ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.157 by root, Wed Nov 28 20:58:32 2007 UTC vs.
Revision 1.364 by root, Sun Oct 24 21:51:03 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
65# endif 85# endif
66 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
73# endif 103# endif
74 104
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
78# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
81# endif 112# endif
82 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
89# endif 121# endif
90 122
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
94# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
97# endif 130# endif
98 131
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
105# endif 139# endif
106 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
107#endif 159#endif
108 160
109#include <math.h> 161#include <math.h>
110#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
111#include <fcntl.h> 164#include <fcntl.h>
112#include <stddef.h> 165#include <stddef.h>
113 166
114#include <stdio.h> 167#include <stdio.h>
115 168
116#include <assert.h> 169#include <assert.h>
117#include <errno.h> 170#include <errno.h>
118#include <sys/types.h> 171#include <sys/types.h>
119#include <time.h> 172#include <time.h>
173#include <limits.h>
120 174
121#include <signal.h> 175#include <signal.h>
122 176
123#ifdef EV_H 177#ifdef EV_H
124# include EV_H 178# include EV_H
125#else 179#else
126# include "ev.h" 180# include "ev.h"
127#endif 181#endif
182
183EV_CPP(extern "C" {)
128 184
129#ifndef _WIN32 185#ifndef _WIN32
130# include <sys/time.h> 186# include <sys/time.h>
131# include <sys/wait.h> 187# include <sys/wait.h>
132# include <unistd.h> 188# include <unistd.h>
133#else 189#else
190# include <io.h>
134# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 192# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
138# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
139#endif 242# endif
140 243#endif
141/**/
142 244
143#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
144# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
145#endif 251#endif
146 252
147#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
149#endif 263#endif
150 264
151#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 267#endif
154 268
155#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
156# ifdef _WIN32 270# ifdef _WIN32
157# define EV_USE_POLL 0 271# define EV_USE_POLL 0
158# else 272# else
159# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 274# endif
161#endif 275#endif
162 276
163#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
164# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
165#endif 283#endif
166 284
167#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
169#endif 287#endif
171#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 290# define EV_USE_PORT 0
173#endif 291#endif
174 292
175#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
176# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
298# endif
177#endif 299#endif
178 300
179#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 312# else
183# define EV_PID_HASHSIZE 16 313# define EV_USE_EVENTFD 0
184# endif 314# endif
185#endif 315#endif
186 316
187#ifndef EV_INOTIFY_HASHSIZE 317#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 319# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 320# else
191# define EV_INOTIFY_HASHSIZE 16 321# define EV_USE_SIGNALFD 0
192# endif 322# endif
193#endif 323#endif
194 324
195/**/ 325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
196 364
197#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
200#endif 368#endif
202#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
205#endif 373#endif
206 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
207#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 397# include <winsock.h>
209#endif 398#endif
210 399
211#if !EV_STAT_ENABLE 400#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
213#endif 405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
214 415
215#if EV_USE_INOTIFY 416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
217#endif 436#endif
218 437
219/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 455
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461
225#if __GNUC__ >= 3 462#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 465#else
236# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
240#endif 471#endif
241 472
242#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
244 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
247 490
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
250 493
251typedef ev_watcher *W; 494typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
254 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
256 520
257#ifdef _WIN32 521#ifdef _WIN32
258# include "ev_win32.c" 522# include "ev_win32.c"
259#endif 523#endif
260 524
261/*****************************************************************************/ 525/*****************************************************************************/
262 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
263static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
264 578
265void 579void
266ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
267{ 581{
268 syserr_cb = cb; 582 syserr_cb = cb;
269} 583}
270 584
271static void noinline 585static void noinline
272syserr (const char *msg) 586ev_syserr (const char *msg)
273{ 587{
274 if (!msg) 588 if (!msg)
275 msg = "(libev) system error"; 589 msg = "(libev) system error";
276 590
277 if (syserr_cb) 591 if (syserr_cb)
278 syserr_cb (msg); 592 syserr_cb (msg);
279 else 593 else
280 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
281 perror (msg); 603 perror (msg);
604#endif
282 abort (); 605 abort ();
283 } 606 }
284} 607}
285 608
609static void *
610ev_realloc_emul (void *ptr, long size)
611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625#endif
626}
627
286static void *(*alloc)(void *ptr, long size); 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 629
288void 630void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 631ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 632{
291 alloc = cb; 633 alloc = cb;
292} 634}
293 635
294inline_speed void * 636inline_speed void *
295ev_realloc (void *ptr, long size) 637ev_realloc (void *ptr, long size)
296{ 638{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 639 ptr = alloc (ptr, size);
298 640
299 if (!ptr && size) 641 if (!ptr && size)
300 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
302 abort (); 648 abort ();
303 } 649 }
304 650
305 return ptr; 651 return ptr;
306} 652}
308#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
310 656
311/*****************************************************************************/ 657/*****************************************************************************/
312 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
313typedef struct 663typedef struct
314{ 664{
315 WL head; 665 WL head;
316 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
318#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
319 SOCKET handle; 674 SOCKET handle;
320#endif 675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
321} ANFD; 679} ANFD;
322 680
681/* stores the pending event set for a given watcher */
323typedef struct 682typedef struct
324{ 683{
325 W w; 684 W w;
326 int events; 685 int events; /* the pending event set for the given watcher */
327} ANPENDING; 686} ANPENDING;
328 687
329#if EV_USE_INOTIFY 688#if EV_USE_INOTIFY
689/* hash table entry per inotify-id */
330typedef struct 690typedef struct
331{ 691{
332 WL head; 692 WL head;
333} ANFS; 693} ANFS;
694#endif
695
696/* Heap Entry */
697#if EV_HEAP_CACHE_AT
698 /* a heap element */
699 typedef struct {
700 ev_tstamp at;
701 WT w;
702 } ANHE;
703
704 #define ANHE_w(he) (he).w /* access watcher, read-write */
705 #define ANHE_at(he) (he).at /* access cached at, read-only */
706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
707#else
708 /* a heap element */
709 typedef WT ANHE;
710
711 #define ANHE_w(he) (he)
712 #define ANHE_at(he) (he)->at
713 #define ANHE_at_cache(he)
334#endif 714#endif
335 715
336#if EV_MULTIPLICITY 716#if EV_MULTIPLICITY
337 717
338 struct ev_loop 718 struct ev_loop
357 737
358 static int ev_default_loop_ptr; 738 static int ev_default_loop_ptr;
359 739
360#endif 740#endif
361 741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
753
362/*****************************************************************************/ 754/*****************************************************************************/
363 755
756#ifndef EV_HAVE_EV_TIME
364ev_tstamp 757ev_tstamp
365ev_time (void) 758ev_time (void)
366{ 759{
367#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
368 struct timespec ts; 763 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 766 }
767#endif
768
372 struct timeval tv; 769 struct timeval tv;
373 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 772}
773#endif
377 774
378ev_tstamp inline_size 775inline_size ev_tstamp
379get_clock (void) 776get_clock (void)
380{ 777{
381#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
383 { 780 {
396{ 793{
397 return ev_rt_now; 794 return ev_rt_now;
398} 795}
399#endif 796#endif
400 797
401#define array_roundsize(type,n) (((n) | 4) & ~3) 798void
799ev_sleep (ev_tstamp delay)
800{
801 if (delay > 0.)
802 {
803#if EV_USE_NANOSLEEP
804 struct timespec ts;
805
806 EV_TS_SET (ts, delay);
807 nanosleep (&ts, 0);
808#elif defined(_WIN32)
809 Sleep ((unsigned long)(delay * 1e3));
810#else
811 struct timeval tv;
812
813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
814 /* something not guaranteed by newer posix versions, but guaranteed */
815 /* by older ones */
816 EV_TV_SET (tv, delay);
817 select (0, 0, 0, 0, &tv);
818#endif
819 }
820}
821
822/*****************************************************************************/
823
824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
825
826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
829array_nextsize (int elem, int cur, int cnt)
830{
831 int ncur = cur + 1;
832
833 do
834 ncur <<= 1;
835 while (cnt > ncur);
836
837 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
838 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
839 {
840 ncur *= elem;
841 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
842 ncur = ncur - sizeof (void *) * 4;
843 ncur /= elem;
844 }
845
846 return ncur;
847}
848
849static noinline void *
850array_realloc (int elem, void *base, int *cur, int cnt)
851{
852 *cur = array_nextsize (elem, *cur, cnt);
853 return ev_realloc (base, elem * *cur);
854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 858
403#define array_needsize(type,base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 860 if (expect_false ((cnt) > (cur))) \
405 { \ 861 { \
406 int newcnt = cur; \ 862 int ocur_ = (cur); \
407 do \ 863 (base) = (type *)array_realloc \
408 { \ 864 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 865 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 866 }
417 867
868#if 0
418#define array_slim(type,stem) \ 869#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 870 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 871 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 872 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 873 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 875 }
876#endif
425 877
426#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 880
429/*****************************************************************************/ 881/*****************************************************************************/
882
883/* dummy callback for pending events */
884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
886{
887}
430 888
431void noinline 889void noinline
432ev_feed_event (EV_P_ void *w, int revents) 890ev_feed_event (EV_P_ void *w, int revents)
433{ 891{
434 W w_ = (W)w; 892 W w_ = (W)w;
893 int pri = ABSPRI (w_);
435 894
436 if (expect_false (w_->pending)) 895 if (expect_false (w_->pending))
896 pendings [pri][w_->pending - 1].events |= revents;
897 else
437 { 898 {
899 w_->pending = ++pendingcnt [pri];
900 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
901 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 902 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 903 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 904}
447 905
448void inline_size 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 923{
451 int i; 924 int i;
452 925
453 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
455} 928}
456 929
457/*****************************************************************************/ 930/*****************************************************************************/
458 931
459void inline_size 932inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 933fd_event_nocheck (EV_P_ int fd, int revents)
474{ 934{
475 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
476 ev_io *w; 936 ev_io *w;
477 937
478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
482 if (ev) 942 if (ev)
483 ev_feed_event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
484 } 944 }
485} 945}
486 946
947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
953
954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
487void 958void
488ev_feed_fd_event (EV_P_ int fd, int revents) 959ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 960{
961 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 962 fd_event_nocheck (EV_A_ fd, revents);
491} 963}
492 964
493void inline_size 965/* make sure the external fd watch events are in-sync */
966/* with the kernel/libev internal state */
967inline_size void
494fd_reify (EV_P) 968fd_reify (EV_P)
495{ 969{
496 int i; 970 int i;
497 971
498 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
499 { 973 {
500 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
502 ev_io *w; 976 ev_io *w;
503 977
504 int events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
505 980
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 981 anfd->reify = 0;
507 events |= w->events;
508 982
509#if EV_SELECT_IS_WINSOCKET 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
510 if (events) 984 if (o_reify & EV__IOFDSET)
511 { 985 {
512 unsigned long argp; 986 unsigned long arg;
513 anfd->handle = _get_osfhandle (fd); 987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
515 } 990 }
516#endif 991#endif
517 992
518 anfd->reify = 0; 993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
994 {
995 anfd->events = 0;
519 996
997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
520 backend_modify (EV_A_ fd, anfd->events, events); 1005 backend_modify (EV_A_ fd, o_events, anfd->events);
521 anfd->events = events;
522 } 1006 }
523 1007
524 fdchangecnt = 0; 1008 fdchangecnt = 0;
525} 1009}
526 1010
527void inline_size 1011/* something about the given fd changed */
1012inline_size void
528fd_change (EV_P_ int fd) 1013fd_change (EV_P_ int fd, int flags)
529{ 1014{
530 if (expect_false (anfds [fd].reify)) 1015 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 1016 anfds [fd].reify |= flags;
534 1017
1018 if (expect_true (!reify))
1019 {
535 ++fdchangecnt; 1020 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
1023 }
538} 1024}
539 1025
540void inline_speed 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
541fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
542{ 1029{
543 ev_io *w; 1030 ev_io *w;
544 1031
545 while ((w = (ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 1036 }
550} 1037}
551 1038
552int inline_size 1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
553fd_valid (int fd) 1041fd_valid (int fd)
554{ 1042{
555#ifdef _WIN32 1043#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
557#else 1045#else
558 return fcntl (fd, F_GETFD) != -1; 1046 return fcntl (fd, F_GETFD) != -1;
559#endif 1047#endif
560} 1048}
561 1049
565{ 1053{
566 int fd; 1054 int fd;
567 1055
568 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 1057 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
572} 1060}
573 1061
574/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 1063static void noinline
579 1067
580 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
581 if (anfds [fd].events) 1069 if (anfds [fd].events)
582 { 1070 {
583 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
584 return; 1072 break;
585 } 1073 }
586} 1074}
587 1075
588/* usually called after fork if backend needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
589static void noinline 1077static void noinline
593 1081
594 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 1083 if (anfds [fd].events)
596 { 1084 {
597 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 1086 anfds [fd].emask = 0;
1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
599 } 1088 }
600} 1089}
601 1090
602/*****************************************************************************/ 1091/* used to prepare libev internal fd's */
603 1092/* this is not fork-safe */
604void inline_speed 1093inline_speed void
605upheap (WT *heap, int k)
606{
607 WT w = heap [k];
608
609 while (k && heap [k >> 1]->at > w->at)
610 {
611 heap [k] = heap [k >> 1];
612 ((W)heap [k])->active = k + 1;
613 k >>= 1;
614 }
615
616 heap [k] = w;
617 ((W)heap [k])->active = k + 1;
618
619}
620
621void inline_speed
622downheap (WT *heap, int N, int k)
623{
624 WT w = heap [k];
625
626 while (k < (N >> 1))
627 {
628 int j = k << 1;
629
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break;
635
636 heap [k] = heap [j];
637 ((W)heap [k])->active = k + 1;
638 k = j;
639 }
640
641 heap [k] = w;
642 ((W)heap [k])->active = k + 1;
643}
644
645void inline_size
646adjustheap (WT *heap, int N, int k)
647{
648 upheap (heap, k);
649 downheap (heap, N, k);
650}
651
652/*****************************************************************************/
653
654typedef struct
655{
656 WL head;
657 sig_atomic_t volatile gotsig;
658} ANSIG;
659
660static ANSIG *signals;
661static int signalmax;
662
663static int sigpipe [2];
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666
667void inline_size
668signals_init (ANSIG *base, int count)
669{
670 while (count--)
671 {
672 base->head = 0;
673 base->gotsig = 0;
674
675 ++base;
676 }
677}
678
679static void
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size
731fd_intern (int fd) 1094fd_intern (int fd)
732{ 1095{
733#ifdef _WIN32 1096#ifdef _WIN32
734 int arg = 1; 1097 unsigned long arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
736#else 1099#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC); 1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 1101 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 1102#endif
740} 1103}
741 1104
1105/*****************************************************************************/
1106
1107/*
1108 * the heap functions want a real array index. array index 0 is guaranteed to not
1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1110 * the branching factor of the d-tree.
1111 */
1112
1113/*
1114 * at the moment we allow libev the luxury of two heaps,
1115 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1116 * which is more cache-efficient.
1117 * the difference is about 5% with 50000+ watchers.
1118 */
1119#if EV_USE_4HEAP
1120
1121#define DHEAP 4
1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1124#define UPHEAP_DONE(p,k) ((p) == (k))
1125
1126/* away from the root */
1127inline_speed void
1128downheap (ANHE *heap, int N, int k)
1129{
1130 ANHE he = heap [k];
1131 ANHE *E = heap + N + HEAP0;
1132
1133 for (;;)
1134 {
1135 ev_tstamp minat;
1136 ANHE *minpos;
1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1138
1139 /* find minimum child */
1140 if (expect_true (pos + DHEAP - 1 < E))
1141 {
1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else if (pos < E)
1148 {
1149 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else
1155 break;
1156
1157 if (ANHE_at (he) <= minat)
1158 break;
1159
1160 heap [k] = *minpos;
1161 ev_active (ANHE_w (*minpos)) = k;
1162
1163 k = minpos - heap;
1164 }
1165
1166 heap [k] = he;
1167 ev_active (ANHE_w (he)) = k;
1168}
1169
1170#else /* 4HEAP */
1171
1172#define HEAP0 1
1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
1175
1176/* away from the root */
1177inline_speed void
1178downheap (ANHE *heap, int N, int k)
1179{
1180 ANHE he = heap [k];
1181
1182 for (;;)
1183 {
1184 int c = k << 1;
1185
1186 if (c >= N + HEAP0)
1187 break;
1188
1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1190 ? 1 : 0;
1191
1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
1193 break;
1194
1195 heap [k] = heap [c];
1196 ev_active (ANHE_w (heap [k])) = k;
1197
1198 k = c;
1199 }
1200
1201 heap [k] = he;
1202 ev_active (ANHE_w (he)) = k;
1203}
1204#endif
1205
1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
1230adjustheap (ANHE *heap, int N, int k)
1231{
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1233 upheap (heap, k);
1234 else
1235 downheap (heap, N, k);
1236}
1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
1248}
1249
1250/*****************************************************************************/
1251
1252/* associate signal watchers to a signal signal */
1253typedef struct
1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
1259 WL head;
1260} ANSIG;
1261
1262static ANSIG signals [EV_NSIG - 1];
1263
1264/*****************************************************************************/
1265
1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1267
742static void noinline 1268static void noinline
743siginit (EV_P) 1269evpipe_init (EV_P)
744{ 1270{
1271 if (!ev_is_active (&pipe_w))
1272 {
1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
1279 {
1280 evpipe [0] = -1;
1281 fd_intern (evfd); /* doing it twice doesn't hurt */
1282 ev_io_set (&pipe_w, evfd, EV_READ);
1283 }
1284 else
1285# endif
1286 {
1287 while (pipe (evpipe))
1288 ev_syserr ("(libev) error creating signal/async pipe");
1289
745 fd_intern (sigpipe [0]); 1290 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1291 fd_intern (evpipe [1]);
1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1293 }
747 1294
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1295 ev_io_start (EV_A_ &pipe_w);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1297 }
1298}
1299
1300inline_size void
1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1302{
1303 if (!*flag)
1304 {
1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1307
1308 *flag = 1;
1309
1310#if EV_USE_EVENTFD
1311 if (evfd >= 0)
1312 {
1313 uint64_t counter = 1;
1314 write (evfd, &counter, sizeof (uint64_t));
1315 }
1316 else
1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1323 write (evpipe [1], &dummy, 1);
1324
1325 errno = old_errno;
1326 }
1327}
1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
1331static void
1332pipecb (EV_P_ ev_io *iow, int revents)
1333{
1334 int i;
1335
1336#if EV_USE_EVENTFD
1337 if (evfd >= 0)
1338 {
1339 uint64_t counter;
1340 read (evfd, &counter, sizeof (uint64_t));
1341 }
1342 else
1343#endif
1344 {
1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1347 read (evpipe [0], &dummy, 1);
1348 }
1349
1350 if (sig_pending)
1351 {
1352 sig_pending = 0;
1353
1354 for (i = EV_NSIG - 1; i--; )
1355 if (expect_false (signals [i].pending))
1356 ev_feed_signal_event (EV_A_ i + 1);
1357 }
1358
1359#if EV_ASYNC_ENABLE
1360 if (async_pending)
1361 {
1362 async_pending = 0;
1363
1364 for (i = asynccnt; i--; )
1365 if (asyncs [i]->sent)
1366 {
1367 asyncs [i]->sent = 0;
1368 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1369 }
1370 }
1371#endif
751} 1372}
752 1373
753/*****************************************************************************/ 1374/*****************************************************************************/
754 1375
755static ev_child *childs [EV_PID_HASHSIZE]; 1376static void
1377ev_sighandler (int signum)
1378{
1379#if EV_MULTIPLICITY
1380 EV_P = signals [signum - 1].loop;
1381#endif
756 1382
757#ifndef _WIN32 1383#ifdef _WIN32
1384 signal (signum, ev_sighandler);
1385#endif
1386
1387 signals [signum - 1].pending = 1;
1388 evpipe_write (EV_A_ &sig_pending);
1389}
1390
1391void noinline
1392ev_feed_signal_event (EV_P_ int signum)
1393{
1394 WL w;
1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
1401#if EV_MULTIPLICITY
1402 /* it is permissible to try to feed a signal to the wrong loop */
1403 /* or, likely more useful, feeding a signal nobody is waiting for */
1404
1405 if (expect_false (signals [signum].loop != EV_A))
1406 return;
1407#endif
1408
1409 signals [signum].pending = 0;
1410
1411 for (w = signals [signum].head; w; w = w->next)
1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1413}
1414
1415#if EV_USE_SIGNALFD
1416static void
1417sigfdcb (EV_P_ ev_io *iow, int revents)
1418{
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
1430 break;
1431 }
1432}
1433#endif
1434
1435#endif
1436
1437/*****************************************************************************/
1438
1439#if EV_CHILD_ENABLE
1440static WL childs [EV_PID_HASHSIZE];
758 1441
759static ev_signal childev; 1442static ev_signal childev;
760 1443
761void inline_speed 1444#ifndef WIFCONTINUED
1445# define WIFCONTINUED(status) 0
1446#endif
1447
1448/* handle a single child status event */
1449inline_speed void
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1450child_reap (EV_P_ int chain, int pid, int status)
763{ 1451{
764 ev_child *w; 1452 ev_child *w;
1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1454
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1456 {
767 if (w->pid == pid || !w->pid) 1457 if ((w->pid == pid || !w->pid)
1458 && (!traced || (w->flags & 1)))
768 { 1459 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1461 w->rpid = pid;
771 w->rstatus = status; 1462 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1463 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1464 }
1465 }
774} 1466}
775 1467
776#ifndef WCONTINUED 1468#ifndef WCONTINUED
777# define WCONTINUED 0 1469# define WCONTINUED 0
778#endif 1470#endif
779 1471
1472/* called on sigchld etc., calls waitpid */
780static void 1473static void
781childcb (EV_P_ ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
782{ 1475{
783 int pid, status; 1476 int pid, status;
784 1477
787 if (!WCONTINUED 1480 if (!WCONTINUED
788 || errno != EINVAL 1481 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1482 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1483 return;
791 1484
792 /* make sure we are called again until all childs have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1486 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1488
796 child_reap (EV_A_ sw, pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1490 if ((EV_PID_HASHSIZE) > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1492}
800 1493
801#endif 1494#endif
802 1495
803/*****************************************************************************/ 1496/*****************************************************************************/
804 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
805#if EV_USE_PORT 1501#if EV_USE_PORT
806# include "ev_port.c" 1502# include "ev_port.c"
807#endif 1503#endif
808#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
809# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
865 /* kqueue is borked on everything but netbsd apparently */ 1561 /* kqueue is borked on everything but netbsd apparently */
866 /* it usually doesn't work correctly on anything but sockets and pipes */ 1562 /* it usually doesn't work correctly on anything but sockets and pipes */
867 flags &= ~EVBACKEND_KQUEUE; 1563 flags &= ~EVBACKEND_KQUEUE;
868#endif 1564#endif
869#ifdef __APPLE__ 1565#ifdef __APPLE__
870 // flags &= ~EVBACKEND_KQUEUE; for documentation 1566 /* only select works correctly on that "unix-certified" platform */
871 flags &= ~EVBACKEND_POLL; 1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
872#endif 1572#endif
873 1573
874 return flags; 1574 return flags;
875} 1575}
876 1576
877unsigned int 1577unsigned int
878ev_embeddable_backends (void) 1578ev_embeddable_backends (void)
879{ 1579{
880 return EVBACKEND_EPOLL 1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1581
882 | EVBACKEND_PORT; 1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1584 flags &= ~EVBACKEND_EPOLL;
1585
1586 return flags;
883} 1587}
884 1588
885unsigned int 1589unsigned int
886ev_backend (EV_P) 1590ev_backend (EV_P)
887{ 1591{
888 return backend; 1592 return backend;
889} 1593}
890 1594
1595#if EV_FEATURE_API
1596unsigned int
1597ev_iteration (EV_P)
1598{
1599 return loop_count;
1600}
1601
1602unsigned int
1603ev_depth (EV_P)
1604{
1605 return loop_depth;
1606}
1607
1608void
1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1610{
1611 io_blocktime = interval;
1612}
1613
1614void
1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1616{
1617 timeout_blocktime = interval;
1618}
1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
891static void noinline 1645static void noinline
892loop_init (EV_P_ unsigned int flags) 1646loop_init (EV_P_ unsigned int flags)
893{ 1647{
894 if (!backend) 1648 if (!backend)
895 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
896#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
897 { 1662 {
898 struct timespec ts; 1663 struct timespec ts;
1664
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1666 have_monotonic = 1;
901 } 1667 }
902#endif 1668#endif
903 1669
904 ev_rt_now = ev_time (); 1670 /* pid check not overridable via env */
905 mn_now = get_clock (); 1671#ifndef _WIN32
906 now_floor = mn_now; 1672 if (flags & EVFLAG_FORKCHECK)
907 rtmn_diff = ev_rt_now - mn_now; 1673 curpid = getpid ();
1674#endif
908 1675
909 if (!(flags & EVFLAG_NOENV) 1676 if (!(flags & EVFLAG_NOENV)
910 && !enable_secure () 1677 && !enable_secure ()
911 && getenv ("LIBEV_FLAGS")) 1678 && getenv ("LIBEV_FLAGS"))
912 flags = atoi (getenv ("LIBEV_FLAGS")); 1679 flags = atoi (getenv ("LIBEV_FLAGS"));
913 1680
1681 ev_rt_now = ev_time ();
1682 mn_now = get_clock ();
1683 now_floor = mn_now;
1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1688
1689 io_blocktime = 0.;
1690 timeout_blocktime = 0.;
1691 backend = 0;
1692 backend_fd = -1;
1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1697#if EV_USE_INOTIFY
1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1699#endif
1700#if EV_USE_SIGNALFD
1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1702#endif
1703
914 if (!(flags & 0x0000ffffUL)) 1704 if (!(flags & 0x0000ffffU))
915 flags |= ev_recommended_backends (); 1705 flags |= ev_recommended_backends ();
916 1706
917 backend = 0;
918 backend_fd = -1;
919#if EV_USE_INOTIFY 1707#if EV_USE_IOCP
920 fs_fd = -2; 1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
921#endif 1709#endif
922
923#if EV_USE_PORT 1710#if EV_USE_PORT
924 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
925#endif 1712#endif
926#if EV_USE_KQUEUE 1713#if EV_USE_KQUEUE
927 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
934#endif 1721#endif
935#if EV_USE_SELECT 1722#if EV_USE_SELECT
936 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
937#endif 1724#endif
938 1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
939 ev_init (&sigev, sigcb); 1729 ev_init (&pipe_w, pipecb);
940 ev_set_priority (&sigev, EV_MAXPRI); 1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
941 } 1732 }
942} 1733}
943 1734
944static void noinline 1735/* free up a loop structure */
1736void
945loop_destroy (EV_P) 1737ev_loop_destroy (EV_P)
946{ 1738{
947 int i; 1739 int i;
1740
1741#if EV_MULTIPLICITY
1742 /* mimic free (0) */
1743 if (!EV_A)
1744 return;
1745#endif
1746
1747#if EV_CLEANUP_ENABLE
1748 /* queue cleanup watchers (and execute them) */
1749 if (expect_false (cleanupcnt))
1750 {
1751 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1752 EV_INVOKE_PENDING;
1753 }
1754#endif
1755
1756#if EV_CHILD_ENABLE
1757 if (ev_is_active (&childev))
1758 {
1759 ev_ref (EV_A); /* child watcher */
1760 ev_signal_stop (EV_A_ &childev);
1761 }
1762#endif
1763
1764 if (ev_is_active (&pipe_w))
1765 {
1766 /*ev_ref (EV_A);*/
1767 /*ev_io_stop (EV_A_ &pipe_w);*/
1768
1769#if EV_USE_EVENTFD
1770 if (evfd >= 0)
1771 close (evfd);
1772#endif
1773
1774 if (evpipe [0] >= 0)
1775 {
1776 EV_WIN32_CLOSE_FD (evpipe [0]);
1777 EV_WIN32_CLOSE_FD (evpipe [1]);
1778 }
1779 }
1780
1781#if EV_USE_SIGNALFD
1782 if (ev_is_active (&sigfd_w))
1783 close (sigfd);
1784#endif
948 1785
949#if EV_USE_INOTIFY 1786#if EV_USE_INOTIFY
950 if (fs_fd >= 0) 1787 if (fs_fd >= 0)
951 close (fs_fd); 1788 close (fs_fd);
952#endif 1789#endif
953 1790
954 if (backend_fd >= 0) 1791 if (backend_fd >= 0)
955 close (backend_fd); 1792 close (backend_fd);
956 1793
1794#if EV_USE_IOCP
1795 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1796#endif
957#if EV_USE_PORT 1797#if EV_USE_PORT
958 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1798 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
959#endif 1799#endif
960#if EV_USE_KQUEUE 1800#if EV_USE_KQUEUE
961 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1801 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
969#if EV_USE_SELECT 1809#if EV_USE_SELECT
970 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1810 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
971#endif 1811#endif
972 1812
973 for (i = NUMPRI; i--; ) 1813 for (i = NUMPRI; i--; )
1814 {
974 array_free (pending, [i]); 1815 array_free (pending, [i]);
1816#if EV_IDLE_ENABLE
1817 array_free (idle, [i]);
1818#endif
1819 }
1820
1821 ev_free (anfds); anfds = 0; anfdmax = 0;
975 1822
976 /* have to use the microsoft-never-gets-it-right macro */ 1823 /* have to use the microsoft-never-gets-it-right macro */
1824 array_free (rfeed, EMPTY);
977 array_free (fdchange, EMPTY0); 1825 array_free (fdchange, EMPTY);
978 array_free (timer, EMPTY0); 1826 array_free (timer, EMPTY);
979#if EV_PERIODIC_ENABLE 1827#if EV_PERIODIC_ENABLE
980 array_free (periodic, EMPTY0); 1828 array_free (periodic, EMPTY);
981#endif 1829#endif
1830#if EV_FORK_ENABLE
1831 array_free (fork, EMPTY);
1832#endif
1833#if EV_CLEANUP_ENABLE
982 array_free (idle, EMPTY0); 1834 array_free (cleanup, EMPTY);
1835#endif
983 array_free (prepare, EMPTY0); 1836 array_free (prepare, EMPTY);
984 array_free (check, EMPTY0); 1837 array_free (check, EMPTY);
1838#if EV_ASYNC_ENABLE
1839 array_free (async, EMPTY);
1840#endif
985 1841
986 backend = 0; 1842 backend = 0;
987}
988 1843
1844#if EV_MULTIPLICITY
1845 if (ev_is_default_loop (EV_A))
1846#endif
1847 ev_default_loop_ptr = 0;
1848#if EV_MULTIPLICITY
1849 else
1850 ev_free (EV_A);
1851#endif
1852}
1853
1854#if EV_USE_INOTIFY
989void inline_size infy_fork (EV_P); 1855inline_size void infy_fork (EV_P);
1856#endif
990 1857
991void inline_size 1858inline_size void
992loop_fork (EV_P) 1859loop_fork (EV_P)
993{ 1860{
994#if EV_USE_PORT 1861#if EV_USE_PORT
995 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1862 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
996#endif 1863#endif
1002#endif 1869#endif
1003#if EV_USE_INOTIFY 1870#if EV_USE_INOTIFY
1004 infy_fork (EV_A); 1871 infy_fork (EV_A);
1005#endif 1872#endif
1006 1873
1007 if (ev_is_active (&sigev)) 1874 if (ev_is_active (&pipe_w))
1008 { 1875 {
1009 /* default loop */ 1876 /* this "locks" the handlers against writing to the pipe */
1877 /* while we modify the fd vars */
1878 sig_pending = 1;
1879#if EV_ASYNC_ENABLE
1880 async_pending = 1;
1881#endif
1010 1882
1011 ev_ref (EV_A); 1883 ev_ref (EV_A);
1012 ev_io_stop (EV_A_ &sigev); 1884 ev_io_stop (EV_A_ &pipe_w);
1013 close (sigpipe [0]);
1014 close (sigpipe [1]);
1015 1885
1016 while (pipe (sigpipe)) 1886#if EV_USE_EVENTFD
1017 syserr ("(libev) error creating pipe"); 1887 if (evfd >= 0)
1888 close (evfd);
1889#endif
1018 1890
1891 if (evpipe [0] >= 0)
1892 {
1893 EV_WIN32_CLOSE_FD (evpipe [0]);
1894 EV_WIN32_CLOSE_FD (evpipe [1]);
1895 }
1896
1897#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1019 siginit (EV_A); 1898 evpipe_init (EV_A);
1899 /* now iterate over everything, in case we missed something */
1900 pipecb (EV_A_ &pipe_w, EV_READ);
1901#endif
1020 } 1902 }
1021 1903
1022 postfork = 0; 1904 postfork = 0;
1023} 1905}
1906
1907#if EV_MULTIPLICITY
1908
1909struct ev_loop *
1910ev_loop_new (unsigned int flags)
1911{
1912 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1913
1914 memset (EV_A, 0, sizeof (struct ev_loop));
1915 loop_init (EV_A_ flags);
1916
1917 if (ev_backend (EV_A))
1918 return EV_A;
1919
1920 ev_free (EV_A);
1921 return 0;
1922}
1923
1924#endif /* multiplicity */
1925
1926#if EV_VERIFY
1927static void noinline
1928verify_watcher (EV_P_ W w)
1929{
1930 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1931
1932 if (w->pending)
1933 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1934}
1935
1936static void noinline
1937verify_heap (EV_P_ ANHE *heap, int N)
1938{
1939 int i;
1940
1941 for (i = HEAP0; i < N + HEAP0; ++i)
1942 {
1943 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1944 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1945 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1946
1947 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1948 }
1949}
1950
1951static void noinline
1952array_verify (EV_P_ W *ws, int cnt)
1953{
1954 while (cnt--)
1955 {
1956 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1957 verify_watcher (EV_A_ ws [cnt]);
1958 }
1959}
1960#endif
1961
1962#if EV_FEATURE_API
1963void
1964ev_verify (EV_P)
1965{
1966#if EV_VERIFY
1967 int i;
1968 WL w;
1969
1970 assert (activecnt >= -1);
1971
1972 assert (fdchangemax >= fdchangecnt);
1973 for (i = 0; i < fdchangecnt; ++i)
1974 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1975
1976 assert (anfdmax >= 0);
1977 for (i = 0; i < anfdmax; ++i)
1978 for (w = anfds [i].head; w; w = w->next)
1979 {
1980 verify_watcher (EV_A_ (W)w);
1981 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1982 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1983 }
1984
1985 assert (timermax >= timercnt);
1986 verify_heap (EV_A_ timers, timercnt);
1987
1988#if EV_PERIODIC_ENABLE
1989 assert (periodicmax >= periodiccnt);
1990 verify_heap (EV_A_ periodics, periodiccnt);
1991#endif
1992
1993 for (i = NUMPRI; i--; )
1994 {
1995 assert (pendingmax [i] >= pendingcnt [i]);
1996#if EV_IDLE_ENABLE
1997 assert (idleall >= 0);
1998 assert (idlemax [i] >= idlecnt [i]);
1999 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2000#endif
2001 }
2002
2003#if EV_FORK_ENABLE
2004 assert (forkmax >= forkcnt);
2005 array_verify (EV_A_ (W *)forks, forkcnt);
2006#endif
2007
2008#if EV_CLEANUP_ENABLE
2009 assert (cleanupmax >= cleanupcnt);
2010 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2011#endif
2012
2013#if EV_ASYNC_ENABLE
2014 assert (asyncmax >= asynccnt);
2015 array_verify (EV_A_ (W *)asyncs, asynccnt);
2016#endif
2017
2018#if EV_PREPARE_ENABLE
2019 assert (preparemax >= preparecnt);
2020 array_verify (EV_A_ (W *)prepares, preparecnt);
2021#endif
2022
2023#if EV_CHECK_ENABLE
2024 assert (checkmax >= checkcnt);
2025 array_verify (EV_A_ (W *)checks, checkcnt);
2026#endif
2027
2028# if 0
2029#if EV_CHILD_ENABLE
2030 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2031 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2032#endif
2033# endif
2034#endif
2035}
2036#endif
1024 2037
1025#if EV_MULTIPLICITY 2038#if EV_MULTIPLICITY
1026struct ev_loop * 2039struct ev_loop *
1027ev_loop_new (unsigned int flags)
1028{
1029 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1030
1031 memset (loop, 0, sizeof (struct ev_loop));
1032
1033 loop_init (EV_A_ flags);
1034
1035 if (ev_backend (EV_A))
1036 return loop;
1037
1038 return 0;
1039}
1040
1041void
1042ev_loop_destroy (EV_P)
1043{
1044 loop_destroy (EV_A);
1045 ev_free (loop);
1046}
1047
1048void
1049ev_loop_fork (EV_P)
1050{
1051 postfork = 1;
1052}
1053
1054#endif
1055
1056#if EV_MULTIPLICITY
1057struct ev_loop *
1058ev_default_loop_init (unsigned int flags)
1059#else 2040#else
1060int 2041int
2042#endif
1061ev_default_loop (unsigned int flags) 2043ev_default_loop (unsigned int flags)
1062#endif
1063{ 2044{
1064 if (sigpipe [0] == sigpipe [1])
1065 if (pipe (sigpipe))
1066 return 0;
1067
1068 if (!ev_default_loop_ptr) 2045 if (!ev_default_loop_ptr)
1069 { 2046 {
1070#if EV_MULTIPLICITY 2047#if EV_MULTIPLICITY
1071 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2048 EV_P = ev_default_loop_ptr = &default_loop_struct;
1072#else 2049#else
1073 ev_default_loop_ptr = 1; 2050 ev_default_loop_ptr = 1;
1074#endif 2051#endif
1075 2052
1076 loop_init (EV_A_ flags); 2053 loop_init (EV_A_ flags);
1077 2054
1078 if (ev_backend (EV_A)) 2055 if (ev_backend (EV_A))
1079 { 2056 {
1080 siginit (EV_A); 2057#if EV_CHILD_ENABLE
1081
1082#ifndef _WIN32
1083 ev_signal_init (&childev, childcb, SIGCHLD); 2058 ev_signal_init (&childev, childcb, SIGCHLD);
1084 ev_set_priority (&childev, EV_MAXPRI); 2059 ev_set_priority (&childev, EV_MAXPRI);
1085 ev_signal_start (EV_A_ &childev); 2060 ev_signal_start (EV_A_ &childev);
1086 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2061 ev_unref (EV_A); /* child watcher should not keep loop alive */
1087#endif 2062#endif
1092 2067
1093 return ev_default_loop_ptr; 2068 return ev_default_loop_ptr;
1094} 2069}
1095 2070
1096void 2071void
1097ev_default_destroy (void) 2072ev_loop_fork (EV_P)
1098{ 2073{
1099#if EV_MULTIPLICITY 2074 postfork = 1; /* must be in line with ev_default_fork */
1100 struct ev_loop *loop = ev_default_loop_ptr;
1101#endif
1102
1103#ifndef _WIN32
1104 ev_ref (EV_A); /* child watcher */
1105 ev_signal_stop (EV_A_ &childev);
1106#endif
1107
1108 ev_ref (EV_A); /* signal watcher */
1109 ev_io_stop (EV_A_ &sigev);
1110
1111 close (sigpipe [0]); sigpipe [0] = 0;
1112 close (sigpipe [1]); sigpipe [1] = 0;
1113
1114 loop_destroy (EV_A);
1115}
1116
1117void
1118ev_default_fork (void)
1119{
1120#if EV_MULTIPLICITY
1121 struct ev_loop *loop = ev_default_loop_ptr;
1122#endif
1123
1124 if (backend)
1125 postfork = 1;
1126} 2075}
1127 2076
1128/*****************************************************************************/ 2077/*****************************************************************************/
1129 2078
1130int inline_size 2079void
1131any_pending (EV_P) 2080ev_invoke (EV_P_ void *w, int revents)
2081{
2082 EV_CB_INVOKE ((W)w, revents);
2083}
2084
2085unsigned int
2086ev_pending_count (EV_P)
1132{ 2087{
1133 int pri; 2088 int pri;
2089 unsigned int count = 0;
1134 2090
1135 for (pri = NUMPRI; pri--; ) 2091 for (pri = NUMPRI; pri--; )
1136 if (pendingcnt [pri]) 2092 count += pendingcnt [pri];
1137 return 1;
1138 2093
1139 return 0; 2094 return count;
1140} 2095}
1141 2096
1142void inline_speed 2097void noinline
1143call_pending (EV_P) 2098ev_invoke_pending (EV_P)
1144{ 2099{
1145 int pri; 2100 int pri;
1146 2101
1147 for (pri = NUMPRI; pri--; ) 2102 for (pri = NUMPRI; pri--; )
1148 while (pendingcnt [pri]) 2103 while (pendingcnt [pri])
1149 { 2104 {
1150 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2105 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1151 2106
1152 if (expect_true (p->w))
1153 {
1154 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2107 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2108 /* ^ this is no longer true, as pending_w could be here */
1155 2109
1156 p->w->pending = 0; 2110 p->w->pending = 0;
1157 EV_CB_INVOKE (p->w, p->events); 2111 EV_CB_INVOKE (p->w, p->events);
1158 } 2112 EV_FREQUENT_CHECK;
1159 } 2113 }
1160} 2114}
1161 2115
1162void inline_size 2116#if EV_IDLE_ENABLE
2117/* make idle watchers pending. this handles the "call-idle */
2118/* only when higher priorities are idle" logic */
2119inline_size void
2120idle_reify (EV_P)
2121{
2122 if (expect_false (idleall))
2123 {
2124 int pri;
2125
2126 for (pri = NUMPRI; pri--; )
2127 {
2128 if (pendingcnt [pri])
2129 break;
2130
2131 if (idlecnt [pri])
2132 {
2133 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2134 break;
2135 }
2136 }
2137 }
2138}
2139#endif
2140
2141/* make timers pending */
2142inline_size void
1163timers_reify (EV_P) 2143timers_reify (EV_P)
1164{ 2144{
2145 EV_FREQUENT_CHECK;
2146
1165 while (timercnt && ((WT)timers [0])->at <= mn_now) 2147 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1166 { 2148 {
1167 ev_timer *w = timers [0]; 2149 do
1168
1169 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1170
1171 /* first reschedule or stop timer */
1172 if (w->repeat)
1173 { 2150 {
2151 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2152
2153 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2154
2155 /* first reschedule or stop timer */
2156 if (w->repeat)
2157 {
2158 ev_at (w) += w->repeat;
2159 if (ev_at (w) < mn_now)
2160 ev_at (w) = mn_now;
2161
1174 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2162 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1175 2163
1176 ((WT)w)->at += w->repeat; 2164 ANHE_at_cache (timers [HEAP0]);
1177 if (((WT)w)->at < mn_now)
1178 ((WT)w)->at = mn_now;
1179
1180 downheap ((WT *)timers, timercnt, 0); 2165 downheap (timers, timercnt, HEAP0);
2166 }
2167 else
2168 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2169
2170 EV_FREQUENT_CHECK;
2171 feed_reverse (EV_A_ (W)w);
1181 } 2172 }
1182 else 2173 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1183 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1184 2174
1185 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2175 feed_reverse_done (EV_A_ EV_TIMER);
1186 } 2176 }
1187} 2177}
1188 2178
1189#if EV_PERIODIC_ENABLE 2179#if EV_PERIODIC_ENABLE
1190void inline_size 2180/* make periodics pending */
2181inline_size void
1191periodics_reify (EV_P) 2182periodics_reify (EV_P)
1192{ 2183{
2184 EV_FREQUENT_CHECK;
2185
1193 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2186 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1194 { 2187 {
1195 ev_periodic *w = periodics [0]; 2188 int feed_count = 0;
1196 2189
1197 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2190 do
1198
1199 /* first reschedule or stop timer */
1200 if (w->reschedule_cb)
1201 { 2191 {
2192 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2193
2194 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2195
2196 /* first reschedule or stop timer */
2197 if (w->reschedule_cb)
2198 {
1202 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2199 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2200
1203 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2201 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2202
2203 ANHE_at_cache (periodics [HEAP0]);
1204 downheap ((WT *)periodics, periodiccnt, 0); 2204 downheap (periodics, periodiccnt, HEAP0);
2205 }
2206 else if (w->interval)
2207 {
2208 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2209 /* if next trigger time is not sufficiently in the future, put it there */
2210 /* this might happen because of floating point inexactness */
2211 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2212 {
2213 ev_at (w) += w->interval;
2214
2215 /* if interval is unreasonably low we might still have a time in the past */
2216 /* so correct this. this will make the periodic very inexact, but the user */
2217 /* has effectively asked to get triggered more often than possible */
2218 if (ev_at (w) < ev_rt_now)
2219 ev_at (w) = ev_rt_now;
2220 }
2221
2222 ANHE_at_cache (periodics [HEAP0]);
2223 downheap (periodics, periodiccnt, HEAP0);
2224 }
2225 else
2226 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2227
2228 EV_FREQUENT_CHECK;
2229 feed_reverse (EV_A_ (W)w);
1205 } 2230 }
1206 else if (w->interval) 2231 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1207 {
1208 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1209 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1210 downheap ((WT *)periodics, periodiccnt, 0);
1211 }
1212 else
1213 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1214 2232
1215 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2233 feed_reverse_done (EV_A_ EV_PERIODIC);
1216 } 2234 }
1217} 2235}
1218 2236
2237/* simply recalculate all periodics */
2238/* TODO: maybe ensure that at least one event happens when jumping forward? */
1219static void noinline 2239static void noinline
1220periodics_reschedule (EV_P) 2240periodics_reschedule (EV_P)
1221{ 2241{
1222 int i; 2242 int i;
1223 2243
1224 /* adjust periodics after time jump */ 2244 /* adjust periodics after time jump */
1225 for (i = 0; i < periodiccnt; ++i) 2245 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1226 { 2246 {
1227 ev_periodic *w = periodics [i]; 2247 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1228 2248
1229 if (w->reschedule_cb) 2249 if (w->reschedule_cb)
1230 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1231 else if (w->interval) 2251 else if (w->interval)
1232 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2253
2254 ANHE_at_cache (periodics [i]);
2255 }
2256
2257 reheap (periodics, periodiccnt);
2258}
2259#endif
2260
2261/* adjust all timers by a given offset */
2262static void noinline
2263timers_reschedule (EV_P_ ev_tstamp adjust)
2264{
2265 int i;
2266
2267 for (i = 0; i < timercnt; ++i)
1233 } 2268 {
1234 2269 ANHE *he = timers + i + HEAP0;
1235 /* now rebuild the heap */ 2270 ANHE_w (*he)->at += adjust;
1236 for (i = periodiccnt >> 1; i--; ) 2271 ANHE_at_cache (*he);
1237 downheap ((WT *)periodics, periodiccnt, i); 2272 }
1238} 2273}
1239#endif
1240 2274
1241int inline_size 2275/* fetch new monotonic and realtime times from the kernel */
1242time_update_monotonic (EV_P) 2276/* also detect if there was a timejump, and act accordingly */
2277inline_speed void
2278time_update (EV_P_ ev_tstamp max_block)
1243{ 2279{
2280#if EV_USE_MONOTONIC
2281 if (expect_true (have_monotonic))
2282 {
2283 int i;
2284 ev_tstamp odiff = rtmn_diff;
2285
1244 mn_now = get_clock (); 2286 mn_now = get_clock ();
1245 2287
2288 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2289 /* interpolate in the meantime */
1246 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2290 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1247 { 2291 {
1248 ev_rt_now = rtmn_diff + mn_now; 2292 ev_rt_now = rtmn_diff + mn_now;
1249 return 0; 2293 return;
1250 } 2294 }
1251 else 2295
1252 {
1253 now_floor = mn_now; 2296 now_floor = mn_now;
1254 ev_rt_now = ev_time (); 2297 ev_rt_now = ev_time ();
1255 return 1;
1256 }
1257}
1258 2298
1259void inline_size 2299 /* loop a few times, before making important decisions.
1260time_update (EV_P) 2300 * on the choice of "4": one iteration isn't enough,
1261{ 2301 * in case we get preempted during the calls to
1262 int i; 2302 * ev_time and get_clock. a second call is almost guaranteed
1263 2303 * to succeed in that case, though. and looping a few more times
1264#if EV_USE_MONOTONIC 2304 * doesn't hurt either as we only do this on time-jumps or
1265 if (expect_true (have_monotonic)) 2305 * in the unlikely event of having been preempted here.
1266 { 2306 */
1267 if (time_update_monotonic (EV_A)) 2307 for (i = 4; --i; )
1268 { 2308 {
1269 ev_tstamp odiff = rtmn_diff;
1270
1271 /* loop a few times, before making important decisions.
1272 * on the choice of "4": one iteration isn't enough,
1273 * in case we get preempted during the calls to
1274 * ev_time and get_clock. a second call is almost guaranteed
1275 * to succeed in that case, though. and looping a few more times
1276 * doesn't hurt either as we only do this on time-jumps or
1277 * in the unlikely event of having been preempted here.
1278 */
1279 for (i = 4; --i; )
1280 {
1281 rtmn_diff = ev_rt_now - mn_now; 2309 rtmn_diff = ev_rt_now - mn_now;
1282 2310
1283 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2311 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1284 return; /* all is well */ 2312 return; /* all is well */
1285 2313
1286 ev_rt_now = ev_time (); 2314 ev_rt_now = ev_time ();
1287 mn_now = get_clock (); 2315 mn_now = get_clock ();
1288 now_floor = mn_now; 2316 now_floor = mn_now;
1289 } 2317 }
1290 2318
2319 /* no timer adjustment, as the monotonic clock doesn't jump */
2320 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1291# if EV_PERIODIC_ENABLE 2321# if EV_PERIODIC_ENABLE
1292 periodics_reschedule (EV_A); 2322 periodics_reschedule (EV_A);
1293# endif 2323# endif
1294 /* no timer adjustment, as the monotonic clock doesn't jump */
1295 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1296 }
1297 } 2324 }
1298 else 2325 else
1299#endif 2326#endif
1300 { 2327 {
1301 ev_rt_now = ev_time (); 2328 ev_rt_now = ev_time ();
1302 2329
1303 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2330 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1304 { 2331 {
2332 /* adjust timers. this is easy, as the offset is the same for all of them */
2333 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1305#if EV_PERIODIC_ENABLE 2334#if EV_PERIODIC_ENABLE
1306 periodics_reschedule (EV_A); 2335 periodics_reschedule (EV_A);
1307#endif 2336#endif
1308
1309 /* adjust timers. this is easy, as the offset is the same for all of them */
1310 for (i = 0; i < timercnt; ++i)
1311 ((WT)timers [i])->at += ev_rt_now - mn_now;
1312 } 2337 }
1313 2338
1314 mn_now = ev_rt_now; 2339 mn_now = ev_rt_now;
1315 } 2340 }
1316} 2341}
1317 2342
1318void 2343void
1319ev_ref (EV_P)
1320{
1321 ++activecnt;
1322}
1323
1324void
1325ev_unref (EV_P)
1326{
1327 --activecnt;
1328}
1329
1330static int loop_done;
1331
1332void
1333ev_loop (EV_P_ int flags) 2344ev_run (EV_P_ int flags)
1334{ 2345{
1335 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2346#if EV_FEATURE_API
1336 ? EVUNLOOP_ONE 2347 ++loop_depth;
1337 : EVUNLOOP_CANCEL; 2348#endif
1338 2349
1339 while (activecnt) 2350 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2351
2352 loop_done = EVBREAK_CANCEL;
2353
2354 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2355
2356 do
1340 { 2357 {
2358#if EV_VERIFY >= 2
2359 ev_verify (EV_A);
2360#endif
2361
2362#ifndef _WIN32
2363 if (expect_false (curpid)) /* penalise the forking check even more */
2364 if (expect_false (getpid () != curpid))
2365 {
2366 curpid = getpid ();
2367 postfork = 1;
2368 }
2369#endif
2370
1341#if EV_FORK_ENABLE 2371#if EV_FORK_ENABLE
1342 /* we might have forked, so queue fork handlers */ 2372 /* we might have forked, so queue fork handlers */
1343 if (expect_false (postfork)) 2373 if (expect_false (postfork))
1344 if (forkcnt) 2374 if (forkcnt)
1345 { 2375 {
1346 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2376 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1347 call_pending (EV_A); 2377 EV_INVOKE_PENDING;
1348 } 2378 }
1349#endif 2379#endif
1350 2380
2381#if EV_PREPARE_ENABLE
1351 /* queue check watchers (and execute them) */ 2382 /* queue prepare watchers (and execute them) */
1352 if (expect_false (preparecnt)) 2383 if (expect_false (preparecnt))
1353 { 2384 {
1354 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2385 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1355 call_pending (EV_A); 2386 EV_INVOKE_PENDING;
1356 } 2387 }
2388#endif
2389
2390 if (expect_false (loop_done))
2391 break;
1357 2392
1358 /* we might have forked, so reify kernel state if necessary */ 2393 /* we might have forked, so reify kernel state if necessary */
1359 if (expect_false (postfork)) 2394 if (expect_false (postfork))
1360 loop_fork (EV_A); 2395 loop_fork (EV_A);
1361 2396
1362 /* update fd-related kernel structures */ 2397 /* update fd-related kernel structures */
1363 fd_reify (EV_A); 2398 fd_reify (EV_A);
1364 2399
1365 /* calculate blocking time */ 2400 /* calculate blocking time */
1366 { 2401 {
1367 ev_tstamp block; 2402 ev_tstamp waittime = 0.;
2403 ev_tstamp sleeptime = 0.;
1368 2404
1369 if (flags & EVLOOP_NONBLOCK || idlecnt) 2405 /* remember old timestamp for io_blocktime calculation */
1370 block = 0.; /* do not block at all */ 2406 ev_tstamp prev_mn_now = mn_now;
1371 else 2407
2408 /* update time to cancel out callback processing overhead */
2409 time_update (EV_A_ 1e100);
2410
2411 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1372 { 2412 {
1373 /* update time to cancel out callback processing overhead */
1374#if EV_USE_MONOTONIC
1375 if (expect_true (have_monotonic))
1376 time_update_monotonic (EV_A);
1377 else
1378#endif
1379 {
1380 ev_rt_now = ev_time ();
1381 mn_now = ev_rt_now;
1382 }
1383
1384 block = MAX_BLOCKTIME; 2413 waittime = MAX_BLOCKTIME;
1385 2414
1386 if (timercnt) 2415 if (timercnt)
1387 { 2416 {
1388 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2417 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1389 if (block > to) block = to; 2418 if (waittime > to) waittime = to;
1390 } 2419 }
1391 2420
1392#if EV_PERIODIC_ENABLE 2421#if EV_PERIODIC_ENABLE
1393 if (periodiccnt) 2422 if (periodiccnt)
1394 { 2423 {
1395 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2424 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1396 if (block > to) block = to; 2425 if (waittime > to) waittime = to;
1397 } 2426 }
1398#endif 2427#endif
1399 2428
2429 /* don't let timeouts decrease the waittime below timeout_blocktime */
2430 if (expect_false (waittime < timeout_blocktime))
2431 waittime = timeout_blocktime;
2432
2433 /* extra check because io_blocktime is commonly 0 */
1400 if (expect_false (block < 0.)) block = 0.; 2434 if (expect_false (io_blocktime))
2435 {
2436 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2437
2438 if (sleeptime > waittime - backend_fudge)
2439 sleeptime = waittime - backend_fudge;
2440
2441 if (expect_true (sleeptime > 0.))
2442 {
2443 ev_sleep (sleeptime);
2444 waittime -= sleeptime;
2445 }
2446 }
1401 } 2447 }
1402 2448
2449#if EV_FEATURE_API
2450 ++loop_count;
2451#endif
2452 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1403 backend_poll (EV_A_ block); 2453 backend_poll (EV_A_ waittime);
2454 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2455
2456 /* update ev_rt_now, do magic */
2457 time_update (EV_A_ waittime + sleeptime);
1404 } 2458 }
1405
1406 /* update ev_rt_now, do magic */
1407 time_update (EV_A);
1408 2459
1409 /* queue pending timers and reschedule them */ 2460 /* queue pending timers and reschedule them */
1410 timers_reify (EV_A); /* relative timers called last */ 2461 timers_reify (EV_A); /* relative timers called last */
1411#if EV_PERIODIC_ENABLE 2462#if EV_PERIODIC_ENABLE
1412 periodics_reify (EV_A); /* absolute timers called first */ 2463 periodics_reify (EV_A); /* absolute timers called first */
1413#endif 2464#endif
1414 2465
2466#if EV_IDLE_ENABLE
1415 /* queue idle watchers unless other events are pending */ 2467 /* queue idle watchers unless other events are pending */
1416 if (idlecnt && !any_pending (EV_A)) 2468 idle_reify (EV_A);
1417 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2469#endif
1418 2470
2471#if EV_CHECK_ENABLE
1419 /* queue check watchers, to be executed first */ 2472 /* queue check watchers, to be executed first */
1420 if (expect_false (checkcnt)) 2473 if (expect_false (checkcnt))
1421 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2474 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2475#endif
1422 2476
1423 call_pending (EV_A); 2477 EV_INVOKE_PENDING;
1424
1425 if (expect_false (loop_done))
1426 break;
1427 } 2478 }
2479 while (expect_true (
2480 activecnt
2481 && !loop_done
2482 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2483 ));
1428 2484
1429 if (loop_done == EVUNLOOP_ONE) 2485 if (loop_done == EVBREAK_ONE)
1430 loop_done = EVUNLOOP_CANCEL; 2486 loop_done = EVBREAK_CANCEL;
1431}
1432 2487
2488#if EV_FEATURE_API
2489 --loop_depth;
2490#endif
2491}
2492
1433void 2493void
1434ev_unloop (EV_P_ int how) 2494ev_break (EV_P_ int how)
1435{ 2495{
1436 loop_done = how; 2496 loop_done = how;
1437} 2497}
1438 2498
2499void
2500ev_ref (EV_P)
2501{
2502 ++activecnt;
2503}
2504
2505void
2506ev_unref (EV_P)
2507{
2508 --activecnt;
2509}
2510
2511void
2512ev_now_update (EV_P)
2513{
2514 time_update (EV_A_ 1e100);
2515}
2516
2517void
2518ev_suspend (EV_P)
2519{
2520 ev_now_update (EV_A);
2521}
2522
2523void
2524ev_resume (EV_P)
2525{
2526 ev_tstamp mn_prev = mn_now;
2527
2528 ev_now_update (EV_A);
2529 timers_reschedule (EV_A_ mn_now - mn_prev);
2530#if EV_PERIODIC_ENABLE
2531 /* TODO: really do this? */
2532 periodics_reschedule (EV_A);
2533#endif
2534}
2535
1439/*****************************************************************************/ 2536/*****************************************************************************/
2537/* singly-linked list management, used when the expected list length is short */
1440 2538
1441void inline_size 2539inline_size void
1442wlist_add (WL *head, WL elem) 2540wlist_add (WL *head, WL elem)
1443{ 2541{
1444 elem->next = *head; 2542 elem->next = *head;
1445 *head = elem; 2543 *head = elem;
1446} 2544}
1447 2545
1448void inline_size 2546inline_size void
1449wlist_del (WL *head, WL elem) 2547wlist_del (WL *head, WL elem)
1450{ 2548{
1451 while (*head) 2549 while (*head)
1452 { 2550 {
1453 if (*head == elem) 2551 if (expect_true (*head == elem))
1454 { 2552 {
1455 *head = elem->next; 2553 *head = elem->next;
1456 return; 2554 break;
1457 } 2555 }
1458 2556
1459 head = &(*head)->next; 2557 head = &(*head)->next;
1460 } 2558 }
1461} 2559}
1462 2560
1463void inline_speed 2561/* internal, faster, version of ev_clear_pending */
2562inline_speed void
1464ev_clear_pending (EV_P_ W w) 2563clear_pending (EV_P_ W w)
1465{ 2564{
1466 if (w->pending) 2565 if (w->pending)
1467 { 2566 {
1468 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2567 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1469 w->pending = 0; 2568 w->pending = 0;
1470 } 2569 }
1471} 2570}
1472 2571
1473void inline_speed 2572int
2573ev_clear_pending (EV_P_ void *w)
2574{
2575 W w_ = (W)w;
2576 int pending = w_->pending;
2577
2578 if (expect_true (pending))
2579 {
2580 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2581 p->w = (W)&pending_w;
2582 w_->pending = 0;
2583 return p->events;
2584 }
2585 else
2586 return 0;
2587}
2588
2589inline_size void
2590pri_adjust (EV_P_ W w)
2591{
2592 int pri = ev_priority (w);
2593 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2594 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2595 ev_set_priority (w, pri);
2596}
2597
2598inline_speed void
1474ev_start (EV_P_ W w, int active) 2599ev_start (EV_P_ W w, int active)
1475{ 2600{
1476 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2601 pri_adjust (EV_A_ w);
1477 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1478
1479 w->active = active; 2602 w->active = active;
1480 ev_ref (EV_A); 2603 ev_ref (EV_A);
1481} 2604}
1482 2605
1483void inline_size 2606inline_size void
1484ev_stop (EV_P_ W w) 2607ev_stop (EV_P_ W w)
1485{ 2608{
1486 ev_unref (EV_A); 2609 ev_unref (EV_A);
1487 w->active = 0; 2610 w->active = 0;
1488} 2611}
1489 2612
1490/*****************************************************************************/ 2613/*****************************************************************************/
1491 2614
1492void 2615void noinline
1493ev_io_start (EV_P_ ev_io *w) 2616ev_io_start (EV_P_ ev_io *w)
1494{ 2617{
1495 int fd = w->fd; 2618 int fd = w->fd;
1496 2619
1497 if (expect_false (ev_is_active (w))) 2620 if (expect_false (ev_is_active (w)))
1498 return; 2621 return;
1499 2622
1500 assert (("ev_io_start called with negative fd", fd >= 0)); 2623 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2624 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2625
2626 EV_FREQUENT_CHECK;
1501 2627
1502 ev_start (EV_A_ (W)w, 1); 2628 ev_start (EV_A_ (W)w, 1);
1503 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2629 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1504 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2630 wlist_add (&anfds[fd].head, (WL)w);
1505 2631
1506 fd_change (EV_A_ fd); 2632 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1507} 2633 w->events &= ~EV__IOFDSET;
1508 2634
1509void 2635 EV_FREQUENT_CHECK;
2636}
2637
2638void noinline
1510ev_io_stop (EV_P_ ev_io *w) 2639ev_io_stop (EV_P_ ev_io *w)
1511{ 2640{
1512 ev_clear_pending (EV_A_ (W)w); 2641 clear_pending (EV_A_ (W)w);
1513 if (expect_false (!ev_is_active (w))) 2642 if (expect_false (!ev_is_active (w)))
1514 return; 2643 return;
1515 2644
1516 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2645 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1517 2646
2647 EV_FREQUENT_CHECK;
2648
1518 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2649 wlist_del (&anfds[w->fd].head, (WL)w);
1519 ev_stop (EV_A_ (W)w); 2650 ev_stop (EV_A_ (W)w);
1520 2651
1521 fd_change (EV_A_ w->fd); 2652 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1522}
1523 2653
1524void 2654 EV_FREQUENT_CHECK;
2655}
2656
2657void noinline
1525ev_timer_start (EV_P_ ev_timer *w) 2658ev_timer_start (EV_P_ ev_timer *w)
1526{ 2659{
1527 if (expect_false (ev_is_active (w))) 2660 if (expect_false (ev_is_active (w)))
1528 return; 2661 return;
1529 2662
1530 ((WT)w)->at += mn_now; 2663 ev_at (w) += mn_now;
1531 2664
1532 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2665 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1533 2666
2667 EV_FREQUENT_CHECK;
2668
2669 ++timercnt;
1534 ev_start (EV_A_ (W)w, ++timercnt); 2670 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1535 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2671 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1536 timers [timercnt - 1] = w; 2672 ANHE_w (timers [ev_active (w)]) = (WT)w;
1537 upheap ((WT *)timers, timercnt - 1); 2673 ANHE_at_cache (timers [ev_active (w)]);
2674 upheap (timers, ev_active (w));
1538 2675
2676 EV_FREQUENT_CHECK;
2677
1539 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2678 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1540} 2679}
1541 2680
1542void 2681void noinline
1543ev_timer_stop (EV_P_ ev_timer *w) 2682ev_timer_stop (EV_P_ ev_timer *w)
1544{ 2683{
1545 ev_clear_pending (EV_A_ (W)w); 2684 clear_pending (EV_A_ (W)w);
1546 if (expect_false (!ev_is_active (w))) 2685 if (expect_false (!ev_is_active (w)))
1547 return; 2686 return;
1548 2687
1549 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2688 EV_FREQUENT_CHECK;
1550 2689
1551 { 2690 {
1552 int active = ((W)w)->active; 2691 int active = ev_active (w);
1553 2692
2693 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2694
2695 --timercnt;
2696
1554 if (expect_true (--active < --timercnt)) 2697 if (expect_true (active < timercnt + HEAP0))
1555 { 2698 {
1556 timers [active] = timers [timercnt]; 2699 timers [active] = timers [timercnt + HEAP0];
1557 adjustheap ((WT *)timers, timercnt, active); 2700 adjustheap (timers, timercnt, active);
1558 } 2701 }
1559 } 2702 }
1560 2703
1561 ((WT)w)->at -= mn_now; 2704 ev_at (w) -= mn_now;
1562 2705
1563 ev_stop (EV_A_ (W)w); 2706 ev_stop (EV_A_ (W)w);
1564}
1565 2707
1566void 2708 EV_FREQUENT_CHECK;
2709}
2710
2711void noinline
1567ev_timer_again (EV_P_ ev_timer *w) 2712ev_timer_again (EV_P_ ev_timer *w)
1568{ 2713{
2714 EV_FREQUENT_CHECK;
2715
1569 if (ev_is_active (w)) 2716 if (ev_is_active (w))
1570 { 2717 {
1571 if (w->repeat) 2718 if (w->repeat)
1572 { 2719 {
1573 ((WT)w)->at = mn_now + w->repeat; 2720 ev_at (w) = mn_now + w->repeat;
2721 ANHE_at_cache (timers [ev_active (w)]);
1574 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2722 adjustheap (timers, timercnt, ev_active (w));
1575 } 2723 }
1576 else 2724 else
1577 ev_timer_stop (EV_A_ w); 2725 ev_timer_stop (EV_A_ w);
1578 } 2726 }
1579 else if (w->repeat) 2727 else if (w->repeat)
1580 { 2728 {
1581 w->at = w->repeat; 2729 ev_at (w) = w->repeat;
1582 ev_timer_start (EV_A_ w); 2730 ev_timer_start (EV_A_ w);
1583 } 2731 }
2732
2733 EV_FREQUENT_CHECK;
2734}
2735
2736ev_tstamp
2737ev_timer_remaining (EV_P_ ev_timer *w)
2738{
2739 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1584} 2740}
1585 2741
1586#if EV_PERIODIC_ENABLE 2742#if EV_PERIODIC_ENABLE
1587void 2743void noinline
1588ev_periodic_start (EV_P_ ev_periodic *w) 2744ev_periodic_start (EV_P_ ev_periodic *w)
1589{ 2745{
1590 if (expect_false (ev_is_active (w))) 2746 if (expect_false (ev_is_active (w)))
1591 return; 2747 return;
1592 2748
1593 if (w->reschedule_cb) 2749 if (w->reschedule_cb)
1594 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2750 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1595 else if (w->interval) 2751 else if (w->interval)
1596 { 2752 {
1597 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2753 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1598 /* this formula differs from the one in periodic_reify because we do not always round up */ 2754 /* this formula differs from the one in periodic_reify because we do not always round up */
1599 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2755 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1600 } 2756 }
2757 else
2758 ev_at (w) = w->offset;
1601 2759
2760 EV_FREQUENT_CHECK;
2761
2762 ++periodiccnt;
1602 ev_start (EV_A_ (W)w, ++periodiccnt); 2763 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1603 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2764 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1604 periodics [periodiccnt - 1] = w; 2765 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1605 upheap ((WT *)periodics, periodiccnt - 1); 2766 ANHE_at_cache (periodics [ev_active (w)]);
2767 upheap (periodics, ev_active (w));
1606 2768
2769 EV_FREQUENT_CHECK;
2770
1607 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2771 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1608} 2772}
1609 2773
1610void 2774void noinline
1611ev_periodic_stop (EV_P_ ev_periodic *w) 2775ev_periodic_stop (EV_P_ ev_periodic *w)
1612{ 2776{
1613 ev_clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
1614 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
1615 return; 2779 return;
1616 2780
1617 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2781 EV_FREQUENT_CHECK;
1618 2782
1619 { 2783 {
1620 int active = ((W)w)->active; 2784 int active = ev_active (w);
1621 2785
2786 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2787
2788 --periodiccnt;
2789
1622 if (expect_true (--active < --periodiccnt)) 2790 if (expect_true (active < periodiccnt + HEAP0))
1623 { 2791 {
1624 periodics [active] = periodics [periodiccnt]; 2792 periodics [active] = periodics [periodiccnt + HEAP0];
1625 adjustheap ((WT *)periodics, periodiccnt, active); 2793 adjustheap (periodics, periodiccnt, active);
1626 } 2794 }
1627 } 2795 }
1628 2796
1629 ev_stop (EV_A_ (W)w); 2797 ev_stop (EV_A_ (W)w);
1630}
1631 2798
1632void 2799 EV_FREQUENT_CHECK;
2800}
2801
2802void noinline
1633ev_periodic_again (EV_P_ ev_periodic *w) 2803ev_periodic_again (EV_P_ ev_periodic *w)
1634{ 2804{
1635 /* TODO: use adjustheap and recalculation */ 2805 /* TODO: use adjustheap and recalculation */
1636 ev_periodic_stop (EV_A_ w); 2806 ev_periodic_stop (EV_A_ w);
1637 ev_periodic_start (EV_A_ w); 2807 ev_periodic_start (EV_A_ w);
1640 2810
1641#ifndef SA_RESTART 2811#ifndef SA_RESTART
1642# define SA_RESTART 0 2812# define SA_RESTART 0
1643#endif 2813#endif
1644 2814
1645void 2815#if EV_SIGNAL_ENABLE
2816
2817void noinline
1646ev_signal_start (EV_P_ ev_signal *w) 2818ev_signal_start (EV_P_ ev_signal *w)
1647{ 2819{
1648#if EV_MULTIPLICITY
1649 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1650#endif
1651 if (expect_false (ev_is_active (w))) 2820 if (expect_false (ev_is_active (w)))
1652 return; 2821 return;
1653 2822
1654 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2823 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2824
2825#if EV_MULTIPLICITY
2826 assert (("libev: a signal must not be attached to two different loops",
2827 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2828
2829 signals [w->signum - 1].loop = EV_A;
2830#endif
2831
2832 EV_FREQUENT_CHECK;
2833
2834#if EV_USE_SIGNALFD
2835 if (sigfd == -2)
2836 {
2837 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2838 if (sigfd < 0 && errno == EINVAL)
2839 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2840
2841 if (sigfd >= 0)
2842 {
2843 fd_intern (sigfd); /* doing it twice will not hurt */
2844
2845 sigemptyset (&sigfd_set);
2846
2847 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2848 ev_set_priority (&sigfd_w, EV_MAXPRI);
2849 ev_io_start (EV_A_ &sigfd_w);
2850 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2851 }
2852 }
2853
2854 if (sigfd >= 0)
2855 {
2856 /* TODO: check .head */
2857 sigaddset (&sigfd_set, w->signum);
2858 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2859
2860 signalfd (sigfd, &sigfd_set, 0);
2861 }
2862#endif
1655 2863
1656 ev_start (EV_A_ (W)w, 1); 2864 ev_start (EV_A_ (W)w, 1);
1657 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1658 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2865 wlist_add (&signals [w->signum - 1].head, (WL)w);
1659 2866
1660 if (!((WL)w)->next) 2867 if (!((WL)w)->next)
2868# if EV_USE_SIGNALFD
2869 if (sigfd < 0) /*TODO*/
2870# endif
1661 { 2871 {
1662#if _WIN32 2872# ifdef _WIN32
2873 evpipe_init (EV_A);
2874
1663 signal (w->signum, sighandler); 2875 signal (w->signum, ev_sighandler);
1664#else 2876# else
1665 struct sigaction sa; 2877 struct sigaction sa;
2878
2879 evpipe_init (EV_A);
2880
1666 sa.sa_handler = sighandler; 2881 sa.sa_handler = ev_sighandler;
1667 sigfillset (&sa.sa_mask); 2882 sigfillset (&sa.sa_mask);
1668 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2883 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1669 sigaction (w->signum, &sa, 0); 2884 sigaction (w->signum, &sa, 0);
2885
2886 sigemptyset (&sa.sa_mask);
2887 sigaddset (&sa.sa_mask, w->signum);
2888 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1670#endif 2889#endif
1671 } 2890 }
1672}
1673 2891
1674void 2892 EV_FREQUENT_CHECK;
2893}
2894
2895void noinline
1675ev_signal_stop (EV_P_ ev_signal *w) 2896ev_signal_stop (EV_P_ ev_signal *w)
1676{ 2897{
1677 ev_clear_pending (EV_A_ (W)w); 2898 clear_pending (EV_A_ (W)w);
1678 if (expect_false (!ev_is_active (w))) 2899 if (expect_false (!ev_is_active (w)))
1679 return; 2900 return;
1680 2901
2902 EV_FREQUENT_CHECK;
2903
1681 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2904 wlist_del (&signals [w->signum - 1].head, (WL)w);
1682 ev_stop (EV_A_ (W)w); 2905 ev_stop (EV_A_ (W)w);
1683 2906
1684 if (!signals [w->signum - 1].head) 2907 if (!signals [w->signum - 1].head)
2908 {
2909#if EV_MULTIPLICITY
2910 signals [w->signum - 1].loop = 0; /* unattach from signal */
2911#endif
2912#if EV_USE_SIGNALFD
2913 if (sigfd >= 0)
2914 {
2915 sigset_t ss;
2916
2917 sigemptyset (&ss);
2918 sigaddset (&ss, w->signum);
2919 sigdelset (&sigfd_set, w->signum);
2920
2921 signalfd (sigfd, &sigfd_set, 0);
2922 sigprocmask (SIG_UNBLOCK, &ss, 0);
2923 }
2924 else
2925#endif
1685 signal (w->signum, SIG_DFL); 2926 signal (w->signum, SIG_DFL);
2927 }
2928
2929 EV_FREQUENT_CHECK;
1686} 2930}
2931
2932#endif
2933
2934#if EV_CHILD_ENABLE
1687 2935
1688void 2936void
1689ev_child_start (EV_P_ ev_child *w) 2937ev_child_start (EV_P_ ev_child *w)
1690{ 2938{
1691#if EV_MULTIPLICITY 2939#if EV_MULTIPLICITY
1692 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2940 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1693#endif 2941#endif
1694 if (expect_false (ev_is_active (w))) 2942 if (expect_false (ev_is_active (w)))
1695 return; 2943 return;
1696 2944
2945 EV_FREQUENT_CHECK;
2946
1697 ev_start (EV_A_ (W)w, 1); 2947 ev_start (EV_A_ (W)w, 1);
1698 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2948 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2949
2950 EV_FREQUENT_CHECK;
1699} 2951}
1700 2952
1701void 2953void
1702ev_child_stop (EV_P_ ev_child *w) 2954ev_child_stop (EV_P_ ev_child *w)
1703{ 2955{
1704 ev_clear_pending (EV_A_ (W)w); 2956 clear_pending (EV_A_ (W)w);
1705 if (expect_false (!ev_is_active (w))) 2957 if (expect_false (!ev_is_active (w)))
1706 return; 2958 return;
1707 2959
2960 EV_FREQUENT_CHECK;
2961
1708 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2962 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1709 ev_stop (EV_A_ (W)w); 2963 ev_stop (EV_A_ (W)w);
2964
2965 EV_FREQUENT_CHECK;
1710} 2966}
2967
2968#endif
1711 2969
1712#if EV_STAT_ENABLE 2970#if EV_STAT_ENABLE
1713 2971
1714# ifdef _WIN32 2972# ifdef _WIN32
1715# undef lstat 2973# undef lstat
1716# define lstat(a,b) _stati64 (a,b) 2974# define lstat(a,b) _stati64 (a,b)
1717# endif 2975# endif
1718 2976
1719#define DEF_STAT_INTERVAL 5.0074891 2977#define DEF_STAT_INTERVAL 5.0074891
2978#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1720#define MIN_STAT_INTERVAL 0.1074891 2979#define MIN_STAT_INTERVAL 0.1074891
1721 2980
1722static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2981static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1723 2982
1724#if EV_USE_INOTIFY 2983#if EV_USE_INOTIFY
1725# define EV_INOTIFY_BUFSIZE 8192 2984
2985/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2986# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1726 2987
1727static void noinline 2988static void noinline
1728infy_add (EV_P_ ev_stat *w) 2989infy_add (EV_P_ ev_stat *w)
1729{ 2990{
1730 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2991 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1731 2992
1732 if (w->wd < 0) 2993 if (w->wd >= 0)
2994 {
2995 struct statfs sfs;
2996
2997 /* now local changes will be tracked by inotify, but remote changes won't */
2998 /* unless the filesystem is known to be local, we therefore still poll */
2999 /* also do poll on <2.6.25, but with normal frequency */
3000
3001 if (!fs_2625)
3002 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3003 else if (!statfs (w->path, &sfs)
3004 && (sfs.f_type == 0x1373 /* devfs */
3005 || sfs.f_type == 0xEF53 /* ext2/3 */
3006 || sfs.f_type == 0x3153464a /* jfs */
3007 || sfs.f_type == 0x52654973 /* reiser3 */
3008 || sfs.f_type == 0x01021994 /* tempfs */
3009 || sfs.f_type == 0x58465342 /* xfs */))
3010 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3011 else
3012 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1733 { 3013 }
1734 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3014 else
3015 {
3016 /* can't use inotify, continue to stat */
3017 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1735 3018
1736 /* monitor some parent directory for speedup hints */ 3019 /* if path is not there, monitor some parent directory for speedup hints */
3020 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3021 /* but an efficiency issue only */
1737 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3022 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1738 { 3023 {
1739 char path [4096]; 3024 char path [4096];
1740 strcpy (path, w->path); 3025 strcpy (path, w->path);
1741 3026
1744 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3029 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1745 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3030 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1746 3031
1747 char *pend = strrchr (path, '/'); 3032 char *pend = strrchr (path, '/');
1748 3033
1749 if (!pend) 3034 if (!pend || pend == path)
1750 break; /* whoops, no '/', complain to your admin */ 3035 break;
1751 3036
1752 *pend = 0; 3037 *pend = 0;
1753 w->wd = inotify_add_watch (fs_fd, path, mask); 3038 w->wd = inotify_add_watch (fs_fd, path, mask);
1754 } 3039 }
1755 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3040 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1756 } 3041 }
1757 } 3042 }
1758 else
1759 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1760 3043
1761 if (w->wd >= 0) 3044 if (w->wd >= 0)
1762 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3045 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3046
3047 /* now re-arm timer, if required */
3048 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3049 ev_timer_again (EV_A_ &w->timer);
3050 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1763} 3051}
1764 3052
1765static void noinline 3053static void noinline
1766infy_del (EV_P_ ev_stat *w) 3054infy_del (EV_P_ ev_stat *w)
1767{ 3055{
1770 3058
1771 if (wd < 0) 3059 if (wd < 0)
1772 return; 3060 return;
1773 3061
1774 w->wd = -2; 3062 w->wd = -2;
1775 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3063 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1776 wlist_del (&fs_hash [slot].head, (WL)w); 3064 wlist_del (&fs_hash [slot].head, (WL)w);
1777 3065
1778 /* remove this watcher, if others are watching it, they will rearm */ 3066 /* remove this watcher, if others are watching it, they will rearm */
1779 inotify_rm_watch (fs_fd, wd); 3067 inotify_rm_watch (fs_fd, wd);
1780} 3068}
1781 3069
1782static void noinline 3070static void noinline
1783infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3071infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1784{ 3072{
1785 if (slot < 0) 3073 if (slot < 0)
1786 /* overflow, need to check for all hahs slots */ 3074 /* overflow, need to check for all hash slots */
1787 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3075 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1788 infy_wd (EV_A_ slot, wd, ev); 3076 infy_wd (EV_A_ slot, wd, ev);
1789 else 3077 else
1790 { 3078 {
1791 WL w_; 3079 WL w_;
1792 3080
1793 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3081 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1794 { 3082 {
1795 ev_stat *w = (ev_stat *)w_; 3083 ev_stat *w = (ev_stat *)w_;
1796 w_ = w_->next; /* lets us remove this watcher and all before it */ 3084 w_ = w_->next; /* lets us remove this watcher and all before it */
1797 3085
1798 if (w->wd == wd || wd == -1) 3086 if (w->wd == wd || wd == -1)
1799 { 3087 {
1800 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3088 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1801 { 3089 {
3090 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1802 w->wd = -1; 3091 w->wd = -1;
1803 infy_add (EV_A_ w); /* re-add, no matter what */ 3092 infy_add (EV_A_ w); /* re-add, no matter what */
1804 } 3093 }
1805 3094
1806 stat_timer_cb (EV_A_ &w->timer, 0); 3095 stat_timer_cb (EV_A_ &w->timer, 0);
1811 3100
1812static void 3101static void
1813infy_cb (EV_P_ ev_io *w, int revents) 3102infy_cb (EV_P_ ev_io *w, int revents)
1814{ 3103{
1815 char buf [EV_INOTIFY_BUFSIZE]; 3104 char buf [EV_INOTIFY_BUFSIZE];
1816 struct inotify_event *ev = (struct inotify_event *)buf;
1817 int ofs; 3105 int ofs;
1818 int len = read (fs_fd, buf, sizeof (buf)); 3106 int len = read (fs_fd, buf, sizeof (buf));
1819 3107
1820 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3108 for (ofs = 0; ofs < len; )
3109 {
3110 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1821 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3111 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3112 ofs += sizeof (struct inotify_event) + ev->len;
3113 }
1822} 3114}
1823 3115
1824void inline_size 3116inline_size void
3117ev_check_2625 (EV_P)
3118{
3119 /* kernels < 2.6.25 are borked
3120 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3121 */
3122 if (ev_linux_version () < 0x020619)
3123 return;
3124
3125 fs_2625 = 1;
3126}
3127
3128inline_size int
3129infy_newfd (void)
3130{
3131#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3132 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3133 if (fd >= 0)
3134 return fd;
3135#endif
3136 return inotify_init ();
3137}
3138
3139inline_size void
1825infy_init (EV_P) 3140infy_init (EV_P)
1826{ 3141{
1827 if (fs_fd != -2) 3142 if (fs_fd != -2)
1828 return; 3143 return;
1829 3144
3145 fs_fd = -1;
3146
3147 ev_check_2625 (EV_A);
3148
1830 fs_fd = inotify_init (); 3149 fs_fd = infy_newfd ();
1831 3150
1832 if (fs_fd >= 0) 3151 if (fs_fd >= 0)
1833 { 3152 {
3153 fd_intern (fs_fd);
1834 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3154 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1835 ev_set_priority (&fs_w, EV_MAXPRI); 3155 ev_set_priority (&fs_w, EV_MAXPRI);
1836 ev_io_start (EV_A_ &fs_w); 3156 ev_io_start (EV_A_ &fs_w);
3157 ev_unref (EV_A);
1837 } 3158 }
1838} 3159}
1839 3160
1840void inline_size 3161inline_size void
1841infy_fork (EV_P) 3162infy_fork (EV_P)
1842{ 3163{
1843 int slot; 3164 int slot;
1844 3165
1845 if (fs_fd < 0) 3166 if (fs_fd < 0)
1846 return; 3167 return;
1847 3168
3169 ev_ref (EV_A);
3170 ev_io_stop (EV_A_ &fs_w);
1848 close (fs_fd); 3171 close (fs_fd);
1849 fs_fd = inotify_init (); 3172 fs_fd = infy_newfd ();
1850 3173
3174 if (fs_fd >= 0)
3175 {
3176 fd_intern (fs_fd);
3177 ev_io_set (&fs_w, fs_fd, EV_READ);
3178 ev_io_start (EV_A_ &fs_w);
3179 ev_unref (EV_A);
3180 }
3181
1851 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3182 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1852 { 3183 {
1853 WL w_ = fs_hash [slot].head; 3184 WL w_ = fs_hash [slot].head;
1854 fs_hash [slot].head = 0; 3185 fs_hash [slot].head = 0;
1855 3186
1856 while (w_) 3187 while (w_)
1861 w->wd = -1; 3192 w->wd = -1;
1862 3193
1863 if (fs_fd >= 0) 3194 if (fs_fd >= 0)
1864 infy_add (EV_A_ w); /* re-add, no matter what */ 3195 infy_add (EV_A_ w); /* re-add, no matter what */
1865 else 3196 else
3197 {
3198 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3199 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1866 ev_timer_start (EV_A_ &w->timer); 3200 ev_timer_again (EV_A_ &w->timer);
3201 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3202 }
1867 } 3203 }
1868
1869 } 3204 }
1870} 3205}
1871 3206
3207#endif
3208
3209#ifdef _WIN32
3210# define EV_LSTAT(p,b) _stati64 (p, b)
3211#else
3212# define EV_LSTAT(p,b) lstat (p, b)
1872#endif 3213#endif
1873 3214
1874void 3215void
1875ev_stat_stat (EV_P_ ev_stat *w) 3216ev_stat_stat (EV_P_ ev_stat *w)
1876{ 3217{
1883static void noinline 3224static void noinline
1884stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3225stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1885{ 3226{
1886 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3227 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1887 3228
1888 /* we copy this here each the time so that */ 3229 ev_statdata prev = w->attr;
1889 /* prev has the old value when the callback gets invoked */
1890 w->prev = w->attr;
1891 ev_stat_stat (EV_A_ w); 3230 ev_stat_stat (EV_A_ w);
1892 3231
1893 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3232 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1894 if ( 3233 if (
1895 w->prev.st_dev != w->attr.st_dev 3234 prev.st_dev != w->attr.st_dev
1896 || w->prev.st_ino != w->attr.st_ino 3235 || prev.st_ino != w->attr.st_ino
1897 || w->prev.st_mode != w->attr.st_mode 3236 || prev.st_mode != w->attr.st_mode
1898 || w->prev.st_nlink != w->attr.st_nlink 3237 || prev.st_nlink != w->attr.st_nlink
1899 || w->prev.st_uid != w->attr.st_uid 3238 || prev.st_uid != w->attr.st_uid
1900 || w->prev.st_gid != w->attr.st_gid 3239 || prev.st_gid != w->attr.st_gid
1901 || w->prev.st_rdev != w->attr.st_rdev 3240 || prev.st_rdev != w->attr.st_rdev
1902 || w->prev.st_size != w->attr.st_size 3241 || prev.st_size != w->attr.st_size
1903 || w->prev.st_atime != w->attr.st_atime 3242 || prev.st_atime != w->attr.st_atime
1904 || w->prev.st_mtime != w->attr.st_mtime 3243 || prev.st_mtime != w->attr.st_mtime
1905 || w->prev.st_ctime != w->attr.st_ctime 3244 || prev.st_ctime != w->attr.st_ctime
1906 ) { 3245 ) {
3246 /* we only update w->prev on actual differences */
3247 /* in case we test more often than invoke the callback, */
3248 /* to ensure that prev is always different to attr */
3249 w->prev = prev;
3250
1907 #if EV_USE_INOTIFY 3251 #if EV_USE_INOTIFY
3252 if (fs_fd >= 0)
3253 {
1908 infy_del (EV_A_ w); 3254 infy_del (EV_A_ w);
1909 infy_add (EV_A_ w); 3255 infy_add (EV_A_ w);
1910 ev_stat_stat (EV_A_ w); /* avoid race... */ 3256 ev_stat_stat (EV_A_ w); /* avoid race... */
3257 }
1911 #endif 3258 #endif
1912 3259
1913 ev_feed_event (EV_A_ w, EV_STAT); 3260 ev_feed_event (EV_A_ w, EV_STAT);
1914 } 3261 }
1915} 3262}
1918ev_stat_start (EV_P_ ev_stat *w) 3265ev_stat_start (EV_P_ ev_stat *w)
1919{ 3266{
1920 if (expect_false (ev_is_active (w))) 3267 if (expect_false (ev_is_active (w)))
1921 return; 3268 return;
1922 3269
1923 /* since we use memcmp, we need to clear any padding data etc. */
1924 memset (&w->prev, 0, sizeof (ev_statdata));
1925 memset (&w->attr, 0, sizeof (ev_statdata));
1926
1927 ev_stat_stat (EV_A_ w); 3270 ev_stat_stat (EV_A_ w);
1928 3271
3272 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1929 if (w->interval < MIN_STAT_INTERVAL) 3273 w->interval = MIN_STAT_INTERVAL;
1930 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1931 3274
1932 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3275 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1933 ev_set_priority (&w->timer, ev_priority (w)); 3276 ev_set_priority (&w->timer, ev_priority (w));
1934 3277
1935#if EV_USE_INOTIFY 3278#if EV_USE_INOTIFY
1936 infy_init (EV_A); 3279 infy_init (EV_A);
1937 3280
1938 if (fs_fd >= 0) 3281 if (fs_fd >= 0)
1939 infy_add (EV_A_ w); 3282 infy_add (EV_A_ w);
1940 else 3283 else
1941#endif 3284#endif
3285 {
1942 ev_timer_start (EV_A_ &w->timer); 3286 ev_timer_again (EV_A_ &w->timer);
3287 ev_unref (EV_A);
3288 }
1943 3289
1944 ev_start (EV_A_ (W)w, 1); 3290 ev_start (EV_A_ (W)w, 1);
3291
3292 EV_FREQUENT_CHECK;
1945} 3293}
1946 3294
1947void 3295void
1948ev_stat_stop (EV_P_ ev_stat *w) 3296ev_stat_stop (EV_P_ ev_stat *w)
1949{ 3297{
1950 ev_clear_pending (EV_A_ (W)w); 3298 clear_pending (EV_A_ (W)w);
1951 if (expect_false (!ev_is_active (w))) 3299 if (expect_false (!ev_is_active (w)))
1952 return; 3300 return;
1953 3301
3302 EV_FREQUENT_CHECK;
3303
1954#if EV_USE_INOTIFY 3304#if EV_USE_INOTIFY
1955 infy_del (EV_A_ w); 3305 infy_del (EV_A_ w);
1956#endif 3306#endif
3307
3308 if (ev_is_active (&w->timer))
3309 {
3310 ev_ref (EV_A);
1957 ev_timer_stop (EV_A_ &w->timer); 3311 ev_timer_stop (EV_A_ &w->timer);
3312 }
1958 3313
1959 ev_stop (EV_A_ (W)w); 3314 ev_stop (EV_A_ (W)w);
1960}
1961#endif
1962 3315
3316 EV_FREQUENT_CHECK;
3317}
3318#endif
3319
3320#if EV_IDLE_ENABLE
1963void 3321void
1964ev_idle_start (EV_P_ ev_idle *w) 3322ev_idle_start (EV_P_ ev_idle *w)
1965{ 3323{
1966 if (expect_false (ev_is_active (w))) 3324 if (expect_false (ev_is_active (w)))
1967 return; 3325 return;
1968 3326
3327 pri_adjust (EV_A_ (W)w);
3328
3329 EV_FREQUENT_CHECK;
3330
3331 {
3332 int active = ++idlecnt [ABSPRI (w)];
3333
3334 ++idleall;
1969 ev_start (EV_A_ (W)w, ++idlecnt); 3335 ev_start (EV_A_ (W)w, active);
3336
1970 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3337 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1971 idles [idlecnt - 1] = w; 3338 idles [ABSPRI (w)][active - 1] = w;
3339 }
3340
3341 EV_FREQUENT_CHECK;
1972} 3342}
1973 3343
1974void 3344void
1975ev_idle_stop (EV_P_ ev_idle *w) 3345ev_idle_stop (EV_P_ ev_idle *w)
1976{ 3346{
1977 ev_clear_pending (EV_A_ (W)w); 3347 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 3348 if (expect_false (!ev_is_active (w)))
1979 return; 3349 return;
1980 3350
3351 EV_FREQUENT_CHECK;
3352
1981 { 3353 {
1982 int active = ((W)w)->active; 3354 int active = ev_active (w);
1983 idles [active - 1] = idles [--idlecnt]; 3355
1984 ((W)idles [active - 1])->active = active; 3356 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3357 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3358
3359 ev_stop (EV_A_ (W)w);
3360 --idleall;
1985 } 3361 }
1986 3362
1987 ev_stop (EV_A_ (W)w); 3363 EV_FREQUENT_CHECK;
1988} 3364}
3365#endif
1989 3366
3367#if EV_PREPARE_ENABLE
1990void 3368void
1991ev_prepare_start (EV_P_ ev_prepare *w) 3369ev_prepare_start (EV_P_ ev_prepare *w)
1992{ 3370{
1993 if (expect_false (ev_is_active (w))) 3371 if (expect_false (ev_is_active (w)))
1994 return; 3372 return;
3373
3374 EV_FREQUENT_CHECK;
1995 3375
1996 ev_start (EV_A_ (W)w, ++preparecnt); 3376 ev_start (EV_A_ (W)w, ++preparecnt);
1997 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3377 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1998 prepares [preparecnt - 1] = w; 3378 prepares [preparecnt - 1] = w;
3379
3380 EV_FREQUENT_CHECK;
1999} 3381}
2000 3382
2001void 3383void
2002ev_prepare_stop (EV_P_ ev_prepare *w) 3384ev_prepare_stop (EV_P_ ev_prepare *w)
2003{ 3385{
2004 ev_clear_pending (EV_A_ (W)w); 3386 clear_pending (EV_A_ (W)w);
2005 if (expect_false (!ev_is_active (w))) 3387 if (expect_false (!ev_is_active (w)))
2006 return; 3388 return;
2007 3389
3390 EV_FREQUENT_CHECK;
3391
2008 { 3392 {
2009 int active = ((W)w)->active; 3393 int active = ev_active (w);
3394
2010 prepares [active - 1] = prepares [--preparecnt]; 3395 prepares [active - 1] = prepares [--preparecnt];
2011 ((W)prepares [active - 1])->active = active; 3396 ev_active (prepares [active - 1]) = active;
2012 } 3397 }
2013 3398
2014 ev_stop (EV_A_ (W)w); 3399 ev_stop (EV_A_ (W)w);
2015}
2016 3400
3401 EV_FREQUENT_CHECK;
3402}
3403#endif
3404
3405#if EV_CHECK_ENABLE
2017void 3406void
2018ev_check_start (EV_P_ ev_check *w) 3407ev_check_start (EV_P_ ev_check *w)
2019{ 3408{
2020 if (expect_false (ev_is_active (w))) 3409 if (expect_false (ev_is_active (w)))
2021 return; 3410 return;
3411
3412 EV_FREQUENT_CHECK;
2022 3413
2023 ev_start (EV_A_ (W)w, ++checkcnt); 3414 ev_start (EV_A_ (W)w, ++checkcnt);
2024 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3415 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2025 checks [checkcnt - 1] = w; 3416 checks [checkcnt - 1] = w;
3417
3418 EV_FREQUENT_CHECK;
2026} 3419}
2027 3420
2028void 3421void
2029ev_check_stop (EV_P_ ev_check *w) 3422ev_check_stop (EV_P_ ev_check *w)
2030{ 3423{
2031 ev_clear_pending (EV_A_ (W)w); 3424 clear_pending (EV_A_ (W)w);
2032 if (expect_false (!ev_is_active (w))) 3425 if (expect_false (!ev_is_active (w)))
2033 return; 3426 return;
2034 3427
3428 EV_FREQUENT_CHECK;
3429
2035 { 3430 {
2036 int active = ((W)w)->active; 3431 int active = ev_active (w);
3432
2037 checks [active - 1] = checks [--checkcnt]; 3433 checks [active - 1] = checks [--checkcnt];
2038 ((W)checks [active - 1])->active = active; 3434 ev_active (checks [active - 1]) = active;
2039 } 3435 }
2040 3436
2041 ev_stop (EV_A_ (W)w); 3437 ev_stop (EV_A_ (W)w);
3438
3439 EV_FREQUENT_CHECK;
2042} 3440}
3441#endif
2043 3442
2044#if EV_EMBED_ENABLE 3443#if EV_EMBED_ENABLE
2045void noinline 3444void noinline
2046ev_embed_sweep (EV_P_ ev_embed *w) 3445ev_embed_sweep (EV_P_ ev_embed *w)
2047{ 3446{
2048 ev_loop (w->loop, EVLOOP_NONBLOCK); 3447 ev_run (w->other, EVRUN_NOWAIT);
2049} 3448}
2050 3449
2051static void 3450static void
2052embed_cb (EV_P_ ev_io *io, int revents) 3451embed_io_cb (EV_P_ ev_io *io, int revents)
2053{ 3452{
2054 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3453 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2055 3454
2056 if (ev_cb (w)) 3455 if (ev_cb (w))
2057 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3456 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2058 else 3457 else
2059 ev_embed_sweep (loop, w); 3458 ev_run (w->other, EVRUN_NOWAIT);
2060} 3459}
3460
3461static void
3462embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3463{
3464 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3465
3466 {
3467 EV_P = w->other;
3468
3469 while (fdchangecnt)
3470 {
3471 fd_reify (EV_A);
3472 ev_run (EV_A_ EVRUN_NOWAIT);
3473 }
3474 }
3475}
3476
3477static void
3478embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3479{
3480 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3481
3482 ev_embed_stop (EV_A_ w);
3483
3484 {
3485 EV_P = w->other;
3486
3487 ev_loop_fork (EV_A);
3488 ev_run (EV_A_ EVRUN_NOWAIT);
3489 }
3490
3491 ev_embed_start (EV_A_ w);
3492}
3493
3494#if 0
3495static void
3496embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3497{
3498 ev_idle_stop (EV_A_ idle);
3499}
3500#endif
2061 3501
2062void 3502void
2063ev_embed_start (EV_P_ ev_embed *w) 3503ev_embed_start (EV_P_ ev_embed *w)
2064{ 3504{
2065 if (expect_false (ev_is_active (w))) 3505 if (expect_false (ev_is_active (w)))
2066 return; 3506 return;
2067 3507
2068 { 3508 {
2069 struct ev_loop *loop = w->loop; 3509 EV_P = w->other;
2070 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3510 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2071 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3511 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2072 } 3512 }
3513
3514 EV_FREQUENT_CHECK;
2073 3515
2074 ev_set_priority (&w->io, ev_priority (w)); 3516 ev_set_priority (&w->io, ev_priority (w));
2075 ev_io_start (EV_A_ &w->io); 3517 ev_io_start (EV_A_ &w->io);
2076 3518
3519 ev_prepare_init (&w->prepare, embed_prepare_cb);
3520 ev_set_priority (&w->prepare, EV_MINPRI);
3521 ev_prepare_start (EV_A_ &w->prepare);
3522
3523 ev_fork_init (&w->fork, embed_fork_cb);
3524 ev_fork_start (EV_A_ &w->fork);
3525
3526 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3527
2077 ev_start (EV_A_ (W)w, 1); 3528 ev_start (EV_A_ (W)w, 1);
3529
3530 EV_FREQUENT_CHECK;
2078} 3531}
2079 3532
2080void 3533void
2081ev_embed_stop (EV_P_ ev_embed *w) 3534ev_embed_stop (EV_P_ ev_embed *w)
2082{ 3535{
2083 ev_clear_pending (EV_A_ (W)w); 3536 clear_pending (EV_A_ (W)w);
2084 if (expect_false (!ev_is_active (w))) 3537 if (expect_false (!ev_is_active (w)))
2085 return; 3538 return;
2086 3539
3540 EV_FREQUENT_CHECK;
3541
2087 ev_io_stop (EV_A_ &w->io); 3542 ev_io_stop (EV_A_ &w->io);
3543 ev_prepare_stop (EV_A_ &w->prepare);
3544 ev_fork_stop (EV_A_ &w->fork);
2088 3545
2089 ev_stop (EV_A_ (W)w); 3546 ev_stop (EV_A_ (W)w);
3547
3548 EV_FREQUENT_CHECK;
2090} 3549}
2091#endif 3550#endif
2092 3551
2093#if EV_FORK_ENABLE 3552#if EV_FORK_ENABLE
2094void 3553void
2095ev_fork_start (EV_P_ ev_fork *w) 3554ev_fork_start (EV_P_ ev_fork *w)
2096{ 3555{
2097 if (expect_false (ev_is_active (w))) 3556 if (expect_false (ev_is_active (w)))
2098 return; 3557 return;
3558
3559 EV_FREQUENT_CHECK;
2099 3560
2100 ev_start (EV_A_ (W)w, ++forkcnt); 3561 ev_start (EV_A_ (W)w, ++forkcnt);
2101 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3562 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2102 forks [forkcnt - 1] = w; 3563 forks [forkcnt - 1] = w;
3564
3565 EV_FREQUENT_CHECK;
2103} 3566}
2104 3567
2105void 3568void
2106ev_fork_stop (EV_P_ ev_fork *w) 3569ev_fork_stop (EV_P_ ev_fork *w)
2107{ 3570{
2108 ev_clear_pending (EV_A_ (W)w); 3571 clear_pending (EV_A_ (W)w);
2109 if (expect_false (!ev_is_active (w))) 3572 if (expect_false (!ev_is_active (w)))
2110 return; 3573 return;
2111 3574
3575 EV_FREQUENT_CHECK;
3576
2112 { 3577 {
2113 int active = ((W)w)->active; 3578 int active = ev_active (w);
3579
2114 forks [active - 1] = forks [--forkcnt]; 3580 forks [active - 1] = forks [--forkcnt];
2115 ((W)forks [active - 1])->active = active; 3581 ev_active (forks [active - 1]) = active;
2116 } 3582 }
2117 3583
2118 ev_stop (EV_A_ (W)w); 3584 ev_stop (EV_A_ (W)w);
3585
3586 EV_FREQUENT_CHECK;
3587}
3588#endif
3589
3590#if EV_CLEANUP_ENABLE
3591void
3592ev_cleanup_start (EV_P_ ev_cleanup *w)
3593{
3594 if (expect_false (ev_is_active (w)))
3595 return;
3596
3597 EV_FREQUENT_CHECK;
3598
3599 ev_start (EV_A_ (W)w, ++cleanupcnt);
3600 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3601 cleanups [cleanupcnt - 1] = w;
3602
3603 /* cleanup watchers should never keep a refcount on the loop */
3604 ev_unref (EV_A);
3605 EV_FREQUENT_CHECK;
3606}
3607
3608void
3609ev_cleanup_stop (EV_P_ ev_cleanup *w)
3610{
3611 clear_pending (EV_A_ (W)w);
3612 if (expect_false (!ev_is_active (w)))
3613 return;
3614
3615 EV_FREQUENT_CHECK;
3616 ev_ref (EV_A);
3617
3618 {
3619 int active = ev_active (w);
3620
3621 cleanups [active - 1] = cleanups [--cleanupcnt];
3622 ev_active (cleanups [active - 1]) = active;
3623 }
3624
3625 ev_stop (EV_A_ (W)w);
3626
3627 EV_FREQUENT_CHECK;
3628}
3629#endif
3630
3631#if EV_ASYNC_ENABLE
3632void
3633ev_async_start (EV_P_ ev_async *w)
3634{
3635 if (expect_false (ev_is_active (w)))
3636 return;
3637
3638 w->sent = 0;
3639
3640 evpipe_init (EV_A);
3641
3642 EV_FREQUENT_CHECK;
3643
3644 ev_start (EV_A_ (W)w, ++asynccnt);
3645 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3646 asyncs [asynccnt - 1] = w;
3647
3648 EV_FREQUENT_CHECK;
3649}
3650
3651void
3652ev_async_stop (EV_P_ ev_async *w)
3653{
3654 clear_pending (EV_A_ (W)w);
3655 if (expect_false (!ev_is_active (w)))
3656 return;
3657
3658 EV_FREQUENT_CHECK;
3659
3660 {
3661 int active = ev_active (w);
3662
3663 asyncs [active - 1] = asyncs [--asynccnt];
3664 ev_active (asyncs [active - 1]) = active;
3665 }
3666
3667 ev_stop (EV_A_ (W)w);
3668
3669 EV_FREQUENT_CHECK;
3670}
3671
3672void
3673ev_async_send (EV_P_ ev_async *w)
3674{
3675 w->sent = 1;
3676 evpipe_write (EV_A_ &async_pending);
2119} 3677}
2120#endif 3678#endif
2121 3679
2122/*****************************************************************************/ 3680/*****************************************************************************/
2123 3681
2133once_cb (EV_P_ struct ev_once *once, int revents) 3691once_cb (EV_P_ struct ev_once *once, int revents)
2134{ 3692{
2135 void (*cb)(int revents, void *arg) = once->cb; 3693 void (*cb)(int revents, void *arg) = once->cb;
2136 void *arg = once->arg; 3694 void *arg = once->arg;
2137 3695
2138 ev_io_stop (EV_A_ &once->io); 3696 ev_io_stop (EV_A_ &once->io);
2139 ev_timer_stop (EV_A_ &once->to); 3697 ev_timer_stop (EV_A_ &once->to);
2140 ev_free (once); 3698 ev_free (once);
2141 3699
2142 cb (revents, arg); 3700 cb (revents, arg);
2143} 3701}
2144 3702
2145static void 3703static void
2146once_cb_io (EV_P_ ev_io *w, int revents) 3704once_cb_io (EV_P_ ev_io *w, int revents)
2147{ 3705{
2148 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3706 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3707
3708 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2149} 3709}
2150 3710
2151static void 3711static void
2152once_cb_to (EV_P_ ev_timer *w, int revents) 3712once_cb_to (EV_P_ ev_timer *w, int revents)
2153{ 3713{
2154 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3714 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3715
3716 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2155} 3717}
2156 3718
2157void 3719void
2158ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3720ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2159{ 3721{
2160 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3722 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2161 3723
2162 if (expect_false (!once)) 3724 if (expect_false (!once))
2163 { 3725 {
2164 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3726 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2165 return; 3727 return;
2166 } 3728 }
2167 3729
2168 once->cb = cb; 3730 once->cb = cb;
2169 once->arg = arg; 3731 once->arg = arg;
2181 ev_timer_set (&once->to, timeout, 0.); 3743 ev_timer_set (&once->to, timeout, 0.);
2182 ev_timer_start (EV_A_ &once->to); 3744 ev_timer_start (EV_A_ &once->to);
2183 } 3745 }
2184} 3746}
2185 3747
2186#ifdef __cplusplus 3748/*****************************************************************************/
2187} 3749
3750#if EV_WALK_ENABLE
3751void
3752ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3753{
3754 int i, j;
3755 ev_watcher_list *wl, *wn;
3756
3757 if (types & (EV_IO | EV_EMBED))
3758 for (i = 0; i < anfdmax; ++i)
3759 for (wl = anfds [i].head; wl; )
3760 {
3761 wn = wl->next;
3762
3763#if EV_EMBED_ENABLE
3764 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3765 {
3766 if (types & EV_EMBED)
3767 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3768 }
3769 else
3770#endif
3771#if EV_USE_INOTIFY
3772 if (ev_cb ((ev_io *)wl) == infy_cb)
3773 ;
3774 else
3775#endif
3776 if ((ev_io *)wl != &pipe_w)
3777 if (types & EV_IO)
3778 cb (EV_A_ EV_IO, wl);
3779
3780 wl = wn;
3781 }
3782
3783 if (types & (EV_TIMER | EV_STAT))
3784 for (i = timercnt + HEAP0; i-- > HEAP0; )
3785#if EV_STAT_ENABLE
3786 /*TODO: timer is not always active*/
3787 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3788 {
3789 if (types & EV_STAT)
3790 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3791 }
3792 else
3793#endif
3794 if (types & EV_TIMER)
3795 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3796
3797#if EV_PERIODIC_ENABLE
3798 if (types & EV_PERIODIC)
3799 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3800 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3801#endif
3802
3803#if EV_IDLE_ENABLE
3804 if (types & EV_IDLE)
3805 for (j = NUMPRI; i--; )
3806 for (i = idlecnt [j]; i--; )
3807 cb (EV_A_ EV_IDLE, idles [j][i]);
3808#endif
3809
3810#if EV_FORK_ENABLE
3811 if (types & EV_FORK)
3812 for (i = forkcnt; i--; )
3813 if (ev_cb (forks [i]) != embed_fork_cb)
3814 cb (EV_A_ EV_FORK, forks [i]);
3815#endif
3816
3817#if EV_ASYNC_ENABLE
3818 if (types & EV_ASYNC)
3819 for (i = asynccnt; i--; )
3820 cb (EV_A_ EV_ASYNC, asyncs [i]);
3821#endif
3822
3823#if EV_PREPARE_ENABLE
3824 if (types & EV_PREPARE)
3825 for (i = preparecnt; i--; )
3826# if EV_EMBED_ENABLE
3827 if (ev_cb (prepares [i]) != embed_prepare_cb)
2188#endif 3828# endif
3829 cb (EV_A_ EV_PREPARE, prepares [i]);
3830#endif
2189 3831
3832#if EV_CHECK_ENABLE
3833 if (types & EV_CHECK)
3834 for (i = checkcnt; i--; )
3835 cb (EV_A_ EV_CHECK, checks [i]);
3836#endif
3837
3838#if EV_SIGNAL_ENABLE
3839 if (types & EV_SIGNAL)
3840 for (i = 0; i < EV_NSIG - 1; ++i)
3841 for (wl = signals [i].head; wl; )
3842 {
3843 wn = wl->next;
3844 cb (EV_A_ EV_SIGNAL, wl);
3845 wl = wn;
3846 }
3847#endif
3848
3849#if EV_CHILD_ENABLE
3850 if (types & EV_CHILD)
3851 for (i = (EV_PID_HASHSIZE); i--; )
3852 for (wl = childs [i]; wl; )
3853 {
3854 wn = wl->next;
3855 cb (EV_A_ EV_CHILD, wl);
3856 wl = wn;
3857 }
3858#endif
3859/* EV_STAT 0x00001000 /* stat data changed */
3860/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3861}
3862#endif
3863
3864#if EV_MULTIPLICITY
3865 #include "ev_wrap.h"
3866#endif
3867
3868EV_CPP(})
3869

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines