ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.158 by root, Thu Nov 29 17:28:13 2007 UTC vs.
Revision 1.180 by root, Tue Dec 11 22:04:55 2007 UTC

216# include <sys/inotify.h> 216# include <sys/inotify.h>
217#endif 217#endif
218 218
219/**/ 219/**/
220 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 234
225#if __GNUC__ >= 3 235#if __GNUC__ >= 3
226# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 237# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 238#else
236# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
240#endif 244#endif
241 245
242#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
244 255
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 258
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
250 261
251typedef ev_watcher *W; 262typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
396{ 407{
397 return ev_rt_now; 408 return ev_rt_now;
398} 409}
399#endif 410#endif
400 411
401#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
402 439
403#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
405 { \ 442 { \
406 int newcnt = cur; \ 443 int ocur_ = (cur); \
407 do \ 444 (base) = (type *)array_realloc \
408 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 447 }
417 448
449#if 0
418#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 452 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 456 }
457#endif
425 458
426#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 461
429/*****************************************************************************/ 462/*****************************************************************************/
430 463
431void noinline 464void noinline
432ev_feed_event (EV_P_ void *w, int revents) 465ev_feed_event (EV_P_ void *w, int revents)
433{ 466{
434 W w_ = (W)w; 467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
435 469
436 if (expect_false (w_->pending)) 470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
437 { 473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 477 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 478 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 479}
447 480
448void inline_size 481void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 482queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 483{
451 int i; 484 int i;
452 485
453 for (i = 0; i < eventcnt; ++i) 486 for (i = 0; i < eventcnt; ++i)
485} 518}
486 519
487void 520void
488ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 522{
523 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
491} 525}
492 526
493void inline_size 527void inline_size
494fd_reify (EV_P) 528fd_reify (EV_P)
495{ 529{
604void inline_speed 638void inline_speed
605upheap (WT *heap, int k) 639upheap (WT *heap, int k)
606{ 640{
607 WT w = heap [k]; 641 WT w = heap [k];
608 642
609 while (k && heap [k >> 1]->at > w->at) 643 while (k)
610 { 644 {
645 int p = (k - 1) >> 1;
646
647 if (heap [p]->at <= w->at)
648 break;
649
611 heap [k] = heap [k >> 1]; 650 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
613 k >>= 1; 652 k = p;
614 } 653 }
615 654
616 heap [k] = w; 655 heap [k] = w;
617 ((W)heap [k])->active = k + 1; 656 ((W)heap [k])->active = k + 1;
618 657
621void inline_speed 660void inline_speed
622downheap (WT *heap, int N, int k) 661downheap (WT *heap, int N, int k)
623{ 662{
624 WT w = heap [k]; 663 WT w = heap [k];
625 664
626 while (k < (N >> 1)) 665 for (;;)
627 { 666 {
628 int j = k << 1; 667 int c = (k << 1) + 1;
629 668
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 669 if (c >= N)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 670 break;
635 671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
636 heap [k] = heap [j]; 678 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 679 ((W)heap [k])->active = k + 1;
680
638 k = j; 681 k = c;
639 } 682 }
640 683
641 heap [k] = w; 684 heap [k] = w;
642 ((W)heap [k])->active = k + 1; 685 ((W)heap [k])->active = k + 1;
643} 686}
725 for (signum = signalmax; signum--; ) 768 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig) 769 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1); 770 ev_feed_signal_event (EV_A_ signum + 1);
728} 771}
729 772
730void inline_size 773void inline_speed
731fd_intern (int fd) 774fd_intern (int fd)
732{ 775{
733#ifdef _WIN32 776#ifdef _WIN32
734 int arg = 1; 777 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
764 ev_child *w; 807 ev_child *w;
765 808
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
767 if (w->pid == pid || !w->pid) 810 if (w->pid == pid || !w->pid)
768 { 811 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
770 w->rpid = pid; 813 w->rpid = pid;
771 w->rstatus = status; 814 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 815 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 816 }
774} 817}
775 818
776#ifndef WCONTINUED 819#ifndef WCONTINUED
886ev_backend (EV_P) 929ev_backend (EV_P)
887{ 930{
888 return backend; 931 return backend;
889} 932}
890 933
934unsigned int
935ev_loop_count (EV_P)
936{
937 return loop_count;
938}
939
891static void noinline 940static void noinline
892loop_init (EV_P_ unsigned int flags) 941loop_init (EV_P_ unsigned int flags)
893{ 942{
894 if (!backend) 943 if (!backend)
895 { 944 {
975#if EV_USE_SELECT 1024#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1025 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1026#endif
978 1027
979 for (i = NUMPRI; i--; ) 1028 for (i = NUMPRI; i--; )
1029 {
980 array_free (pending, [i]); 1030 array_free (pending, [i]);
1031#if EV_IDLE_ENABLE
1032 array_free (idle, [i]);
1033#endif
1034 }
981 1035
982 /* have to use the microsoft-never-gets-it-right macro */ 1036 /* have to use the microsoft-never-gets-it-right macro */
983 array_free (fdchange, EMPTY0); 1037 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1038 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1039#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1040 array_free (periodic, EMPTY);
987#endif 1041#endif
988 array_free (idle, EMPTY0);
989 array_free (prepare, EMPTY0); 1042 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1043 array_free (check, EMPTY);
991 1044
992 backend = 0; 1045 backend = 0;
993} 1046}
994 1047
995void inline_size infy_fork (EV_P); 1048void inline_size infy_fork (EV_P);
1131 postfork = 1; 1184 postfork = 1;
1132} 1185}
1133 1186
1134/*****************************************************************************/ 1187/*****************************************************************************/
1135 1188
1136int inline_size 1189void
1137any_pending (EV_P) 1190ev_invoke (EV_P_ void *w, int revents)
1138{ 1191{
1139 int pri; 1192 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1193}
1147 1194
1148void inline_speed 1195void inline_speed
1149call_pending (EV_P) 1196call_pending (EV_P)
1150{ 1197{
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1204 1251
1205 /* first reschedule or stop timer */ 1252 /* first reschedule or stop timer */
1206 if (w->reschedule_cb) 1253 if (w->reschedule_cb)
1207 { 1254 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1210 downheap ((WT *)periodics, periodiccnt, 0); 1257 downheap ((WT *)periodics, periodiccnt, 0);
1211 } 1258 }
1212 else if (w->interval) 1259 else if (w->interval)
1213 { 1260 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0); 1264 downheap ((WT *)periodics, periodiccnt, 0);
1217 } 1265 }
1218 else 1266 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1233 ev_periodic *w = periodics [i]; 1281 ev_periodic *w = periodics [i];
1234 1282
1235 if (w->reschedule_cb) 1283 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 1285 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1239 } 1287 }
1240 1288
1241 /* now rebuild the heap */ 1289 /* now rebuild the heap */
1242 for (i = periodiccnt >> 1; i--; ) 1290 for (i = periodiccnt >> 1; i--; )
1243 downheap ((WT *)periodics, periodiccnt, i); 1291 downheap ((WT *)periodics, periodiccnt, i);
1244} 1292}
1245#endif 1293#endif
1246 1294
1295#if EV_IDLE_ENABLE
1247int inline_size 1296void inline_size
1248time_update_monotonic (EV_P) 1297idle_reify (EV_P)
1249{ 1298{
1299 if (expect_false (idleall))
1300 {
1301 int pri;
1302
1303 for (pri = NUMPRI; pri--; )
1304 {
1305 if (pendingcnt [pri])
1306 break;
1307
1308 if (idlecnt [pri])
1309 {
1310 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1311 break;
1312 }
1313 }
1314 }
1315}
1316#endif
1317
1318void inline_speed
1319time_update (EV_P_ ev_tstamp max_block)
1320{
1321 int i;
1322
1323#if EV_USE_MONOTONIC
1324 if (expect_true (have_monotonic))
1325 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1250 mn_now = get_clock (); 1328 mn_now = get_clock ();
1251 1329
1330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1331 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1332 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1333 {
1254 ev_rt_now = rtmn_diff + mn_now; 1334 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1335 return;
1256 } 1336 }
1257 else 1337
1258 {
1259 now_floor = mn_now; 1338 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1339 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1340
1265void inline_size 1341 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1342 * on the choice of "4": one iteration isn't enough,
1267{ 1343 * in case we get preempted during the calls to
1268 int i; 1344 * ev_time and get_clock. a second call is almost guaranteed
1269 1345 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1346 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1347 * in the unlikely event of having been preempted here.
1272 { 1348 */
1273 if (time_update_monotonic (EV_A)) 1349 for (i = 4; --i; )
1274 { 1350 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1351 rtmn_diff = ev_rt_now - mn_now;
1288 1352
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1290 return; /* all is well */ 1354 return; /* all is well */
1291 1355
1292 ev_rt_now = ev_time (); 1356 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1357 mn_now = get_clock ();
1294 now_floor = mn_now; 1358 now_floor = mn_now;
1295 } 1359 }
1296 1360
1297# if EV_PERIODIC_ENABLE 1361# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1362 periodics_reschedule (EV_A);
1299# endif 1363# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */ 1364 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1365 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1366 }
1304 else 1367 else
1305#endif 1368#endif
1306 { 1369 {
1307 ev_rt_now = ev_time (); 1370 ev_rt_now = ev_time ();
1308 1371
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 1373 {
1311#if EV_PERIODIC_ENABLE 1374#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 1375 periodics_reschedule (EV_A);
1313#endif 1376#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */ 1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i) 1378 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now; 1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 1380 }
1319 1381
1342 ? EVUNLOOP_ONE 1404 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL; 1405 : EVUNLOOP_CANCEL;
1344 1406
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 1408
1347 while (activecnt) 1409 do
1348 { 1410 {
1349#ifndef _WIN32 1411#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 1412 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 1413 if (expect_false (getpid () != curpid))
1352 { 1414 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 1426 call_pending (EV_A);
1365 } 1427 }
1366#endif 1428#endif
1367 1429
1368 /* queue check watchers (and execute them) */ 1430 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 1431 if (expect_false (preparecnt))
1370 { 1432 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 1434 call_pending (EV_A);
1373 } 1435 }
1374 1436
1437 if (expect_false (!activecnt))
1438 break;
1439
1375 /* we might have forked, so reify kernel state if necessary */ 1440 /* we might have forked, so reify kernel state if necessary */
1376 if (expect_false (postfork)) 1441 if (expect_false (postfork))
1377 loop_fork (EV_A); 1442 loop_fork (EV_A);
1378 1443
1379 /* update fd-related kernel structures */ 1444 /* update fd-related kernel structures */
1381 1446
1382 /* calculate blocking time */ 1447 /* calculate blocking time */
1383 { 1448 {
1384 ev_tstamp block; 1449 ev_tstamp block;
1385 1450
1386 if (flags & EVLOOP_NONBLOCK || idlecnt) 1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1387 block = 0.; /* do not block at all */ 1452 block = 0.; /* do not block at all */
1388 else 1453 else
1389 { 1454 {
1390 /* update time to cancel out callback processing overhead */ 1455 /* update time to cancel out callback processing overhead */
1391#if EV_USE_MONOTONIC
1392 if (expect_true (have_monotonic))
1393 time_update_monotonic (EV_A); 1456 time_update (EV_A_ 1e100);
1394 else
1395#endif
1396 {
1397 ev_rt_now = ev_time ();
1398 mn_now = ev_rt_now;
1399 }
1400 1457
1401 block = MAX_BLOCKTIME; 1458 block = MAX_BLOCKTIME;
1402 1459
1403 if (timercnt) 1460 if (timercnt)
1404 { 1461 {
1415#endif 1472#endif
1416 1473
1417 if (expect_false (block < 0.)) block = 0.; 1474 if (expect_false (block < 0.)) block = 0.;
1418 } 1475 }
1419 1476
1477 ++loop_count;
1420 backend_poll (EV_A_ block); 1478 backend_poll (EV_A_ block);
1479
1480 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block);
1421 } 1482 }
1422
1423 /* update ev_rt_now, do magic */
1424 time_update (EV_A);
1425 1483
1426 /* queue pending timers and reschedule them */ 1484 /* queue pending timers and reschedule them */
1427 timers_reify (EV_A); /* relative timers called last */ 1485 timers_reify (EV_A); /* relative timers called last */
1428#if EV_PERIODIC_ENABLE 1486#if EV_PERIODIC_ENABLE
1429 periodics_reify (EV_A); /* absolute timers called first */ 1487 periodics_reify (EV_A); /* absolute timers called first */
1430#endif 1488#endif
1431 1489
1490#if EV_IDLE_ENABLE
1432 /* queue idle watchers unless other events are pending */ 1491 /* queue idle watchers unless other events are pending */
1433 if (idlecnt && !any_pending (EV_A)) 1492 idle_reify (EV_A);
1434 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1493#endif
1435 1494
1436 /* queue check watchers, to be executed first */ 1495 /* queue check watchers, to be executed first */
1437 if (expect_false (checkcnt)) 1496 if (expect_false (checkcnt))
1438 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1439 1498
1440 call_pending (EV_A); 1499 call_pending (EV_A);
1441 1500
1442 if (expect_false (loop_done))
1443 break;
1444 } 1501 }
1502 while (expect_true (activecnt && !loop_done));
1445 1503
1446 if (loop_done == EVUNLOOP_ONE) 1504 if (loop_done == EVUNLOOP_ONE)
1447 loop_done = EVUNLOOP_CANCEL; 1505 loop_done = EVUNLOOP_CANCEL;
1448} 1506}
1449 1507
1476 head = &(*head)->next; 1534 head = &(*head)->next;
1477 } 1535 }
1478} 1536}
1479 1537
1480void inline_speed 1538void inline_speed
1481ev_clear_pending (EV_P_ W w) 1539clear_pending (EV_P_ W w)
1482{ 1540{
1483 if (w->pending) 1541 if (w->pending)
1484 { 1542 {
1485 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1543 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1486 w->pending = 0; 1544 w->pending = 0;
1487 } 1545 }
1488} 1546}
1489 1547
1548int
1549ev_clear_pending (EV_P_ void *w)
1550{
1551 W w_ = (W)w;
1552 int pending = w_->pending;
1553
1554 if (expect_true (pending))
1555 {
1556 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1557 w_->pending = 0;
1558 p->w = 0;
1559 return p->events;
1560 }
1561 else
1562 return 0;
1563}
1564
1565void inline_size
1566pri_adjust (EV_P_ W w)
1567{
1568 int pri = w->priority;
1569 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1570 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1571 w->priority = pri;
1572}
1573
1490void inline_speed 1574void inline_speed
1491ev_start (EV_P_ W w, int active) 1575ev_start (EV_P_ W w, int active)
1492{ 1576{
1493 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1577 pri_adjust (EV_A_ w);
1494 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1495
1496 w->active = active; 1578 w->active = active;
1497 ev_ref (EV_A); 1579 ev_ref (EV_A);
1498} 1580}
1499 1581
1500void inline_size 1582void inline_size
1504 w->active = 0; 1586 w->active = 0;
1505} 1587}
1506 1588
1507/*****************************************************************************/ 1589/*****************************************************************************/
1508 1590
1509void 1591void noinline
1510ev_io_start (EV_P_ ev_io *w) 1592ev_io_start (EV_P_ ev_io *w)
1511{ 1593{
1512 int fd = w->fd; 1594 int fd = w->fd;
1513 1595
1514 if (expect_false (ev_is_active (w))) 1596 if (expect_false (ev_is_active (w)))
1521 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1603 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1522 1604
1523 fd_change (EV_A_ fd); 1605 fd_change (EV_A_ fd);
1524} 1606}
1525 1607
1526void 1608void noinline
1527ev_io_stop (EV_P_ ev_io *w) 1609ev_io_stop (EV_P_ ev_io *w)
1528{ 1610{
1529 ev_clear_pending (EV_A_ (W)w); 1611 clear_pending (EV_A_ (W)w);
1530 if (expect_false (!ev_is_active (w))) 1612 if (expect_false (!ev_is_active (w)))
1531 return; 1613 return;
1532 1614
1533 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1615 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1534 1616
1536 ev_stop (EV_A_ (W)w); 1618 ev_stop (EV_A_ (W)w);
1537 1619
1538 fd_change (EV_A_ w->fd); 1620 fd_change (EV_A_ w->fd);
1539} 1621}
1540 1622
1541void 1623void noinline
1542ev_timer_start (EV_P_ ev_timer *w) 1624ev_timer_start (EV_P_ ev_timer *w)
1543{ 1625{
1544 if (expect_false (ev_is_active (w))) 1626 if (expect_false (ev_is_active (w)))
1545 return; 1627 return;
1546 1628
1554 upheap ((WT *)timers, timercnt - 1); 1636 upheap ((WT *)timers, timercnt - 1);
1555 1637
1556 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1638 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1557} 1639}
1558 1640
1559void 1641void noinline
1560ev_timer_stop (EV_P_ ev_timer *w) 1642ev_timer_stop (EV_P_ ev_timer *w)
1561{ 1643{
1562 ev_clear_pending (EV_A_ (W)w); 1644 clear_pending (EV_A_ (W)w);
1563 if (expect_false (!ev_is_active (w))) 1645 if (expect_false (!ev_is_active (w)))
1564 return; 1646 return;
1565 1647
1566 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1648 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1567 1649
1578 ((WT)w)->at -= mn_now; 1660 ((WT)w)->at -= mn_now;
1579 1661
1580 ev_stop (EV_A_ (W)w); 1662 ev_stop (EV_A_ (W)w);
1581} 1663}
1582 1664
1583void 1665void noinline
1584ev_timer_again (EV_P_ ev_timer *w) 1666ev_timer_again (EV_P_ ev_timer *w)
1585{ 1667{
1586 if (ev_is_active (w)) 1668 if (ev_is_active (w))
1587 { 1669 {
1588 if (w->repeat) 1670 if (w->repeat)
1599 ev_timer_start (EV_A_ w); 1681 ev_timer_start (EV_A_ w);
1600 } 1682 }
1601} 1683}
1602 1684
1603#if EV_PERIODIC_ENABLE 1685#if EV_PERIODIC_ENABLE
1604void 1686void noinline
1605ev_periodic_start (EV_P_ ev_periodic *w) 1687ev_periodic_start (EV_P_ ev_periodic *w)
1606{ 1688{
1607 if (expect_false (ev_is_active (w))) 1689 if (expect_false (ev_is_active (w)))
1608 return; 1690 return;
1609 1691
1611 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1693 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1612 else if (w->interval) 1694 else if (w->interval)
1613 { 1695 {
1614 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1696 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1615 /* this formula differs from the one in periodic_reify because we do not always round up */ 1697 /* this formula differs from the one in periodic_reify because we do not always round up */
1616 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1698 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1617 } 1699 }
1700 else
1701 ((WT)w)->at = w->offset;
1618 1702
1619 ev_start (EV_A_ (W)w, ++periodiccnt); 1703 ev_start (EV_A_ (W)w, ++periodiccnt);
1620 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1704 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1621 periodics [periodiccnt - 1] = w; 1705 periodics [periodiccnt - 1] = w;
1622 upheap ((WT *)periodics, periodiccnt - 1); 1706 upheap ((WT *)periodics, periodiccnt - 1);
1623 1707
1624 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1708 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1625} 1709}
1626 1710
1627void 1711void noinline
1628ev_periodic_stop (EV_P_ ev_periodic *w) 1712ev_periodic_stop (EV_P_ ev_periodic *w)
1629{ 1713{
1630 ev_clear_pending (EV_A_ (W)w); 1714 clear_pending (EV_A_ (W)w);
1631 if (expect_false (!ev_is_active (w))) 1715 if (expect_false (!ev_is_active (w)))
1632 return; 1716 return;
1633 1717
1634 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1718 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1635 1719
1644 } 1728 }
1645 1729
1646 ev_stop (EV_A_ (W)w); 1730 ev_stop (EV_A_ (W)w);
1647} 1731}
1648 1732
1649void 1733void noinline
1650ev_periodic_again (EV_P_ ev_periodic *w) 1734ev_periodic_again (EV_P_ ev_periodic *w)
1651{ 1735{
1652 /* TODO: use adjustheap and recalculation */ 1736 /* TODO: use adjustheap and recalculation */
1653 ev_periodic_stop (EV_A_ w); 1737 ev_periodic_stop (EV_A_ w);
1654 ev_periodic_start (EV_A_ w); 1738 ev_periodic_start (EV_A_ w);
1657 1741
1658#ifndef SA_RESTART 1742#ifndef SA_RESTART
1659# define SA_RESTART 0 1743# define SA_RESTART 0
1660#endif 1744#endif
1661 1745
1662void 1746void noinline
1663ev_signal_start (EV_P_ ev_signal *w) 1747ev_signal_start (EV_P_ ev_signal *w)
1664{ 1748{
1665#if EV_MULTIPLICITY 1749#if EV_MULTIPLICITY
1666 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1750 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1667#endif 1751#endif
1668 if (expect_false (ev_is_active (w))) 1752 if (expect_false (ev_is_active (w)))
1669 return; 1753 return;
1670 1754
1671 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1755 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1672 1756
1757 {
1758#ifndef _WIN32
1759 sigset_t full, prev;
1760 sigfillset (&full);
1761 sigprocmask (SIG_SETMASK, &full, &prev);
1762#endif
1763
1764 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1765
1766#ifndef _WIN32
1767 sigprocmask (SIG_SETMASK, &prev, 0);
1768#endif
1769 }
1770
1673 ev_start (EV_A_ (W)w, 1); 1771 ev_start (EV_A_ (W)w, 1);
1674 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1675 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1772 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1676 1773
1677 if (!((WL)w)->next) 1774 if (!((WL)w)->next)
1678 { 1775 {
1679#if _WIN32 1776#if _WIN32
1686 sigaction (w->signum, &sa, 0); 1783 sigaction (w->signum, &sa, 0);
1687#endif 1784#endif
1688 } 1785 }
1689} 1786}
1690 1787
1691void 1788void noinline
1692ev_signal_stop (EV_P_ ev_signal *w) 1789ev_signal_stop (EV_P_ ev_signal *w)
1693{ 1790{
1694 ev_clear_pending (EV_A_ (W)w); 1791 clear_pending (EV_A_ (W)w);
1695 if (expect_false (!ev_is_active (w))) 1792 if (expect_false (!ev_is_active (w)))
1696 return; 1793 return;
1697 1794
1698 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1795 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1699 ev_stop (EV_A_ (W)w); 1796 ev_stop (EV_A_ (W)w);
1716} 1813}
1717 1814
1718void 1815void
1719ev_child_stop (EV_P_ ev_child *w) 1816ev_child_stop (EV_P_ ev_child *w)
1720{ 1817{
1721 ev_clear_pending (EV_A_ (W)w); 1818 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 1819 if (expect_false (!ev_is_active (w)))
1723 return; 1820 return;
1724 1821
1725 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1822 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1726 ev_stop (EV_A_ (W)w); 1823 ev_stop (EV_A_ (W)w);
1962} 2059}
1963 2060
1964void 2061void
1965ev_stat_stop (EV_P_ ev_stat *w) 2062ev_stat_stop (EV_P_ ev_stat *w)
1966{ 2063{
1967 ev_clear_pending (EV_A_ (W)w); 2064 clear_pending (EV_A_ (W)w);
1968 if (expect_false (!ev_is_active (w))) 2065 if (expect_false (!ev_is_active (w)))
1969 return; 2066 return;
1970 2067
1971#if EV_USE_INOTIFY 2068#if EV_USE_INOTIFY
1972 infy_del (EV_A_ w); 2069 infy_del (EV_A_ w);
1975 2072
1976 ev_stop (EV_A_ (W)w); 2073 ev_stop (EV_A_ (W)w);
1977} 2074}
1978#endif 2075#endif
1979 2076
2077#if EV_IDLE_ENABLE
1980void 2078void
1981ev_idle_start (EV_P_ ev_idle *w) 2079ev_idle_start (EV_P_ ev_idle *w)
1982{ 2080{
1983 if (expect_false (ev_is_active (w))) 2081 if (expect_false (ev_is_active (w)))
1984 return; 2082 return;
1985 2083
2084 pri_adjust (EV_A_ (W)w);
2085
2086 {
2087 int active = ++idlecnt [ABSPRI (w)];
2088
2089 ++idleall;
1986 ev_start (EV_A_ (W)w, ++idlecnt); 2090 ev_start (EV_A_ (W)w, active);
2091
1987 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2092 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1988 idles [idlecnt - 1] = w; 2093 idles [ABSPRI (w)][active - 1] = w;
2094 }
1989} 2095}
1990 2096
1991void 2097void
1992ev_idle_stop (EV_P_ ev_idle *w) 2098ev_idle_stop (EV_P_ ev_idle *w)
1993{ 2099{
1994 ev_clear_pending (EV_A_ (W)w); 2100 clear_pending (EV_A_ (W)w);
1995 if (expect_false (!ev_is_active (w))) 2101 if (expect_false (!ev_is_active (w)))
1996 return; 2102 return;
1997 2103
1998 { 2104 {
1999 int active = ((W)w)->active; 2105 int active = ((W)w)->active;
2000 idles [active - 1] = idles [--idlecnt]; 2106
2107 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2001 ((W)idles [active - 1])->active = active; 2108 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2109
2110 ev_stop (EV_A_ (W)w);
2111 --idleall;
2002 } 2112 }
2003
2004 ev_stop (EV_A_ (W)w);
2005} 2113}
2114#endif
2006 2115
2007void 2116void
2008ev_prepare_start (EV_P_ ev_prepare *w) 2117ev_prepare_start (EV_P_ ev_prepare *w)
2009{ 2118{
2010 if (expect_false (ev_is_active (w))) 2119 if (expect_false (ev_is_active (w)))
2016} 2125}
2017 2126
2018void 2127void
2019ev_prepare_stop (EV_P_ ev_prepare *w) 2128ev_prepare_stop (EV_P_ ev_prepare *w)
2020{ 2129{
2021 ev_clear_pending (EV_A_ (W)w); 2130 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 2131 if (expect_false (!ev_is_active (w)))
2023 return; 2132 return;
2024 2133
2025 { 2134 {
2026 int active = ((W)w)->active; 2135 int active = ((W)w)->active;
2043} 2152}
2044 2153
2045void 2154void
2046ev_check_stop (EV_P_ ev_check *w) 2155ev_check_stop (EV_P_ ev_check *w)
2047{ 2156{
2048 ev_clear_pending (EV_A_ (W)w); 2157 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 2158 if (expect_false (!ev_is_active (w)))
2050 return; 2159 return;
2051 2160
2052 { 2161 {
2053 int active = ((W)w)->active; 2162 int active = ((W)w)->active;
2095} 2204}
2096 2205
2097void 2206void
2098ev_embed_stop (EV_P_ ev_embed *w) 2207ev_embed_stop (EV_P_ ev_embed *w)
2099{ 2208{
2100 ev_clear_pending (EV_A_ (W)w); 2209 clear_pending (EV_A_ (W)w);
2101 if (expect_false (!ev_is_active (w))) 2210 if (expect_false (!ev_is_active (w)))
2102 return; 2211 return;
2103 2212
2104 ev_io_stop (EV_A_ &w->io); 2213 ev_io_stop (EV_A_ &w->io);
2105 2214
2120} 2229}
2121 2230
2122void 2231void
2123ev_fork_stop (EV_P_ ev_fork *w) 2232ev_fork_stop (EV_P_ ev_fork *w)
2124{ 2233{
2125 ev_clear_pending (EV_A_ (W)w); 2234 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 2235 if (expect_false (!ev_is_active (w)))
2127 return; 2236 return;
2128 2237
2129 { 2238 {
2130 int active = ((W)w)->active; 2239 int active = ((W)w)->active;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines