ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.158 by root, Thu Nov 29 17:28:13 2007 UTC vs.
Revision 1.226 by root, Fri Apr 18 17:16:44 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE 271#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
213#endif 276# endif
214 277int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 278# ifdef __cplusplus
216# include <sys/inotify.h> 279}
280# endif
217#endif 281#endif
218 282
219/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 294
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 298
225#if __GNUC__ >= 3 299#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 302#else
236# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
240#endif 308#endif
241 309
242#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
244 319
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 322
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
250 325
251typedef ev_watcher *W; 326typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
254 329
330#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif
256 335
257#ifdef _WIN32 336#ifdef _WIN32
258# include "ev_win32.c" 337# include "ev_win32.c"
259#endif 338#endif
260 339
281 perror (msg); 360 perror (msg);
282 abort (); 361 abort ();
283 } 362 }
284} 363}
285 364
365static void *
366ev_realloc_emul (void *ptr, long size)
367{
368 /* some systems, notably openbsd and darwin, fail to properly
369 * implement realloc (x, 0) (as required by both ansi c-98 and
370 * the single unix specification, so work around them here.
371 */
372
373 if (size)
374 return realloc (ptr, size);
375
376 free (ptr);
377 return 0;
378}
379
286static void *(*alloc)(void *ptr, long size); 380static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 381
288void 382void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 383ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 384{
291 alloc = cb; 385 alloc = cb;
292} 386}
293 387
294inline_speed void * 388inline_speed void *
295ev_realloc (void *ptr, long size) 389ev_realloc (void *ptr, long size)
296{ 390{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 391 ptr = alloc (ptr, size);
298 392
299 if (!ptr && size) 393 if (!ptr && size)
300 { 394 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 395 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 396 abort ();
396{ 490{
397 return ev_rt_now; 491 return ev_rt_now;
398} 492}
399#endif 493#endif
400 494
401#define array_roundsize(type,n) (((n) | 4) & ~3) 495void
496ev_sleep (ev_tstamp delay)
497{
498 if (delay > 0.)
499 {
500#if EV_USE_NANOSLEEP
501 struct timespec ts;
502
503 ts.tv_sec = (time_t)delay;
504 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
505
506 nanosleep (&ts, 0);
507#elif defined(_WIN32)
508 Sleep ((unsigned long)(delay * 1e3));
509#else
510 struct timeval tv;
511
512 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514
515 select (0, 0, 0, 0, &tv);
516#endif
517 }
518}
519
520/*****************************************************************************/
521
522int inline_size
523array_nextsize (int elem, int cur, int cnt)
524{
525 int ncur = cur + 1;
526
527 do
528 ncur <<= 1;
529 while (cnt > ncur);
530
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096)
533 {
534 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
536 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem;
538 }
539
540 return ncur;
541}
542
543static noinline void *
544array_realloc (int elem, void *base, int *cur, int cnt)
545{
546 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur);
548}
402 549
403#define array_needsize(type,base,cur,cnt,init) \ 550#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 551 if (expect_false ((cnt) > (cur))) \
405 { \ 552 { \
406 int newcnt = cur; \ 553 int ocur_ = (cur); \
407 do \ 554 (base) = (type *)array_realloc \
408 { \ 555 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 556 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 557 }
417 558
559#if 0
418#define array_slim(type,stem) \ 560#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 561 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 562 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 563 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 564 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 565 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 566 }
567#endif
425 568
426#define array_free(stem, idx) \ 569#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 570 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 571
429/*****************************************************************************/ 572/*****************************************************************************/
430 573
431void noinline 574void noinline
432ev_feed_event (EV_P_ void *w, int revents) 575ev_feed_event (EV_P_ void *w, int revents)
433{ 576{
434 W w_ = (W)w; 577 W w_ = (W)w;
578 int pri = ABSPRI (w_);
435 579
436 if (expect_false (w_->pending)) 580 if (expect_false (w_->pending))
581 pendings [pri][w_->pending - 1].events |= revents;
582 else
437 { 583 {
584 w_->pending = ++pendingcnt [pri];
585 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
586 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 587 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 588 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 589}
447 590
448void inline_size 591void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 592queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 593{
451 int i; 594 int i;
452 595
453 for (i = 0; i < eventcnt; ++i) 596 for (i = 0; i < eventcnt; ++i)
485} 628}
486 629
487void 630void
488ev_feed_fd_event (EV_P_ int fd, int revents) 631ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 632{
633 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 634 fd_event (EV_A_ fd, revents);
491} 635}
492 636
493void inline_size 637void inline_size
494fd_reify (EV_P) 638fd_reify (EV_P)
495{ 639{
499 { 643 {
500 int fd = fdchanges [i]; 644 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 645 ANFD *anfd = anfds + fd;
502 ev_io *w; 646 ev_io *w;
503 647
504 int events = 0; 648 unsigned char events = 0;
505 649
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 650 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 651 events |= (unsigned char)w->events;
508 652
509#if EV_SELECT_IS_WINSOCKET 653#if EV_SELECT_IS_WINSOCKET
510 if (events) 654 if (events)
511 { 655 {
512 unsigned long argp; 656 unsigned long argp;
657 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else
513 anfd->handle = _get_osfhandle (fd); 660 anfd->handle = _get_osfhandle (fd);
661 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 663 }
516#endif 664#endif
517 665
666 {
667 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify;
669
518 anfd->reify = 0; 670 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 671 anfd->events = events;
672
673 if (o_events != events || o_reify & EV_IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events);
675 }
522 } 676 }
523 677
524 fdchangecnt = 0; 678 fdchangecnt = 0;
525} 679}
526 680
527void inline_size 681void inline_size
528fd_change (EV_P_ int fd) 682fd_change (EV_P_ int fd, int flags)
529{ 683{
530 if (expect_false (anfds [fd].reify)) 684 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 685 anfds [fd].reify |= flags;
534 686
687 if (expect_true (!reify))
688 {
535 ++fdchangecnt; 689 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 691 fdchanges [fdchangecnt - 1] = fd;
692 }
538} 693}
539 694
540void inline_speed 695void inline_speed
541fd_kill (EV_P_ int fd) 696fd_kill (EV_P_ int fd)
542{ 697{
593 748
594 for (fd = 0; fd < anfdmax; ++fd) 749 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 750 if (anfds [fd].events)
596 { 751 {
597 anfds [fd].events = 0; 752 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 753 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 754 }
600} 755}
601 756
602/*****************************************************************************/ 757/*****************************************************************************/
603 758
604void inline_speed 759void inline_speed
605upheap (WT *heap, int k) 760upheap (WT *heap, int k)
606{ 761{
607 WT w = heap [k]; 762 WT w = heap [k];
608 763
609 while (k && heap [k >> 1]->at > w->at) 764 while (k)
610 { 765 {
766 int p = (k - 1) >> 1;
767
768 if (heap [p]->at <= w->at)
769 break;
770
611 heap [k] = heap [k >> 1]; 771 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 772 ((W)heap [k])->active = k + 1;
613 k >>= 1; 773 k = p;
614 } 774 }
615 775
616 heap [k] = w; 776 heap [k] = w;
617 ((W)heap [k])->active = k + 1; 777 ((W)heap [k])->active = k + 1;
618
619} 778}
620 779
621void inline_speed 780void inline_speed
622downheap (WT *heap, int N, int k) 781downheap (WT *heap, int N, int k)
623{ 782{
624 WT w = heap [k]; 783 WT w = heap [k];
625 784
626 while (k < (N >> 1)) 785 for (;;)
627 { 786 {
628 int j = k << 1; 787 int c = (k << 1) + 1;
629 788
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 789 if (c >= N)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 790 break;
635 791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
636 heap [k] = heap [j]; 798 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 799 ((W)heap [k])->active = k + 1;
800
638 k = j; 801 k = c;
639 } 802 }
640 803
641 heap [k] = w; 804 heap [k] = w;
642 ((W)heap [k])->active = k + 1; 805 ((W)heap [k])->active = k + 1;
643} 806}
652/*****************************************************************************/ 815/*****************************************************************************/
653 816
654typedef struct 817typedef struct
655{ 818{
656 WL head; 819 WL head;
657 sig_atomic_t volatile gotsig; 820 EV_ATOMIC_T gotsig;
658} ANSIG; 821} ANSIG;
659 822
660static ANSIG *signals; 823static ANSIG *signals;
661static int signalmax; 824static int signalmax;
662 825
663static int sigpipe [2]; 826static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 827
667void inline_size 828void inline_size
668signals_init (ANSIG *base, int count) 829signals_init (ANSIG *base, int count)
669{ 830{
670 while (count--) 831 while (count--)
674 835
675 ++base; 836 ++base;
676 } 837 }
677} 838}
678 839
679static void 840/*****************************************************************************/
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685 841
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size 842void inline_speed
731fd_intern (int fd) 843fd_intern (int fd)
732{ 844{
733#ifdef _WIN32 845#ifdef _WIN32
734 int arg = 1; 846 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 847 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 850 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 851#endif
740} 852}
741 853
742static void noinline 854static void noinline
743siginit (EV_P) 855evpipe_init (EV_P)
744{ 856{
857 if (!ev_is_active (&pipeev))
858 {
859#if EV_USE_EVENTFD
860 if ((evfd = eventfd (0, 0)) >= 0)
861 {
862 evpipe [0] = -1;
863 fd_intern (evfd);
864 ev_io_set (&pipeev, evfd, EV_READ);
865 }
866 else
867#endif
868 {
869 while (pipe (evpipe))
870 syserr ("(libev) error creating signal/async pipe");
871
745 fd_intern (sigpipe [0]); 872 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 873 fd_intern (evpipe [1]);
874 ev_io_set (&pipeev, evpipe [0], EV_READ);
875 }
747 876
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 877 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 878 ev_unref (EV_A); /* watcher should not keep loop alive */
879 }
880}
881
882void inline_size
883evpipe_write (EV_P_ EV_ATOMIC_T *flag)
884{
885 if (!*flag)
886 {
887 int old_errno = errno; /* save errno because write might clobber it */
888
889 *flag = 1;
890
891#if EV_USE_EVENTFD
892 if (evfd >= 0)
893 {
894 uint64_t counter = 1;
895 write (evfd, &counter, sizeof (uint64_t));
896 }
897 else
898#endif
899 write (evpipe [1], &old_errno, 1);
900
901 errno = old_errno;
902 }
903}
904
905static void
906pipecb (EV_P_ ev_io *iow, int revents)
907{
908#if EV_USE_EVENTFD
909 if (evfd >= 0)
910 {
911 uint64_t counter = 1;
912 read (evfd, &counter, sizeof (uint64_t));
913 }
914 else
915#endif
916 {
917 char dummy;
918 read (evpipe [0], &dummy, 1);
919 }
920
921 if (gotsig && ev_is_default_loop (EV_A))
922 {
923 int signum;
924 gotsig = 0;
925
926 for (signum = signalmax; signum--; )
927 if (signals [signum].gotsig)
928 ev_feed_signal_event (EV_A_ signum + 1);
929 }
930
931#if EV_ASYNC_ENABLE
932 if (gotasync)
933 {
934 int i;
935 gotasync = 0;
936
937 for (i = asynccnt; i--; )
938 if (asyncs [i]->sent)
939 {
940 asyncs [i]->sent = 0;
941 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
942 }
943 }
944#endif
751} 945}
752 946
753/*****************************************************************************/ 947/*****************************************************************************/
754 948
949static void
950ev_sighandler (int signum)
951{
952#if EV_MULTIPLICITY
953 struct ev_loop *loop = &default_loop_struct;
954#endif
955
956#if _WIN32
957 signal (signum, ev_sighandler);
958#endif
959
960 signals [signum - 1].gotsig = 1;
961 evpipe_write (EV_A_ &gotsig);
962}
963
964void noinline
965ev_feed_signal_event (EV_P_ int signum)
966{
967 WL w;
968
969#if EV_MULTIPLICITY
970 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
971#endif
972
973 --signum;
974
975 if (signum < 0 || signum >= signalmax)
976 return;
977
978 signals [signum].gotsig = 0;
979
980 for (w = signals [signum].head; w; w = w->next)
981 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
982}
983
984/*****************************************************************************/
985
755static ev_child *childs [EV_PID_HASHSIZE]; 986static WL childs [EV_PID_HASHSIZE];
756 987
757#ifndef _WIN32 988#ifndef _WIN32
758 989
759static ev_signal childev; 990static ev_signal childev;
760 991
992#ifndef WIFCONTINUED
993# define WIFCONTINUED(status) 0
994#endif
995
761void inline_speed 996void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 997child_reap (EV_P_ int chain, int pid, int status)
763{ 998{
764 ev_child *w; 999 ev_child *w;
1000 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1001
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1002 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1003 {
767 if (w->pid == pid || !w->pid) 1004 if ((w->pid == pid || !w->pid)
1005 && (!traced || (w->flags & 1)))
768 { 1006 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1007 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1008 w->rpid = pid;
771 w->rstatus = status; 1009 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1010 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1011 }
1012 }
774} 1013}
775 1014
776#ifndef WCONTINUED 1015#ifndef WCONTINUED
777# define WCONTINUED 0 1016# define WCONTINUED 0
778#endif 1017#endif
787 if (!WCONTINUED 1026 if (!WCONTINUED
788 || errno != EINVAL 1027 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1028 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1029 return;
791 1030
792 /* make sure we are called again until all childs have been reaped */ 1031 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1032 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1033 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1034
796 child_reap (EV_A_ sw, pid, pid, status); 1035 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1036 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1037 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1038}
800 1039
801#endif 1040#endif
802 1041
803/*****************************************************************************/ 1042/*****************************************************************************/
875} 1114}
876 1115
877unsigned int 1116unsigned int
878ev_embeddable_backends (void) 1117ev_embeddable_backends (void)
879{ 1118{
880 return EVBACKEND_EPOLL 1119 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1120
882 | EVBACKEND_PORT; 1121 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1122 /* please fix it and tell me how to detect the fix */
1123 flags &= ~EVBACKEND_EPOLL;
1124
1125 return flags;
883} 1126}
884 1127
885unsigned int 1128unsigned int
886ev_backend (EV_P) 1129ev_backend (EV_P)
887{ 1130{
888 return backend; 1131 return backend;
1132}
1133
1134unsigned int
1135ev_loop_count (EV_P)
1136{
1137 return loop_count;
1138}
1139
1140void
1141ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1142{
1143 io_blocktime = interval;
1144}
1145
1146void
1147ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1148{
1149 timeout_blocktime = interval;
889} 1150}
890 1151
891static void noinline 1152static void noinline
892loop_init (EV_P_ unsigned int flags) 1153loop_init (EV_P_ unsigned int flags)
893{ 1154{
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1160 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1161 have_monotonic = 1;
901 } 1162 }
902#endif 1163#endif
903 1164
904 ev_rt_now = ev_time (); 1165 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1166 mn_now = get_clock ();
906 now_floor = mn_now; 1167 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1168 rtmn_diff = ev_rt_now - mn_now;
1169
1170 io_blocktime = 0.;
1171 timeout_blocktime = 0.;
1172 backend = 0;
1173 backend_fd = -1;
1174 gotasync = 0;
1175#if EV_USE_INOTIFY
1176 fs_fd = -2;
1177#endif
908 1178
909 /* pid check not overridable via env */ 1179 /* pid check not overridable via env */
910#ifndef _WIN32 1180#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1181 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1182 curpid = getpid ();
915 if (!(flags & EVFLAG_NOENV) 1185 if (!(flags & EVFLAG_NOENV)
916 && !enable_secure () 1186 && !enable_secure ()
917 && getenv ("LIBEV_FLAGS")) 1187 && getenv ("LIBEV_FLAGS"))
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1188 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1189
920 if (!(flags & 0x0000ffffUL)) 1190 if (!(flags & 0x0000ffffU))
921 flags |= ev_recommended_backends (); 1191 flags |= ev_recommended_backends ();
922
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY
926 fs_fd = -2;
927#endif
928 1192
929#if EV_USE_PORT 1193#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1194 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1195#endif
932#if EV_USE_KQUEUE 1196#if EV_USE_KQUEUE
940#endif 1204#endif
941#if EV_USE_SELECT 1205#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1206 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1207#endif
944 1208
945 ev_init (&sigev, sigcb); 1209 ev_init (&pipeev, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1210 ev_set_priority (&pipeev, EV_MAXPRI);
947 } 1211 }
948} 1212}
949 1213
950static void noinline 1214static void noinline
951loop_destroy (EV_P) 1215loop_destroy (EV_P)
952{ 1216{
953 int i; 1217 int i;
1218
1219 if (ev_is_active (&pipeev))
1220 {
1221 ev_ref (EV_A); /* signal watcher */
1222 ev_io_stop (EV_A_ &pipeev);
1223
1224#if EV_USE_EVENTFD
1225 if (evfd >= 0)
1226 close (evfd);
1227#endif
1228
1229 if (evpipe [0] >= 0)
1230 {
1231 close (evpipe [0]);
1232 close (evpipe [1]);
1233 }
1234 }
954 1235
955#if EV_USE_INOTIFY 1236#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1237 if (fs_fd >= 0)
957 close (fs_fd); 1238 close (fs_fd);
958#endif 1239#endif
975#if EV_USE_SELECT 1256#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1257 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1258#endif
978 1259
979 for (i = NUMPRI; i--; ) 1260 for (i = NUMPRI; i--; )
1261 {
980 array_free (pending, [i]); 1262 array_free (pending, [i]);
1263#if EV_IDLE_ENABLE
1264 array_free (idle, [i]);
1265#endif
1266 }
1267
1268 ev_free (anfds); anfdmax = 0;
981 1269
982 /* have to use the microsoft-never-gets-it-right macro */ 1270 /* have to use the microsoft-never-gets-it-right macro */
983 array_free (fdchange, EMPTY0); 1271 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1272 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1273#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1274 array_free (periodic, EMPTY);
987#endif 1275#endif
1276#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1277 array_free (fork, EMPTY);
1278#endif
989 array_free (prepare, EMPTY0); 1279 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1280 array_free (check, EMPTY);
1281#if EV_ASYNC_ENABLE
1282 array_free (async, EMPTY);
1283#endif
991 1284
992 backend = 0; 1285 backend = 0;
993} 1286}
994 1287
1288#if EV_USE_INOTIFY
995void inline_size infy_fork (EV_P); 1289void inline_size infy_fork (EV_P);
1290#endif
996 1291
997void inline_size 1292void inline_size
998loop_fork (EV_P) 1293loop_fork (EV_P)
999{ 1294{
1000#if EV_USE_PORT 1295#if EV_USE_PORT
1008#endif 1303#endif
1009#if EV_USE_INOTIFY 1304#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1305 infy_fork (EV_A);
1011#endif 1306#endif
1012 1307
1013 if (ev_is_active (&sigev)) 1308 if (ev_is_active (&pipeev))
1014 { 1309 {
1015 /* default loop */ 1310 /* this "locks" the handlers against writing to the pipe */
1311 /* while we modify the fd vars */
1312 gotsig = 1;
1313#if EV_ASYNC_ENABLE
1314 gotasync = 1;
1315#endif
1016 1316
1017 ev_ref (EV_A); 1317 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1318 ev_io_stop (EV_A_ &pipeev);
1319
1320#if EV_USE_EVENTFD
1321 if (evfd >= 0)
1322 close (evfd);
1323#endif
1324
1325 if (evpipe [0] >= 0)
1326 {
1019 close (sigpipe [0]); 1327 close (evpipe [0]);
1020 close (sigpipe [1]); 1328 close (evpipe [1]);
1329 }
1021 1330
1022 while (pipe (sigpipe))
1023 syserr ("(libev) error creating pipe");
1024
1025 siginit (EV_A); 1331 evpipe_init (EV_A);
1332 /* now iterate over everything, in case we missed something */
1333 pipecb (EV_A_ &pipeev, EV_READ);
1026 } 1334 }
1027 1335
1028 postfork = 0; 1336 postfork = 0;
1029} 1337}
1030 1338
1052} 1360}
1053 1361
1054void 1362void
1055ev_loop_fork (EV_P) 1363ev_loop_fork (EV_P)
1056{ 1364{
1057 postfork = 1; 1365 postfork = 1; /* must be in line with ev_default_fork */
1058} 1366}
1059 1367
1060#endif 1368#endif
1061 1369
1062#if EV_MULTIPLICITY 1370#if EV_MULTIPLICITY
1065#else 1373#else
1066int 1374int
1067ev_default_loop (unsigned int flags) 1375ev_default_loop (unsigned int flags)
1068#endif 1376#endif
1069{ 1377{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 1378 if (!ev_default_loop_ptr)
1075 { 1379 {
1076#if EV_MULTIPLICITY 1380#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1381 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1078#else 1382#else
1081 1385
1082 loop_init (EV_A_ flags); 1386 loop_init (EV_A_ flags);
1083 1387
1084 if (ev_backend (EV_A)) 1388 if (ev_backend (EV_A))
1085 { 1389 {
1086 siginit (EV_A);
1087
1088#ifndef _WIN32 1390#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 1391 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 1392 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 1393 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1394 ev_unref (EV_A); /* child watcher should not keep loop alive */
1109#ifndef _WIN32 1411#ifndef _WIN32
1110 ev_ref (EV_A); /* child watcher */ 1412 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev); 1413 ev_signal_stop (EV_A_ &childev);
1112#endif 1414#endif
1113 1415
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A); 1416 loop_destroy (EV_A);
1121} 1417}
1122 1418
1123void 1419void
1124ev_default_fork (void) 1420ev_default_fork (void)
1126#if EV_MULTIPLICITY 1422#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 1423 struct ev_loop *loop = ev_default_loop_ptr;
1128#endif 1424#endif
1129 1425
1130 if (backend) 1426 if (backend)
1131 postfork = 1; 1427 postfork = 1; /* must be in line with ev_loop_fork */
1132} 1428}
1133 1429
1134/*****************************************************************************/ 1430/*****************************************************************************/
1135 1431
1136int inline_size 1432void
1137any_pending (EV_P) 1433ev_invoke (EV_P_ void *w, int revents)
1138{ 1434{
1139 int pri; 1435 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1436}
1147 1437
1148void inline_speed 1438void inline_speed
1149call_pending (EV_P) 1439call_pending (EV_P)
1150{ 1440{
1168void inline_size 1458void inline_size
1169timers_reify (EV_P) 1459timers_reify (EV_P)
1170{ 1460{
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 1461 while (timercnt && ((WT)timers [0])->at <= mn_now)
1172 { 1462 {
1173 ev_timer *w = timers [0]; 1463 ev_timer *w = (ev_timer *)timers [0];
1174 1464
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1465 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176 1466
1177 /* first reschedule or stop timer */ 1467 /* first reschedule or stop timer */
1178 if (w->repeat) 1468 if (w->repeat)
1181 1471
1182 ((WT)w)->at += w->repeat; 1472 ((WT)w)->at += w->repeat;
1183 if (((WT)w)->at < mn_now) 1473 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now; 1474 ((WT)w)->at = mn_now;
1185 1475
1186 downheap ((WT *)timers, timercnt, 0); 1476 downheap (timers, timercnt, 0);
1187 } 1477 }
1188 else 1478 else
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1479 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 1480
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1481 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1196void inline_size 1486void inline_size
1197periodics_reify (EV_P) 1487periodics_reify (EV_P)
1198{ 1488{
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1489 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1200 { 1490 {
1201 ev_periodic *w = periodics [0]; 1491 ev_periodic *w = (ev_periodic *)periodics [0];
1202 1492
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1493 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1204 1494
1205 /* first reschedule or stop timer */ 1495 /* first reschedule or stop timer */
1206 if (w->reschedule_cb) 1496 if (w->reschedule_cb)
1207 { 1497 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1499 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1210 downheap ((WT *)periodics, periodiccnt, 0); 1500 downheap (periodics, periodiccnt, 0);
1211 } 1501 }
1212 else if (w->interval) 1502 else if (w->interval)
1213 { 1503 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1504 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1505 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1506 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0); 1507 downheap (periodics, periodiccnt, 0);
1217 } 1508 }
1218 else 1509 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1510 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 1511
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1512 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1228 int i; 1519 int i;
1229 1520
1230 /* adjust periodics after time jump */ 1521 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 1522 for (i = 0; i < periodiccnt; ++i)
1232 { 1523 {
1233 ev_periodic *w = periodics [i]; 1524 ev_periodic *w = (ev_periodic *)periodics [i];
1234 1525
1235 if (w->reschedule_cb) 1526 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1527 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 1528 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1529 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1239 } 1530 }
1240 1531
1241 /* now rebuild the heap */ 1532 /* now rebuild the heap */
1242 for (i = periodiccnt >> 1; i--; ) 1533 for (i = periodiccnt >> 1; i--; )
1243 downheap ((WT *)periodics, periodiccnt, i); 1534 downheap (periodics, periodiccnt, i);
1244} 1535}
1245#endif 1536#endif
1246 1537
1538#if EV_IDLE_ENABLE
1247int inline_size 1539void inline_size
1248time_update_monotonic (EV_P) 1540idle_reify (EV_P)
1249{ 1541{
1542 if (expect_false (idleall))
1543 {
1544 int pri;
1545
1546 for (pri = NUMPRI; pri--; )
1547 {
1548 if (pendingcnt [pri])
1549 break;
1550
1551 if (idlecnt [pri])
1552 {
1553 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1554 break;
1555 }
1556 }
1557 }
1558}
1559#endif
1560
1561void inline_speed
1562time_update (EV_P_ ev_tstamp max_block)
1563{
1564 int i;
1565
1566#if EV_USE_MONOTONIC
1567 if (expect_true (have_monotonic))
1568 {
1569 ev_tstamp odiff = rtmn_diff;
1570
1250 mn_now = get_clock (); 1571 mn_now = get_clock ();
1251 1572
1573 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1574 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1575 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1576 {
1254 ev_rt_now = rtmn_diff + mn_now; 1577 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1578 return;
1256 } 1579 }
1257 else 1580
1258 {
1259 now_floor = mn_now; 1581 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1582 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1583
1265void inline_size 1584 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1585 * on the choice of "4": one iteration isn't enough,
1267{ 1586 * in case we get preempted during the calls to
1268 int i; 1587 * ev_time and get_clock. a second call is almost guaranteed
1269 1588 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1589 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1590 * in the unlikely event of having been preempted here.
1272 { 1591 */
1273 if (time_update_monotonic (EV_A)) 1592 for (i = 4; --i; )
1274 { 1593 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1594 rtmn_diff = ev_rt_now - mn_now;
1288 1595
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1596 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1290 return; /* all is well */ 1597 return; /* all is well */
1291 1598
1292 ev_rt_now = ev_time (); 1599 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1600 mn_now = get_clock ();
1294 now_floor = mn_now; 1601 now_floor = mn_now;
1295 } 1602 }
1296 1603
1297# if EV_PERIODIC_ENABLE 1604# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1605 periodics_reschedule (EV_A);
1299# endif 1606# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */ 1607 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1608 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1609 }
1304 else 1610 else
1305#endif 1611#endif
1306 { 1612 {
1307 ev_rt_now = ev_time (); 1613 ev_rt_now = ev_time ();
1308 1614
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1615 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 1616 {
1311#if EV_PERIODIC_ENABLE 1617#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 1618 periodics_reschedule (EV_A);
1313#endif 1619#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */ 1620 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i) 1621 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now; 1622 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 1623 }
1319 1624
1336static int loop_done; 1641static int loop_done;
1337 1642
1338void 1643void
1339ev_loop (EV_P_ int flags) 1644ev_loop (EV_P_ int flags)
1340{ 1645{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1646 loop_done = EVUNLOOP_CANCEL;
1342 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL;
1344 1647
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1648 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 1649
1347 while (activecnt) 1650 do
1348 { 1651 {
1349#ifndef _WIN32 1652#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 1653 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 1654 if (expect_false (getpid () != curpid))
1352 { 1655 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1666 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 1667 call_pending (EV_A);
1365 } 1668 }
1366#endif 1669#endif
1367 1670
1368 /* queue check watchers (and execute them) */ 1671 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 1672 if (expect_false (preparecnt))
1370 { 1673 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1674 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 1675 call_pending (EV_A);
1373 } 1676 }
1374 1677
1678 if (expect_false (!activecnt))
1679 break;
1680
1375 /* we might have forked, so reify kernel state if necessary */ 1681 /* we might have forked, so reify kernel state if necessary */
1376 if (expect_false (postfork)) 1682 if (expect_false (postfork))
1377 loop_fork (EV_A); 1683 loop_fork (EV_A);
1378 1684
1379 /* update fd-related kernel structures */ 1685 /* update fd-related kernel structures */
1380 fd_reify (EV_A); 1686 fd_reify (EV_A);
1381 1687
1382 /* calculate blocking time */ 1688 /* calculate blocking time */
1383 { 1689 {
1384 ev_tstamp block; 1690 ev_tstamp waittime = 0.;
1691 ev_tstamp sleeptime = 0.;
1385 1692
1386 if (flags & EVLOOP_NONBLOCK || idlecnt) 1693 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1387 block = 0.; /* do not block at all */
1388 else
1389 { 1694 {
1390 /* update time to cancel out callback processing overhead */ 1695 /* update time to cancel out callback processing overhead */
1391#if EV_USE_MONOTONIC
1392 if (expect_true (have_monotonic))
1393 time_update_monotonic (EV_A); 1696 time_update (EV_A_ 1e100);
1394 else
1395#endif
1396 {
1397 ev_rt_now = ev_time ();
1398 mn_now = ev_rt_now;
1399 }
1400 1697
1401 block = MAX_BLOCKTIME; 1698 waittime = MAX_BLOCKTIME;
1402 1699
1403 if (timercnt) 1700 if (timercnt)
1404 { 1701 {
1405 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1702 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1406 if (block > to) block = to; 1703 if (waittime > to) waittime = to;
1407 } 1704 }
1408 1705
1409#if EV_PERIODIC_ENABLE 1706#if EV_PERIODIC_ENABLE
1410 if (periodiccnt) 1707 if (periodiccnt)
1411 { 1708 {
1412 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1709 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1413 if (block > to) block = to; 1710 if (waittime > to) waittime = to;
1414 } 1711 }
1415#endif 1712#endif
1416 1713
1417 if (expect_false (block < 0.)) block = 0.; 1714 if (expect_false (waittime < timeout_blocktime))
1715 waittime = timeout_blocktime;
1716
1717 sleeptime = waittime - backend_fudge;
1718
1719 if (expect_true (sleeptime > io_blocktime))
1720 sleeptime = io_blocktime;
1721
1722 if (sleeptime)
1723 {
1724 ev_sleep (sleeptime);
1725 waittime -= sleeptime;
1726 }
1418 } 1727 }
1419 1728
1729 ++loop_count;
1420 backend_poll (EV_A_ block); 1730 backend_poll (EV_A_ waittime);
1731
1732 /* update ev_rt_now, do magic */
1733 time_update (EV_A_ waittime + sleeptime);
1421 } 1734 }
1422
1423 /* update ev_rt_now, do magic */
1424 time_update (EV_A);
1425 1735
1426 /* queue pending timers and reschedule them */ 1736 /* queue pending timers and reschedule them */
1427 timers_reify (EV_A); /* relative timers called last */ 1737 timers_reify (EV_A); /* relative timers called last */
1428#if EV_PERIODIC_ENABLE 1738#if EV_PERIODIC_ENABLE
1429 periodics_reify (EV_A); /* absolute timers called first */ 1739 periodics_reify (EV_A); /* absolute timers called first */
1430#endif 1740#endif
1431 1741
1742#if EV_IDLE_ENABLE
1432 /* queue idle watchers unless other events are pending */ 1743 /* queue idle watchers unless other events are pending */
1433 if (idlecnt && !any_pending (EV_A)) 1744 idle_reify (EV_A);
1434 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1745#endif
1435 1746
1436 /* queue check watchers, to be executed first */ 1747 /* queue check watchers, to be executed first */
1437 if (expect_false (checkcnt)) 1748 if (expect_false (checkcnt))
1438 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1749 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1439 1750
1440 call_pending (EV_A); 1751 call_pending (EV_A);
1441
1442 if (expect_false (loop_done))
1443 break;
1444 } 1752 }
1753 while (expect_true (
1754 activecnt
1755 && !loop_done
1756 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1757 ));
1445 1758
1446 if (loop_done == EVUNLOOP_ONE) 1759 if (loop_done == EVUNLOOP_ONE)
1447 loop_done = EVUNLOOP_CANCEL; 1760 loop_done = EVUNLOOP_CANCEL;
1448} 1761}
1449 1762
1476 head = &(*head)->next; 1789 head = &(*head)->next;
1477 } 1790 }
1478} 1791}
1479 1792
1480void inline_speed 1793void inline_speed
1481ev_clear_pending (EV_P_ W w) 1794clear_pending (EV_P_ W w)
1482{ 1795{
1483 if (w->pending) 1796 if (w->pending)
1484 { 1797 {
1485 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1798 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1486 w->pending = 0; 1799 w->pending = 0;
1487 } 1800 }
1488} 1801}
1489 1802
1803int
1804ev_clear_pending (EV_P_ void *w)
1805{
1806 W w_ = (W)w;
1807 int pending = w_->pending;
1808
1809 if (expect_true (pending))
1810 {
1811 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1812 w_->pending = 0;
1813 p->w = 0;
1814 return p->events;
1815 }
1816 else
1817 return 0;
1818}
1819
1820void inline_size
1821pri_adjust (EV_P_ W w)
1822{
1823 int pri = w->priority;
1824 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1825 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1826 w->priority = pri;
1827}
1828
1490void inline_speed 1829void inline_speed
1491ev_start (EV_P_ W w, int active) 1830ev_start (EV_P_ W w, int active)
1492{ 1831{
1493 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1832 pri_adjust (EV_A_ w);
1494 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1495
1496 w->active = active; 1833 w->active = active;
1497 ev_ref (EV_A); 1834 ev_ref (EV_A);
1498} 1835}
1499 1836
1500void inline_size 1837void inline_size
1504 w->active = 0; 1841 w->active = 0;
1505} 1842}
1506 1843
1507/*****************************************************************************/ 1844/*****************************************************************************/
1508 1845
1509void 1846void noinline
1510ev_io_start (EV_P_ ev_io *w) 1847ev_io_start (EV_P_ ev_io *w)
1511{ 1848{
1512 int fd = w->fd; 1849 int fd = w->fd;
1513 1850
1514 if (expect_false (ev_is_active (w))) 1851 if (expect_false (ev_is_active (w)))
1516 1853
1517 assert (("ev_io_start called with negative fd", fd >= 0)); 1854 assert (("ev_io_start called with negative fd", fd >= 0));
1518 1855
1519 ev_start (EV_A_ (W)w, 1); 1856 ev_start (EV_A_ (W)w, 1);
1520 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1857 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1521 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1858 wlist_add (&anfds[fd].head, (WL)w);
1522 1859
1523 fd_change (EV_A_ fd); 1860 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1861 w->events &= ~EV_IOFDSET;
1524} 1862}
1525 1863
1526void 1864void noinline
1527ev_io_stop (EV_P_ ev_io *w) 1865ev_io_stop (EV_P_ ev_io *w)
1528{ 1866{
1529 ev_clear_pending (EV_A_ (W)w); 1867 clear_pending (EV_A_ (W)w);
1530 if (expect_false (!ev_is_active (w))) 1868 if (expect_false (!ev_is_active (w)))
1531 return; 1869 return;
1532 1870
1533 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1871 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1534 1872
1535 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1873 wlist_del (&anfds[w->fd].head, (WL)w);
1536 ev_stop (EV_A_ (W)w); 1874 ev_stop (EV_A_ (W)w);
1537 1875
1538 fd_change (EV_A_ w->fd); 1876 fd_change (EV_A_ w->fd, 1);
1539} 1877}
1540 1878
1541void 1879void noinline
1542ev_timer_start (EV_P_ ev_timer *w) 1880ev_timer_start (EV_P_ ev_timer *w)
1543{ 1881{
1544 if (expect_false (ev_is_active (w))) 1882 if (expect_false (ev_is_active (w)))
1545 return; 1883 return;
1546 1884
1547 ((WT)w)->at += mn_now; 1885 ((WT)w)->at += mn_now;
1548 1886
1549 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1887 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1550 1888
1551 ev_start (EV_A_ (W)w, ++timercnt); 1889 ev_start (EV_A_ (W)w, ++timercnt);
1552 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1890 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1553 timers [timercnt - 1] = w; 1891 timers [timercnt - 1] = (WT)w;
1554 upheap ((WT *)timers, timercnt - 1); 1892 upheap (timers, timercnt - 1);
1555 1893
1556 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1894 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1557} 1895}
1558 1896
1559void 1897void noinline
1560ev_timer_stop (EV_P_ ev_timer *w) 1898ev_timer_stop (EV_P_ ev_timer *w)
1561{ 1899{
1562 ev_clear_pending (EV_A_ (W)w); 1900 clear_pending (EV_A_ (W)w);
1563 if (expect_false (!ev_is_active (w))) 1901 if (expect_false (!ev_is_active (w)))
1564 return; 1902 return;
1565 1903
1566 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1904 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1567 1905
1568 { 1906 {
1569 int active = ((W)w)->active; 1907 int active = ((W)w)->active;
1570 1908
1571 if (expect_true (--active < --timercnt)) 1909 if (expect_true (--active < --timercnt))
1572 { 1910 {
1573 timers [active] = timers [timercnt]; 1911 timers [active] = timers [timercnt];
1574 adjustheap ((WT *)timers, timercnt, active); 1912 adjustheap (timers, timercnt, active);
1575 } 1913 }
1576 } 1914 }
1577 1915
1578 ((WT)w)->at -= mn_now; 1916 ((WT)w)->at -= mn_now;
1579 1917
1580 ev_stop (EV_A_ (W)w); 1918 ev_stop (EV_A_ (W)w);
1581} 1919}
1582 1920
1583void 1921void noinline
1584ev_timer_again (EV_P_ ev_timer *w) 1922ev_timer_again (EV_P_ ev_timer *w)
1585{ 1923{
1586 if (ev_is_active (w)) 1924 if (ev_is_active (w))
1587 { 1925 {
1588 if (w->repeat) 1926 if (w->repeat)
1589 { 1927 {
1590 ((WT)w)->at = mn_now + w->repeat; 1928 ((WT)w)->at = mn_now + w->repeat;
1591 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1929 adjustheap (timers, timercnt, ((W)w)->active - 1);
1592 } 1930 }
1593 else 1931 else
1594 ev_timer_stop (EV_A_ w); 1932 ev_timer_stop (EV_A_ w);
1595 } 1933 }
1596 else if (w->repeat) 1934 else if (w->repeat)
1599 ev_timer_start (EV_A_ w); 1937 ev_timer_start (EV_A_ w);
1600 } 1938 }
1601} 1939}
1602 1940
1603#if EV_PERIODIC_ENABLE 1941#if EV_PERIODIC_ENABLE
1604void 1942void noinline
1605ev_periodic_start (EV_P_ ev_periodic *w) 1943ev_periodic_start (EV_P_ ev_periodic *w)
1606{ 1944{
1607 if (expect_false (ev_is_active (w))) 1945 if (expect_false (ev_is_active (w)))
1608 return; 1946 return;
1609 1947
1611 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1949 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1612 else if (w->interval) 1950 else if (w->interval)
1613 { 1951 {
1614 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1952 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1615 /* this formula differs from the one in periodic_reify because we do not always round up */ 1953 /* this formula differs from the one in periodic_reify because we do not always round up */
1616 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1954 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1617 } 1955 }
1956 else
1957 ((WT)w)->at = w->offset;
1618 1958
1619 ev_start (EV_A_ (W)w, ++periodiccnt); 1959 ev_start (EV_A_ (W)w, ++periodiccnt);
1620 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1960 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1621 periodics [periodiccnt - 1] = w; 1961 periodics [periodiccnt - 1] = (WT)w;
1622 upheap ((WT *)periodics, periodiccnt - 1); 1962 upheap (periodics, periodiccnt - 1);
1623 1963
1624 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1964 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1625} 1965}
1626 1966
1627void 1967void noinline
1628ev_periodic_stop (EV_P_ ev_periodic *w) 1968ev_periodic_stop (EV_P_ ev_periodic *w)
1629{ 1969{
1630 ev_clear_pending (EV_A_ (W)w); 1970 clear_pending (EV_A_ (W)w);
1631 if (expect_false (!ev_is_active (w))) 1971 if (expect_false (!ev_is_active (w)))
1632 return; 1972 return;
1633 1973
1634 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1974 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1635 1975
1636 { 1976 {
1637 int active = ((W)w)->active; 1977 int active = ((W)w)->active;
1638 1978
1639 if (expect_true (--active < --periodiccnt)) 1979 if (expect_true (--active < --periodiccnt))
1640 { 1980 {
1641 periodics [active] = periodics [periodiccnt]; 1981 periodics [active] = periodics [periodiccnt];
1642 adjustheap ((WT *)periodics, periodiccnt, active); 1982 adjustheap (periodics, periodiccnt, active);
1643 } 1983 }
1644 } 1984 }
1645 1985
1646 ev_stop (EV_A_ (W)w); 1986 ev_stop (EV_A_ (W)w);
1647} 1987}
1648 1988
1649void 1989void noinline
1650ev_periodic_again (EV_P_ ev_periodic *w) 1990ev_periodic_again (EV_P_ ev_periodic *w)
1651{ 1991{
1652 /* TODO: use adjustheap and recalculation */ 1992 /* TODO: use adjustheap and recalculation */
1653 ev_periodic_stop (EV_A_ w); 1993 ev_periodic_stop (EV_A_ w);
1654 ev_periodic_start (EV_A_ w); 1994 ev_periodic_start (EV_A_ w);
1657 1997
1658#ifndef SA_RESTART 1998#ifndef SA_RESTART
1659# define SA_RESTART 0 1999# define SA_RESTART 0
1660#endif 2000#endif
1661 2001
1662void 2002void noinline
1663ev_signal_start (EV_P_ ev_signal *w) 2003ev_signal_start (EV_P_ ev_signal *w)
1664{ 2004{
1665#if EV_MULTIPLICITY 2005#if EV_MULTIPLICITY
1666 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2006 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1667#endif 2007#endif
1668 if (expect_false (ev_is_active (w))) 2008 if (expect_false (ev_is_active (w)))
1669 return; 2009 return;
1670 2010
1671 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2011 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1672 2012
2013 evpipe_init (EV_A);
2014
2015 {
2016#ifndef _WIN32
2017 sigset_t full, prev;
2018 sigfillset (&full);
2019 sigprocmask (SIG_SETMASK, &full, &prev);
2020#endif
2021
2022 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2023
2024#ifndef _WIN32
2025 sigprocmask (SIG_SETMASK, &prev, 0);
2026#endif
2027 }
2028
1673 ev_start (EV_A_ (W)w, 1); 2029 ev_start (EV_A_ (W)w, 1);
1674 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1675 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2030 wlist_add (&signals [w->signum - 1].head, (WL)w);
1676 2031
1677 if (!((WL)w)->next) 2032 if (!((WL)w)->next)
1678 { 2033 {
1679#if _WIN32 2034#if _WIN32
1680 signal (w->signum, sighandler); 2035 signal (w->signum, ev_sighandler);
1681#else 2036#else
1682 struct sigaction sa; 2037 struct sigaction sa;
1683 sa.sa_handler = sighandler; 2038 sa.sa_handler = ev_sighandler;
1684 sigfillset (&sa.sa_mask); 2039 sigfillset (&sa.sa_mask);
1685 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2040 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1686 sigaction (w->signum, &sa, 0); 2041 sigaction (w->signum, &sa, 0);
1687#endif 2042#endif
1688 } 2043 }
1689} 2044}
1690 2045
1691void 2046void noinline
1692ev_signal_stop (EV_P_ ev_signal *w) 2047ev_signal_stop (EV_P_ ev_signal *w)
1693{ 2048{
1694 ev_clear_pending (EV_A_ (W)w); 2049 clear_pending (EV_A_ (W)w);
1695 if (expect_false (!ev_is_active (w))) 2050 if (expect_false (!ev_is_active (w)))
1696 return; 2051 return;
1697 2052
1698 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2053 wlist_del (&signals [w->signum - 1].head, (WL)w);
1699 ev_stop (EV_A_ (W)w); 2054 ev_stop (EV_A_ (W)w);
1700 2055
1701 if (!signals [w->signum - 1].head) 2056 if (!signals [w->signum - 1].head)
1702 signal (w->signum, SIG_DFL); 2057 signal (w->signum, SIG_DFL);
1703} 2058}
1710#endif 2065#endif
1711 if (expect_false (ev_is_active (w))) 2066 if (expect_false (ev_is_active (w)))
1712 return; 2067 return;
1713 2068
1714 ev_start (EV_A_ (W)w, 1); 2069 ev_start (EV_A_ (W)w, 1);
1715 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2070 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1716} 2071}
1717 2072
1718void 2073void
1719ev_child_stop (EV_P_ ev_child *w) 2074ev_child_stop (EV_P_ ev_child *w)
1720{ 2075{
1721 ev_clear_pending (EV_A_ (W)w); 2076 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 2077 if (expect_false (!ev_is_active (w)))
1723 return; 2078 return;
1724 2079
1725 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2080 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1726 ev_stop (EV_A_ (W)w); 2081 ev_stop (EV_A_ (W)w);
1727} 2082}
1728 2083
1729#if EV_STAT_ENABLE 2084#if EV_STAT_ENABLE
1730 2085
1962} 2317}
1963 2318
1964void 2319void
1965ev_stat_stop (EV_P_ ev_stat *w) 2320ev_stat_stop (EV_P_ ev_stat *w)
1966{ 2321{
1967 ev_clear_pending (EV_A_ (W)w); 2322 clear_pending (EV_A_ (W)w);
1968 if (expect_false (!ev_is_active (w))) 2323 if (expect_false (!ev_is_active (w)))
1969 return; 2324 return;
1970 2325
1971#if EV_USE_INOTIFY 2326#if EV_USE_INOTIFY
1972 infy_del (EV_A_ w); 2327 infy_del (EV_A_ w);
1975 2330
1976 ev_stop (EV_A_ (W)w); 2331 ev_stop (EV_A_ (W)w);
1977} 2332}
1978#endif 2333#endif
1979 2334
2335#if EV_IDLE_ENABLE
1980void 2336void
1981ev_idle_start (EV_P_ ev_idle *w) 2337ev_idle_start (EV_P_ ev_idle *w)
1982{ 2338{
1983 if (expect_false (ev_is_active (w))) 2339 if (expect_false (ev_is_active (w)))
1984 return; 2340 return;
1985 2341
2342 pri_adjust (EV_A_ (W)w);
2343
2344 {
2345 int active = ++idlecnt [ABSPRI (w)];
2346
2347 ++idleall;
1986 ev_start (EV_A_ (W)w, ++idlecnt); 2348 ev_start (EV_A_ (W)w, active);
2349
1987 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2350 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1988 idles [idlecnt - 1] = w; 2351 idles [ABSPRI (w)][active - 1] = w;
2352 }
1989} 2353}
1990 2354
1991void 2355void
1992ev_idle_stop (EV_P_ ev_idle *w) 2356ev_idle_stop (EV_P_ ev_idle *w)
1993{ 2357{
1994 ev_clear_pending (EV_A_ (W)w); 2358 clear_pending (EV_A_ (W)w);
1995 if (expect_false (!ev_is_active (w))) 2359 if (expect_false (!ev_is_active (w)))
1996 return; 2360 return;
1997 2361
1998 { 2362 {
1999 int active = ((W)w)->active; 2363 int active = ((W)w)->active;
2000 idles [active - 1] = idles [--idlecnt]; 2364
2365 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2001 ((W)idles [active - 1])->active = active; 2366 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2367
2368 ev_stop (EV_A_ (W)w);
2369 --idleall;
2002 } 2370 }
2003
2004 ev_stop (EV_A_ (W)w);
2005} 2371}
2372#endif
2006 2373
2007void 2374void
2008ev_prepare_start (EV_P_ ev_prepare *w) 2375ev_prepare_start (EV_P_ ev_prepare *w)
2009{ 2376{
2010 if (expect_false (ev_is_active (w))) 2377 if (expect_false (ev_is_active (w)))
2016} 2383}
2017 2384
2018void 2385void
2019ev_prepare_stop (EV_P_ ev_prepare *w) 2386ev_prepare_stop (EV_P_ ev_prepare *w)
2020{ 2387{
2021 ev_clear_pending (EV_A_ (W)w); 2388 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 2389 if (expect_false (!ev_is_active (w)))
2023 return; 2390 return;
2024 2391
2025 { 2392 {
2026 int active = ((W)w)->active; 2393 int active = ((W)w)->active;
2043} 2410}
2044 2411
2045void 2412void
2046ev_check_stop (EV_P_ ev_check *w) 2413ev_check_stop (EV_P_ ev_check *w)
2047{ 2414{
2048 ev_clear_pending (EV_A_ (W)w); 2415 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 2416 if (expect_false (!ev_is_active (w)))
2050 return; 2417 return;
2051 2418
2052 { 2419 {
2053 int active = ((W)w)->active; 2420 int active = ((W)w)->active;
2060 2427
2061#if EV_EMBED_ENABLE 2428#if EV_EMBED_ENABLE
2062void noinline 2429void noinline
2063ev_embed_sweep (EV_P_ ev_embed *w) 2430ev_embed_sweep (EV_P_ ev_embed *w)
2064{ 2431{
2065 ev_loop (w->loop, EVLOOP_NONBLOCK); 2432 ev_loop (w->other, EVLOOP_NONBLOCK);
2066} 2433}
2067 2434
2068static void 2435static void
2069embed_cb (EV_P_ ev_io *io, int revents) 2436embed_io_cb (EV_P_ ev_io *io, int revents)
2070{ 2437{
2071 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2438 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2072 2439
2073 if (ev_cb (w)) 2440 if (ev_cb (w))
2074 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2441 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2075 else 2442 else
2076 ev_embed_sweep (loop, w); 2443 ev_loop (w->other, EVLOOP_NONBLOCK);
2077} 2444}
2445
2446static void
2447embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2448{
2449 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2450
2451 {
2452 struct ev_loop *loop = w->other;
2453
2454 while (fdchangecnt)
2455 {
2456 fd_reify (EV_A);
2457 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2458 }
2459 }
2460}
2461
2462#if 0
2463static void
2464embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2465{
2466 ev_idle_stop (EV_A_ idle);
2467}
2468#endif
2078 2469
2079void 2470void
2080ev_embed_start (EV_P_ ev_embed *w) 2471ev_embed_start (EV_P_ ev_embed *w)
2081{ 2472{
2082 if (expect_false (ev_is_active (w))) 2473 if (expect_false (ev_is_active (w)))
2083 return; 2474 return;
2084 2475
2085 { 2476 {
2086 struct ev_loop *loop = w->loop; 2477 struct ev_loop *loop = w->other;
2087 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2478 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2088 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2479 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2089 } 2480 }
2090 2481
2091 ev_set_priority (&w->io, ev_priority (w)); 2482 ev_set_priority (&w->io, ev_priority (w));
2092 ev_io_start (EV_A_ &w->io); 2483 ev_io_start (EV_A_ &w->io);
2093 2484
2485 ev_prepare_init (&w->prepare, embed_prepare_cb);
2486 ev_set_priority (&w->prepare, EV_MINPRI);
2487 ev_prepare_start (EV_A_ &w->prepare);
2488
2489 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2490
2094 ev_start (EV_A_ (W)w, 1); 2491 ev_start (EV_A_ (W)w, 1);
2095} 2492}
2096 2493
2097void 2494void
2098ev_embed_stop (EV_P_ ev_embed *w) 2495ev_embed_stop (EV_P_ ev_embed *w)
2099{ 2496{
2100 ev_clear_pending (EV_A_ (W)w); 2497 clear_pending (EV_A_ (W)w);
2101 if (expect_false (!ev_is_active (w))) 2498 if (expect_false (!ev_is_active (w)))
2102 return; 2499 return;
2103 2500
2104 ev_io_stop (EV_A_ &w->io); 2501 ev_io_stop (EV_A_ &w->io);
2502 ev_prepare_stop (EV_A_ &w->prepare);
2105 2503
2106 ev_stop (EV_A_ (W)w); 2504 ev_stop (EV_A_ (W)w);
2107} 2505}
2108#endif 2506#endif
2109 2507
2120} 2518}
2121 2519
2122void 2520void
2123ev_fork_stop (EV_P_ ev_fork *w) 2521ev_fork_stop (EV_P_ ev_fork *w)
2124{ 2522{
2125 ev_clear_pending (EV_A_ (W)w); 2523 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 2524 if (expect_false (!ev_is_active (w)))
2127 return; 2525 return;
2128 2526
2129 { 2527 {
2130 int active = ((W)w)->active; 2528 int active = ((W)w)->active;
2134 2532
2135 ev_stop (EV_A_ (W)w); 2533 ev_stop (EV_A_ (W)w);
2136} 2534}
2137#endif 2535#endif
2138 2536
2537#if EV_ASYNC_ENABLE
2538void
2539ev_async_start (EV_P_ ev_async *w)
2540{
2541 if (expect_false (ev_is_active (w)))
2542 return;
2543
2544 evpipe_init (EV_A);
2545
2546 ev_start (EV_A_ (W)w, ++asynccnt);
2547 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2548 asyncs [asynccnt - 1] = w;
2549}
2550
2551void
2552ev_async_stop (EV_P_ ev_async *w)
2553{
2554 clear_pending (EV_A_ (W)w);
2555 if (expect_false (!ev_is_active (w)))
2556 return;
2557
2558 {
2559 int active = ((W)w)->active;
2560 asyncs [active - 1] = asyncs [--asynccnt];
2561 ((W)asyncs [active - 1])->active = active;
2562 }
2563
2564 ev_stop (EV_A_ (W)w);
2565}
2566
2567void
2568ev_async_send (EV_P_ ev_async *w)
2569{
2570 w->sent = 1;
2571 evpipe_write (EV_A_ &gotasync);
2572}
2573#endif
2574
2139/*****************************************************************************/ 2575/*****************************************************************************/
2140 2576
2141struct ev_once 2577struct ev_once
2142{ 2578{
2143 ev_io io; 2579 ev_io io;
2198 ev_timer_set (&once->to, timeout, 0.); 2634 ev_timer_set (&once->to, timeout, 0.);
2199 ev_timer_start (EV_A_ &once->to); 2635 ev_timer_start (EV_A_ &once->to);
2200 } 2636 }
2201} 2637}
2202 2638
2639#if EV_MULTIPLICITY
2640 #include "ev_wrap.h"
2641#endif
2642
2203#ifdef __cplusplus 2643#ifdef __cplusplus
2204} 2644}
2205#endif 2645#endif
2206 2646

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines