_stop (EV_A_ (W)w);
2042} 2573}
2043 2574
2044#if EV_EMBED_ENABLE 2575#if EV_EMBED_ENABLE
2045void noinline 2576void noinline
2046ev_embed_sweep (EV_P_ ev_embed *w) 2577ev_embed_sweep (EV_P_ ev_embed *w)
2047{ 2578{
2048 ev_loop (w->loop, EVLOOP_NONBLOCK); 2579 ev_loop (w->other, EVLOOP_NONBLOCK);
2049} 2580}
2050 2581
2051static void 2582static void
2052embed_cb (EV_P_ ev_io *io, int revents) 2583embed_io_cb (EV_P_ ev_io *io, int revents)
2053{ 2584{
2054 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2585 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2055 2586
2056 if (ev_cb (w)) 2587 if (ev_cb (w))
2057 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2588 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2058 else 2589 else
2059 ev_embed_sweep (loop, w); 2590 ev_loop (w->other, EVLOOP_NONBLOCK);
2060} 2591}
2592
2593static void
2594embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2595{
2596 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2597
2598 {
2599 struct ev_loop *loop = w->other;
2600
2601 while (fdchangecnt)
2602 {
2603 fd_reify (EV_A);
2604 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2605 }
2606 }
2607}
2608
2609#if 0
2610static void
2611embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2612{
2613 ev_idle_stop (EV_A_ idle);
2614}
2615#endif
2061 2616
2062void 2617void
2063ev_embed_start (EV_P_ ev_embed *w) 2618ev_embed_start (EV_P_ ev_embed *w)
2064{ 2619{
2065 if (expect_false (ev_is_active (w))) 2620 if (expect_false (ev_is_active (w)))
2066 return; 2621 return;
2067 2622
2068 { 2623 {
2069 struct ev_loop *loop = w->loop; 2624 struct ev_loop *loop = w->other;
2070 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2625 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2071 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2626 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2072 } 2627 }
2073 2628
2074 ev_set_priority (&w->io, ev_priority (w)); 2629 ev_set_priority (&w->io, ev_priority (w));
2075 ev_io_start (EV_A_ &w->io); 2630 ev_io_start (EV_A_ &w->io);
2076 2631
2632 ev_prepare_init (&w->prepare, embed_prepare_cb);
2633 ev_set_priority (&w->prepare, EV_MINPRI);
2634 ev_prepare_start (EV_A_ &w->prepare);
2635
2636 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2637
2077 ev_start (EV_A_ (W)w, 1); 2638 ev_start (EV_A_ (W)w, 1);
2078} 2639}
2079 2640
2080void 2641void
2081ev_embed_stop (EV_P_ ev_embed *w) 2642ev_embed_stop (EV_P_ ev_embed *w)
2082{ 2643{
2083 ev_clear_pending (EV_A_ (W)w); 2644 clear_pending (EV_A_ (W)w);
2084 if (expect_false (!ev_is_active (w))) 2645 if (expect_false (!ev_is_active (w)))
2085 return; 2646 return;
2086 2647
2087 ev_io_stop (EV_A_ &w->io); 2648 ev_io_stop (EV_A_ &w->io);
2649 ev_prepare_stop (EV_A_ &w->prepare);
2088 2650
2089 ev_stop (EV_A_ (W)w); 2651 ev_stop (EV_A_ (W)w);
2090} 2652}
2091#endif 2653#endif
2092 2654
2103} 2665}
2104 2666
2105void 2667void
2106ev_fork_stop (EV_P_ ev_fork *w) 2668ev_fork_stop (EV_P_ ev_fork *w)
2107{ 2669{
2108 ev_clear_pending (EV_A_ (W)w); 2670 clear_pending (EV_A_ (W)w);
2109 if (expect_false (!ev_is_active (w))) 2671 if (expect_false (!ev_is_active (w)))
2110 return; 2672 return;
2111 2673
2112 { 2674 {
2113 int active = ((W)w)->active; 2675 int active = ev_active (w);
2676
2114 forks [active - 1] = forks [--forkcnt]; 2677 forks [active - 1] = forks [--forkcnt];
2115 ((W)forks [active - 1])->active = active; 2678 ev_active (forks [active - 1]) = active;
2116 } 2679 }
2117 2680
2118 ev_stop (EV_A_ (W)w); 2681 ev_stop (EV_A_ (W)w);
2682}
2683#endif
2684
2685#if EV_ASYNC_ENABLE
2686void
2687ev_async_start (EV_P_ ev_async *w)
2688{
2689 if (expect_false (ev_is_active (w)))
2690 return;
2691
2692 evpipe_init (EV_A);
2693
2694 ev_start (EV_A_ (W)w, ++asynccnt);
2695 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2696 asyncs [asynccnt - 1] = w;
2697}
2698
2699void
2700ev_async_stop (EV_P_ ev_async *w)
2701{
2702 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w)))
2704 return;
2705
2706 {
2707 int active = ev_active (w);
2708
2709 asyncs [active - 1] = asyncs [--asynccnt];
2710 ev_active (asyncs [active - 1]) = active;
2711 }
2712
2713 ev_stop (EV_A_ (W)w);
2714}
2715
2716void
2717ev_async_send (EV_P_ ev_async *w)
2718{
2719 w->sent = 1;
2720 evpipe_write (EV_A_ &gotasync);
2119} 2721}
2120#endif 2722#endif
2121 2723
2122/*****************************************************************************/ 2724/*****************************************************************************/
2123 2725
2181 ev_timer_set (&once->to, timeout, 0.); 2783 ev_timer_set (&once->to, timeout, 0.);
2182 ev_timer_start (EV_A_ &once->to); 2784 ev_timer_start (EV_A_ &once->to);
2183 } 2785 }
2184} 2786}
2185 2787
2788#if EV_MULTIPLICITY
2789 #include "ev_wrap.h"
2790#endif
2791
2186#ifdef __cplusplus 2792#ifdef __cplusplus
2187} 2793}
2188#endif 2794#endif
2189 2795

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines