ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.158 by root, Thu Nov 29 17:28:13 2007 UTC vs.
Revision 1.248 by root, Wed May 21 23:25:21 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 249
197#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
200#endif 253#endif
202#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
205#endif 258#endif
206 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
207#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 276# include <winsock.h>
209#endif 277#endif
210 278
211#if !EV_STAT_ENABLE 279#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
213#endif 284# endif
214 285int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 286# ifdef __cplusplus
216# include <sys/inotify.h> 287}
288# endif
217#endif 289#endif
218 290
219/**/ 291/**/
292
293/* undefined or zero: no verification done or available */
294/* 1 or higher: ev_loop_verify function available */
295/* 2 or higher: ev_loop_verify is called frequently */
296#define EV_VERIFY 1
297
298#if EV_VERIFY > 1
299# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
300#else
301# define EV_FREQUENT_CHECK do { } while (0)
302#endif
303
304/*
305 * This is used to avoid floating point rounding problems.
306 * It is added to ev_rt_now when scheduling periodics
307 * to ensure progress, time-wise, even when rounding
308 * errors are against us.
309 * This value is good at least till the year 4000.
310 * Better solutions welcome.
311 */
312#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 313
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 314#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 315#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 316/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 317
225#if __GNUC__ >= 3 318#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 319# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 320# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 321#else
236# define expect(expr,value) (expr) 322# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 323# define noinline
324# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
325# define inline
326# endif
240#endif 327#endif
241 328
242#define expect_false(expr) expect ((expr) != 0, 0) 329#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 330#define expect_true(expr) expect ((expr) != 0, 1)
331#define inline_size static inline
332
333#if EV_MINIMAL
334# define inline_speed static noinline
335#else
336# define inline_speed static inline
337#endif
244 338
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 339#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 340#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 341
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 342#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 343#define EMPTY2(a,b) /* used to suppress some warnings */
250 344
251typedef ev_watcher *W; 345typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 346typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 347typedef ev_watcher_time *WT;
254 348
349#define ev_active(w) ((W)(w))->active
350#define ev_at(w) ((WT)(w))->at
351
352#if EV_USE_MONOTONIC
353/* sig_atomic_t is used to avoid per-thread variables or locking but still */
354/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 355static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
356#endif
256 357
257#ifdef _WIN32 358#ifdef _WIN32
258# include "ev_win32.c" 359# include "ev_win32.c"
259#endif 360#endif
260 361
281 perror (msg); 382 perror (msg);
282 abort (); 383 abort ();
283 } 384 }
284} 385}
285 386
387static void *
388ev_realloc_emul (void *ptr, long size)
389{
390 /* some systems, notably openbsd and darwin, fail to properly
391 * implement realloc (x, 0) (as required by both ansi c-98 and
392 * the single unix specification, so work around them here.
393 */
394
395 if (size)
396 return realloc (ptr, size);
397
398 free (ptr);
399 return 0;
400}
401
286static void *(*alloc)(void *ptr, long size); 402static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 403
288void 404void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 405ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 406{
291 alloc = cb; 407 alloc = cb;
292} 408}
293 409
294inline_speed void * 410inline_speed void *
295ev_realloc (void *ptr, long size) 411ev_realloc (void *ptr, long size)
296{ 412{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 413 ptr = alloc (ptr, size);
298 414
299 if (!ptr && size) 415 if (!ptr && size)
300 { 416 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 417 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 418 abort ();
325 W w; 441 W w;
326 int events; 442 int events;
327} ANPENDING; 443} ANPENDING;
328 444
329#if EV_USE_INOTIFY 445#if EV_USE_INOTIFY
446/* hash table entry per inotify-id */
330typedef struct 447typedef struct
331{ 448{
332 WL head; 449 WL head;
333} ANFS; 450} ANFS;
451#endif
452
453/* Heap Entry */
454#if EV_HEAP_CACHE_AT
455 typedef struct {
456 ev_tstamp at;
457 WT w;
458 } ANHE;
459
460 #define ANHE_w(he) (he).w /* access watcher, read-write */
461 #define ANHE_at(he) (he).at /* access cached at, read-only */
462 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
463#else
464 typedef WT ANHE;
465
466 #define ANHE_w(he) (he)
467 #define ANHE_at(he) (he)->at
468 #define ANHE_at_cache(he)
334#endif 469#endif
335 470
336#if EV_MULTIPLICITY 471#if EV_MULTIPLICITY
337 472
338 struct ev_loop 473 struct ev_loop
396{ 531{
397 return ev_rt_now; 532 return ev_rt_now;
398} 533}
399#endif 534#endif
400 535
401#define array_roundsize(type,n) (((n) | 4) & ~3) 536void
537ev_sleep (ev_tstamp delay)
538{
539 if (delay > 0.)
540 {
541#if EV_USE_NANOSLEEP
542 struct timespec ts;
543
544 ts.tv_sec = (time_t)delay;
545 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
546
547 nanosleep (&ts, 0);
548#elif defined(_WIN32)
549 Sleep ((unsigned long)(delay * 1e3));
550#else
551 struct timeval tv;
552
553 tv.tv_sec = (time_t)delay;
554 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
555
556 select (0, 0, 0, 0, &tv);
557#endif
558 }
559}
560
561/*****************************************************************************/
562
563#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
564
565int inline_size
566array_nextsize (int elem, int cur, int cnt)
567{
568 int ncur = cur + 1;
569
570 do
571 ncur <<= 1;
572 while (cnt > ncur);
573
574 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
575 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
576 {
577 ncur *= elem;
578 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
579 ncur = ncur - sizeof (void *) * 4;
580 ncur /= elem;
581 }
582
583 return ncur;
584}
585
586static noinline void *
587array_realloc (int elem, void *base, int *cur, int cnt)
588{
589 *cur = array_nextsize (elem, *cur, cnt);
590 return ev_realloc (base, elem * *cur);
591}
402 592
403#define array_needsize(type,base,cur,cnt,init) \ 593#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 594 if (expect_false ((cnt) > (cur))) \
405 { \ 595 { \
406 int newcnt = cur; \ 596 int ocur_ = (cur); \
407 do \ 597 (base) = (type *)array_realloc \
408 { \ 598 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 599 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 600 }
417 601
602#if 0
418#define array_slim(type,stem) \ 603#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 604 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 605 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 606 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 607 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 608 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 609 }
610#endif
425 611
426#define array_free(stem, idx) \ 612#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 613 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 614
429/*****************************************************************************/ 615/*****************************************************************************/
430 616
431void noinline 617void noinline
432ev_feed_event (EV_P_ void *w, int revents) 618ev_feed_event (EV_P_ void *w, int revents)
433{ 619{
434 W w_ = (W)w; 620 W w_ = (W)w;
621 int pri = ABSPRI (w_);
435 622
436 if (expect_false (w_->pending)) 623 if (expect_false (w_->pending))
624 pendings [pri][w_->pending - 1].events |= revents;
625 else
437 { 626 {
627 w_->pending = ++pendingcnt [pri];
628 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
629 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 630 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 631 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 632}
447 633
448void inline_size 634void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 635queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 636{
451 int i; 637 int i;
452 638
453 for (i = 0; i < eventcnt; ++i) 639 for (i = 0; i < eventcnt; ++i)
485} 671}
486 672
487void 673void
488ev_feed_fd_event (EV_P_ int fd, int revents) 674ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 675{
676 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 677 fd_event (EV_A_ fd, revents);
491} 678}
492 679
493void inline_size 680void inline_size
494fd_reify (EV_P) 681fd_reify (EV_P)
495{ 682{
499 { 686 {
500 int fd = fdchanges [i]; 687 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 688 ANFD *anfd = anfds + fd;
502 ev_io *w; 689 ev_io *w;
503 690
504 int events = 0; 691 unsigned char events = 0;
505 692
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 693 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 694 events |= (unsigned char)w->events;
508 695
509#if EV_SELECT_IS_WINSOCKET 696#if EV_SELECT_IS_WINSOCKET
510 if (events) 697 if (events)
511 { 698 {
512 unsigned long argp; 699 unsigned long argp;
700 #ifdef EV_FD_TO_WIN32_HANDLE
701 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
702 #else
513 anfd->handle = _get_osfhandle (fd); 703 anfd->handle = _get_osfhandle (fd);
704 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 705 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 706 }
516#endif 707#endif
517 708
709 {
710 unsigned char o_events = anfd->events;
711 unsigned char o_reify = anfd->reify;
712
518 anfd->reify = 0; 713 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 714 anfd->events = events;
715
716 if (o_events != events || o_reify & EV_IOFDSET)
717 backend_modify (EV_A_ fd, o_events, events);
718 }
522 } 719 }
523 720
524 fdchangecnt = 0; 721 fdchangecnt = 0;
525} 722}
526 723
527void inline_size 724void inline_size
528fd_change (EV_P_ int fd) 725fd_change (EV_P_ int fd, int flags)
529{ 726{
530 if (expect_false (anfds [fd].reify)) 727 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 728 anfds [fd].reify |= flags;
534 729
730 if (expect_true (!reify))
731 {
535 ++fdchangecnt; 732 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 733 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 734 fdchanges [fdchangecnt - 1] = fd;
735 }
538} 736}
539 737
540void inline_speed 738void inline_speed
541fd_kill (EV_P_ int fd) 739fd_kill (EV_P_ int fd)
542{ 740{
593 791
594 for (fd = 0; fd < anfdmax; ++fd) 792 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 793 if (anfds [fd].events)
596 { 794 {
597 anfds [fd].events = 0; 795 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 796 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 797 }
600} 798}
601 799
602/*****************************************************************************/ 800/*****************************************************************************/
603 801
802/*
803 * the heap functions want a real array index. array index 0 uis guaranteed to not
804 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
805 * the branching factor of the d-tree.
806 */
807
808/*
809 * at the moment we allow libev the luxury of two heaps,
810 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
811 * which is more cache-efficient.
812 * the difference is about 5% with 50000+ watchers.
813 */
814#if EV_USE_4HEAP
815
816#define DHEAP 4
817#define HEAP0 (DHEAP - 1) /* index of first element in heap */
818#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
819#define UPHEAP_DONE(p,k) ((p) == (k))
820
821/* away from the root */
604void inline_speed 822void inline_speed
605upheap (WT *heap, int k) 823downheap (ANHE *heap, int N, int k)
606{ 824{
607 WT w = heap [k]; 825 ANHE he = heap [k];
826 ANHE *E = heap + N + HEAP0;
608 827
609 while (k && heap [k >> 1]->at > w->at) 828 for (;;)
610 {
611 heap [k] = heap [k >> 1];
612 ((W)heap [k])->active = k + 1;
613 k >>= 1;
614 } 829 {
830 ev_tstamp minat;
831 ANHE *minpos;
832 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
615 833
834 /* find minimum child */
835 if (expect_true (pos + DHEAP - 1 < E))
836 {
837 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
838 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
839 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
840 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
841 }
842 else if (pos < E)
843 {
844 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
845 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
846 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
847 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
848 }
849 else
850 break;
851
852 if (ANHE_at (he) <= minat)
853 break;
854
855 heap [k] = *minpos;
856 ev_active (ANHE_w (*minpos)) = k;
857
858 k = minpos - heap;
859 }
860
616 heap [k] = w; 861 heap [k] = he;
617 ((W)heap [k])->active = k + 1; 862 ev_active (ANHE_w (he)) = k;
618
619} 863}
620 864
865#else /* 4HEAP */
866
867#define HEAP0 1
868#define HPARENT(k) ((k) >> 1)
869#define UPHEAP_DONE(p,k) (!(p))
870
871/* away from the root */
621void inline_speed 872void inline_speed
622downheap (WT *heap, int N, int k) 873downheap (ANHE *heap, int N, int k)
623{ 874{
624 WT w = heap [k]; 875 ANHE he = heap [k];
625 876
626 while (k < (N >> 1)) 877 for (;;)
627 { 878 {
628 int j = k << 1; 879 int c = k << 1;
629 880
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 881 if (c > N + HEAP0 - 1)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 882 break;
635 883
884 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0;
886
887 if (ANHE_at (he) <= ANHE_at (heap [c]))
888 break;
889
636 heap [k] = heap [j]; 890 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 891 ev_active (ANHE_w (heap [k])) = k;
892
638 k = j; 893 k = c;
639 } 894 }
640 895
641 heap [k] = w; 896 heap [k] = he;
642 ((W)heap [k])->active = k + 1; 897 ev_active (ANHE_w (he)) = k;
898}
899#endif
900
901/* towards the root */
902void inline_speed
903upheap (ANHE *heap, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int p = HPARENT (k);
910
911 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
912 break;
913
914 heap [k] = heap [p];
915 ev_active (ANHE_w (heap [k])) = k;
916 k = p;
917 }
918
919 heap [k] = he;
920 ev_active (ANHE_w (he)) = k;
643} 921}
644 922
645void inline_size 923void inline_size
646adjustheap (WT *heap, int N, int k) 924adjustheap (ANHE *heap, int N, int k)
647{ 925{
926 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
648 upheap (heap, k); 927 upheap (heap, k);
928 else
649 downheap (heap, N, k); 929 downheap (heap, N, k);
650} 930}
931
932/* rebuild the heap: this function is used only once and executed rarely */
933void inline_size
934reheap (ANHE *heap, int N)
935{
936 int i;
937 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
938 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
939 for (i = 0; i < N; ++i)
940 upheap (heap, i + HEAP0);
941}
942
943#if EV_VERIFY
944static void
945checkheap (ANHE *heap, int N)
946{
947 int i;
948
949 for (i = HEAP0; i < N + HEAP0; ++i)
950 {
951 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
952 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
953 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
954 }
955}
956#endif
651 957
652/*****************************************************************************/ 958/*****************************************************************************/
653 959
654typedef struct 960typedef struct
655{ 961{
656 WL head; 962 WL head;
657 sig_atomic_t volatile gotsig; 963 EV_ATOMIC_T gotsig;
658} ANSIG; 964} ANSIG;
659 965
660static ANSIG *signals; 966static ANSIG *signals;
661static int signalmax; 967static int signalmax;
662 968
663static int sigpipe [2]; 969static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 970
667void inline_size 971void inline_size
668signals_init (ANSIG *base, int count) 972signals_init (ANSIG *base, int count)
669{ 973{
670 while (count--) 974 while (count--)
674 978
675 ++base; 979 ++base;
676 } 980 }
677} 981}
678 982
679static void 983/*****************************************************************************/
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685 984
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size 985void inline_speed
731fd_intern (int fd) 986fd_intern (int fd)
732{ 987{
733#ifdef _WIN32 988#ifdef _WIN32
734 int arg = 1; 989 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 993 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 994#endif
740} 995}
741 996
742static void noinline 997static void noinline
743siginit (EV_P) 998evpipe_init (EV_P)
744{ 999{
1000 if (!ev_is_active (&pipeev))
1001 {
1002#if EV_USE_EVENTFD
1003 if ((evfd = eventfd (0, 0)) >= 0)
1004 {
1005 evpipe [0] = -1;
1006 fd_intern (evfd);
1007 ev_io_set (&pipeev, evfd, EV_READ);
1008 }
1009 else
1010#endif
1011 {
1012 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe");
1014
745 fd_intern (sigpipe [0]); 1015 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1016 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ);
1018 }
747 1019
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1020 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1021 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 }
1023}
1024
1025void inline_size
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{
1028 if (!*flag)
1029 {
1030 int old_errno = errno; /* save errno because write might clobber it */
1031
1032 *flag = 1;
1033
1034#if EV_USE_EVENTFD
1035 if (evfd >= 0)
1036 {
1037 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t));
1039 }
1040 else
1041#endif
1042 write (evpipe [1], &old_errno, 1);
1043
1044 errno = old_errno;
1045 }
1046}
1047
1048static void
1049pipecb (EV_P_ ev_io *iow, int revents)
1050{
1051#if EV_USE_EVENTFD
1052 if (evfd >= 0)
1053 {
1054 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t));
1056 }
1057 else
1058#endif
1059 {
1060 char dummy;
1061 read (evpipe [0], &dummy, 1);
1062 }
1063
1064 if (gotsig && ev_is_default_loop (EV_A))
1065 {
1066 int signum;
1067 gotsig = 0;
1068
1069 for (signum = signalmax; signum--; )
1070 if (signals [signum].gotsig)
1071 ev_feed_signal_event (EV_A_ signum + 1);
1072 }
1073
1074#if EV_ASYNC_ENABLE
1075 if (gotasync)
1076 {
1077 int i;
1078 gotasync = 0;
1079
1080 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent)
1082 {
1083 asyncs [i]->sent = 0;
1084 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1085 }
1086 }
1087#endif
751} 1088}
752 1089
753/*****************************************************************************/ 1090/*****************************************************************************/
754 1091
1092static void
1093ev_sighandler (int signum)
1094{
1095#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct;
1097#endif
1098
1099#if _WIN32
1100 signal (signum, ev_sighandler);
1101#endif
1102
1103 signals [signum - 1].gotsig = 1;
1104 evpipe_write (EV_A_ &gotsig);
1105}
1106
1107void noinline
1108ev_feed_signal_event (EV_P_ int signum)
1109{
1110 WL w;
1111
1112#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1114#endif
1115
1116 --signum;
1117
1118 if (signum < 0 || signum >= signalmax)
1119 return;
1120
1121 signals [signum].gotsig = 0;
1122
1123 for (w = signals [signum].head; w; w = w->next)
1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1125}
1126
1127/*****************************************************************************/
1128
755static ev_child *childs [EV_PID_HASHSIZE]; 1129static WL childs [EV_PID_HASHSIZE];
756 1130
757#ifndef _WIN32 1131#ifndef _WIN32
758 1132
759static ev_signal childev; 1133static ev_signal childev;
760 1134
1135#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0
1137#endif
1138
761void inline_speed 1139void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1140child_reap (EV_P_ int chain, int pid, int status)
763{ 1141{
764 ev_child *w; 1142 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1144
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 {
767 if (w->pid == pid || !w->pid) 1147 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1)))
768 { 1149 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1151 w->rpid = pid;
771 w->rstatus = status; 1152 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1153 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1154 }
1155 }
774} 1156}
775 1157
776#ifndef WCONTINUED 1158#ifndef WCONTINUED
777# define WCONTINUED 0 1159# define WCONTINUED 0
778#endif 1160#endif
787 if (!WCONTINUED 1169 if (!WCONTINUED
788 || errno != EINVAL 1170 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1171 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1172 return;
791 1173
792 /* make sure we are called again until all childs have been reaped */ 1174 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1175 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1177
796 child_reap (EV_A_ sw, pid, pid, status); 1178 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1179 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1181}
800 1182
801#endif 1183#endif
802 1184
803/*****************************************************************************/ 1185/*****************************************************************************/
875} 1257}
876 1258
877unsigned int 1259unsigned int
878ev_embeddable_backends (void) 1260ev_embeddable_backends (void)
879{ 1261{
880 return EVBACKEND_EPOLL 1262 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1263
882 | EVBACKEND_PORT; 1264 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1265 /* please fix it and tell me how to detect the fix */
1266 flags &= ~EVBACKEND_EPOLL;
1267
1268 return flags;
883} 1269}
884 1270
885unsigned int 1271unsigned int
886ev_backend (EV_P) 1272ev_backend (EV_P)
887{ 1273{
888 return backend; 1274 return backend;
1275}
1276
1277unsigned int
1278ev_loop_count (EV_P)
1279{
1280 return loop_count;
1281}
1282
1283void
1284ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 io_blocktime = interval;
1287}
1288
1289void
1290ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1291{
1292 timeout_blocktime = interval;
889} 1293}
890 1294
891static void noinline 1295static void noinline
892loop_init (EV_P_ unsigned int flags) 1296loop_init (EV_P_ unsigned int flags)
893{ 1297{
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1304 have_monotonic = 1;
901 } 1305 }
902#endif 1306#endif
903 1307
904 ev_rt_now = ev_time (); 1308 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1309 mn_now = get_clock ();
906 now_floor = mn_now; 1310 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1311 rtmn_diff = ev_rt_now - mn_now;
1312
1313 io_blocktime = 0.;
1314 timeout_blocktime = 0.;
1315 backend = 0;
1316 backend_fd = -1;
1317 gotasync = 0;
1318#if EV_USE_INOTIFY
1319 fs_fd = -2;
1320#endif
908 1321
909 /* pid check not overridable via env */ 1322 /* pid check not overridable via env */
910#ifndef _WIN32 1323#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1324 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1325 curpid = getpid ();
915 if (!(flags & EVFLAG_NOENV) 1328 if (!(flags & EVFLAG_NOENV)
916 && !enable_secure () 1329 && !enable_secure ()
917 && getenv ("LIBEV_FLAGS")) 1330 && getenv ("LIBEV_FLAGS"))
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1331 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1332
920 if (!(flags & 0x0000ffffUL)) 1333 if (!(flags & 0x0000ffffU))
921 flags |= ev_recommended_backends (); 1334 flags |= ev_recommended_backends ();
922
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY
926 fs_fd = -2;
927#endif
928 1335
929#if EV_USE_PORT 1336#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1338#endif
932#if EV_USE_KQUEUE 1339#if EV_USE_KQUEUE
940#endif 1347#endif
941#if EV_USE_SELECT 1348#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1350#endif
944 1351
945 ev_init (&sigev, sigcb); 1352 ev_init (&pipeev, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1353 ev_set_priority (&pipeev, EV_MAXPRI);
947 } 1354 }
948} 1355}
949 1356
950static void noinline 1357static void noinline
951loop_destroy (EV_P) 1358loop_destroy (EV_P)
952{ 1359{
953 int i; 1360 int i;
1361
1362 if (ev_is_active (&pipeev))
1363 {
1364 ev_ref (EV_A); /* signal watcher */
1365 ev_io_stop (EV_A_ &pipeev);
1366
1367#if EV_USE_EVENTFD
1368 if (evfd >= 0)
1369 close (evfd);
1370#endif
1371
1372 if (evpipe [0] >= 0)
1373 {
1374 close (evpipe [0]);
1375 close (evpipe [1]);
1376 }
1377 }
954 1378
955#if EV_USE_INOTIFY 1379#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1380 if (fs_fd >= 0)
957 close (fs_fd); 1381 close (fs_fd);
958#endif 1382#endif
975#if EV_USE_SELECT 1399#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1400 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1401#endif
978 1402
979 for (i = NUMPRI; i--; ) 1403 for (i = NUMPRI; i--; )
1404 {
980 array_free (pending, [i]); 1405 array_free (pending, [i]);
1406#if EV_IDLE_ENABLE
1407 array_free (idle, [i]);
1408#endif
1409 }
1410
1411 ev_free (anfds); anfdmax = 0;
981 1412
982 /* have to use the microsoft-never-gets-it-right macro */ 1413 /* have to use the microsoft-never-gets-it-right macro */
983 array_free (fdchange, EMPTY0); 1414 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1415 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1416#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1417 array_free (periodic, EMPTY);
987#endif 1418#endif
1419#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1420 array_free (fork, EMPTY);
1421#endif
989 array_free (prepare, EMPTY0); 1422 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1423 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY);
1426#endif
991 1427
992 backend = 0; 1428 backend = 0;
993} 1429}
994 1430
1431#if EV_USE_INOTIFY
995void inline_size infy_fork (EV_P); 1432void inline_size infy_fork (EV_P);
1433#endif
996 1434
997void inline_size 1435void inline_size
998loop_fork (EV_P) 1436loop_fork (EV_P)
999{ 1437{
1000#if EV_USE_PORT 1438#if EV_USE_PORT
1008#endif 1446#endif
1009#if EV_USE_INOTIFY 1447#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1448 infy_fork (EV_A);
1011#endif 1449#endif
1012 1450
1013 if (ev_is_active (&sigev)) 1451 if (ev_is_active (&pipeev))
1014 { 1452 {
1015 /* default loop */ 1453 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */
1455 gotsig = 1;
1456#if EV_ASYNC_ENABLE
1457 gotasync = 1;
1458#endif
1016 1459
1017 ev_ref (EV_A); 1460 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1461 ev_io_stop (EV_A_ &pipeev);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
1019 close (sigpipe [0]); 1470 close (evpipe [0]);
1020 close (sigpipe [1]); 1471 close (evpipe [1]);
1472 }
1021 1473
1022 while (pipe (sigpipe))
1023 syserr ("(libev) error creating pipe");
1024
1025 siginit (EV_A); 1474 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ);
1026 } 1477 }
1027 1478
1028 postfork = 0; 1479 postfork = 0;
1029} 1480}
1030 1481
1052} 1503}
1053 1504
1054void 1505void
1055ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1056{ 1507{
1057 postfork = 1; 1508 postfork = 1; /* must be in line with ev_default_fork */
1058} 1509}
1510
1511#if EV_VERIFY
1512static void
1513array_check (W **ws, int cnt)
1514{
1515 while (cnt--)
1516 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1517}
1518
1519static void
1520ev_loop_verify (EV_P)
1521{
1522 int i;
1523
1524 checkheap (timers, timercnt);
1525#if EV_PERIODIC_ENABLE
1526 checkheap (periodics, periodiccnt);
1527#endif
1528
1529#if EV_IDLE_ENABLE
1530 for (i = NUMPRI; i--; )
1531 array_check ((W **)idles [i], idlecnt [i]);
1532#endif
1533#if EV_FORK_ENABLE
1534 array_check ((W **)forks, forkcnt);
1535#endif
1536 array_check ((W **)prepares, preparecnt);
1537 array_check ((W **)checks, checkcnt);
1538#if EV_ASYNC_ENABLE
1539 array_check ((W **)asyncs, asynccnt);
1540#endif
1541}
1542#endif
1059 1543
1060#endif 1544#endif
1061 1545
1062#if EV_MULTIPLICITY 1546#if EV_MULTIPLICITY
1063struct ev_loop * 1547struct ev_loop *
1065#else 1549#else
1066int 1550int
1067ev_default_loop (unsigned int flags) 1551ev_default_loop (unsigned int flags)
1068#endif 1552#endif
1069{ 1553{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 1554 if (!ev_default_loop_ptr)
1075 { 1555 {
1076#if EV_MULTIPLICITY 1556#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1557 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1078#else 1558#else
1081 1561
1082 loop_init (EV_A_ flags); 1562 loop_init (EV_A_ flags);
1083 1563
1084 if (ev_backend (EV_A)) 1564 if (ev_backend (EV_A))
1085 { 1565 {
1086 siginit (EV_A);
1087
1088#ifndef _WIN32 1566#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 1567 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 1568 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 1569 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1570 ev_unref (EV_A); /* child watcher should not keep loop alive */
1109#ifndef _WIN32 1587#ifndef _WIN32
1110 ev_ref (EV_A); /* child watcher */ 1588 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev); 1589 ev_signal_stop (EV_A_ &childev);
1112#endif 1590#endif
1113 1591
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A); 1592 loop_destroy (EV_A);
1121} 1593}
1122 1594
1123void 1595void
1124ev_default_fork (void) 1596ev_default_fork (void)
1126#if EV_MULTIPLICITY 1598#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 1599 struct ev_loop *loop = ev_default_loop_ptr;
1128#endif 1600#endif
1129 1601
1130 if (backend) 1602 if (backend)
1131 postfork = 1; 1603 postfork = 1; /* must be in line with ev_loop_fork */
1132} 1604}
1133 1605
1134/*****************************************************************************/ 1606/*****************************************************************************/
1135 1607
1136int inline_size 1608void
1137any_pending (EV_P) 1609ev_invoke (EV_P_ void *w, int revents)
1138{ 1610{
1139 int pri; 1611 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1612}
1147 1613
1148void inline_speed 1614void inline_speed
1149call_pending (EV_P) 1615call_pending (EV_P)
1150{ 1616{
1151 int pri; 1617 int pri;
1618
1619 EV_FREQUENT_CHECK;
1152 1620
1153 for (pri = NUMPRI; pri--; ) 1621 for (pri = NUMPRI; pri--; )
1154 while (pendingcnt [pri]) 1622 while (pendingcnt [pri])
1155 { 1623 {
1156 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1624 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1161 1629
1162 p->w->pending = 0; 1630 p->w->pending = 0;
1163 EV_CB_INVOKE (p->w, p->events); 1631 EV_CB_INVOKE (p->w, p->events);
1164 } 1632 }
1165 } 1633 }
1634
1635 EV_FREQUENT_CHECK;
1166} 1636}
1637
1638#if EV_IDLE_ENABLE
1639void inline_size
1640idle_reify (EV_P)
1641{
1642 if (expect_false (idleall))
1643 {
1644 int pri;
1645
1646 for (pri = NUMPRI; pri--; )
1647 {
1648 if (pendingcnt [pri])
1649 break;
1650
1651 if (idlecnt [pri])
1652 {
1653 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1654 break;
1655 }
1656 }
1657 }
1658}
1659#endif
1167 1660
1168void inline_size 1661void inline_size
1169timers_reify (EV_P) 1662timers_reify (EV_P)
1170{ 1663{
1664 EV_FREQUENT_CHECK;
1665
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 1666 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1172 { 1667 {
1173 ev_timer *w = timers [0]; 1668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1174 1669
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1670 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176 1671
1177 /* first reschedule or stop timer */ 1672 /* first reschedule or stop timer */
1178 if (w->repeat) 1673 if (w->repeat)
1179 { 1674 {
1675 ev_at (w) += w->repeat;
1676 if (ev_at (w) < mn_now)
1677 ev_at (w) = mn_now;
1678
1180 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1679 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1181 1680
1182 ((WT)w)->at += w->repeat; 1681 ANHE_at_cache (timers [HEAP0]);
1183 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now;
1185
1186 downheap ((WT *)timers, timercnt, 0); 1682 downheap (timers, timercnt, HEAP0);
1187 } 1683 }
1188 else 1684 else
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 1686
1687 EV_FREQUENT_CHECK;
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1688 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1192 } 1689 }
1193} 1690}
1194 1691
1195#if EV_PERIODIC_ENABLE 1692#if EV_PERIODIC_ENABLE
1196void inline_size 1693void inline_size
1197periodics_reify (EV_P) 1694periodics_reify (EV_P)
1198{ 1695{
1696 EV_FREQUENT_CHECK;
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1697 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1200 { 1698 {
1201 ev_periodic *w = periodics [0]; 1699 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1202 1700
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1701 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1204 1702
1205 /* first reschedule or stop timer */ 1703 /* first reschedule or stop timer */
1206 if (w->reschedule_cb) 1704 if (w->reschedule_cb)
1207 { 1705 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1708 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1709
1710 ANHE_at_cache (periodics [HEAP0]);
1210 downheap ((WT *)periodics, periodiccnt, 0); 1711 downheap (periodics, periodiccnt, HEAP0);
1712 EV_FREQUENT_CHECK;
1211 } 1713 }
1212 else if (w->interval) 1714 else if (w->interval)
1213 { 1715 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1716 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1717 /* if next trigger time is not sufficiently in the future, put it there */
1718 /* this might happen because of floating point inexactness */
1719 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1720 {
1721 ev_at (w) += w->interval;
1722
1723 /* if interval is unreasonably low we might still have a time in the past */
1724 /* so correct this. this will make the periodic very inexact, but the user */
1725 /* has effectively asked to get triggered more often than possible */
1726 if (ev_at (w) < ev_rt_now)
1727 ev_at (w) = ev_rt_now;
1728 }
1729
1730 ANHE_at_cache (periodics [HEAP0]);
1216 downheap ((WT *)periodics, periodiccnt, 0); 1731 downheap (periodics, periodiccnt, HEAP0);
1217 } 1732 }
1218 else 1733 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1734 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 1735
1736 EV_FREQUENT_CHECK;
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1737 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1222 } 1738 }
1223} 1739}
1224 1740
1225static void noinline 1741static void noinline
1226periodics_reschedule (EV_P) 1742periodics_reschedule (EV_P)
1227{ 1743{
1228 int i; 1744 int i;
1229 1745
1230 /* adjust periodics after time jump */ 1746 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 1747 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1232 { 1748 {
1233 ev_periodic *w = periodics [i]; 1749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1234 1750
1235 if (w->reschedule_cb) 1751 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 1753 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1754 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1755
1756 ANHE_at_cache (periodics [i]);
1757 }
1758
1759 reheap (periodics, periodiccnt);
1760}
1761#endif
1762
1763void inline_speed
1764time_update (EV_P_ ev_tstamp max_block)
1765{
1766 int i;
1767
1768#if EV_USE_MONOTONIC
1769 if (expect_true (have_monotonic))
1239 } 1770 {
1771 ev_tstamp odiff = rtmn_diff;
1240 1772
1241 /* now rebuild the heap */
1242 for (i = periodiccnt >> 1; i--; )
1243 downheap ((WT *)periodics, periodiccnt, i);
1244}
1245#endif
1246
1247int inline_size
1248time_update_monotonic (EV_P)
1249{
1250 mn_now = get_clock (); 1773 mn_now = get_clock ();
1251 1774
1775 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1776 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1777 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1778 {
1254 ev_rt_now = rtmn_diff + mn_now; 1779 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1780 return;
1256 } 1781 }
1257 else 1782
1258 {
1259 now_floor = mn_now; 1783 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1784 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1785
1265void inline_size 1786 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1787 * on the choice of "4": one iteration isn't enough,
1267{ 1788 * in case we get preempted during the calls to
1268 int i; 1789 * ev_time and get_clock. a second call is almost guaranteed
1269 1790 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1791 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1792 * in the unlikely event of having been preempted here.
1272 { 1793 */
1273 if (time_update_monotonic (EV_A)) 1794 for (i = 4; --i; )
1274 { 1795 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1796 rtmn_diff = ev_rt_now - mn_now;
1288 1797
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1798 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1290 return; /* all is well */ 1799 return; /* all is well */
1291 1800
1292 ev_rt_now = ev_time (); 1801 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1802 mn_now = get_clock ();
1294 now_floor = mn_now; 1803 now_floor = mn_now;
1295 } 1804 }
1296 1805
1297# if EV_PERIODIC_ENABLE 1806# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1807 periodics_reschedule (EV_A);
1299# endif 1808# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */ 1809 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1810 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1811 }
1304 else 1812 else
1305#endif 1813#endif
1306 { 1814 {
1307 ev_rt_now = ev_time (); 1815 ev_rt_now = ev_time ();
1308 1816
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1817 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 1818 {
1311#if EV_PERIODIC_ENABLE 1819#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 1820 periodics_reschedule (EV_A);
1313#endif 1821#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */ 1822 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i) 1823 for (i = 0; i < timercnt; ++i)
1824 {
1825 ANHE *he = timers + i + HEAP0;
1317 ((WT)timers [i])->at += ev_rt_now - mn_now; 1826 ANHE_w (*he)->at += ev_rt_now - mn_now;
1827 ANHE_at_cache (*he);
1828 }
1318 } 1829 }
1319 1830
1320 mn_now = ev_rt_now; 1831 mn_now = ev_rt_now;
1321 } 1832 }
1322} 1833}
1336static int loop_done; 1847static int loop_done;
1337 1848
1338void 1849void
1339ev_loop (EV_P_ int flags) 1850ev_loop (EV_P_ int flags)
1340{ 1851{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1852 loop_done = EVUNLOOP_CANCEL;
1342 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL;
1344 1853
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1854 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 1855
1347 while (activecnt) 1856 do
1348 { 1857 {
1349#ifndef _WIN32 1858#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 1859 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 1860 if (expect_false (getpid () != curpid))
1352 { 1861 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1872 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 1873 call_pending (EV_A);
1365 } 1874 }
1366#endif 1875#endif
1367 1876
1368 /* queue check watchers (and execute them) */ 1877 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 1878 if (expect_false (preparecnt))
1370 { 1879 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1880 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 1881 call_pending (EV_A);
1373 } 1882 }
1374 1883
1884 if (expect_false (!activecnt))
1885 break;
1886
1375 /* we might have forked, so reify kernel state if necessary */ 1887 /* we might have forked, so reify kernel state if necessary */
1376 if (expect_false (postfork)) 1888 if (expect_false (postfork))
1377 loop_fork (EV_A); 1889 loop_fork (EV_A);
1378 1890
1379 /* update fd-related kernel structures */ 1891 /* update fd-related kernel structures */
1380 fd_reify (EV_A); 1892 fd_reify (EV_A);
1381 1893
1382 /* calculate blocking time */ 1894 /* calculate blocking time */
1383 { 1895 {
1384 ev_tstamp block; 1896 ev_tstamp waittime = 0.;
1897 ev_tstamp sleeptime = 0.;
1385 1898
1386 if (flags & EVLOOP_NONBLOCK || idlecnt) 1899 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1387 block = 0.; /* do not block at all */
1388 else
1389 { 1900 {
1390 /* update time to cancel out callback processing overhead */ 1901 /* update time to cancel out callback processing overhead */
1391#if EV_USE_MONOTONIC
1392 if (expect_true (have_monotonic))
1393 time_update_monotonic (EV_A); 1902 time_update (EV_A_ 1e100);
1394 else
1395#endif
1396 {
1397 ev_rt_now = ev_time ();
1398 mn_now = ev_rt_now;
1399 }
1400 1903
1401 block = MAX_BLOCKTIME; 1904 waittime = MAX_BLOCKTIME;
1402 1905
1403 if (timercnt) 1906 if (timercnt)
1404 { 1907 {
1405 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1908 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1406 if (block > to) block = to; 1909 if (waittime > to) waittime = to;
1407 } 1910 }
1408 1911
1409#if EV_PERIODIC_ENABLE 1912#if EV_PERIODIC_ENABLE
1410 if (periodiccnt) 1913 if (periodiccnt)
1411 { 1914 {
1412 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1915 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1413 if (block > to) block = to; 1916 if (waittime > to) waittime = to;
1414 } 1917 }
1415#endif 1918#endif
1416 1919
1417 if (expect_false (block < 0.)) block = 0.; 1920 if (expect_false (waittime < timeout_blocktime))
1921 waittime = timeout_blocktime;
1922
1923 sleeptime = waittime - backend_fudge;
1924
1925 if (expect_true (sleeptime > io_blocktime))
1926 sleeptime = io_blocktime;
1927
1928 if (sleeptime)
1929 {
1930 ev_sleep (sleeptime);
1931 waittime -= sleeptime;
1932 }
1418 } 1933 }
1419 1934
1935 ++loop_count;
1420 backend_poll (EV_A_ block); 1936 backend_poll (EV_A_ waittime);
1937
1938 /* update ev_rt_now, do magic */
1939 time_update (EV_A_ waittime + sleeptime);
1421 } 1940 }
1422
1423 /* update ev_rt_now, do magic */
1424 time_update (EV_A);
1425 1941
1426 /* queue pending timers and reschedule them */ 1942 /* queue pending timers and reschedule them */
1427 timers_reify (EV_A); /* relative timers called last */ 1943 timers_reify (EV_A); /* relative timers called last */
1428#if EV_PERIODIC_ENABLE 1944#if EV_PERIODIC_ENABLE
1429 periodics_reify (EV_A); /* absolute timers called first */ 1945 periodics_reify (EV_A); /* absolute timers called first */
1430#endif 1946#endif
1431 1947
1948#if EV_IDLE_ENABLE
1432 /* queue idle watchers unless other events are pending */ 1949 /* queue idle watchers unless other events are pending */
1433 if (idlecnt && !any_pending (EV_A)) 1950 idle_reify (EV_A);
1434 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1951#endif
1435 1952
1436 /* queue check watchers, to be executed first */ 1953 /* queue check watchers, to be executed first */
1437 if (expect_false (checkcnt)) 1954 if (expect_false (checkcnt))
1438 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1955 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1439 1956
1440 call_pending (EV_A); 1957 call_pending (EV_A);
1441
1442 if (expect_false (loop_done))
1443 break;
1444 } 1958 }
1959 while (expect_true (
1960 activecnt
1961 && !loop_done
1962 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1963 ));
1445 1964
1446 if (loop_done == EVUNLOOP_ONE) 1965 if (loop_done == EVUNLOOP_ONE)
1447 loop_done = EVUNLOOP_CANCEL; 1966 loop_done = EVUNLOOP_CANCEL;
1448} 1967}
1449 1968
1476 head = &(*head)->next; 1995 head = &(*head)->next;
1477 } 1996 }
1478} 1997}
1479 1998
1480void inline_speed 1999void inline_speed
1481ev_clear_pending (EV_P_ W w) 2000clear_pending (EV_P_ W w)
1482{ 2001{
1483 if (w->pending) 2002 if (w->pending)
1484 { 2003 {
1485 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2004 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1486 w->pending = 0; 2005 w->pending = 0;
1487 } 2006 }
1488} 2007}
1489 2008
2009int
2010ev_clear_pending (EV_P_ void *w)
2011{
2012 W w_ = (W)w;
2013 int pending = w_->pending;
2014
2015 if (expect_true (pending))
2016 {
2017 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2018 w_->pending = 0;
2019 p->w = 0;
2020 return p->events;
2021 }
2022 else
2023 return 0;
2024}
2025
2026void inline_size
2027pri_adjust (EV_P_ W w)
2028{
2029 int pri = w->priority;
2030 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2031 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2032 w->priority = pri;
2033}
2034
1490void inline_speed 2035void inline_speed
1491ev_start (EV_P_ W w, int active) 2036ev_start (EV_P_ W w, int active)
1492{ 2037{
1493 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2038 pri_adjust (EV_A_ w);
1494 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1495
1496 w->active = active; 2039 w->active = active;
1497 ev_ref (EV_A); 2040 ev_ref (EV_A);
1498} 2041}
1499 2042
1500void inline_size 2043void inline_size
1504 w->active = 0; 2047 w->active = 0;
1505} 2048}
1506 2049
1507/*****************************************************************************/ 2050/*****************************************************************************/
1508 2051
1509void 2052void noinline
1510ev_io_start (EV_P_ ev_io *w) 2053ev_io_start (EV_P_ ev_io *w)
1511{ 2054{
1512 int fd = w->fd; 2055 int fd = w->fd;
1513 2056
1514 if (expect_false (ev_is_active (w))) 2057 if (expect_false (ev_is_active (w)))
1515 return; 2058 return;
1516 2059
1517 assert (("ev_io_start called with negative fd", fd >= 0)); 2060 assert (("ev_io_start called with negative fd", fd >= 0));
1518 2061
2062 EV_FREQUENT_CHECK;
2063
1519 ev_start (EV_A_ (W)w, 1); 2064 ev_start (EV_A_ (W)w, 1);
1520 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2065 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1521 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2066 wlist_add (&anfds[fd].head, (WL)w);
1522 2067
1523 fd_change (EV_A_ fd); 2068 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1524} 2069 w->events &= ~EV_IOFDSET;
1525 2070
1526void 2071 EV_FREQUENT_CHECK;
2072}
2073
2074void noinline
1527ev_io_stop (EV_P_ ev_io *w) 2075ev_io_stop (EV_P_ ev_io *w)
1528{ 2076{
1529 ev_clear_pending (EV_A_ (W)w); 2077 clear_pending (EV_A_ (W)w);
1530 if (expect_false (!ev_is_active (w))) 2078 if (expect_false (!ev_is_active (w)))
1531 return; 2079 return;
1532 2080
1533 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2081 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1534 2082
2083 EV_FREQUENT_CHECK;
2084
1535 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2085 wlist_del (&anfds[w->fd].head, (WL)w);
1536 ev_stop (EV_A_ (W)w); 2086 ev_stop (EV_A_ (W)w);
1537 2087
1538 fd_change (EV_A_ w->fd); 2088 fd_change (EV_A_ w->fd, 1);
1539}
1540 2089
1541void 2090 EV_FREQUENT_CHECK;
2091}
2092
2093void noinline
1542ev_timer_start (EV_P_ ev_timer *w) 2094ev_timer_start (EV_P_ ev_timer *w)
1543{ 2095{
1544 if (expect_false (ev_is_active (w))) 2096 if (expect_false (ev_is_active (w)))
1545 return; 2097 return;
1546 2098
1547 ((WT)w)->at += mn_now; 2099 ev_at (w) += mn_now;
1548 2100
1549 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2101 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1550 2102
2103 EV_FREQUENT_CHECK;
2104
2105 ++timercnt;
1551 ev_start (EV_A_ (W)w, ++timercnt); 2106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1552 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1553 timers [timercnt - 1] = w; 2108 ANHE_w (timers [ev_active (w)]) = (WT)w;
1554 upheap ((WT *)timers, timercnt - 1); 2109 ANHE_at_cache (timers [ev_active (w)]);
2110 upheap (timers, ev_active (w));
1555 2111
2112 EV_FREQUENT_CHECK;
2113
1556 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2114 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1557} 2115}
1558 2116
1559void 2117void noinline
1560ev_timer_stop (EV_P_ ev_timer *w) 2118ev_timer_stop (EV_P_ ev_timer *w)
1561{ 2119{
1562 ev_clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1563 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1564 return; 2122 return;
1565 2123
1566 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2124 EV_FREQUENT_CHECK;
1567 2125
1568 { 2126 {
1569 int active = ((W)w)->active; 2127 int active = ev_active (w);
1570 2128
2129 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2130
2131 --timercnt;
2132
1571 if (expect_true (--active < --timercnt)) 2133 if (expect_true (active < timercnt + HEAP0))
1572 { 2134 {
1573 timers [active] = timers [timercnt]; 2135 timers [active] = timers [timercnt + HEAP0];
1574 adjustheap ((WT *)timers, timercnt, active); 2136 adjustheap (timers, timercnt, active);
1575 } 2137 }
1576 } 2138 }
1577 2139
1578 ((WT)w)->at -= mn_now; 2140 EV_FREQUENT_CHECK;
2141
2142 ev_at (w) -= mn_now;
1579 2143
1580 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1581} 2145}
1582 2146
1583void 2147void noinline
1584ev_timer_again (EV_P_ ev_timer *w) 2148ev_timer_again (EV_P_ ev_timer *w)
1585{ 2149{
2150 EV_FREQUENT_CHECK;
2151
1586 if (ev_is_active (w)) 2152 if (ev_is_active (w))
1587 { 2153 {
1588 if (w->repeat) 2154 if (w->repeat)
1589 { 2155 {
1590 ((WT)w)->at = mn_now + w->repeat; 2156 ev_at (w) = mn_now + w->repeat;
2157 ANHE_at_cache (timers [ev_active (w)]);
1591 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2158 adjustheap (timers, timercnt, ev_active (w));
1592 } 2159 }
1593 else 2160 else
1594 ev_timer_stop (EV_A_ w); 2161 ev_timer_stop (EV_A_ w);
1595 } 2162 }
1596 else if (w->repeat) 2163 else if (w->repeat)
1597 { 2164 {
1598 w->at = w->repeat; 2165 ev_at (w) = w->repeat;
1599 ev_timer_start (EV_A_ w); 2166 ev_timer_start (EV_A_ w);
1600 } 2167 }
2168
2169 EV_FREQUENT_CHECK;
1601} 2170}
1602 2171
1603#if EV_PERIODIC_ENABLE 2172#if EV_PERIODIC_ENABLE
1604void 2173void noinline
1605ev_periodic_start (EV_P_ ev_periodic *w) 2174ev_periodic_start (EV_P_ ev_periodic *w)
1606{ 2175{
1607 if (expect_false (ev_is_active (w))) 2176 if (expect_false (ev_is_active (w)))
1608 return; 2177 return;
1609 2178
1610 if (w->reschedule_cb) 2179 if (w->reschedule_cb)
1611 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2180 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1612 else if (w->interval) 2181 else if (w->interval)
1613 { 2182 {
1614 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2183 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1615 /* this formula differs from the one in periodic_reify because we do not always round up */ 2184 /* this formula differs from the one in periodic_reify because we do not always round up */
1616 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1617 } 2186 }
2187 else
2188 ev_at (w) = w->offset;
1618 2189
2190 EV_FREQUENT_CHECK;
2191
2192 ++periodiccnt;
1619 ev_start (EV_A_ (W)w, ++periodiccnt); 2193 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1620 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2194 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1621 periodics [periodiccnt - 1] = w; 2195 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1622 upheap ((WT *)periodics, periodiccnt - 1); 2196 ANHE_at_cache (periodics [ev_active (w)]);
2197 upheap (periodics, ev_active (w));
1623 2198
2199 EV_FREQUENT_CHECK;
2200
1624 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2201 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1625} 2202}
1626 2203
1627void 2204void noinline
1628ev_periodic_stop (EV_P_ ev_periodic *w) 2205ev_periodic_stop (EV_P_ ev_periodic *w)
1629{ 2206{
1630 ev_clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
1631 if (expect_false (!ev_is_active (w))) 2208 if (expect_false (!ev_is_active (w)))
1632 return; 2209 return;
1633 2210
1634 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2211 EV_FREQUENT_CHECK;
1635 2212
1636 { 2213 {
1637 int active = ((W)w)->active; 2214 int active = ev_active (w);
1638 2215
2216 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2217
2218 --periodiccnt;
2219
1639 if (expect_true (--active < --periodiccnt)) 2220 if (expect_true (active < periodiccnt + HEAP0))
1640 { 2221 {
1641 periodics [active] = periodics [periodiccnt]; 2222 periodics [active] = periodics [periodiccnt + HEAP0];
1642 adjustheap ((WT *)periodics, periodiccnt, active); 2223 adjustheap (periodics, periodiccnt, active);
1643 } 2224 }
1644 } 2225 }
1645 2226
2227 EV_FREQUENT_CHECK;
2228
1646 ev_stop (EV_A_ (W)w); 2229 ev_stop (EV_A_ (W)w);
1647} 2230}
1648 2231
1649void 2232void noinline
1650ev_periodic_again (EV_P_ ev_periodic *w) 2233ev_periodic_again (EV_P_ ev_periodic *w)
1651{ 2234{
1652 /* TODO: use adjustheap and recalculation */ 2235 /* TODO: use adjustheap and recalculation */
1653 ev_periodic_stop (EV_A_ w); 2236 ev_periodic_stop (EV_A_ w);
1654 ev_periodic_start (EV_A_ w); 2237 ev_periodic_start (EV_A_ w);
1657 2240
1658#ifndef SA_RESTART 2241#ifndef SA_RESTART
1659# define SA_RESTART 0 2242# define SA_RESTART 0
1660#endif 2243#endif
1661 2244
1662void 2245void noinline
1663ev_signal_start (EV_P_ ev_signal *w) 2246ev_signal_start (EV_P_ ev_signal *w)
1664{ 2247{
1665#if EV_MULTIPLICITY 2248#if EV_MULTIPLICITY
1666 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2249 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1667#endif 2250#endif
1668 if (expect_false (ev_is_active (w))) 2251 if (expect_false (ev_is_active (w)))
1669 return; 2252 return;
1670 2253
1671 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2254 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1672 2255
2256 evpipe_init (EV_A);
2257
2258 EV_FREQUENT_CHECK;
2259
2260 {
2261#ifndef _WIN32
2262 sigset_t full, prev;
2263 sigfillset (&full);
2264 sigprocmask (SIG_SETMASK, &full, &prev);
2265#endif
2266
2267 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2268
2269#ifndef _WIN32
2270 sigprocmask (SIG_SETMASK, &prev, 0);
2271#endif
2272 }
2273
1673 ev_start (EV_A_ (W)w, 1); 2274 ev_start (EV_A_ (W)w, 1);
1674 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1675 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2275 wlist_add (&signals [w->signum - 1].head, (WL)w);
1676 2276
1677 if (!((WL)w)->next) 2277 if (!((WL)w)->next)
1678 { 2278 {
1679#if _WIN32 2279#if _WIN32
1680 signal (w->signum, sighandler); 2280 signal (w->signum, ev_sighandler);
1681#else 2281#else
1682 struct sigaction sa; 2282 struct sigaction sa;
1683 sa.sa_handler = sighandler; 2283 sa.sa_handler = ev_sighandler;
1684 sigfillset (&sa.sa_mask); 2284 sigfillset (&sa.sa_mask);
1685 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2285 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1686 sigaction (w->signum, &sa, 0); 2286 sigaction (w->signum, &sa, 0);
1687#endif 2287#endif
1688 } 2288 }
1689}
1690 2289
1691void 2290 EV_FREQUENT_CHECK;
2291}
2292
2293void noinline
1692ev_signal_stop (EV_P_ ev_signal *w) 2294ev_signal_stop (EV_P_ ev_signal *w)
1693{ 2295{
1694 ev_clear_pending (EV_A_ (W)w); 2296 clear_pending (EV_A_ (W)w);
1695 if (expect_false (!ev_is_active (w))) 2297 if (expect_false (!ev_is_active (w)))
1696 return; 2298 return;
1697 2299
2300 EV_FREQUENT_CHECK;
2301
1698 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2302 wlist_del (&signals [w->signum - 1].head, (WL)w);
1699 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
1700 2304
1701 if (!signals [w->signum - 1].head) 2305 if (!signals [w->signum - 1].head)
1702 signal (w->signum, SIG_DFL); 2306 signal (w->signum, SIG_DFL);
2307
2308 EV_FREQUENT_CHECK;
1703} 2309}
1704 2310
1705void 2311void
1706ev_child_start (EV_P_ ev_child *w) 2312ev_child_start (EV_P_ ev_child *w)
1707{ 2313{
1709 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2315 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1710#endif 2316#endif
1711 if (expect_false (ev_is_active (w))) 2317 if (expect_false (ev_is_active (w)))
1712 return; 2318 return;
1713 2319
2320 EV_FREQUENT_CHECK;
2321
1714 ev_start (EV_A_ (W)w, 1); 2322 ev_start (EV_A_ (W)w, 1);
1715 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2323 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2324
2325 EV_FREQUENT_CHECK;
1716} 2326}
1717 2327
1718void 2328void
1719ev_child_stop (EV_P_ ev_child *w) 2329ev_child_stop (EV_P_ ev_child *w)
1720{ 2330{
1721 ev_clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
1723 return; 2333 return;
1724 2334
2335 EV_FREQUENT_CHECK;
2336
1725 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2337 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1726 ev_stop (EV_A_ (W)w); 2338 ev_stop (EV_A_ (W)w);
2339
2340 EV_FREQUENT_CHECK;
1727} 2341}
1728 2342
1729#if EV_STAT_ENABLE 2343#if EV_STAT_ENABLE
1730 2344
1731# ifdef _WIN32 2345# ifdef _WIN32
1749 if (w->wd < 0) 2363 if (w->wd < 0)
1750 { 2364 {
1751 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2365 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1752 2366
1753 /* monitor some parent directory for speedup hints */ 2367 /* monitor some parent directory for speedup hints */
2368 /* note that exceeding the hardcoded limit is not a correctness issue, */
2369 /* but an efficiency issue only */
1754 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2370 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1755 { 2371 {
1756 char path [4096]; 2372 char path [4096];
1757 strcpy (path, w->path); 2373 strcpy (path, w->path);
1758 2374
1957 else 2573 else
1958#endif 2574#endif
1959 ev_timer_start (EV_A_ &w->timer); 2575 ev_timer_start (EV_A_ &w->timer);
1960 2576
1961 ev_start (EV_A_ (W)w, 1); 2577 ev_start (EV_A_ (W)w, 1);
2578
2579 EV_FREQUENT_CHECK;
1962} 2580}
1963 2581
1964void 2582void
1965ev_stat_stop (EV_P_ ev_stat *w) 2583ev_stat_stop (EV_P_ ev_stat *w)
1966{ 2584{
1967 ev_clear_pending (EV_A_ (W)w); 2585 clear_pending (EV_A_ (W)w);
1968 if (expect_false (!ev_is_active (w))) 2586 if (expect_false (!ev_is_active (w)))
1969 return; 2587 return;
1970 2588
2589 EV_FREQUENT_CHECK;
2590
1971#if EV_USE_INOTIFY 2591#if EV_USE_INOTIFY
1972 infy_del (EV_A_ w); 2592 infy_del (EV_A_ w);
1973#endif 2593#endif
1974 ev_timer_stop (EV_A_ &w->timer); 2594 ev_timer_stop (EV_A_ &w->timer);
1975 2595
1976 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
1977}
1978#endif
1979 2597
2598 EV_FREQUENT_CHECK;
2599}
2600#endif
2601
2602#if EV_IDLE_ENABLE
1980void 2603void
1981ev_idle_start (EV_P_ ev_idle *w) 2604ev_idle_start (EV_P_ ev_idle *w)
1982{ 2605{
1983 if (expect_false (ev_is_active (w))) 2606 if (expect_false (ev_is_active (w)))
1984 return; 2607 return;
1985 2608
2609 pri_adjust (EV_A_ (W)w);
2610
2611 EV_FREQUENT_CHECK;
2612
2613 {
2614 int active = ++idlecnt [ABSPRI (w)];
2615
2616 ++idleall;
1986 ev_start (EV_A_ (W)w, ++idlecnt); 2617 ev_start (EV_A_ (W)w, active);
2618
1987 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2619 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1988 idles [idlecnt - 1] = w; 2620 idles [ABSPRI (w)][active - 1] = w;
2621 }
2622
2623 EV_FREQUENT_CHECK;
1989} 2624}
1990 2625
1991void 2626void
1992ev_idle_stop (EV_P_ ev_idle *w) 2627ev_idle_stop (EV_P_ ev_idle *w)
1993{ 2628{
1994 ev_clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
1995 if (expect_false (!ev_is_active (w))) 2630 if (expect_false (!ev_is_active (w)))
1996 return; 2631 return;
1997 2632
2633 EV_FREQUENT_CHECK;
2634
1998 { 2635 {
1999 int active = ((W)w)->active; 2636 int active = ev_active (w);
2000 idles [active - 1] = idles [--idlecnt]; 2637
2001 ((W)idles [active - 1])->active = active; 2638 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2639 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2640
2641 ev_stop (EV_A_ (W)w);
2642 --idleall;
2002 } 2643 }
2003 2644
2004 ev_stop (EV_A_ (W)w); 2645 EV_FREQUENT_CHECK;
2005} 2646}
2647#endif
2006 2648
2007void 2649void
2008ev_prepare_start (EV_P_ ev_prepare *w) 2650ev_prepare_start (EV_P_ ev_prepare *w)
2009{ 2651{
2010 if (expect_false (ev_is_active (w))) 2652 if (expect_false (ev_is_active (w)))
2011 return; 2653 return;
2654
2655 EV_FREQUENT_CHECK;
2012 2656
2013 ev_start (EV_A_ (W)w, ++preparecnt); 2657 ev_start (EV_A_ (W)w, ++preparecnt);
2014 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2658 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2015 prepares [preparecnt - 1] = w; 2659 prepares [preparecnt - 1] = w;
2660
2661 EV_FREQUENT_CHECK;
2016} 2662}
2017 2663
2018void 2664void
2019ev_prepare_stop (EV_P_ ev_prepare *w) 2665ev_prepare_stop (EV_P_ ev_prepare *w)
2020{ 2666{
2021 ev_clear_pending (EV_A_ (W)w); 2667 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 2668 if (expect_false (!ev_is_active (w)))
2023 return; 2669 return;
2024 2670
2671 EV_FREQUENT_CHECK;
2672
2025 { 2673 {
2026 int active = ((W)w)->active; 2674 int active = ev_active (w);
2675
2027 prepares [active - 1] = prepares [--preparecnt]; 2676 prepares [active - 1] = prepares [--preparecnt];
2028 ((W)prepares [active - 1])->active = active; 2677 ev_active (prepares [active - 1]) = active;
2029 } 2678 }
2030 2679
2031 ev_stop (EV_A_ (W)w); 2680 ev_stop (EV_A_ (W)w);
2681
2682 EV_FREQUENT_CHECK;
2032} 2683}
2033 2684
2034void 2685void
2035ev_check_start (EV_P_ ev_check *w) 2686ev_check_start (EV_P_ ev_check *w)
2036{ 2687{
2037 if (expect_false (ev_is_active (w))) 2688 if (expect_false (ev_is_active (w)))
2038 return; 2689 return;
2690
2691 EV_FREQUENT_CHECK;
2039 2692
2040 ev_start (EV_A_ (W)w, ++checkcnt); 2693 ev_start (EV_A_ (W)w, ++checkcnt);
2041 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2694 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2042 checks [checkcnt - 1] = w; 2695 checks [checkcnt - 1] = w;
2696
2697 EV_FREQUENT_CHECK;
2043} 2698}
2044 2699
2045void 2700void
2046ev_check_stop (EV_P_ ev_check *w) 2701ev_check_stop (EV_P_ ev_check *w)
2047{ 2702{
2048 ev_clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
2050 return; 2705 return;
2051 2706
2707 EV_FREQUENT_CHECK;
2708
2052 { 2709 {
2053 int active = ((W)w)->active; 2710 int active = ev_active (w);
2711
2054 checks [active - 1] = checks [--checkcnt]; 2712 checks [active - 1] = checks [--checkcnt];
2055 ((W)checks [active - 1])->active = active; 2713 ev_active (checks [active - 1]) = active;
2056 } 2714 }
2057 2715
2058 ev_stop (EV_A_ (W)w); 2716 ev_stop (EV_A_ (W)w);
2717
2718 EV_FREQUENT_CHECK;
2059} 2719}
2060 2720
2061#if EV_EMBED_ENABLE 2721#if EV_EMBED_ENABLE
2062void noinline 2722void noinline
2063ev_embed_sweep (EV_P_ ev_embed *w) 2723ev_embed_sweep (EV_P_ ev_embed *w)
2064{ 2724{
2065 ev_loop (w->loop, EVLOOP_NONBLOCK); 2725 ev_loop (w->other, EVLOOP_NONBLOCK);
2066} 2726}
2067 2727
2068static void 2728static void
2069embed_cb (EV_P_ ev_io *io, int revents) 2729embed_io_cb (EV_P_ ev_io *io, int revents)
2070{ 2730{
2071 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2731 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2072 2732
2073 if (ev_cb (w)) 2733 if (ev_cb (w))
2074 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2734 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2075 else 2735 else
2076 ev_embed_sweep (loop, w); 2736 ev_loop (w->other, EVLOOP_NONBLOCK);
2077} 2737}
2738
2739static void
2740embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2741{
2742 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2743
2744 {
2745 struct ev_loop *loop = w->other;
2746
2747 while (fdchangecnt)
2748 {
2749 fd_reify (EV_A);
2750 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2751 }
2752 }
2753}
2754
2755#if 0
2756static void
2757embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2758{
2759 ev_idle_stop (EV_A_ idle);
2760}
2761#endif
2078 2762
2079void 2763void
2080ev_embed_start (EV_P_ ev_embed *w) 2764ev_embed_start (EV_P_ ev_embed *w)
2081{ 2765{
2082 if (expect_false (ev_is_active (w))) 2766 if (expect_false (ev_is_active (w)))
2083 return; 2767 return;
2084 2768
2085 { 2769 {
2086 struct ev_loop *loop = w->loop; 2770 struct ev_loop *loop = w->other;
2087 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2771 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2088 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2772 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2089 } 2773 }
2774
2775 EV_FREQUENT_CHECK;
2090 2776
2091 ev_set_priority (&w->io, ev_priority (w)); 2777 ev_set_priority (&w->io, ev_priority (w));
2092 ev_io_start (EV_A_ &w->io); 2778 ev_io_start (EV_A_ &w->io);
2093 2779
2780 ev_prepare_init (&w->prepare, embed_prepare_cb);
2781 ev_set_priority (&w->prepare, EV_MINPRI);
2782 ev_prepare_start (EV_A_ &w->prepare);
2783
2784 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2785
2094 ev_start (EV_A_ (W)w, 1); 2786 ev_start (EV_A_ (W)w, 1);
2787
2788 EV_FREQUENT_CHECK;
2095} 2789}
2096 2790
2097void 2791void
2098ev_embed_stop (EV_P_ ev_embed *w) 2792ev_embed_stop (EV_P_ ev_embed *w)
2099{ 2793{
2100 ev_clear_pending (EV_A_ (W)w); 2794 clear_pending (EV_A_ (W)w);
2101 if (expect_false (!ev_is_active (w))) 2795 if (expect_false (!ev_is_active (w)))
2102 return; 2796 return;
2103 2797
2798 EV_FREQUENT_CHECK;
2799
2104 ev_io_stop (EV_A_ &w->io); 2800 ev_io_stop (EV_A_ &w->io);
2801 ev_prepare_stop (EV_A_ &w->prepare);
2105 2802
2106 ev_stop (EV_A_ (W)w); 2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
2107} 2806}
2108#endif 2807#endif
2109 2808
2110#if EV_FORK_ENABLE 2809#if EV_FORK_ENABLE
2111void 2810void
2112ev_fork_start (EV_P_ ev_fork *w) 2811ev_fork_start (EV_P_ ev_fork *w)
2113{ 2812{
2114 if (expect_false (ev_is_active (w))) 2813 if (expect_false (ev_is_active (w)))
2115 return; 2814 return;
2815
2816 EV_FREQUENT_CHECK;
2116 2817
2117 ev_start (EV_A_ (W)w, ++forkcnt); 2818 ev_start (EV_A_ (W)w, ++forkcnt);
2118 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2819 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2119 forks [forkcnt - 1] = w; 2820 forks [forkcnt - 1] = w;
2821
2822 EV_FREQUENT_CHECK;
2120} 2823}
2121 2824
2122void 2825void
2123ev_fork_stop (EV_P_ ev_fork *w) 2826ev_fork_stop (EV_P_ ev_fork *w)
2124{ 2827{
2125 ev_clear_pending (EV_A_ (W)w); 2828 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 2829 if (expect_false (!ev_is_active (w)))
2127 return; 2830 return;
2128 2831
2832 EV_FREQUENT_CHECK;
2833
2129 { 2834 {
2130 int active = ((W)w)->active; 2835 int active = ev_active (w);
2836
2131 forks [active - 1] = forks [--forkcnt]; 2837 forks [active - 1] = forks [--forkcnt];
2132 ((W)forks [active - 1])->active = active; 2838 ev_active (forks [active - 1]) = active;
2133 } 2839 }
2134 2840
2135 ev_stop (EV_A_ (W)w); 2841 ev_stop (EV_A_ (W)w);
2842
2843 EV_FREQUENT_CHECK;
2844}
2845#endif
2846
2847#if EV_ASYNC_ENABLE
2848void
2849ev_async_start (EV_P_ ev_async *w)
2850{
2851 if (expect_false (ev_is_active (w)))
2852 return;
2853
2854 evpipe_init (EV_A);
2855
2856 EV_FREQUENT_CHECK;
2857
2858 ev_start (EV_A_ (W)w, ++asynccnt);
2859 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2860 asyncs [asynccnt - 1] = w;
2861
2862 EV_FREQUENT_CHECK;
2863}
2864
2865void
2866ev_async_stop (EV_P_ ev_async *w)
2867{
2868 clear_pending (EV_A_ (W)w);
2869 if (expect_false (!ev_is_active (w)))
2870 return;
2871
2872 EV_FREQUENT_CHECK;
2873
2874 {
2875 int active = ev_active (w);
2876
2877 asyncs [active - 1] = asyncs [--asynccnt];
2878 ev_active (asyncs [active - 1]) = active;
2879 }
2880
2881 ev_stop (EV_A_ (W)w);
2882
2883 EV_FREQUENT_CHECK;
2884}
2885
2886void
2887ev_async_send (EV_P_ ev_async *w)
2888{
2889 w->sent = 1;
2890 evpipe_write (EV_A_ &gotasync);
2136} 2891}
2137#endif 2892#endif
2138 2893
2139/*****************************************************************************/ 2894/*****************************************************************************/
2140 2895
2198 ev_timer_set (&once->to, timeout, 0.); 2953 ev_timer_set (&once->to, timeout, 0.);
2199 ev_timer_start (EV_A_ &once->to); 2954 ev_timer_start (EV_A_ &once->to);
2200 } 2955 }
2201} 2956}
2202 2957
2958#if EV_MULTIPLICITY
2959 #include "ev_wrap.h"
2960#endif
2961
2203#ifdef __cplusplus 2962#ifdef __cplusplus
2204} 2963}
2205#endif 2964#endif
2206 2965

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines