ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.158 by root, Thu Nov 29 17:28:13 2007 UTC vs.
Revision 1.193 by root, Sat Dec 22 05:47:58 2007 UTC

51# ifndef EV_USE_MONOTONIC 51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 52# define EV_USE_MONOTONIC 0
53# endif 53# endif
54# ifndef EV_USE_REALTIME 54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 55# define EV_USE_REALTIME 0
56# endif
57# endif
58
59# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1
62# else
63# define EV_USE_NANOSLEEP 0
56# endif 64# endif
57# endif 65# endif
58 66
59# ifndef EV_USE_SELECT 67# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 154
147#ifndef EV_USE_REALTIME 155#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 156# define EV_USE_REALTIME 0
149#endif 157#endif
150 158
159#ifndef EV_USE_NANOSLEEP
160# define EV_USE_NANOSLEEP 0
161#endif
162
151#ifndef EV_USE_SELECT 163#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 164# define EV_USE_SELECT 1
153#endif 165#endif
154 166
155#ifndef EV_USE_POLL 167#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 214#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 215# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 216# define EV_USE_REALTIME 0
205#endif 217#endif
206 218
219#if !EV_STAT_ENABLE
220# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0
222#endif
223
224#if !EV_USE_NANOSLEEP
225# ifndef _WIN32
226# include <sys/select.h>
227# endif
228#endif
229
230#if EV_USE_INOTIFY
231# include <sys/inotify.h>
232#endif
233
207#if EV_SELECT_IS_WINSOCKET 234#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 235# include <winsock.h>
209#endif 236#endif
210 237
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/ 238/**/
239
240/*
241 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 249
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 253
225#if __GNUC__ >= 3 254#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 255# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 256# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 257#else
236# define expect(expr,value) (expr) 258# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 259# define noinline
260# if __STDC_VERSION__ < 199901L
261# define inline
262# endif
240#endif 263#endif
241 264
242#define expect_false(expr) expect ((expr) != 0, 0) 265#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 266#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline
268
269#if EV_MINIMAL
270# define inline_speed static noinline
271#else
272# define inline_speed static inline
273#endif
244 274
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 277
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 278#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 279#define EMPTY2(a,b) /* used to suppress some warnings */
250 280
251typedef ev_watcher *W; 281typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 282typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 283typedef ev_watcher_time *WT;
396{ 426{
397 return ev_rt_now; 427 return ev_rt_now;
398} 428}
399#endif 429#endif
400 430
401#define array_roundsize(type,n) (((n) | 4) & ~3) 431void
432ev_sleep (ev_tstamp delay)
433{
434 if (delay > 0.)
435 {
436#if EV_USE_NANOSLEEP
437 struct timespec ts;
438
439 ts.tv_sec = (time_t)delay;
440 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
441
442 nanosleep (&ts, 0);
443#elif defined(_WIN32)
444 Sleep (delay * 1e3);
445#else
446 struct timeval tv;
447
448 tv.tv_sec = (time_t)delay;
449 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
450
451 select (0, 0, 0, 0, &tv);
452#endif
453 }
454}
455
456/*****************************************************************************/
457
458int inline_size
459array_nextsize (int elem, int cur, int cnt)
460{
461 int ncur = cur + 1;
462
463 do
464 ncur <<= 1;
465 while (cnt > ncur);
466
467 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
468 if (elem * ncur > 4096)
469 {
470 ncur *= elem;
471 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
472 ncur = ncur - sizeof (void *) * 4;
473 ncur /= elem;
474 }
475
476 return ncur;
477}
478
479static noinline void *
480array_realloc (int elem, void *base, int *cur, int cnt)
481{
482 *cur = array_nextsize (elem, *cur, cnt);
483 return ev_realloc (base, elem * *cur);
484}
402 485
403#define array_needsize(type,base,cur,cnt,init) \ 486#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 487 if (expect_false ((cnt) > (cur))) \
405 { \ 488 { \
406 int newcnt = cur; \ 489 int ocur_ = (cur); \
407 do \ 490 (base) = (type *)array_realloc \
408 { \ 491 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 492 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 493 }
417 494
495#if 0
418#define array_slim(type,stem) \ 496#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 497 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 498 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 499 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 500 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 501 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 502 }
503#endif
425 504
426#define array_free(stem, idx) \ 505#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 506 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 507
429/*****************************************************************************/ 508/*****************************************************************************/
430 509
431void noinline 510void noinline
432ev_feed_event (EV_P_ void *w, int revents) 511ev_feed_event (EV_P_ void *w, int revents)
433{ 512{
434 W w_ = (W)w; 513 W w_ = (W)w;
514 int pri = ABSPRI (w_);
435 515
436 if (expect_false (w_->pending)) 516 if (expect_false (w_->pending))
517 pendings [pri][w_->pending - 1].events |= revents;
518 else
437 { 519 {
520 w_->pending = ++pendingcnt [pri];
521 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
522 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 523 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 524 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 525}
447 526
448void inline_size 527void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 528queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 529{
451 int i; 530 int i;
452 531
453 for (i = 0; i < eventcnt; ++i) 532 for (i = 0; i < eventcnt; ++i)
485} 564}
486 565
487void 566void
488ev_feed_fd_event (EV_P_ int fd, int revents) 567ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 568{
569 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 570 fd_event (EV_A_ fd, revents);
491} 571}
492 572
493void inline_size 573void inline_size
494fd_reify (EV_P) 574fd_reify (EV_P)
495{ 575{
499 { 579 {
500 int fd = fdchanges [i]; 580 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 581 ANFD *anfd = anfds + fd;
502 ev_io *w; 582 ev_io *w;
503 583
504 int events = 0; 584 unsigned char events = 0;
505 585
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 586 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 587 events |= (unsigned char)w->events;
508 588
509#if EV_SELECT_IS_WINSOCKET 589#if EV_SELECT_IS_WINSOCKET
510 if (events) 590 if (events)
511 { 591 {
512 unsigned long argp; 592 unsigned long argp;
513 anfd->handle = _get_osfhandle (fd); 593 anfd->handle = _get_osfhandle (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 594 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 595 }
516#endif 596#endif
517 597
598 {
599 unsigned char o_events = anfd->events;
600 unsigned char o_reify = anfd->reify;
601
518 anfd->reify = 0; 602 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 603 anfd->events = events;
604
605 if (o_events != events || o_reify & EV_IOFDSET)
606 backend_modify (EV_A_ fd, o_events, events);
607 }
522 } 608 }
523 609
524 fdchangecnt = 0; 610 fdchangecnt = 0;
525} 611}
526 612
527void inline_size 613void inline_size
528fd_change (EV_P_ int fd) 614fd_change (EV_P_ int fd, int flags)
529{ 615{
530 if (expect_false (anfds [fd].reify)) 616 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 617 anfds [fd].reify |= flags;
534 618
619 if (expect_true (!reify))
620 {
535 ++fdchangecnt; 621 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 623 fdchanges [fdchangecnt - 1] = fd;
624 }
538} 625}
539 626
540void inline_speed 627void inline_speed
541fd_kill (EV_P_ int fd) 628fd_kill (EV_P_ int fd)
542{ 629{
593 680
594 for (fd = 0; fd < anfdmax; ++fd) 681 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 682 if (anfds [fd].events)
596 { 683 {
597 anfds [fd].events = 0; 684 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 685 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 686 }
600} 687}
601 688
602/*****************************************************************************/ 689/*****************************************************************************/
603 690
604void inline_speed 691void inline_speed
605upheap (WT *heap, int k) 692upheap (WT *heap, int k)
606{ 693{
607 WT w = heap [k]; 694 WT w = heap [k];
608 695
609 while (k && heap [k >> 1]->at > w->at) 696 while (k)
610 { 697 {
698 int p = (k - 1) >> 1;
699
700 if (heap [p]->at <= w->at)
701 break;
702
611 heap [k] = heap [k >> 1]; 703 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 704 ((W)heap [k])->active = k + 1;
613 k >>= 1; 705 k = p;
614 } 706 }
615 707
616 heap [k] = w; 708 heap [k] = w;
617 ((W)heap [k])->active = k + 1; 709 ((W)heap [k])->active = k + 1;
618
619} 710}
620 711
621void inline_speed 712void inline_speed
622downheap (WT *heap, int N, int k) 713downheap (WT *heap, int N, int k)
623{ 714{
624 WT w = heap [k]; 715 WT w = heap [k];
625 716
626 while (k < (N >> 1)) 717 for (;;)
627 { 718 {
628 int j = k << 1; 719 int c = (k << 1) + 1;
629 720
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 721 if (c >= N)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 722 break;
635 723
724 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
725 ? 1 : 0;
726
727 if (w->at <= heap [c]->at)
728 break;
729
636 heap [k] = heap [j]; 730 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 731 ((W)heap [k])->active = k + 1;
732
638 k = j; 733 k = c;
639 } 734 }
640 735
641 heap [k] = w; 736 heap [k] = w;
642 ((W)heap [k])->active = k + 1; 737 ((W)heap [k])->active = k + 1;
643} 738}
725 for (signum = signalmax; signum--; ) 820 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig) 821 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1); 822 ev_feed_signal_event (EV_A_ signum + 1);
728} 823}
729 824
730void inline_size 825void inline_speed
731fd_intern (int fd) 826fd_intern (int fd)
732{ 827{
733#ifdef _WIN32 828#ifdef _WIN32
734 int arg = 1; 829 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 830 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 845 ev_unref (EV_A); /* child watcher should not keep loop alive */
751} 846}
752 847
753/*****************************************************************************/ 848/*****************************************************************************/
754 849
755static ev_child *childs [EV_PID_HASHSIZE]; 850static WL childs [EV_PID_HASHSIZE];
756 851
757#ifndef _WIN32 852#ifndef _WIN32
758 853
759static ev_signal childev; 854static ev_signal childev;
760 855
764 ev_child *w; 859 ev_child *w;
765 860
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 861 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
767 if (w->pid == pid || !w->pid) 862 if (w->pid == pid || !w->pid)
768 { 863 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 864 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
770 w->rpid = pid; 865 w->rpid = pid;
771 w->rstatus = status; 866 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 867 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 868 }
774} 869}
775 870
776#ifndef WCONTINUED 871#ifndef WCONTINUED
875} 970}
876 971
877unsigned int 972unsigned int
878ev_embeddable_backends (void) 973ev_embeddable_backends (void)
879{ 974{
975 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
880 return EVBACKEND_EPOLL 976 return EVBACKEND_KQUEUE
881 | EVBACKEND_KQUEUE
882 | EVBACKEND_PORT; 977 | EVBACKEND_PORT;
883} 978}
884 979
885unsigned int 980unsigned int
886ev_backend (EV_P) 981ev_backend (EV_P)
887{ 982{
888 return backend; 983 return backend;
984}
985
986unsigned int
987ev_loop_count (EV_P)
988{
989 return loop_count;
990}
991
992void
993ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
994{
995 io_blocktime = interval;
996}
997
998void
999ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1000{
1001 timeout_blocktime = interval;
889} 1002}
890 1003
891static void noinline 1004static void noinline
892loop_init (EV_P_ unsigned int flags) 1005loop_init (EV_P_ unsigned int flags)
893{ 1006{
904 ev_rt_now = ev_time (); 1017 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1018 mn_now = get_clock ();
906 now_floor = mn_now; 1019 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1020 rtmn_diff = ev_rt_now - mn_now;
908 1021
1022 io_blocktime = 0.;
1023 timeout_blocktime = 0.;
1024
909 /* pid check not overridable via env */ 1025 /* pid check not overridable via env */
910#ifndef _WIN32 1026#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1027 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1028 curpid = getpid ();
913#endif 1029#endif
975#if EV_USE_SELECT 1091#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1092 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1093#endif
978 1094
979 for (i = NUMPRI; i--; ) 1095 for (i = NUMPRI; i--; )
1096 {
980 array_free (pending, [i]); 1097 array_free (pending, [i]);
1098#if EV_IDLE_ENABLE
1099 array_free (idle, [i]);
1100#endif
1101 }
1102
1103 ev_free (anfds); anfdmax = 0;
981 1104
982 /* have to use the microsoft-never-gets-it-right macro */ 1105 /* have to use the microsoft-never-gets-it-right macro */
983 array_free (fdchange, EMPTY0); 1106 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1107 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1108#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1109 array_free (periodic, EMPTY);
987#endif 1110#endif
1111#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1112 array_free (fork, EMPTY);
1113#endif
989 array_free (prepare, EMPTY0); 1114 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1115 array_free (check, EMPTY);
991 1116
992 backend = 0; 1117 backend = 0;
993} 1118}
994 1119
995void inline_size infy_fork (EV_P); 1120void inline_size infy_fork (EV_P);
1131 postfork = 1; 1256 postfork = 1;
1132} 1257}
1133 1258
1134/*****************************************************************************/ 1259/*****************************************************************************/
1135 1260
1136int inline_size 1261void
1137any_pending (EV_P) 1262ev_invoke (EV_P_ void *w, int revents)
1138{ 1263{
1139 int pri; 1264 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1265}
1147 1266
1148void inline_speed 1267void inline_speed
1149call_pending (EV_P) 1268call_pending (EV_P)
1150{ 1269{
1168void inline_size 1287void inline_size
1169timers_reify (EV_P) 1288timers_reify (EV_P)
1170{ 1289{
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 1290 while (timercnt && ((WT)timers [0])->at <= mn_now)
1172 { 1291 {
1173 ev_timer *w = timers [0]; 1292 ev_timer *w = (ev_timer *)timers [0];
1174 1293
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1294 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176 1295
1177 /* first reschedule or stop timer */ 1296 /* first reschedule or stop timer */
1178 if (w->repeat) 1297 if (w->repeat)
1181 1300
1182 ((WT)w)->at += w->repeat; 1301 ((WT)w)->at += w->repeat;
1183 if (((WT)w)->at < mn_now) 1302 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now; 1303 ((WT)w)->at = mn_now;
1185 1304
1186 downheap ((WT *)timers, timercnt, 0); 1305 downheap (timers, timercnt, 0);
1187 } 1306 }
1188 else 1307 else
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1308 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 1309
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1310 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1196void inline_size 1315void inline_size
1197periodics_reify (EV_P) 1316periodics_reify (EV_P)
1198{ 1317{
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1318 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1200 { 1319 {
1201 ev_periodic *w = periodics [0]; 1320 ev_periodic *w = (ev_periodic *)periodics [0];
1202 1321
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1322 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1204 1323
1205 /* first reschedule or stop timer */ 1324 /* first reschedule or stop timer */
1206 if (w->reschedule_cb) 1325 if (w->reschedule_cb)
1207 { 1326 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1327 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1328 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1210 downheap ((WT *)periodics, periodiccnt, 0); 1329 downheap (periodics, periodiccnt, 0);
1211 } 1330 }
1212 else if (w->interval) 1331 else if (w->interval)
1213 { 1332 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1333 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1334 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1335 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0); 1336 downheap (periodics, periodiccnt, 0);
1217 } 1337 }
1218 else 1338 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1339 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 1340
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1341 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1228 int i; 1348 int i;
1229 1349
1230 /* adjust periodics after time jump */ 1350 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 1351 for (i = 0; i < periodiccnt; ++i)
1232 { 1352 {
1233 ev_periodic *w = periodics [i]; 1353 ev_periodic *w = (ev_periodic *)periodics [i];
1234 1354
1235 if (w->reschedule_cb) 1355 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 1357 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1358 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1239 } 1359 }
1240 1360
1241 /* now rebuild the heap */ 1361 /* now rebuild the heap */
1242 for (i = periodiccnt >> 1; i--; ) 1362 for (i = periodiccnt >> 1; i--; )
1243 downheap ((WT *)periodics, periodiccnt, i); 1363 downheap (periodics, periodiccnt, i);
1244} 1364}
1245#endif 1365#endif
1246 1366
1367#if EV_IDLE_ENABLE
1247int inline_size 1368void inline_size
1248time_update_monotonic (EV_P) 1369idle_reify (EV_P)
1249{ 1370{
1371 if (expect_false (idleall))
1372 {
1373 int pri;
1374
1375 for (pri = NUMPRI; pri--; )
1376 {
1377 if (pendingcnt [pri])
1378 break;
1379
1380 if (idlecnt [pri])
1381 {
1382 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1383 break;
1384 }
1385 }
1386 }
1387}
1388#endif
1389
1390void inline_speed
1391time_update (EV_P_ ev_tstamp max_block)
1392{
1393 int i;
1394
1395#if EV_USE_MONOTONIC
1396 if (expect_true (have_monotonic))
1397 {
1398 ev_tstamp odiff = rtmn_diff;
1399
1250 mn_now = get_clock (); 1400 mn_now = get_clock ();
1251 1401
1402 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1403 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1404 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1405 {
1254 ev_rt_now = rtmn_diff + mn_now; 1406 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1407 return;
1256 } 1408 }
1257 else 1409
1258 {
1259 now_floor = mn_now; 1410 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1411 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1412
1265void inline_size 1413 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1414 * on the choice of "4": one iteration isn't enough,
1267{ 1415 * in case we get preempted during the calls to
1268 int i; 1416 * ev_time and get_clock. a second call is almost guaranteed
1269 1417 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1418 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1419 * in the unlikely event of having been preempted here.
1272 { 1420 */
1273 if (time_update_monotonic (EV_A)) 1421 for (i = 4; --i; )
1274 { 1422 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1423 rtmn_diff = ev_rt_now - mn_now;
1288 1424
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1425 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1290 return; /* all is well */ 1426 return; /* all is well */
1291 1427
1292 ev_rt_now = ev_time (); 1428 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1429 mn_now = get_clock ();
1294 now_floor = mn_now; 1430 now_floor = mn_now;
1295 } 1431 }
1296 1432
1297# if EV_PERIODIC_ENABLE 1433# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1434 periodics_reschedule (EV_A);
1299# endif 1435# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */ 1436 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1437 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1438 }
1304 else 1439 else
1305#endif 1440#endif
1306 { 1441 {
1307 ev_rt_now = ev_time (); 1442 ev_rt_now = ev_time ();
1308 1443
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1444 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 1445 {
1311#if EV_PERIODIC_ENABLE 1446#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 1447 periodics_reschedule (EV_A);
1313#endif 1448#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */ 1449 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i) 1450 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now; 1451 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 1452 }
1319 1453
1342 ? EVUNLOOP_ONE 1476 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL; 1477 : EVUNLOOP_CANCEL;
1344 1478
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1479 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 1480
1347 while (activecnt) 1481 do
1348 { 1482 {
1349#ifndef _WIN32 1483#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 1484 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 1485 if (expect_false (getpid () != curpid))
1352 { 1486 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1497 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 1498 call_pending (EV_A);
1365 } 1499 }
1366#endif 1500#endif
1367 1501
1368 /* queue check watchers (and execute them) */ 1502 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 1503 if (expect_false (preparecnt))
1370 { 1504 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1505 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 1506 call_pending (EV_A);
1373 } 1507 }
1374 1508
1509 if (expect_false (!activecnt))
1510 break;
1511
1375 /* we might have forked, so reify kernel state if necessary */ 1512 /* we might have forked, so reify kernel state if necessary */
1376 if (expect_false (postfork)) 1513 if (expect_false (postfork))
1377 loop_fork (EV_A); 1514 loop_fork (EV_A);
1378 1515
1379 /* update fd-related kernel structures */ 1516 /* update fd-related kernel structures */
1380 fd_reify (EV_A); 1517 fd_reify (EV_A);
1381 1518
1382 /* calculate blocking time */ 1519 /* calculate blocking time */
1383 { 1520 {
1384 ev_tstamp block; 1521 ev_tstamp waittime = 0.;
1522 ev_tstamp sleeptime = 0.;
1385 1523
1386 if (flags & EVLOOP_NONBLOCK || idlecnt) 1524 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1387 block = 0.; /* do not block at all */
1388 else
1389 { 1525 {
1390 /* update time to cancel out callback processing overhead */ 1526 /* update time to cancel out callback processing overhead */
1391#if EV_USE_MONOTONIC
1392 if (expect_true (have_monotonic))
1393 time_update_monotonic (EV_A); 1527 time_update (EV_A_ 1e100);
1394 else
1395#endif
1396 {
1397 ev_rt_now = ev_time ();
1398 mn_now = ev_rt_now;
1399 }
1400 1528
1401 block = MAX_BLOCKTIME; 1529 waittime = MAX_BLOCKTIME;
1402 1530
1403 if (timercnt) 1531 if (timercnt)
1404 { 1532 {
1405 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1533 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1406 if (block > to) block = to; 1534 if (waittime > to) waittime = to;
1407 } 1535 }
1408 1536
1409#if EV_PERIODIC_ENABLE 1537#if EV_PERIODIC_ENABLE
1410 if (periodiccnt) 1538 if (periodiccnt)
1411 { 1539 {
1412 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1540 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1413 if (block > to) block = to; 1541 if (waittime > to) waittime = to;
1414 } 1542 }
1415#endif 1543#endif
1416 1544
1417 if (expect_false (block < 0.)) block = 0.; 1545 if (expect_false (waittime < timeout_blocktime))
1546 waittime = timeout_blocktime;
1547
1548 sleeptime = waittime - backend_fudge;
1549
1550 if (expect_true (sleeptime > io_blocktime))
1551 sleeptime = io_blocktime;
1552
1553 if (sleeptime)
1554 {
1555 ev_sleep (sleeptime);
1556 waittime -= sleeptime;
1557 }
1418 } 1558 }
1419 1559
1560 ++loop_count;
1420 backend_poll (EV_A_ block); 1561 backend_poll (EV_A_ waittime);
1562
1563 /* update ev_rt_now, do magic */
1564 time_update (EV_A_ waittime + sleeptime);
1421 } 1565 }
1422
1423 /* update ev_rt_now, do magic */
1424 time_update (EV_A);
1425 1566
1426 /* queue pending timers and reschedule them */ 1567 /* queue pending timers and reschedule them */
1427 timers_reify (EV_A); /* relative timers called last */ 1568 timers_reify (EV_A); /* relative timers called last */
1428#if EV_PERIODIC_ENABLE 1569#if EV_PERIODIC_ENABLE
1429 periodics_reify (EV_A); /* absolute timers called first */ 1570 periodics_reify (EV_A); /* absolute timers called first */
1430#endif 1571#endif
1431 1572
1573#if EV_IDLE_ENABLE
1432 /* queue idle watchers unless other events are pending */ 1574 /* queue idle watchers unless other events are pending */
1433 if (idlecnt && !any_pending (EV_A)) 1575 idle_reify (EV_A);
1434 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1576#endif
1435 1577
1436 /* queue check watchers, to be executed first */ 1578 /* queue check watchers, to be executed first */
1437 if (expect_false (checkcnt)) 1579 if (expect_false (checkcnt))
1438 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1580 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1439 1581
1440 call_pending (EV_A); 1582 call_pending (EV_A);
1441 1583
1442 if (expect_false (loop_done))
1443 break;
1444 } 1584 }
1585 while (expect_true (activecnt && !loop_done));
1445 1586
1446 if (loop_done == EVUNLOOP_ONE) 1587 if (loop_done == EVUNLOOP_ONE)
1447 loop_done = EVUNLOOP_CANCEL; 1588 loop_done = EVUNLOOP_CANCEL;
1448} 1589}
1449 1590
1476 head = &(*head)->next; 1617 head = &(*head)->next;
1477 } 1618 }
1478} 1619}
1479 1620
1480void inline_speed 1621void inline_speed
1481ev_clear_pending (EV_P_ W w) 1622clear_pending (EV_P_ W w)
1482{ 1623{
1483 if (w->pending) 1624 if (w->pending)
1484 { 1625 {
1485 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1626 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1486 w->pending = 0; 1627 w->pending = 0;
1487 } 1628 }
1488} 1629}
1489 1630
1631int
1632ev_clear_pending (EV_P_ void *w)
1633{
1634 W w_ = (W)w;
1635 int pending = w_->pending;
1636
1637 if (expect_true (pending))
1638 {
1639 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1640 w_->pending = 0;
1641 p->w = 0;
1642 return p->events;
1643 }
1644 else
1645 return 0;
1646}
1647
1648void inline_size
1649pri_adjust (EV_P_ W w)
1650{
1651 int pri = w->priority;
1652 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1653 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1654 w->priority = pri;
1655}
1656
1490void inline_speed 1657void inline_speed
1491ev_start (EV_P_ W w, int active) 1658ev_start (EV_P_ W w, int active)
1492{ 1659{
1493 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1660 pri_adjust (EV_A_ w);
1494 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1495
1496 w->active = active; 1661 w->active = active;
1497 ev_ref (EV_A); 1662 ev_ref (EV_A);
1498} 1663}
1499 1664
1500void inline_size 1665void inline_size
1504 w->active = 0; 1669 w->active = 0;
1505} 1670}
1506 1671
1507/*****************************************************************************/ 1672/*****************************************************************************/
1508 1673
1509void 1674void noinline
1510ev_io_start (EV_P_ ev_io *w) 1675ev_io_start (EV_P_ ev_io *w)
1511{ 1676{
1512 int fd = w->fd; 1677 int fd = w->fd;
1513 1678
1514 if (expect_false (ev_is_active (w))) 1679 if (expect_false (ev_is_active (w)))
1516 1681
1517 assert (("ev_io_start called with negative fd", fd >= 0)); 1682 assert (("ev_io_start called with negative fd", fd >= 0));
1518 1683
1519 ev_start (EV_A_ (W)w, 1); 1684 ev_start (EV_A_ (W)w, 1);
1520 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1685 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1521 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1686 wlist_add (&anfds[fd].head, (WL)w);
1522 1687
1523 fd_change (EV_A_ fd); 1688 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1689 w->events &= ~EV_IOFDSET;
1524} 1690}
1525 1691
1526void 1692void noinline
1527ev_io_stop (EV_P_ ev_io *w) 1693ev_io_stop (EV_P_ ev_io *w)
1528{ 1694{
1529 ev_clear_pending (EV_A_ (W)w); 1695 clear_pending (EV_A_ (W)w);
1530 if (expect_false (!ev_is_active (w))) 1696 if (expect_false (!ev_is_active (w)))
1531 return; 1697 return;
1532 1698
1533 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1699 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1534 1700
1535 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1701 wlist_del (&anfds[w->fd].head, (WL)w);
1536 ev_stop (EV_A_ (W)w); 1702 ev_stop (EV_A_ (W)w);
1537 1703
1538 fd_change (EV_A_ w->fd); 1704 fd_change (EV_A_ w->fd, 1);
1539} 1705}
1540 1706
1541void 1707void noinline
1542ev_timer_start (EV_P_ ev_timer *w) 1708ev_timer_start (EV_P_ ev_timer *w)
1543{ 1709{
1544 if (expect_false (ev_is_active (w))) 1710 if (expect_false (ev_is_active (w)))
1545 return; 1711 return;
1546 1712
1547 ((WT)w)->at += mn_now; 1713 ((WT)w)->at += mn_now;
1548 1714
1549 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1715 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1550 1716
1551 ev_start (EV_A_ (W)w, ++timercnt); 1717 ev_start (EV_A_ (W)w, ++timercnt);
1552 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1718 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1553 timers [timercnt - 1] = w; 1719 timers [timercnt - 1] = (WT)w;
1554 upheap ((WT *)timers, timercnt - 1); 1720 upheap (timers, timercnt - 1);
1555 1721
1556 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1722 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1557} 1723}
1558 1724
1559void 1725void noinline
1560ev_timer_stop (EV_P_ ev_timer *w) 1726ev_timer_stop (EV_P_ ev_timer *w)
1561{ 1727{
1562 ev_clear_pending (EV_A_ (W)w); 1728 clear_pending (EV_A_ (W)w);
1563 if (expect_false (!ev_is_active (w))) 1729 if (expect_false (!ev_is_active (w)))
1564 return; 1730 return;
1565 1731
1566 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1732 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1567 1733
1568 { 1734 {
1569 int active = ((W)w)->active; 1735 int active = ((W)w)->active;
1570 1736
1571 if (expect_true (--active < --timercnt)) 1737 if (expect_true (--active < --timercnt))
1572 { 1738 {
1573 timers [active] = timers [timercnt]; 1739 timers [active] = timers [timercnt];
1574 adjustheap ((WT *)timers, timercnt, active); 1740 adjustheap (timers, timercnt, active);
1575 } 1741 }
1576 } 1742 }
1577 1743
1578 ((WT)w)->at -= mn_now; 1744 ((WT)w)->at -= mn_now;
1579 1745
1580 ev_stop (EV_A_ (W)w); 1746 ev_stop (EV_A_ (W)w);
1581} 1747}
1582 1748
1583void 1749void noinline
1584ev_timer_again (EV_P_ ev_timer *w) 1750ev_timer_again (EV_P_ ev_timer *w)
1585{ 1751{
1586 if (ev_is_active (w)) 1752 if (ev_is_active (w))
1587 { 1753 {
1588 if (w->repeat) 1754 if (w->repeat)
1589 { 1755 {
1590 ((WT)w)->at = mn_now + w->repeat; 1756 ((WT)w)->at = mn_now + w->repeat;
1591 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1757 adjustheap (timers, timercnt, ((W)w)->active - 1);
1592 } 1758 }
1593 else 1759 else
1594 ev_timer_stop (EV_A_ w); 1760 ev_timer_stop (EV_A_ w);
1595 } 1761 }
1596 else if (w->repeat) 1762 else if (w->repeat)
1599 ev_timer_start (EV_A_ w); 1765 ev_timer_start (EV_A_ w);
1600 } 1766 }
1601} 1767}
1602 1768
1603#if EV_PERIODIC_ENABLE 1769#if EV_PERIODIC_ENABLE
1604void 1770void noinline
1605ev_periodic_start (EV_P_ ev_periodic *w) 1771ev_periodic_start (EV_P_ ev_periodic *w)
1606{ 1772{
1607 if (expect_false (ev_is_active (w))) 1773 if (expect_false (ev_is_active (w)))
1608 return; 1774 return;
1609 1775
1611 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1777 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1612 else if (w->interval) 1778 else if (w->interval)
1613 { 1779 {
1614 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1780 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1615 /* this formula differs from the one in periodic_reify because we do not always round up */ 1781 /* this formula differs from the one in periodic_reify because we do not always round up */
1616 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1782 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1617 } 1783 }
1784 else
1785 ((WT)w)->at = w->offset;
1618 1786
1619 ev_start (EV_A_ (W)w, ++periodiccnt); 1787 ev_start (EV_A_ (W)w, ++periodiccnt);
1620 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1788 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1621 periodics [periodiccnt - 1] = w; 1789 periodics [periodiccnt - 1] = (WT)w;
1622 upheap ((WT *)periodics, periodiccnt - 1); 1790 upheap (periodics, periodiccnt - 1);
1623 1791
1624 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1792 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1625} 1793}
1626 1794
1627void 1795void noinline
1628ev_periodic_stop (EV_P_ ev_periodic *w) 1796ev_periodic_stop (EV_P_ ev_periodic *w)
1629{ 1797{
1630 ev_clear_pending (EV_A_ (W)w); 1798 clear_pending (EV_A_ (W)w);
1631 if (expect_false (!ev_is_active (w))) 1799 if (expect_false (!ev_is_active (w)))
1632 return; 1800 return;
1633 1801
1634 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1802 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1635 1803
1636 { 1804 {
1637 int active = ((W)w)->active; 1805 int active = ((W)w)->active;
1638 1806
1639 if (expect_true (--active < --periodiccnt)) 1807 if (expect_true (--active < --periodiccnt))
1640 { 1808 {
1641 periodics [active] = periodics [periodiccnt]; 1809 periodics [active] = periodics [periodiccnt];
1642 adjustheap ((WT *)periodics, periodiccnt, active); 1810 adjustheap (periodics, periodiccnt, active);
1643 } 1811 }
1644 } 1812 }
1645 1813
1646 ev_stop (EV_A_ (W)w); 1814 ev_stop (EV_A_ (W)w);
1647} 1815}
1648 1816
1649void 1817void noinline
1650ev_periodic_again (EV_P_ ev_periodic *w) 1818ev_periodic_again (EV_P_ ev_periodic *w)
1651{ 1819{
1652 /* TODO: use adjustheap and recalculation */ 1820 /* TODO: use adjustheap and recalculation */
1653 ev_periodic_stop (EV_A_ w); 1821 ev_periodic_stop (EV_A_ w);
1654 ev_periodic_start (EV_A_ w); 1822 ev_periodic_start (EV_A_ w);
1657 1825
1658#ifndef SA_RESTART 1826#ifndef SA_RESTART
1659# define SA_RESTART 0 1827# define SA_RESTART 0
1660#endif 1828#endif
1661 1829
1662void 1830void noinline
1663ev_signal_start (EV_P_ ev_signal *w) 1831ev_signal_start (EV_P_ ev_signal *w)
1664{ 1832{
1665#if EV_MULTIPLICITY 1833#if EV_MULTIPLICITY
1666 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1834 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1667#endif 1835#endif
1668 if (expect_false (ev_is_active (w))) 1836 if (expect_false (ev_is_active (w)))
1669 return; 1837 return;
1670 1838
1671 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1839 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1672 1840
1841 {
1842#ifndef _WIN32
1843 sigset_t full, prev;
1844 sigfillset (&full);
1845 sigprocmask (SIG_SETMASK, &full, &prev);
1846#endif
1847
1848 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1849
1850#ifndef _WIN32
1851 sigprocmask (SIG_SETMASK, &prev, 0);
1852#endif
1853 }
1854
1673 ev_start (EV_A_ (W)w, 1); 1855 ev_start (EV_A_ (W)w, 1);
1674 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1675 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1856 wlist_add (&signals [w->signum - 1].head, (WL)w);
1676 1857
1677 if (!((WL)w)->next) 1858 if (!((WL)w)->next)
1678 { 1859 {
1679#if _WIN32 1860#if _WIN32
1680 signal (w->signum, sighandler); 1861 signal (w->signum, sighandler);
1686 sigaction (w->signum, &sa, 0); 1867 sigaction (w->signum, &sa, 0);
1687#endif 1868#endif
1688 } 1869 }
1689} 1870}
1690 1871
1691void 1872void noinline
1692ev_signal_stop (EV_P_ ev_signal *w) 1873ev_signal_stop (EV_P_ ev_signal *w)
1693{ 1874{
1694 ev_clear_pending (EV_A_ (W)w); 1875 clear_pending (EV_A_ (W)w);
1695 if (expect_false (!ev_is_active (w))) 1876 if (expect_false (!ev_is_active (w)))
1696 return; 1877 return;
1697 1878
1698 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1879 wlist_del (&signals [w->signum - 1].head, (WL)w);
1699 ev_stop (EV_A_ (W)w); 1880 ev_stop (EV_A_ (W)w);
1700 1881
1701 if (!signals [w->signum - 1].head) 1882 if (!signals [w->signum - 1].head)
1702 signal (w->signum, SIG_DFL); 1883 signal (w->signum, SIG_DFL);
1703} 1884}
1710#endif 1891#endif
1711 if (expect_false (ev_is_active (w))) 1892 if (expect_false (ev_is_active (w)))
1712 return; 1893 return;
1713 1894
1714 ev_start (EV_A_ (W)w, 1); 1895 ev_start (EV_A_ (W)w, 1);
1715 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1896 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1716} 1897}
1717 1898
1718void 1899void
1719ev_child_stop (EV_P_ ev_child *w) 1900ev_child_stop (EV_P_ ev_child *w)
1720{ 1901{
1721 ev_clear_pending (EV_A_ (W)w); 1902 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 1903 if (expect_false (!ev_is_active (w)))
1723 return; 1904 return;
1724 1905
1725 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1906 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1726 ev_stop (EV_A_ (W)w); 1907 ev_stop (EV_A_ (W)w);
1727} 1908}
1728 1909
1729#if EV_STAT_ENABLE 1910#if EV_STAT_ENABLE
1730 1911
1962} 2143}
1963 2144
1964void 2145void
1965ev_stat_stop (EV_P_ ev_stat *w) 2146ev_stat_stop (EV_P_ ev_stat *w)
1966{ 2147{
1967 ev_clear_pending (EV_A_ (W)w); 2148 clear_pending (EV_A_ (W)w);
1968 if (expect_false (!ev_is_active (w))) 2149 if (expect_false (!ev_is_active (w)))
1969 return; 2150 return;
1970 2151
1971#if EV_USE_INOTIFY 2152#if EV_USE_INOTIFY
1972 infy_del (EV_A_ w); 2153 infy_del (EV_A_ w);
1975 2156
1976 ev_stop (EV_A_ (W)w); 2157 ev_stop (EV_A_ (W)w);
1977} 2158}
1978#endif 2159#endif
1979 2160
2161#if EV_IDLE_ENABLE
1980void 2162void
1981ev_idle_start (EV_P_ ev_idle *w) 2163ev_idle_start (EV_P_ ev_idle *w)
1982{ 2164{
1983 if (expect_false (ev_is_active (w))) 2165 if (expect_false (ev_is_active (w)))
1984 return; 2166 return;
1985 2167
2168 pri_adjust (EV_A_ (W)w);
2169
2170 {
2171 int active = ++idlecnt [ABSPRI (w)];
2172
2173 ++idleall;
1986 ev_start (EV_A_ (W)w, ++idlecnt); 2174 ev_start (EV_A_ (W)w, active);
2175
1987 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2176 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1988 idles [idlecnt - 1] = w; 2177 idles [ABSPRI (w)][active - 1] = w;
2178 }
1989} 2179}
1990 2180
1991void 2181void
1992ev_idle_stop (EV_P_ ev_idle *w) 2182ev_idle_stop (EV_P_ ev_idle *w)
1993{ 2183{
1994 ev_clear_pending (EV_A_ (W)w); 2184 clear_pending (EV_A_ (W)w);
1995 if (expect_false (!ev_is_active (w))) 2185 if (expect_false (!ev_is_active (w)))
1996 return; 2186 return;
1997 2187
1998 { 2188 {
1999 int active = ((W)w)->active; 2189 int active = ((W)w)->active;
2000 idles [active - 1] = idles [--idlecnt]; 2190
2191 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2001 ((W)idles [active - 1])->active = active; 2192 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2193
2194 ev_stop (EV_A_ (W)w);
2195 --idleall;
2002 } 2196 }
2003
2004 ev_stop (EV_A_ (W)w);
2005} 2197}
2198#endif
2006 2199
2007void 2200void
2008ev_prepare_start (EV_P_ ev_prepare *w) 2201ev_prepare_start (EV_P_ ev_prepare *w)
2009{ 2202{
2010 if (expect_false (ev_is_active (w))) 2203 if (expect_false (ev_is_active (w)))
2016} 2209}
2017 2210
2018void 2211void
2019ev_prepare_stop (EV_P_ ev_prepare *w) 2212ev_prepare_stop (EV_P_ ev_prepare *w)
2020{ 2213{
2021 ev_clear_pending (EV_A_ (W)w); 2214 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 2215 if (expect_false (!ev_is_active (w)))
2023 return; 2216 return;
2024 2217
2025 { 2218 {
2026 int active = ((W)w)->active; 2219 int active = ((W)w)->active;
2043} 2236}
2044 2237
2045void 2238void
2046ev_check_stop (EV_P_ ev_check *w) 2239ev_check_stop (EV_P_ ev_check *w)
2047{ 2240{
2048 ev_clear_pending (EV_A_ (W)w); 2241 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 2242 if (expect_false (!ev_is_active (w)))
2050 return; 2243 return;
2051 2244
2052 { 2245 {
2053 int active = ((W)w)->active; 2246 int active = ((W)w)->active;
2060 2253
2061#if EV_EMBED_ENABLE 2254#if EV_EMBED_ENABLE
2062void noinline 2255void noinline
2063ev_embed_sweep (EV_P_ ev_embed *w) 2256ev_embed_sweep (EV_P_ ev_embed *w)
2064{ 2257{
2065 ev_loop (w->loop, EVLOOP_NONBLOCK); 2258 ev_loop (w->other, EVLOOP_NONBLOCK);
2066} 2259}
2067 2260
2068static void 2261static void
2069embed_cb (EV_P_ ev_io *io, int revents) 2262embed_io_cb (EV_P_ ev_io *io, int revents)
2070{ 2263{
2071 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2264 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2072 2265
2073 if (ev_cb (w)) 2266 if (ev_cb (w))
2074 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2267 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2075 else 2268 else
2076 ev_embed_sweep (loop, w); 2269 ev_embed_sweep (loop, w);
2077} 2270}
2078 2271
2272static void
2273embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2274{
2275 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2276
2277 fd_reify (w->other);
2278}
2279
2079void 2280void
2080ev_embed_start (EV_P_ ev_embed *w) 2281ev_embed_start (EV_P_ ev_embed *w)
2081{ 2282{
2082 if (expect_false (ev_is_active (w))) 2283 if (expect_false (ev_is_active (w)))
2083 return; 2284 return;
2084 2285
2085 { 2286 {
2086 struct ev_loop *loop = w->loop; 2287 struct ev_loop *loop = w->other;
2087 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2288 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2088 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2289 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2089 } 2290 }
2090 2291
2091 ev_set_priority (&w->io, ev_priority (w)); 2292 ev_set_priority (&w->io, ev_priority (w));
2092 ev_io_start (EV_A_ &w->io); 2293 ev_io_start (EV_A_ &w->io);
2093 2294
2295 ev_prepare_init (&w->prepare, embed_prepare_cb);
2296 ev_set_priority (&w->prepare, EV_MINPRI);
2297 ev_prepare_start (EV_A_ &w->prepare);
2298
2094 ev_start (EV_A_ (W)w, 1); 2299 ev_start (EV_A_ (W)w, 1);
2095} 2300}
2096 2301
2097void 2302void
2098ev_embed_stop (EV_P_ ev_embed *w) 2303ev_embed_stop (EV_P_ ev_embed *w)
2099{ 2304{
2100 ev_clear_pending (EV_A_ (W)w); 2305 clear_pending (EV_A_ (W)w);
2101 if (expect_false (!ev_is_active (w))) 2306 if (expect_false (!ev_is_active (w)))
2102 return; 2307 return;
2103 2308
2104 ev_io_stop (EV_A_ &w->io); 2309 ev_io_stop (EV_A_ &w->io);
2310 ev_prepare_stop (EV_A_ &w->prepare);
2105 2311
2106 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
2107} 2313}
2108#endif 2314#endif
2109 2315
2120} 2326}
2121 2327
2122void 2328void
2123ev_fork_stop (EV_P_ ev_fork *w) 2329ev_fork_stop (EV_P_ ev_fork *w)
2124{ 2330{
2125 ev_clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
2127 return; 2333 return;
2128 2334
2129 { 2335 {
2130 int active = ((W)w)->active; 2336 int active = ((W)w)->active;
2198 ev_timer_set (&once->to, timeout, 0.); 2404 ev_timer_set (&once->to, timeout, 0.);
2199 ev_timer_start (EV_A_ &once->to); 2405 ev_timer_start (EV_A_ &once->to);
2200 } 2406 }
2201} 2407}
2202 2408
2409#if EV_MULTIPLICITY
2410 #include "ev_wrap.h"
2411#endif
2412
2203#ifdef __cplusplus 2413#ifdef __cplusplus
2204} 2414}
2205#endif 2415#endif
2206 2416

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines