ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.158 by root, Thu Nov 29 17:28:13 2007 UTC vs.
Revision 1.287 by root, Mon Apr 20 19:45:58 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
46# endif 67# endif
47# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
49# endif 70# endif
50# else 71# else
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
54# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
56# endif 85# endif
57# endif 86# endif
58 87
59# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 131# else
103# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
104# endif 133# endif
105# endif 134# endif
106 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
107#endif 144#endif
108 145
109#include <math.h> 146#include <math.h>
110#include <stdlib.h> 147#include <stdlib.h>
111#include <fcntl.h> 148#include <fcntl.h>
129#ifndef _WIN32 166#ifndef _WIN32
130# include <sys/time.h> 167# include <sys/time.h>
131# include <sys/wait.h> 168# include <sys/wait.h>
132# include <unistd.h> 169# include <unistd.h>
133#else 170#else
171# include <io.h>
134# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 173# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
138# endif 176# endif
139#endif 177#endif
140 178
141/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
142 188
143#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
144# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
145#endif 195#endif
146 196
147#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
149#endif 207#endif
150 208
151#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
153#endif 211#endif
159# define EV_USE_POLL 1 217# define EV_USE_POLL 1
160# endif 218# endif
161#endif 219#endif
162 220
163#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
164# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
165#endif 227#endif
166 228
167#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
169#endif 231#endif
171#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 234# define EV_USE_PORT 0
173#endif 235#endif
174 236
175#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
176# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
177#endif 243#endif
178 244
179#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 246# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
190# else 256# else
191# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
192# endif 258# endif
193#endif 259#endif
194 260
195/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 288
197#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
200#endif 292#endif
202#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
205#endif 297#endif
206 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
207#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 322# include <winsock.h>
209#endif 323#endif
210 324
211#if !EV_STAT_ENABLE 325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
212# define EV_USE_INOTIFY 0 331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
213#endif 339# endif
214 340int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 341# ifdef __cplusplus
216# include <sys/inotify.h> 342}
343# endif
217#endif 344#endif
218 345
219/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 363
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 367
225#if __GNUC__ >= 3 368#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 371#else
236# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
240#endif 377#endif
241 378
242#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
244 388
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 391
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 392#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 393#define EMPTY2(a,b) /* used to suppress some warnings */
250 394
251typedef ev_watcher *W; 395typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
254 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
256 411
257#ifdef _WIN32 412#ifdef _WIN32
258# include "ev_win32.c" 413# include "ev_win32.c"
259#endif 414#endif
260 415
267{ 422{
268 syserr_cb = cb; 423 syserr_cb = cb;
269} 424}
270 425
271static void noinline 426static void noinline
272syserr (const char *msg) 427ev_syserr (const char *msg)
273{ 428{
274 if (!msg) 429 if (!msg)
275 msg = "(libev) system error"; 430 msg = "(libev) system error";
276 431
277 if (syserr_cb) 432 if (syserr_cb)
281 perror (msg); 436 perror (msg);
282 abort (); 437 abort ();
283 } 438 }
284} 439}
285 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
286static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 457
288void 458void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 460{
291 alloc = cb; 461 alloc = cb;
292} 462}
293 463
294inline_speed void * 464inline_speed void *
295ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
296{ 466{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
298 468
299 if (!ptr && size) 469 if (!ptr && size)
300 { 470 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 472 abort ();
313typedef struct 483typedef struct
314{ 484{
315 WL head; 485 WL head;
316 unsigned char events; 486 unsigned char events;
317 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
318#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 494 SOCKET handle;
320#endif 495#endif
321} ANFD; 496} ANFD;
322 497
325 W w; 500 W w;
326 int events; 501 int events;
327} ANPENDING; 502} ANPENDING;
328 503
329#if EV_USE_INOTIFY 504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
330typedef struct 506typedef struct
331{ 507{
332 WL head; 508 WL head;
333} ANFS; 509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
334#endif 528#endif
335 529
336#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
337 531
338 struct ev_loop 532 struct ev_loop
363 557
364ev_tstamp 558ev_tstamp
365ev_time (void) 559ev_time (void)
366{ 560{
367#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
368 struct timespec ts; 564 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 567 }
568#endif
569
372 struct timeval tv; 570 struct timeval tv;
373 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 573}
377 574
378ev_tstamp inline_size 575inline_size ev_tstamp
379get_clock (void) 576get_clock (void)
380{ 577{
381#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
383 { 580 {
396{ 593{
397 return ev_rt_now; 594 return ev_rt_now;
398} 595}
399#endif 596#endif
400 597
401#define array_roundsize(type,n) (((n) | 4) & ~3) 598void
599ev_sleep (ev_tstamp delay)
600{
601 if (delay > 0.)
602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
625
626/*****************************************************************************/
627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630inline_size int
631array_nextsize (int elem, int cur, int cnt)
632{
633 int ncur = cur + 1;
634
635 do
636 ncur <<= 1;
637 while (cnt > ncur);
638
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 {
642 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4;
645 ncur /= elem;
646 }
647
648 return ncur;
649}
650
651static noinline void *
652array_realloc (int elem, void *base, int *cur, int cnt)
653{
654 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur);
656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 660
403#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 662 if (expect_false ((cnt) > (cur))) \
405 { \ 663 { \
406 int newcnt = cur; \ 664 int ocur_ = (cur); \
407 do \ 665 (base) = (type *)array_realloc \
408 { \ 666 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 667 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 668 }
417 669
670#if 0
418#define array_slim(type,stem) \ 671#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 673 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 674 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 675 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 677 }
678#endif
425 679
426#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 682
429/*****************************************************************************/ 683/*****************************************************************************/
430 684
431void noinline 685void noinline
432ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
433{ 687{
434 W w_ = (W)w; 688 W w_ = (W)w;
689 int pri = ABSPRI (w_);
435 690
436 if (expect_false (w_->pending)) 691 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents;
693 else
437 { 694 {
695 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 698 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 699 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 700}
447 701
448void inline_size 702inline_speed void
703feed_reverse (EV_P_ W w)
704{
705 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
706 rfeeds [rfeedcnt++] = w;
707}
708
709inline_size void
710feed_reverse_done (EV_P_ int revents)
711{
712 do
713 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
714 while (rfeedcnt);
715}
716
717inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 718queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 719{
451 int i; 720 int i;
452 721
453 for (i = 0; i < eventcnt; ++i) 722 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 723 ev_feed_event (EV_A_ events [i], type);
455} 724}
456 725
457/*****************************************************************************/ 726/*****************************************************************************/
458 727
459void inline_size 728inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 729fd_event (EV_P_ int fd, int revents)
474{ 730{
475 ANFD *anfd = anfds + fd; 731 ANFD *anfd = anfds + fd;
476 ev_io *w; 732 ev_io *w;
477 733
485} 741}
486 742
487void 743void
488ev_feed_fd_event (EV_P_ int fd, int revents) 744ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 745{
746 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 747 fd_event (EV_A_ fd, revents);
491} 748}
492 749
493void inline_size 750inline_size void
494fd_reify (EV_P) 751fd_reify (EV_P)
495{ 752{
496 int i; 753 int i;
497 754
498 for (i = 0; i < fdchangecnt; ++i) 755 for (i = 0; i < fdchangecnt; ++i)
499 { 756 {
500 int fd = fdchanges [i]; 757 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 758 ANFD *anfd = anfds + fd;
502 ev_io *w; 759 ev_io *w;
503 760
504 int events = 0; 761 unsigned char events = 0;
505 762
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 763 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 764 events |= (unsigned char)w->events;
508 765
509#if EV_SELECT_IS_WINSOCKET 766#if EV_SELECT_IS_WINSOCKET
510 if (events) 767 if (events)
511 { 768 {
512 unsigned long argp; 769 unsigned long arg;
770 #ifdef EV_FD_TO_WIN32_HANDLE
771 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
772 #else
513 anfd->handle = _get_osfhandle (fd); 773 anfd->handle = _get_osfhandle (fd);
774 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 775 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 776 }
516#endif 777#endif
517 778
779 {
780 unsigned char o_events = anfd->events;
781 unsigned char o_reify = anfd->reify;
782
518 anfd->reify = 0; 783 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 784 anfd->events = events;
785
786 if (o_events != events || o_reify & EV__IOFDSET)
787 backend_modify (EV_A_ fd, o_events, events);
788 }
522 } 789 }
523 790
524 fdchangecnt = 0; 791 fdchangecnt = 0;
525} 792}
526 793
527void inline_size 794inline_size void
528fd_change (EV_P_ int fd) 795fd_change (EV_P_ int fd, int flags)
529{ 796{
530 if (expect_false (anfds [fd].reify)) 797 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 798 anfds [fd].reify |= flags;
534 799
800 if (expect_true (!reify))
801 {
535 ++fdchangecnt; 802 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 804 fdchanges [fdchangecnt - 1] = fd;
805 }
538} 806}
539 807
540void inline_speed 808inline_speed void
541fd_kill (EV_P_ int fd) 809fd_kill (EV_P_ int fd)
542{ 810{
543 ev_io *w; 811 ev_io *w;
544 812
545 while ((w = (ev_io *)anfds [fd].head)) 813 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 815 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 817 }
550} 818}
551 819
552int inline_size 820inline_size int
553fd_valid (int fd) 821fd_valid (int fd)
554{ 822{
555#ifdef _WIN32 823#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 824 return _get_osfhandle (fd) != -1;
557#else 825#else
565{ 833{
566 int fd; 834 int fd;
567 835
568 for (fd = 0; fd < anfdmax; ++fd) 836 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 837 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 838 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 839 fd_kill (EV_A_ fd);
572} 840}
573 841
574/* called on ENOMEM in select/poll to kill some fds and retry */ 842/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 843static void noinline
593 861
594 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 863 if (anfds [fd].events)
596 { 864 {
597 anfds [fd].events = 0; 865 anfds [fd].events = 0;
866 anfds [fd].emask = 0;
598 fd_change (EV_A_ fd); 867 fd_change (EV_A_ fd, EV__IOFDSET | 1);
599 } 868 }
600} 869}
601 870
602/*****************************************************************************/ 871/*****************************************************************************/
603 872
604void inline_speed 873/*
605upheap (WT *heap, int k) 874 * the heap functions want a real array index. array index 0 uis guaranteed to not
606{ 875 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
607 WT w = heap [k]; 876 * the branching factor of the d-tree.
877 */
608 878
609 while (k && heap [k >> 1]->at > w->at) 879/*
610 { 880 * at the moment we allow libev the luxury of two heaps,
611 heap [k] = heap [k >> 1]; 881 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
612 ((W)heap [k])->active = k + 1; 882 * which is more cache-efficient.
613 k >>= 1; 883 * the difference is about 5% with 50000+ watchers.
614 } 884 */
885#if EV_USE_4HEAP
615 886
616 heap [k] = w; 887#define DHEAP 4
617 ((W)heap [k])->active = k + 1; 888#define HEAP0 (DHEAP - 1) /* index of first element in heap */
889#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
890#define UPHEAP_DONE(p,k) ((p) == (k))
618 891
619} 892/* away from the root */
620 893inline_speed void
621void inline_speed
622downheap (WT *heap, int N, int k) 894downheap (ANHE *heap, int N, int k)
623{ 895{
624 WT w = heap [k]; 896 ANHE he = heap [k];
897 ANHE *E = heap + N + HEAP0;
625 898
626 while (k < (N >> 1)) 899 for (;;)
627 { 900 {
628 int j = k << 1; 901 ev_tstamp minat;
902 ANHE *minpos;
903 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
629 904
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 905 /* find minimum child */
906 if (expect_true (pos + DHEAP - 1 < E))
631 ++j; 907 {
632 908 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
633 if (w->at <= heap [j]->at) 909 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
910 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
911 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
912 }
913 else if (pos < E)
914 {
915 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
916 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
917 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
918 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
919 }
920 else
634 break; 921 break;
635 922
923 if (ANHE_at (he) <= minat)
924 break;
925
926 heap [k] = *minpos;
927 ev_active (ANHE_w (*minpos)) = k;
928
929 k = minpos - heap;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
936#else /* 4HEAP */
937
938#define HEAP0 1
939#define HPARENT(k) ((k) >> 1)
940#define UPHEAP_DONE(p,k) (!(p))
941
942/* away from the root */
943inline_speed void
944downheap (ANHE *heap, int N, int k)
945{
946 ANHE he = heap [k];
947
948 for (;;)
949 {
950 int c = k << 1;
951
952 if (c > N + HEAP0 - 1)
953 break;
954
955 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
956 ? 1 : 0;
957
958 if (ANHE_at (he) <= ANHE_at (heap [c]))
959 break;
960
636 heap [k] = heap [j]; 961 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 962 ev_active (ANHE_w (heap [k])) = k;
963
638 k = j; 964 k = c;
639 } 965 }
640 966
641 heap [k] = w; 967 heap [k] = he;
642 ((W)heap [k])->active = k + 1; 968 ev_active (ANHE_w (he)) = k;
643} 969}
970#endif
644 971
645void inline_size 972/* towards the root */
973inline_speed void
974upheap (ANHE *heap, int k)
975{
976 ANHE he = heap [k];
977
978 for (;;)
979 {
980 int p = HPARENT (k);
981
982 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
983 break;
984
985 heap [k] = heap [p];
986 ev_active (ANHE_w (heap [k])) = k;
987 k = p;
988 }
989
990 heap [k] = he;
991 ev_active (ANHE_w (he)) = k;
992}
993
994inline_size void
646adjustheap (WT *heap, int N, int k) 995adjustheap (ANHE *heap, int N, int k)
647{ 996{
997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
648 upheap (heap, k); 998 upheap (heap, k);
999 else
649 downheap (heap, N, k); 1000 downheap (heap, N, k);
1001}
1002
1003/* rebuild the heap: this function is used only once and executed rarely */
1004inline_size void
1005reheap (ANHE *heap, int N)
1006{
1007 int i;
1008
1009 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1010 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1011 for (i = 0; i < N; ++i)
1012 upheap (heap, i + HEAP0);
650} 1013}
651 1014
652/*****************************************************************************/ 1015/*****************************************************************************/
653 1016
654typedef struct 1017typedef struct
655{ 1018{
656 WL head; 1019 WL head;
657 sig_atomic_t volatile gotsig; 1020 EV_ATOMIC_T gotsig;
658} ANSIG; 1021} ANSIG;
659 1022
660static ANSIG *signals; 1023static ANSIG *signals;
661static int signalmax; 1024static int signalmax;
662 1025
663static int sigpipe [2]; 1026static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 1027
667void inline_size 1028/*****************************************************************************/
668signals_init (ANSIG *base, int count)
669{
670 while (count--)
671 {
672 base->head = 0;
673 base->gotsig = 0;
674 1029
675 ++base; 1030inline_speed void
676 }
677}
678
679static void
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size
731fd_intern (int fd) 1031fd_intern (int fd)
732{ 1032{
733#ifdef _WIN32 1033#ifdef _WIN32
734 int arg = 1; 1034 unsigned long arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
736#else 1036#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC); 1037 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 1038 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 1039#endif
740} 1040}
741 1041
742static void noinline 1042static void noinline
743siginit (EV_P) 1043evpipe_init (EV_P)
744{ 1044{
1045 if (!ev_is_active (&pipeev))
1046 {
1047#if EV_USE_EVENTFD
1048 if ((evfd = eventfd (0, 0)) >= 0)
1049 {
1050 evpipe [0] = -1;
1051 fd_intern (evfd);
1052 ev_io_set (&pipeev, evfd, EV_READ);
1053 }
1054 else
1055#endif
1056 {
1057 while (pipe (evpipe))
1058 ev_syserr ("(libev) error creating signal/async pipe");
1059
745 fd_intern (sigpipe [0]); 1060 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1061 fd_intern (evpipe [1]);
1062 ev_io_set (&pipeev, evpipe [0], EV_READ);
1063 }
747 1064
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1065 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1066 ev_unref (EV_A); /* watcher should not keep loop alive */
1067 }
1068}
1069
1070inline_size void
1071evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1072{
1073 if (!*flag)
1074 {
1075 int old_errno = errno; /* save errno because write might clobber it */
1076
1077 *flag = 1;
1078
1079#if EV_USE_EVENTFD
1080 if (evfd >= 0)
1081 {
1082 uint64_t counter = 1;
1083 write (evfd, &counter, sizeof (uint64_t));
1084 }
1085 else
1086#endif
1087 write (evpipe [1], &old_errno, 1);
1088
1089 errno = old_errno;
1090 }
1091}
1092
1093static void
1094pipecb (EV_P_ ev_io *iow, int revents)
1095{
1096#if EV_USE_EVENTFD
1097 if (evfd >= 0)
1098 {
1099 uint64_t counter;
1100 read (evfd, &counter, sizeof (uint64_t));
1101 }
1102 else
1103#endif
1104 {
1105 char dummy;
1106 read (evpipe [0], &dummy, 1);
1107 }
1108
1109 if (gotsig && ev_is_default_loop (EV_A))
1110 {
1111 int signum;
1112 gotsig = 0;
1113
1114 for (signum = signalmax; signum--; )
1115 if (signals [signum].gotsig)
1116 ev_feed_signal_event (EV_A_ signum + 1);
1117 }
1118
1119#if EV_ASYNC_ENABLE
1120 if (gotasync)
1121 {
1122 int i;
1123 gotasync = 0;
1124
1125 for (i = asynccnt; i--; )
1126 if (asyncs [i]->sent)
1127 {
1128 asyncs [i]->sent = 0;
1129 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1130 }
1131 }
1132#endif
751} 1133}
752 1134
753/*****************************************************************************/ 1135/*****************************************************************************/
754 1136
1137static void
1138ev_sighandler (int signum)
1139{
1140#if EV_MULTIPLICITY
1141 struct ev_loop *loop = &default_loop_struct;
1142#endif
1143
1144#if _WIN32
1145 signal (signum, ev_sighandler);
1146#endif
1147
1148 signals [signum - 1].gotsig = 1;
1149 evpipe_write (EV_A_ &gotsig);
1150}
1151
1152void noinline
1153ev_feed_signal_event (EV_P_ int signum)
1154{
1155 WL w;
1156
1157#if EV_MULTIPLICITY
1158 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1159#endif
1160
1161 --signum;
1162
1163 if (signum < 0 || signum >= signalmax)
1164 return;
1165
1166 signals [signum].gotsig = 0;
1167
1168 for (w = signals [signum].head; w; w = w->next)
1169 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1170}
1171
1172/*****************************************************************************/
1173
755static ev_child *childs [EV_PID_HASHSIZE]; 1174static WL childs [EV_PID_HASHSIZE];
756 1175
757#ifndef _WIN32 1176#ifndef _WIN32
758 1177
759static ev_signal childev; 1178static ev_signal childev;
760 1179
761void inline_speed 1180#ifndef WIFCONTINUED
1181# define WIFCONTINUED(status) 0
1182#endif
1183
1184inline_speed void
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1185child_reap (EV_P_ int chain, int pid, int status)
763{ 1186{
764 ev_child *w; 1187 ev_child *w;
1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1189
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1190 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1191 {
767 if (w->pid == pid || !w->pid) 1192 if ((w->pid == pid || !w->pid)
1193 && (!traced || (w->flags & 1)))
768 { 1194 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1195 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1196 w->rpid = pid;
771 w->rstatus = status; 1197 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1198 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1199 }
1200 }
774} 1201}
775 1202
776#ifndef WCONTINUED 1203#ifndef WCONTINUED
777# define WCONTINUED 0 1204# define WCONTINUED 0
778#endif 1205#endif
787 if (!WCONTINUED 1214 if (!WCONTINUED
788 || errno != EINVAL 1215 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1216 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1217 return;
791 1218
792 /* make sure we are called again until all childs have been reaped */ 1219 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1220 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1221 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1222
796 child_reap (EV_A_ sw, pid, pid, status); 1223 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1224 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1225 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1226}
800 1227
801#endif 1228#endif
802 1229
803/*****************************************************************************/ 1230/*****************************************************************************/
865 /* kqueue is borked on everything but netbsd apparently */ 1292 /* kqueue is borked on everything but netbsd apparently */
866 /* it usually doesn't work correctly on anything but sockets and pipes */ 1293 /* it usually doesn't work correctly on anything but sockets and pipes */
867 flags &= ~EVBACKEND_KQUEUE; 1294 flags &= ~EVBACKEND_KQUEUE;
868#endif 1295#endif
869#ifdef __APPLE__ 1296#ifdef __APPLE__
870 // flags &= ~EVBACKEND_KQUEUE; for documentation 1297 /* only select works correctly on that "unix-certified" platform */
871 flags &= ~EVBACKEND_POLL; 1298 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1299 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
872#endif 1300#endif
873 1301
874 return flags; 1302 return flags;
875} 1303}
876 1304
877unsigned int 1305unsigned int
878ev_embeddable_backends (void) 1306ev_embeddable_backends (void)
879{ 1307{
880 return EVBACKEND_EPOLL 1308 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1309
882 | EVBACKEND_PORT; 1310 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1311 /* please fix it and tell me how to detect the fix */
1312 flags &= ~EVBACKEND_EPOLL;
1313
1314 return flags;
883} 1315}
884 1316
885unsigned int 1317unsigned int
886ev_backend (EV_P) 1318ev_backend (EV_P)
887{ 1319{
888 return backend; 1320 return backend;
889} 1321}
890 1322
1323unsigned int
1324ev_loop_count (EV_P)
1325{
1326 return loop_count;
1327}
1328
1329void
1330ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1331{
1332 io_blocktime = interval;
1333}
1334
1335void
1336ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1337{
1338 timeout_blocktime = interval;
1339}
1340
891static void noinline 1341static void noinline
892loop_init (EV_P_ unsigned int flags) 1342loop_init (EV_P_ unsigned int flags)
893{ 1343{
894 if (!backend) 1344 if (!backend)
895 { 1345 {
1346#if EV_USE_REALTIME
1347 if (!have_realtime)
1348 {
1349 struct timespec ts;
1350
1351 if (!clock_gettime (CLOCK_REALTIME, &ts))
1352 have_realtime = 1;
1353 }
1354#endif
1355
896#if EV_USE_MONOTONIC 1356#if EV_USE_MONOTONIC
1357 if (!have_monotonic)
897 { 1358 {
898 struct timespec ts; 1359 struct timespec ts;
1360
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1362 have_monotonic = 1;
901 } 1363 }
902#endif 1364#endif
903 1365
904 ev_rt_now = ev_time (); 1366 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1367 mn_now = get_clock ();
906 now_floor = mn_now; 1368 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1369 rtmn_diff = ev_rt_now - mn_now;
1370
1371 io_blocktime = 0.;
1372 timeout_blocktime = 0.;
1373 backend = 0;
1374 backend_fd = -1;
1375 gotasync = 0;
1376#if EV_USE_INOTIFY
1377 fs_fd = -2;
1378#endif
908 1379
909 /* pid check not overridable via env */ 1380 /* pid check not overridable via env */
910#ifndef _WIN32 1381#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1382 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1383 curpid = getpid ();
915 if (!(flags & EVFLAG_NOENV) 1386 if (!(flags & EVFLAG_NOENV)
916 && !enable_secure () 1387 && !enable_secure ()
917 && getenv ("LIBEV_FLAGS")) 1388 && getenv ("LIBEV_FLAGS"))
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1389 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1390
920 if (!(flags & 0x0000ffffUL)) 1391 if (!(flags & 0x0000ffffU))
921 flags |= ev_recommended_backends (); 1392 flags |= ev_recommended_backends ();
922
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY
926 fs_fd = -2;
927#endif
928 1393
929#if EV_USE_PORT 1394#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1395 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1396#endif
932#if EV_USE_KQUEUE 1397#if EV_USE_KQUEUE
940#endif 1405#endif
941#if EV_USE_SELECT 1406#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1407 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1408#endif
944 1409
945 ev_init (&sigev, sigcb); 1410 ev_init (&pipeev, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1411 ev_set_priority (&pipeev, EV_MAXPRI);
947 } 1412 }
948} 1413}
949 1414
950static void noinline 1415static void noinline
951loop_destroy (EV_P) 1416loop_destroy (EV_P)
952{ 1417{
953 int i; 1418 int i;
1419
1420 if (ev_is_active (&pipeev))
1421 {
1422 ev_ref (EV_A); /* signal watcher */
1423 ev_io_stop (EV_A_ &pipeev);
1424
1425#if EV_USE_EVENTFD
1426 if (evfd >= 0)
1427 close (evfd);
1428#endif
1429
1430 if (evpipe [0] >= 0)
1431 {
1432 close (evpipe [0]);
1433 close (evpipe [1]);
1434 }
1435 }
954 1436
955#if EV_USE_INOTIFY 1437#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1438 if (fs_fd >= 0)
957 close (fs_fd); 1439 close (fs_fd);
958#endif 1440#endif
975#if EV_USE_SELECT 1457#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1458 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1459#endif
978 1460
979 for (i = NUMPRI; i--; ) 1461 for (i = NUMPRI; i--; )
1462 {
980 array_free (pending, [i]); 1463 array_free (pending, [i]);
1464#if EV_IDLE_ENABLE
1465 array_free (idle, [i]);
1466#endif
1467 }
1468
1469 ev_free (anfds); anfdmax = 0;
981 1470
982 /* have to use the microsoft-never-gets-it-right macro */ 1471 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY);
983 array_free (fdchange, EMPTY0); 1473 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1474 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1475#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1476 array_free (periodic, EMPTY);
987#endif 1477#endif
1478#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1479 array_free (fork, EMPTY);
1480#endif
989 array_free (prepare, EMPTY0); 1481 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1482 array_free (check, EMPTY);
1483#if EV_ASYNC_ENABLE
1484 array_free (async, EMPTY);
1485#endif
991 1486
992 backend = 0; 1487 backend = 0;
993} 1488}
994 1489
1490#if EV_USE_INOTIFY
995void inline_size infy_fork (EV_P); 1491inline_size void infy_fork (EV_P);
1492#endif
996 1493
997void inline_size 1494inline_size void
998loop_fork (EV_P) 1495loop_fork (EV_P)
999{ 1496{
1000#if EV_USE_PORT 1497#if EV_USE_PORT
1001 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1498 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1002#endif 1499#endif
1008#endif 1505#endif
1009#if EV_USE_INOTIFY 1506#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1507 infy_fork (EV_A);
1011#endif 1508#endif
1012 1509
1013 if (ev_is_active (&sigev)) 1510 if (ev_is_active (&pipeev))
1014 { 1511 {
1015 /* default loop */ 1512 /* this "locks" the handlers against writing to the pipe */
1513 /* while we modify the fd vars */
1514 gotsig = 1;
1515#if EV_ASYNC_ENABLE
1516 gotasync = 1;
1517#endif
1016 1518
1017 ev_ref (EV_A); 1519 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1520 ev_io_stop (EV_A_ &pipeev);
1521
1522#if EV_USE_EVENTFD
1523 if (evfd >= 0)
1524 close (evfd);
1525#endif
1526
1527 if (evpipe [0] >= 0)
1528 {
1019 close (sigpipe [0]); 1529 close (evpipe [0]);
1020 close (sigpipe [1]); 1530 close (evpipe [1]);
1531 }
1021 1532
1022 while (pipe (sigpipe))
1023 syserr ("(libev) error creating pipe");
1024
1025 siginit (EV_A); 1533 evpipe_init (EV_A);
1534 /* now iterate over everything, in case we missed something */
1535 pipecb (EV_A_ &pipeev, EV_READ);
1026 } 1536 }
1027 1537
1028 postfork = 0; 1538 postfork = 0;
1029} 1539}
1030 1540
1031#if EV_MULTIPLICITY 1541#if EV_MULTIPLICITY
1542
1032struct ev_loop * 1543struct ev_loop *
1033ev_loop_new (unsigned int flags) 1544ev_loop_new (unsigned int flags)
1034{ 1545{
1035 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1546 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1036 1547
1052} 1563}
1053 1564
1054void 1565void
1055ev_loop_fork (EV_P) 1566ev_loop_fork (EV_P)
1056{ 1567{
1057 postfork = 1; 1568 postfork = 1; /* must be in line with ev_default_fork */
1058} 1569}
1059 1570
1571#if EV_VERIFY
1572static void noinline
1573verify_watcher (EV_P_ W w)
1574{
1575 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1576
1577 if (w->pending)
1578 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1579}
1580
1581static void noinline
1582verify_heap (EV_P_ ANHE *heap, int N)
1583{
1584 int i;
1585
1586 for (i = HEAP0; i < N + HEAP0; ++i)
1587 {
1588 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1589 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1590 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1591
1592 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1593 }
1594}
1595
1596static void noinline
1597array_verify (EV_P_ W *ws, int cnt)
1598{
1599 while (cnt--)
1600 {
1601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1602 verify_watcher (EV_A_ ws [cnt]);
1603 }
1604}
1605#endif
1606
1607void
1608ev_loop_verify (EV_P)
1609{
1610#if EV_VERIFY
1611 int i;
1612 WL w;
1613
1614 assert (activecnt >= -1);
1615
1616 assert (fdchangemax >= fdchangecnt);
1617 for (i = 0; i < fdchangecnt; ++i)
1618 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1619
1620 assert (anfdmax >= 0);
1621 for (i = 0; i < anfdmax; ++i)
1622 for (w = anfds [i].head; w; w = w->next)
1623 {
1624 verify_watcher (EV_A_ (W)w);
1625 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1626 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1627 }
1628
1629 assert (timermax >= timercnt);
1630 verify_heap (EV_A_ timers, timercnt);
1631
1632#if EV_PERIODIC_ENABLE
1633 assert (periodicmax >= periodiccnt);
1634 verify_heap (EV_A_ periodics, periodiccnt);
1635#endif
1636
1637 for (i = NUMPRI; i--; )
1638 {
1639 assert (pendingmax [i] >= pendingcnt [i]);
1640#if EV_IDLE_ENABLE
1641 assert (idleall >= 0);
1642 assert (idlemax [i] >= idlecnt [i]);
1643 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1644#endif
1645 }
1646
1647#if EV_FORK_ENABLE
1648 assert (forkmax >= forkcnt);
1649 array_verify (EV_A_ (W *)forks, forkcnt);
1650#endif
1651
1652#if EV_ASYNC_ENABLE
1653 assert (asyncmax >= asynccnt);
1654 array_verify (EV_A_ (W *)asyncs, asynccnt);
1655#endif
1656
1657 assert (preparemax >= preparecnt);
1658 array_verify (EV_A_ (W *)prepares, preparecnt);
1659
1660 assert (checkmax >= checkcnt);
1661 array_verify (EV_A_ (W *)checks, checkcnt);
1662
1663# if 0
1664 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1665 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1060#endif 1666# endif
1667#endif
1668}
1669
1670#endif /* multiplicity */
1061 1671
1062#if EV_MULTIPLICITY 1672#if EV_MULTIPLICITY
1063struct ev_loop * 1673struct ev_loop *
1064ev_default_loop_init (unsigned int flags) 1674ev_default_loop_init (unsigned int flags)
1065#else 1675#else
1066int 1676int
1067ev_default_loop (unsigned int flags) 1677ev_default_loop (unsigned int flags)
1068#endif 1678#endif
1069{ 1679{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 1680 if (!ev_default_loop_ptr)
1075 { 1681 {
1076#if EV_MULTIPLICITY 1682#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1683 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1078#else 1684#else
1081 1687
1082 loop_init (EV_A_ flags); 1688 loop_init (EV_A_ flags);
1083 1689
1084 if (ev_backend (EV_A)) 1690 if (ev_backend (EV_A))
1085 { 1691 {
1086 siginit (EV_A);
1087
1088#ifndef _WIN32 1692#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 1693 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 1694 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 1695 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1696 ev_unref (EV_A); /* child watcher should not keep loop alive */
1104{ 1708{
1105#if EV_MULTIPLICITY 1709#if EV_MULTIPLICITY
1106 struct ev_loop *loop = ev_default_loop_ptr; 1710 struct ev_loop *loop = ev_default_loop_ptr;
1107#endif 1711#endif
1108 1712
1713 ev_default_loop_ptr = 0;
1714
1109#ifndef _WIN32 1715#ifndef _WIN32
1110 ev_ref (EV_A); /* child watcher */ 1716 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev); 1717 ev_signal_stop (EV_A_ &childev);
1112#endif 1718#endif
1113 1719
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A); 1720 loop_destroy (EV_A);
1121} 1721}
1122 1722
1123void 1723void
1124ev_default_fork (void) 1724ev_default_fork (void)
1125{ 1725{
1126#if EV_MULTIPLICITY 1726#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 1727 struct ev_loop *loop = ev_default_loop_ptr;
1128#endif 1728#endif
1129 1729
1130 if (backend) 1730 postfork = 1; /* must be in line with ev_loop_fork */
1131 postfork = 1;
1132} 1731}
1133 1732
1134/*****************************************************************************/ 1733/*****************************************************************************/
1135 1734
1136int inline_size 1735void
1137any_pending (EV_P) 1736ev_invoke (EV_P_ void *w, int revents)
1138{ 1737{
1139 int pri; 1738 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1739}
1147 1740
1148void inline_speed 1741inline_speed void
1149call_pending (EV_P) 1742call_pending (EV_P)
1150{ 1743{
1151 int pri; 1744 int pri;
1152 1745
1153 for (pri = NUMPRI; pri--; ) 1746 for (pri = NUMPRI; pri--; )
1155 { 1748 {
1156 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1749 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1157 1750
1158 if (expect_true (p->w)) 1751 if (expect_true (p->w))
1159 { 1752 {
1160 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1753 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1161 1754
1162 p->w->pending = 0; 1755 p->w->pending = 0;
1163 EV_CB_INVOKE (p->w, p->events); 1756 EV_CB_INVOKE (p->w, p->events);
1757 EV_FREQUENT_CHECK;
1164 } 1758 }
1165 } 1759 }
1166} 1760}
1167 1761
1168void inline_size 1762#if EV_IDLE_ENABLE
1763inline_size void
1764idle_reify (EV_P)
1765{
1766 if (expect_false (idleall))
1767 {
1768 int pri;
1769
1770 for (pri = NUMPRI; pri--; )
1771 {
1772 if (pendingcnt [pri])
1773 break;
1774
1775 if (idlecnt [pri])
1776 {
1777 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1778 break;
1779 }
1780 }
1781 }
1782}
1783#endif
1784
1785inline_size void
1169timers_reify (EV_P) 1786timers_reify (EV_P)
1170{ 1787{
1788 EV_FREQUENT_CHECK;
1789
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 1790 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1172 { 1791 {
1173 ev_timer *w = timers [0]; 1792 do
1174
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176
1177 /* first reschedule or stop timer */
1178 if (w->repeat)
1179 { 1793 {
1794 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1795
1796 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1797
1798 /* first reschedule or stop timer */
1799 if (w->repeat)
1800 {
1801 ev_at (w) += w->repeat;
1802 if (ev_at (w) < mn_now)
1803 ev_at (w) = mn_now;
1804
1180 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1805 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1181 1806
1182 ((WT)w)->at += w->repeat; 1807 ANHE_at_cache (timers [HEAP0]);
1183 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now;
1185
1186 downheap ((WT *)timers, timercnt, 0); 1808 downheap (timers, timercnt, HEAP0);
1809 }
1810 else
1811 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1812
1813 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w);
1187 } 1815 }
1188 else 1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 1817
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1818 feed_reverse_done (EV_A_ EV_TIMEOUT);
1192 } 1819 }
1193} 1820}
1194 1821
1195#if EV_PERIODIC_ENABLE 1822#if EV_PERIODIC_ENABLE
1196void inline_size 1823inline_size void
1197periodics_reify (EV_P) 1824periodics_reify (EV_P)
1198{ 1825{
1826 EV_FREQUENT_CHECK;
1827
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1200 { 1829 {
1201 ev_periodic *w = periodics [0]; 1830 int feed_count = 0;
1202 1831
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1832 do
1204
1205 /* first reschedule or stop timer */
1206 if (w->reschedule_cb)
1207 { 1833 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835
1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1837
1838 /* first reschedule or stop timer */
1839 if (w->reschedule_cb)
1840 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1843 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1844
1845 ANHE_at_cache (periodics [HEAP0]);
1210 downheap ((WT *)periodics, periodiccnt, 0); 1846 downheap (periodics, periodiccnt, HEAP0);
1847 }
1848 else if (w->interval)
1849 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0);
1866 }
1867 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1869
1870 EV_FREQUENT_CHECK;
1871 feed_reverse (EV_A_ (W)w);
1211 } 1872 }
1212 else if (w->interval) 1873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1213 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0);
1217 }
1218 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 1874
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1875 feed_reverse_done (EV_A_ EV_PERIODIC);
1222 } 1876 }
1223} 1877}
1224 1878
1225static void noinline 1879static void noinline
1226periodics_reschedule (EV_P) 1880periodics_reschedule (EV_P)
1227{ 1881{
1228 int i; 1882 int i;
1229 1883
1230 /* adjust periodics after time jump */ 1884 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 1885 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1232 { 1886 {
1233 ev_periodic *w = periodics [i]; 1887 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1234 1888
1235 if (w->reschedule_cb) 1889 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 1891 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1892 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1893
1894 ANHE_at_cache (periodics [i]);
1895 }
1896
1897 reheap (periodics, periodiccnt);
1898}
1899#endif
1900
1901static void noinline
1902timers_reschedule (EV_P_ ev_tstamp adjust)
1903{
1904 int i;
1905
1906 for (i = 0; i < timercnt; ++i)
1239 } 1907 {
1240 1908 ANHE *he = timers + i + HEAP0;
1241 /* now rebuild the heap */ 1909 ANHE_w (*he)->at += adjust;
1242 for (i = periodiccnt >> 1; i--; ) 1910 ANHE_at_cache (*he);
1243 downheap ((WT *)periodics, periodiccnt, i); 1911 }
1244} 1912}
1245#endif
1246 1913
1247int inline_size 1914inline_speed void
1248time_update_monotonic (EV_P) 1915time_update (EV_P_ ev_tstamp max_block)
1249{ 1916{
1917 int i;
1918
1919#if EV_USE_MONOTONIC
1920 if (expect_true (have_monotonic))
1921 {
1922 ev_tstamp odiff = rtmn_diff;
1923
1250 mn_now = get_clock (); 1924 mn_now = get_clock ();
1251 1925
1926 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1927 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1928 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1929 {
1254 ev_rt_now = rtmn_diff + mn_now; 1930 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1931 return;
1256 } 1932 }
1257 else 1933
1258 {
1259 now_floor = mn_now; 1934 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1935 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1936
1265void inline_size 1937 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1938 * on the choice of "4": one iteration isn't enough,
1267{ 1939 * in case we get preempted during the calls to
1268 int i; 1940 * ev_time and get_clock. a second call is almost guaranteed
1269 1941 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1942 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1943 * in the unlikely event of having been preempted here.
1272 { 1944 */
1273 if (time_update_monotonic (EV_A)) 1945 for (i = 4; --i; )
1274 { 1946 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1947 rtmn_diff = ev_rt_now - mn_now;
1288 1948
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1949 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1290 return; /* all is well */ 1950 return; /* all is well */
1291 1951
1292 ev_rt_now = ev_time (); 1952 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1953 mn_now = get_clock ();
1294 now_floor = mn_now; 1954 now_floor = mn_now;
1295 } 1955 }
1296 1956
1957 /* no timer adjustment, as the monotonic clock doesn't jump */
1958 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297# if EV_PERIODIC_ENABLE 1959# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1960 periodics_reschedule (EV_A);
1299# endif 1961# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1962 }
1304 else 1963 else
1305#endif 1964#endif
1306 { 1965 {
1307 ev_rt_now = ev_time (); 1966 ev_rt_now = ev_time ();
1308 1967
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1968 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 1969 {
1970 /* adjust timers. this is easy, as the offset is the same for all of them */
1971 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1311#if EV_PERIODIC_ENABLE 1972#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 1973 periodics_reschedule (EV_A);
1313#endif 1974#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 1975 }
1319 1976
1320 mn_now = ev_rt_now; 1977 mn_now = ev_rt_now;
1321 } 1978 }
1322} 1979}
1323 1980
1324void
1325ev_ref (EV_P)
1326{
1327 ++activecnt;
1328}
1329
1330void
1331ev_unref (EV_P)
1332{
1333 --activecnt;
1334}
1335
1336static int loop_done; 1981static int loop_done;
1337 1982
1338void 1983void
1339ev_loop (EV_P_ int flags) 1984ev_loop (EV_P_ int flags)
1340{ 1985{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1986 loop_done = EVUNLOOP_CANCEL;
1342 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL;
1344 1987
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1988 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 1989
1347 while (activecnt) 1990 do
1348 { 1991 {
1992#if EV_VERIFY >= 2
1993 ev_loop_verify (EV_A);
1994#endif
1995
1349#ifndef _WIN32 1996#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 1997 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 1998 if (expect_false (getpid () != curpid))
1352 { 1999 {
1353 curpid = getpid (); 2000 curpid = getpid ();
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2010 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 2011 call_pending (EV_A);
1365 } 2012 }
1366#endif 2013#endif
1367 2014
1368 /* queue check watchers (and execute them) */ 2015 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 2016 if (expect_false (preparecnt))
1370 { 2017 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2018 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 2019 call_pending (EV_A);
1373 } 2020 }
1379 /* update fd-related kernel structures */ 2026 /* update fd-related kernel structures */
1380 fd_reify (EV_A); 2027 fd_reify (EV_A);
1381 2028
1382 /* calculate blocking time */ 2029 /* calculate blocking time */
1383 { 2030 {
1384 ev_tstamp block; 2031 ev_tstamp waittime = 0.;
2032 ev_tstamp sleeptime = 0.;
1385 2033
1386 if (flags & EVLOOP_NONBLOCK || idlecnt) 2034 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1387 block = 0.; /* do not block at all */
1388 else
1389 { 2035 {
1390 /* update time to cancel out callback processing overhead */ 2036 /* update time to cancel out callback processing overhead */
1391#if EV_USE_MONOTONIC
1392 if (expect_true (have_monotonic))
1393 time_update_monotonic (EV_A); 2037 time_update (EV_A_ 1e100);
1394 else
1395#endif
1396 {
1397 ev_rt_now = ev_time ();
1398 mn_now = ev_rt_now;
1399 }
1400 2038
1401 block = MAX_BLOCKTIME; 2039 waittime = MAX_BLOCKTIME;
1402 2040
1403 if (timercnt) 2041 if (timercnt)
1404 { 2042 {
1405 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2043 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1406 if (block > to) block = to; 2044 if (waittime > to) waittime = to;
1407 } 2045 }
1408 2046
1409#if EV_PERIODIC_ENABLE 2047#if EV_PERIODIC_ENABLE
1410 if (periodiccnt) 2048 if (periodiccnt)
1411 { 2049 {
1412 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2050 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1413 if (block > to) block = to; 2051 if (waittime > to) waittime = to;
1414 } 2052 }
1415#endif 2053#endif
1416 2054
1417 if (expect_false (block < 0.)) block = 0.; 2055 if (expect_false (waittime < timeout_blocktime))
2056 waittime = timeout_blocktime;
2057
2058 sleeptime = waittime - backend_fudge;
2059
2060 if (expect_true (sleeptime > io_blocktime))
2061 sleeptime = io_blocktime;
2062
2063 if (sleeptime)
2064 {
2065 ev_sleep (sleeptime);
2066 waittime -= sleeptime;
2067 }
1418 } 2068 }
1419 2069
2070 ++loop_count;
1420 backend_poll (EV_A_ block); 2071 backend_poll (EV_A_ waittime);
2072
2073 /* update ev_rt_now, do magic */
2074 time_update (EV_A_ waittime + sleeptime);
1421 } 2075 }
1422
1423 /* update ev_rt_now, do magic */
1424 time_update (EV_A);
1425 2076
1426 /* queue pending timers and reschedule them */ 2077 /* queue pending timers and reschedule them */
1427 timers_reify (EV_A); /* relative timers called last */ 2078 timers_reify (EV_A); /* relative timers called last */
1428#if EV_PERIODIC_ENABLE 2079#if EV_PERIODIC_ENABLE
1429 periodics_reify (EV_A); /* absolute timers called first */ 2080 periodics_reify (EV_A); /* absolute timers called first */
1430#endif 2081#endif
1431 2082
2083#if EV_IDLE_ENABLE
1432 /* queue idle watchers unless other events are pending */ 2084 /* queue idle watchers unless other events are pending */
1433 if (idlecnt && !any_pending (EV_A)) 2085 idle_reify (EV_A);
1434 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2086#endif
1435 2087
1436 /* queue check watchers, to be executed first */ 2088 /* queue check watchers, to be executed first */
1437 if (expect_false (checkcnt)) 2089 if (expect_false (checkcnt))
1438 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2090 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1439 2091
1440 call_pending (EV_A); 2092 call_pending (EV_A);
1441
1442 if (expect_false (loop_done))
1443 break;
1444 } 2093 }
2094 while (expect_true (
2095 activecnt
2096 && !loop_done
2097 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2098 ));
1445 2099
1446 if (loop_done == EVUNLOOP_ONE) 2100 if (loop_done == EVUNLOOP_ONE)
1447 loop_done = EVUNLOOP_CANCEL; 2101 loop_done = EVUNLOOP_CANCEL;
1448} 2102}
1449 2103
1451ev_unloop (EV_P_ int how) 2105ev_unloop (EV_P_ int how)
1452{ 2106{
1453 loop_done = how; 2107 loop_done = how;
1454} 2108}
1455 2109
2110void
2111ev_ref (EV_P)
2112{
2113 ++activecnt;
2114}
2115
2116void
2117ev_unref (EV_P)
2118{
2119 --activecnt;
2120}
2121
2122void
2123ev_now_update (EV_P)
2124{
2125 time_update (EV_A_ 1e100);
2126}
2127
2128void
2129ev_suspend (EV_P)
2130{
2131 ev_now_update (EV_A);
2132}
2133
2134void
2135ev_resume (EV_P)
2136{
2137 ev_tstamp mn_prev = mn_now;
2138
2139 ev_now_update (EV_A);
2140 timers_reschedule (EV_A_ mn_now - mn_prev);
2141#if EV_PERIODIC_ENABLE
2142 periodics_reschedule (EV_A);
2143#endif
2144}
2145
1456/*****************************************************************************/ 2146/*****************************************************************************/
1457 2147
1458void inline_size 2148inline_size void
1459wlist_add (WL *head, WL elem) 2149wlist_add (WL *head, WL elem)
1460{ 2150{
1461 elem->next = *head; 2151 elem->next = *head;
1462 *head = elem; 2152 *head = elem;
1463} 2153}
1464 2154
1465void inline_size 2155inline_size void
1466wlist_del (WL *head, WL elem) 2156wlist_del (WL *head, WL elem)
1467{ 2157{
1468 while (*head) 2158 while (*head)
1469 { 2159 {
1470 if (*head == elem) 2160 if (*head == elem)
1475 2165
1476 head = &(*head)->next; 2166 head = &(*head)->next;
1477 } 2167 }
1478} 2168}
1479 2169
1480void inline_speed 2170inline_speed void
1481ev_clear_pending (EV_P_ W w) 2171clear_pending (EV_P_ W w)
1482{ 2172{
1483 if (w->pending) 2173 if (w->pending)
1484 { 2174 {
1485 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2175 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1486 w->pending = 0; 2176 w->pending = 0;
1487 } 2177 }
1488} 2178}
1489 2179
1490void inline_speed 2180int
2181ev_clear_pending (EV_P_ void *w)
2182{
2183 W w_ = (W)w;
2184 int pending = w_->pending;
2185
2186 if (expect_true (pending))
2187 {
2188 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2189 w_->pending = 0;
2190 p->w = 0;
2191 return p->events;
2192 }
2193 else
2194 return 0;
2195}
2196
2197inline_size void
2198pri_adjust (EV_P_ W w)
2199{
2200 int pri = w->priority;
2201 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2202 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2203 w->priority = pri;
2204}
2205
2206inline_speed void
1491ev_start (EV_P_ W w, int active) 2207ev_start (EV_P_ W w, int active)
1492{ 2208{
1493 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2209 pri_adjust (EV_A_ w);
1494 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1495
1496 w->active = active; 2210 w->active = active;
1497 ev_ref (EV_A); 2211 ev_ref (EV_A);
1498} 2212}
1499 2213
1500void inline_size 2214inline_size void
1501ev_stop (EV_P_ W w) 2215ev_stop (EV_P_ W w)
1502{ 2216{
1503 ev_unref (EV_A); 2217 ev_unref (EV_A);
1504 w->active = 0; 2218 w->active = 0;
1505} 2219}
1506 2220
1507/*****************************************************************************/ 2221/*****************************************************************************/
1508 2222
1509void 2223void noinline
1510ev_io_start (EV_P_ ev_io *w) 2224ev_io_start (EV_P_ ev_io *w)
1511{ 2225{
1512 int fd = w->fd; 2226 int fd = w->fd;
1513 2227
1514 if (expect_false (ev_is_active (w))) 2228 if (expect_false (ev_is_active (w)))
1515 return; 2229 return;
1516 2230
1517 assert (("ev_io_start called with negative fd", fd >= 0)); 2231 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2232 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2233
2234 EV_FREQUENT_CHECK;
1518 2235
1519 ev_start (EV_A_ (W)w, 1); 2236 ev_start (EV_A_ (W)w, 1);
1520 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2237 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1521 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2238 wlist_add (&anfds[fd].head, (WL)w);
1522 2239
1523 fd_change (EV_A_ fd); 2240 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1524} 2241 w->events &= ~EV__IOFDSET;
1525 2242
1526void 2243 EV_FREQUENT_CHECK;
2244}
2245
2246void noinline
1527ev_io_stop (EV_P_ ev_io *w) 2247ev_io_stop (EV_P_ ev_io *w)
1528{ 2248{
1529 ev_clear_pending (EV_A_ (W)w); 2249 clear_pending (EV_A_ (W)w);
1530 if (expect_false (!ev_is_active (w))) 2250 if (expect_false (!ev_is_active (w)))
1531 return; 2251 return;
1532 2252
1533 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2253 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1534 2254
2255 EV_FREQUENT_CHECK;
2256
1535 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2257 wlist_del (&anfds[w->fd].head, (WL)w);
1536 ev_stop (EV_A_ (W)w); 2258 ev_stop (EV_A_ (W)w);
1537 2259
1538 fd_change (EV_A_ w->fd); 2260 fd_change (EV_A_ w->fd, 1);
1539}
1540 2261
1541void 2262 EV_FREQUENT_CHECK;
2263}
2264
2265void noinline
1542ev_timer_start (EV_P_ ev_timer *w) 2266ev_timer_start (EV_P_ ev_timer *w)
1543{ 2267{
1544 if (expect_false (ev_is_active (w))) 2268 if (expect_false (ev_is_active (w)))
1545 return; 2269 return;
1546 2270
1547 ((WT)w)->at += mn_now; 2271 ev_at (w) += mn_now;
1548 2272
1549 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2273 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1550 2274
2275 EV_FREQUENT_CHECK;
2276
2277 ++timercnt;
1551 ev_start (EV_A_ (W)w, ++timercnt); 2278 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1552 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2279 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1553 timers [timercnt - 1] = w; 2280 ANHE_w (timers [ev_active (w)]) = (WT)w;
1554 upheap ((WT *)timers, timercnt - 1); 2281 ANHE_at_cache (timers [ev_active (w)]);
2282 upheap (timers, ev_active (w));
1555 2283
2284 EV_FREQUENT_CHECK;
2285
1556 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2286 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1557} 2287}
1558 2288
1559void 2289void noinline
1560ev_timer_stop (EV_P_ ev_timer *w) 2290ev_timer_stop (EV_P_ ev_timer *w)
1561{ 2291{
1562 ev_clear_pending (EV_A_ (W)w); 2292 clear_pending (EV_A_ (W)w);
1563 if (expect_false (!ev_is_active (w))) 2293 if (expect_false (!ev_is_active (w)))
1564 return; 2294 return;
1565 2295
1566 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2296 EV_FREQUENT_CHECK;
1567 2297
1568 { 2298 {
1569 int active = ((W)w)->active; 2299 int active = ev_active (w);
1570 2300
2301 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2302
2303 --timercnt;
2304
1571 if (expect_true (--active < --timercnt)) 2305 if (expect_true (active < timercnt + HEAP0))
1572 { 2306 {
1573 timers [active] = timers [timercnt]; 2307 timers [active] = timers [timercnt + HEAP0];
1574 adjustheap ((WT *)timers, timercnt, active); 2308 adjustheap (timers, timercnt, active);
1575 } 2309 }
1576 } 2310 }
1577 2311
1578 ((WT)w)->at -= mn_now; 2312 EV_FREQUENT_CHECK;
2313
2314 ev_at (w) -= mn_now;
1579 2315
1580 ev_stop (EV_A_ (W)w); 2316 ev_stop (EV_A_ (W)w);
1581} 2317}
1582 2318
1583void 2319void noinline
1584ev_timer_again (EV_P_ ev_timer *w) 2320ev_timer_again (EV_P_ ev_timer *w)
1585{ 2321{
2322 EV_FREQUENT_CHECK;
2323
1586 if (ev_is_active (w)) 2324 if (ev_is_active (w))
1587 { 2325 {
1588 if (w->repeat) 2326 if (w->repeat)
1589 { 2327 {
1590 ((WT)w)->at = mn_now + w->repeat; 2328 ev_at (w) = mn_now + w->repeat;
2329 ANHE_at_cache (timers [ev_active (w)]);
1591 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2330 adjustheap (timers, timercnt, ev_active (w));
1592 } 2331 }
1593 else 2332 else
1594 ev_timer_stop (EV_A_ w); 2333 ev_timer_stop (EV_A_ w);
1595 } 2334 }
1596 else if (w->repeat) 2335 else if (w->repeat)
1597 { 2336 {
1598 w->at = w->repeat; 2337 ev_at (w) = w->repeat;
1599 ev_timer_start (EV_A_ w); 2338 ev_timer_start (EV_A_ w);
1600 } 2339 }
2340
2341 EV_FREQUENT_CHECK;
1601} 2342}
1602 2343
1603#if EV_PERIODIC_ENABLE 2344#if EV_PERIODIC_ENABLE
1604void 2345void noinline
1605ev_periodic_start (EV_P_ ev_periodic *w) 2346ev_periodic_start (EV_P_ ev_periodic *w)
1606{ 2347{
1607 if (expect_false (ev_is_active (w))) 2348 if (expect_false (ev_is_active (w)))
1608 return; 2349 return;
1609 2350
1610 if (w->reschedule_cb) 2351 if (w->reschedule_cb)
1611 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2352 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1612 else if (w->interval) 2353 else if (w->interval)
1613 { 2354 {
1614 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2355 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1615 /* this formula differs from the one in periodic_reify because we do not always round up */ 2356 /* this formula differs from the one in periodic_reify because we do not always round up */
1616 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2357 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1617 } 2358 }
2359 else
2360 ev_at (w) = w->offset;
1618 2361
2362 EV_FREQUENT_CHECK;
2363
2364 ++periodiccnt;
1619 ev_start (EV_A_ (W)w, ++periodiccnt); 2365 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1620 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2366 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1621 periodics [periodiccnt - 1] = w; 2367 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1622 upheap ((WT *)periodics, periodiccnt - 1); 2368 ANHE_at_cache (periodics [ev_active (w)]);
2369 upheap (periodics, ev_active (w));
1623 2370
2371 EV_FREQUENT_CHECK;
2372
1624 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2373 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1625} 2374}
1626 2375
1627void 2376void noinline
1628ev_periodic_stop (EV_P_ ev_periodic *w) 2377ev_periodic_stop (EV_P_ ev_periodic *w)
1629{ 2378{
1630 ev_clear_pending (EV_A_ (W)w); 2379 clear_pending (EV_A_ (W)w);
1631 if (expect_false (!ev_is_active (w))) 2380 if (expect_false (!ev_is_active (w)))
1632 return; 2381 return;
1633 2382
1634 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2383 EV_FREQUENT_CHECK;
1635 2384
1636 { 2385 {
1637 int active = ((W)w)->active; 2386 int active = ev_active (w);
1638 2387
2388 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2389
2390 --periodiccnt;
2391
1639 if (expect_true (--active < --periodiccnt)) 2392 if (expect_true (active < periodiccnt + HEAP0))
1640 { 2393 {
1641 periodics [active] = periodics [periodiccnt]; 2394 periodics [active] = periodics [periodiccnt + HEAP0];
1642 adjustheap ((WT *)periodics, periodiccnt, active); 2395 adjustheap (periodics, periodiccnt, active);
1643 } 2396 }
1644 } 2397 }
1645 2398
2399 EV_FREQUENT_CHECK;
2400
1646 ev_stop (EV_A_ (W)w); 2401 ev_stop (EV_A_ (W)w);
1647} 2402}
1648 2403
1649void 2404void noinline
1650ev_periodic_again (EV_P_ ev_periodic *w) 2405ev_periodic_again (EV_P_ ev_periodic *w)
1651{ 2406{
1652 /* TODO: use adjustheap and recalculation */ 2407 /* TODO: use adjustheap and recalculation */
1653 ev_periodic_stop (EV_A_ w); 2408 ev_periodic_stop (EV_A_ w);
1654 ev_periodic_start (EV_A_ w); 2409 ev_periodic_start (EV_A_ w);
1657 2412
1658#ifndef SA_RESTART 2413#ifndef SA_RESTART
1659# define SA_RESTART 0 2414# define SA_RESTART 0
1660#endif 2415#endif
1661 2416
1662void 2417void noinline
1663ev_signal_start (EV_P_ ev_signal *w) 2418ev_signal_start (EV_P_ ev_signal *w)
1664{ 2419{
1665#if EV_MULTIPLICITY 2420#if EV_MULTIPLICITY
1666 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2421 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1667#endif 2422#endif
1668 if (expect_false (ev_is_active (w))) 2423 if (expect_false (ev_is_active (w)))
1669 return; 2424 return;
1670 2425
1671 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2426 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2427
2428 evpipe_init (EV_A);
2429
2430 EV_FREQUENT_CHECK;
2431
2432 {
2433#ifndef _WIN32
2434 sigset_t full, prev;
2435 sigfillset (&full);
2436 sigprocmask (SIG_SETMASK, &full, &prev);
2437#endif
2438
2439 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2440
2441#ifndef _WIN32
2442 sigprocmask (SIG_SETMASK, &prev, 0);
2443#endif
2444 }
1672 2445
1673 ev_start (EV_A_ (W)w, 1); 2446 ev_start (EV_A_ (W)w, 1);
1674 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1675 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2447 wlist_add (&signals [w->signum - 1].head, (WL)w);
1676 2448
1677 if (!((WL)w)->next) 2449 if (!((WL)w)->next)
1678 { 2450 {
1679#if _WIN32 2451#if _WIN32
1680 signal (w->signum, sighandler); 2452 signal (w->signum, ev_sighandler);
1681#else 2453#else
1682 struct sigaction sa; 2454 struct sigaction sa;
1683 sa.sa_handler = sighandler; 2455 sa.sa_handler = ev_sighandler;
1684 sigfillset (&sa.sa_mask); 2456 sigfillset (&sa.sa_mask);
1685 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2457 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1686 sigaction (w->signum, &sa, 0); 2458 sigaction (w->signum, &sa, 0);
1687#endif 2459#endif
1688 } 2460 }
1689}
1690 2461
1691void 2462 EV_FREQUENT_CHECK;
2463}
2464
2465void noinline
1692ev_signal_stop (EV_P_ ev_signal *w) 2466ev_signal_stop (EV_P_ ev_signal *w)
1693{ 2467{
1694 ev_clear_pending (EV_A_ (W)w); 2468 clear_pending (EV_A_ (W)w);
1695 if (expect_false (!ev_is_active (w))) 2469 if (expect_false (!ev_is_active (w)))
1696 return; 2470 return;
1697 2471
2472 EV_FREQUENT_CHECK;
2473
1698 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2474 wlist_del (&signals [w->signum - 1].head, (WL)w);
1699 ev_stop (EV_A_ (W)w); 2475 ev_stop (EV_A_ (W)w);
1700 2476
1701 if (!signals [w->signum - 1].head) 2477 if (!signals [w->signum - 1].head)
1702 signal (w->signum, SIG_DFL); 2478 signal (w->signum, SIG_DFL);
2479
2480 EV_FREQUENT_CHECK;
1703} 2481}
1704 2482
1705void 2483void
1706ev_child_start (EV_P_ ev_child *w) 2484ev_child_start (EV_P_ ev_child *w)
1707{ 2485{
1708#if EV_MULTIPLICITY 2486#if EV_MULTIPLICITY
1709 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2487 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1710#endif 2488#endif
1711 if (expect_false (ev_is_active (w))) 2489 if (expect_false (ev_is_active (w)))
1712 return; 2490 return;
1713 2491
2492 EV_FREQUENT_CHECK;
2493
1714 ev_start (EV_A_ (W)w, 1); 2494 ev_start (EV_A_ (W)w, 1);
1715 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2495 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2496
2497 EV_FREQUENT_CHECK;
1716} 2498}
1717 2499
1718void 2500void
1719ev_child_stop (EV_P_ ev_child *w) 2501ev_child_stop (EV_P_ ev_child *w)
1720{ 2502{
1721 ev_clear_pending (EV_A_ (W)w); 2503 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 2504 if (expect_false (!ev_is_active (w)))
1723 return; 2505 return;
1724 2506
2507 EV_FREQUENT_CHECK;
2508
1725 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2509 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1726 ev_stop (EV_A_ (W)w); 2510 ev_stop (EV_A_ (W)w);
2511
2512 EV_FREQUENT_CHECK;
1727} 2513}
1728 2514
1729#if EV_STAT_ENABLE 2515#if EV_STAT_ENABLE
1730 2516
1731# ifdef _WIN32 2517# ifdef _WIN32
1732# undef lstat 2518# undef lstat
1733# define lstat(a,b) _stati64 (a,b) 2519# define lstat(a,b) _stati64 (a,b)
1734# endif 2520# endif
1735 2521
1736#define DEF_STAT_INTERVAL 5.0074891 2522#define DEF_STAT_INTERVAL 5.0074891
2523#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1737#define MIN_STAT_INTERVAL 0.1074891 2524#define MIN_STAT_INTERVAL 0.1074891
1738 2525
1739static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2526static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1740 2527
1741#if EV_USE_INOTIFY 2528#if EV_USE_INOTIFY
1742# define EV_INOTIFY_BUFSIZE 8192 2529# define EV_INOTIFY_BUFSIZE 8192
1746{ 2533{
1747 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2534 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1748 2535
1749 if (w->wd < 0) 2536 if (w->wd < 0)
1750 { 2537 {
2538 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1751 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2539 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1752 2540
1753 /* monitor some parent directory for speedup hints */ 2541 /* monitor some parent directory for speedup hints */
2542 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2543 /* but an efficiency issue only */
1754 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2544 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1755 { 2545 {
1756 char path [4096]; 2546 char path [4096];
1757 strcpy (path, w->path); 2547 strcpy (path, w->path);
1758 2548
1761 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2551 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1762 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2552 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1763 2553
1764 char *pend = strrchr (path, '/'); 2554 char *pend = strrchr (path, '/');
1765 2555
1766 if (!pend) 2556 if (!pend || pend == path)
1767 break; /* whoops, no '/', complain to your admin */ 2557 break;
1768 2558
1769 *pend = 0; 2559 *pend = 0;
1770 w->wd = inotify_add_watch (fs_fd, path, mask); 2560 w->wd = inotify_add_watch (fs_fd, path, mask);
1771 } 2561 }
1772 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2562 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1773 } 2563 }
1774 } 2564 }
1775 else
1776 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1777 2565
1778 if (w->wd >= 0) 2566 if (w->wd >= 0)
2567 {
1779 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2568 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2569
2570 /* now local changes will be tracked by inotify, but remote changes won't */
2571 /* unless the filesystem it known to be local, we therefore still poll */
2572 /* also do poll on <2.6.25, but with normal frequency */
2573 struct statfs sfs;
2574
2575 if (fs_2625 && !statfs (w->path, &sfs))
2576 if (sfs.f_type == 0x1373 /* devfs */
2577 || sfs.f_type == 0xEF53 /* ext2/3 */
2578 || sfs.f_type == 0x3153464a /* jfs */
2579 || sfs.f_type == 0x52654973 /* reiser3 */
2580 || sfs.f_type == 0x01021994 /* tempfs */
2581 || sfs.f_type == 0x58465342 /* xfs */)
2582 return;
2583
2584 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2585 ev_timer_again (EV_A_ &w->timer);
2586 }
1780} 2587}
1781 2588
1782static void noinline 2589static void noinline
1783infy_del (EV_P_ ev_stat *w) 2590infy_del (EV_P_ ev_stat *w)
1784{ 2591{
1798 2605
1799static void noinline 2606static void noinline
1800infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2607infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1801{ 2608{
1802 if (slot < 0) 2609 if (slot < 0)
1803 /* overflow, need to check for all hahs slots */ 2610 /* overflow, need to check for all hash slots */
1804 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2611 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1805 infy_wd (EV_A_ slot, wd, ev); 2612 infy_wd (EV_A_ slot, wd, ev);
1806 else 2613 else
1807 { 2614 {
1808 WL w_; 2615 WL w_;
1814 2621
1815 if (w->wd == wd || wd == -1) 2622 if (w->wd == wd || wd == -1)
1816 { 2623 {
1817 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2624 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1818 { 2625 {
2626 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1819 w->wd = -1; 2627 w->wd = -1;
1820 infy_add (EV_A_ w); /* re-add, no matter what */ 2628 infy_add (EV_A_ w); /* re-add, no matter what */
1821 } 2629 }
1822 2630
1823 stat_timer_cb (EV_A_ &w->timer, 0); 2631 stat_timer_cb (EV_A_ &w->timer, 0);
1836 2644
1837 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2645 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1838 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2646 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1839} 2647}
1840 2648
1841void inline_size 2649inline_size void
2650check_2625 (EV_P)
2651{
2652 /* kernels < 2.6.25 are borked
2653 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2654 */
2655 struct utsname buf;
2656 int major, minor, micro;
2657
2658 if (uname (&buf))
2659 return;
2660
2661 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2662 return;
2663
2664 if (major < 2
2665 || (major == 2 && minor < 6)
2666 || (major == 2 && minor == 6 && micro < 25))
2667 return;
2668
2669 fs_2625 = 1;
2670}
2671
2672inline_size void
1842infy_init (EV_P) 2673infy_init (EV_P)
1843{ 2674{
1844 if (fs_fd != -2) 2675 if (fs_fd != -2)
1845 return; 2676 return;
2677
2678 fs_fd = -1;
2679
2680 check_2625 (EV_A);
1846 2681
1847 fs_fd = inotify_init (); 2682 fs_fd = inotify_init ();
1848 2683
1849 if (fs_fd >= 0) 2684 if (fs_fd >= 0)
1850 { 2685 {
1852 ev_set_priority (&fs_w, EV_MAXPRI); 2687 ev_set_priority (&fs_w, EV_MAXPRI);
1853 ev_io_start (EV_A_ &fs_w); 2688 ev_io_start (EV_A_ &fs_w);
1854 } 2689 }
1855} 2690}
1856 2691
1857void inline_size 2692inline_size void
1858infy_fork (EV_P) 2693infy_fork (EV_P)
1859{ 2694{
1860 int slot; 2695 int slot;
1861 2696
1862 if (fs_fd < 0) 2697 if (fs_fd < 0)
1878 w->wd = -1; 2713 w->wd = -1;
1879 2714
1880 if (fs_fd >= 0) 2715 if (fs_fd >= 0)
1881 infy_add (EV_A_ w); /* re-add, no matter what */ 2716 infy_add (EV_A_ w); /* re-add, no matter what */
1882 else 2717 else
1883 ev_timer_start (EV_A_ &w->timer); 2718 ev_timer_again (EV_A_ &w->timer);
1884 } 2719 }
1885
1886 } 2720 }
1887} 2721}
1888 2722
2723#endif
2724
2725#ifdef _WIN32
2726# define EV_LSTAT(p,b) _stati64 (p, b)
2727#else
2728# define EV_LSTAT(p,b) lstat (p, b)
1889#endif 2729#endif
1890 2730
1891void 2731void
1892ev_stat_stat (EV_P_ ev_stat *w) 2732ev_stat_stat (EV_P_ ev_stat *w)
1893{ 2733{
1920 || w->prev.st_atime != w->attr.st_atime 2760 || w->prev.st_atime != w->attr.st_atime
1921 || w->prev.st_mtime != w->attr.st_mtime 2761 || w->prev.st_mtime != w->attr.st_mtime
1922 || w->prev.st_ctime != w->attr.st_ctime 2762 || w->prev.st_ctime != w->attr.st_ctime
1923 ) { 2763 ) {
1924 #if EV_USE_INOTIFY 2764 #if EV_USE_INOTIFY
2765 if (fs_fd >= 0)
2766 {
1925 infy_del (EV_A_ w); 2767 infy_del (EV_A_ w);
1926 infy_add (EV_A_ w); 2768 infy_add (EV_A_ w);
1927 ev_stat_stat (EV_A_ w); /* avoid race... */ 2769 ev_stat_stat (EV_A_ w); /* avoid race... */
2770 }
1928 #endif 2771 #endif
1929 2772
1930 ev_feed_event (EV_A_ w, EV_STAT); 2773 ev_feed_event (EV_A_ w, EV_STAT);
1931 } 2774 }
1932} 2775}
1935ev_stat_start (EV_P_ ev_stat *w) 2778ev_stat_start (EV_P_ ev_stat *w)
1936{ 2779{
1937 if (expect_false (ev_is_active (w))) 2780 if (expect_false (ev_is_active (w)))
1938 return; 2781 return;
1939 2782
1940 /* since we use memcmp, we need to clear any padding data etc. */
1941 memset (&w->prev, 0, sizeof (ev_statdata));
1942 memset (&w->attr, 0, sizeof (ev_statdata));
1943
1944 ev_stat_stat (EV_A_ w); 2783 ev_stat_stat (EV_A_ w);
1945 2784
2785 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1946 if (w->interval < MIN_STAT_INTERVAL) 2786 w->interval = MIN_STAT_INTERVAL;
1947 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1948 2787
1949 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2788 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1950 ev_set_priority (&w->timer, ev_priority (w)); 2789 ev_set_priority (&w->timer, ev_priority (w));
1951 2790
1952#if EV_USE_INOTIFY 2791#if EV_USE_INOTIFY
1953 infy_init (EV_A); 2792 infy_init (EV_A);
1954 2793
1955 if (fs_fd >= 0) 2794 if (fs_fd >= 0)
1956 infy_add (EV_A_ w); 2795 infy_add (EV_A_ w);
1957 else 2796 else
1958#endif 2797#endif
1959 ev_timer_start (EV_A_ &w->timer); 2798 ev_timer_again (EV_A_ &w->timer);
1960 2799
1961 ev_start (EV_A_ (W)w, 1); 2800 ev_start (EV_A_ (W)w, 1);
2801
2802 EV_FREQUENT_CHECK;
1962} 2803}
1963 2804
1964void 2805void
1965ev_stat_stop (EV_P_ ev_stat *w) 2806ev_stat_stop (EV_P_ ev_stat *w)
1966{ 2807{
1967 ev_clear_pending (EV_A_ (W)w); 2808 clear_pending (EV_A_ (W)w);
1968 if (expect_false (!ev_is_active (w))) 2809 if (expect_false (!ev_is_active (w)))
1969 return; 2810 return;
1970 2811
2812 EV_FREQUENT_CHECK;
2813
1971#if EV_USE_INOTIFY 2814#if EV_USE_INOTIFY
1972 infy_del (EV_A_ w); 2815 infy_del (EV_A_ w);
1973#endif 2816#endif
1974 ev_timer_stop (EV_A_ &w->timer); 2817 ev_timer_stop (EV_A_ &w->timer);
1975 2818
1976 ev_stop (EV_A_ (W)w); 2819 ev_stop (EV_A_ (W)w);
1977}
1978#endif
1979 2820
2821 EV_FREQUENT_CHECK;
2822}
2823#endif
2824
2825#if EV_IDLE_ENABLE
1980void 2826void
1981ev_idle_start (EV_P_ ev_idle *w) 2827ev_idle_start (EV_P_ ev_idle *w)
1982{ 2828{
1983 if (expect_false (ev_is_active (w))) 2829 if (expect_false (ev_is_active (w)))
1984 return; 2830 return;
1985 2831
2832 pri_adjust (EV_A_ (W)w);
2833
2834 EV_FREQUENT_CHECK;
2835
2836 {
2837 int active = ++idlecnt [ABSPRI (w)];
2838
2839 ++idleall;
1986 ev_start (EV_A_ (W)w, ++idlecnt); 2840 ev_start (EV_A_ (W)w, active);
2841
1987 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2842 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1988 idles [idlecnt - 1] = w; 2843 idles [ABSPRI (w)][active - 1] = w;
2844 }
2845
2846 EV_FREQUENT_CHECK;
1989} 2847}
1990 2848
1991void 2849void
1992ev_idle_stop (EV_P_ ev_idle *w) 2850ev_idle_stop (EV_P_ ev_idle *w)
1993{ 2851{
1994 ev_clear_pending (EV_A_ (W)w); 2852 clear_pending (EV_A_ (W)w);
1995 if (expect_false (!ev_is_active (w))) 2853 if (expect_false (!ev_is_active (w)))
1996 return; 2854 return;
1997 2855
2856 EV_FREQUENT_CHECK;
2857
1998 { 2858 {
1999 int active = ((W)w)->active; 2859 int active = ev_active (w);
2000 idles [active - 1] = idles [--idlecnt]; 2860
2001 ((W)idles [active - 1])->active = active; 2861 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2862 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2863
2864 ev_stop (EV_A_ (W)w);
2865 --idleall;
2002 } 2866 }
2003 2867
2004 ev_stop (EV_A_ (W)w); 2868 EV_FREQUENT_CHECK;
2005} 2869}
2870#endif
2006 2871
2007void 2872void
2008ev_prepare_start (EV_P_ ev_prepare *w) 2873ev_prepare_start (EV_P_ ev_prepare *w)
2009{ 2874{
2010 if (expect_false (ev_is_active (w))) 2875 if (expect_false (ev_is_active (w)))
2011 return; 2876 return;
2877
2878 EV_FREQUENT_CHECK;
2012 2879
2013 ev_start (EV_A_ (W)w, ++preparecnt); 2880 ev_start (EV_A_ (W)w, ++preparecnt);
2014 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2881 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2015 prepares [preparecnt - 1] = w; 2882 prepares [preparecnt - 1] = w;
2883
2884 EV_FREQUENT_CHECK;
2016} 2885}
2017 2886
2018void 2887void
2019ev_prepare_stop (EV_P_ ev_prepare *w) 2888ev_prepare_stop (EV_P_ ev_prepare *w)
2020{ 2889{
2021 ev_clear_pending (EV_A_ (W)w); 2890 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 2891 if (expect_false (!ev_is_active (w)))
2023 return; 2892 return;
2024 2893
2894 EV_FREQUENT_CHECK;
2895
2025 { 2896 {
2026 int active = ((W)w)->active; 2897 int active = ev_active (w);
2898
2027 prepares [active - 1] = prepares [--preparecnt]; 2899 prepares [active - 1] = prepares [--preparecnt];
2028 ((W)prepares [active - 1])->active = active; 2900 ev_active (prepares [active - 1]) = active;
2029 } 2901 }
2030 2902
2031 ev_stop (EV_A_ (W)w); 2903 ev_stop (EV_A_ (W)w);
2904
2905 EV_FREQUENT_CHECK;
2032} 2906}
2033 2907
2034void 2908void
2035ev_check_start (EV_P_ ev_check *w) 2909ev_check_start (EV_P_ ev_check *w)
2036{ 2910{
2037 if (expect_false (ev_is_active (w))) 2911 if (expect_false (ev_is_active (w)))
2038 return; 2912 return;
2913
2914 EV_FREQUENT_CHECK;
2039 2915
2040 ev_start (EV_A_ (W)w, ++checkcnt); 2916 ev_start (EV_A_ (W)w, ++checkcnt);
2041 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2917 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2042 checks [checkcnt - 1] = w; 2918 checks [checkcnt - 1] = w;
2919
2920 EV_FREQUENT_CHECK;
2043} 2921}
2044 2922
2045void 2923void
2046ev_check_stop (EV_P_ ev_check *w) 2924ev_check_stop (EV_P_ ev_check *w)
2047{ 2925{
2048 ev_clear_pending (EV_A_ (W)w); 2926 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 2927 if (expect_false (!ev_is_active (w)))
2050 return; 2928 return;
2051 2929
2930 EV_FREQUENT_CHECK;
2931
2052 { 2932 {
2053 int active = ((W)w)->active; 2933 int active = ev_active (w);
2934
2054 checks [active - 1] = checks [--checkcnt]; 2935 checks [active - 1] = checks [--checkcnt];
2055 ((W)checks [active - 1])->active = active; 2936 ev_active (checks [active - 1]) = active;
2056 } 2937 }
2057 2938
2058 ev_stop (EV_A_ (W)w); 2939 ev_stop (EV_A_ (W)w);
2940
2941 EV_FREQUENT_CHECK;
2059} 2942}
2060 2943
2061#if EV_EMBED_ENABLE 2944#if EV_EMBED_ENABLE
2062void noinline 2945void noinline
2063ev_embed_sweep (EV_P_ ev_embed *w) 2946ev_embed_sweep (EV_P_ ev_embed *w)
2064{ 2947{
2065 ev_loop (w->loop, EVLOOP_NONBLOCK); 2948 ev_loop (w->other, EVLOOP_NONBLOCK);
2066} 2949}
2067 2950
2068static void 2951static void
2069embed_cb (EV_P_ ev_io *io, int revents) 2952embed_io_cb (EV_P_ ev_io *io, int revents)
2070{ 2953{
2071 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2954 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2072 2955
2073 if (ev_cb (w)) 2956 if (ev_cb (w))
2074 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2957 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2075 else 2958 else
2076 ev_embed_sweep (loop, w); 2959 ev_loop (w->other, EVLOOP_NONBLOCK);
2077} 2960}
2961
2962static void
2963embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2964{
2965 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2966
2967 {
2968 struct ev_loop *loop = w->other;
2969
2970 while (fdchangecnt)
2971 {
2972 fd_reify (EV_A);
2973 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2974 }
2975 }
2976}
2977
2978static void
2979embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2980{
2981 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2982
2983 ev_embed_stop (EV_A_ w);
2984
2985 {
2986 struct ev_loop *loop = w->other;
2987
2988 ev_loop_fork (EV_A);
2989 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2990 }
2991
2992 ev_embed_start (EV_A_ w);
2993}
2994
2995#if 0
2996static void
2997embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2998{
2999 ev_idle_stop (EV_A_ idle);
3000}
3001#endif
2078 3002
2079void 3003void
2080ev_embed_start (EV_P_ ev_embed *w) 3004ev_embed_start (EV_P_ ev_embed *w)
2081{ 3005{
2082 if (expect_false (ev_is_active (w))) 3006 if (expect_false (ev_is_active (w)))
2083 return; 3007 return;
2084 3008
2085 { 3009 {
2086 struct ev_loop *loop = w->loop; 3010 struct ev_loop *loop = w->other;
2087 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3011 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2088 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3012 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2089 } 3013 }
3014
3015 EV_FREQUENT_CHECK;
2090 3016
2091 ev_set_priority (&w->io, ev_priority (w)); 3017 ev_set_priority (&w->io, ev_priority (w));
2092 ev_io_start (EV_A_ &w->io); 3018 ev_io_start (EV_A_ &w->io);
2093 3019
3020 ev_prepare_init (&w->prepare, embed_prepare_cb);
3021 ev_set_priority (&w->prepare, EV_MINPRI);
3022 ev_prepare_start (EV_A_ &w->prepare);
3023
3024 ev_fork_init (&w->fork, embed_fork_cb);
3025 ev_fork_start (EV_A_ &w->fork);
3026
3027 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3028
2094 ev_start (EV_A_ (W)w, 1); 3029 ev_start (EV_A_ (W)w, 1);
3030
3031 EV_FREQUENT_CHECK;
2095} 3032}
2096 3033
2097void 3034void
2098ev_embed_stop (EV_P_ ev_embed *w) 3035ev_embed_stop (EV_P_ ev_embed *w)
2099{ 3036{
2100 ev_clear_pending (EV_A_ (W)w); 3037 clear_pending (EV_A_ (W)w);
2101 if (expect_false (!ev_is_active (w))) 3038 if (expect_false (!ev_is_active (w)))
2102 return; 3039 return;
2103 3040
3041 EV_FREQUENT_CHECK;
3042
2104 ev_io_stop (EV_A_ &w->io); 3043 ev_io_stop (EV_A_ &w->io);
3044 ev_prepare_stop (EV_A_ &w->prepare);
3045 ev_fork_stop (EV_A_ &w->fork);
2105 3046
2106 ev_stop (EV_A_ (W)w); 3047 EV_FREQUENT_CHECK;
2107} 3048}
2108#endif 3049#endif
2109 3050
2110#if EV_FORK_ENABLE 3051#if EV_FORK_ENABLE
2111void 3052void
2112ev_fork_start (EV_P_ ev_fork *w) 3053ev_fork_start (EV_P_ ev_fork *w)
2113{ 3054{
2114 if (expect_false (ev_is_active (w))) 3055 if (expect_false (ev_is_active (w)))
2115 return; 3056 return;
3057
3058 EV_FREQUENT_CHECK;
2116 3059
2117 ev_start (EV_A_ (W)w, ++forkcnt); 3060 ev_start (EV_A_ (W)w, ++forkcnt);
2118 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3061 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2119 forks [forkcnt - 1] = w; 3062 forks [forkcnt - 1] = w;
3063
3064 EV_FREQUENT_CHECK;
2120} 3065}
2121 3066
2122void 3067void
2123ev_fork_stop (EV_P_ ev_fork *w) 3068ev_fork_stop (EV_P_ ev_fork *w)
2124{ 3069{
2125 ev_clear_pending (EV_A_ (W)w); 3070 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 3071 if (expect_false (!ev_is_active (w)))
2127 return; 3072 return;
2128 3073
3074 EV_FREQUENT_CHECK;
3075
2129 { 3076 {
2130 int active = ((W)w)->active; 3077 int active = ev_active (w);
3078
2131 forks [active - 1] = forks [--forkcnt]; 3079 forks [active - 1] = forks [--forkcnt];
2132 ((W)forks [active - 1])->active = active; 3080 ev_active (forks [active - 1]) = active;
2133 } 3081 }
2134 3082
2135 ev_stop (EV_A_ (W)w); 3083 ev_stop (EV_A_ (W)w);
3084
3085 EV_FREQUENT_CHECK;
3086}
3087#endif
3088
3089#if EV_ASYNC_ENABLE
3090void
3091ev_async_start (EV_P_ ev_async *w)
3092{
3093 if (expect_false (ev_is_active (w)))
3094 return;
3095
3096 evpipe_init (EV_A);
3097
3098 EV_FREQUENT_CHECK;
3099
3100 ev_start (EV_A_ (W)w, ++asynccnt);
3101 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3102 asyncs [asynccnt - 1] = w;
3103
3104 EV_FREQUENT_CHECK;
3105}
3106
3107void
3108ev_async_stop (EV_P_ ev_async *w)
3109{
3110 clear_pending (EV_A_ (W)w);
3111 if (expect_false (!ev_is_active (w)))
3112 return;
3113
3114 EV_FREQUENT_CHECK;
3115
3116 {
3117 int active = ev_active (w);
3118
3119 asyncs [active - 1] = asyncs [--asynccnt];
3120 ev_active (asyncs [active - 1]) = active;
3121 }
3122
3123 ev_stop (EV_A_ (W)w);
3124
3125 EV_FREQUENT_CHECK;
3126}
3127
3128void
3129ev_async_send (EV_P_ ev_async *w)
3130{
3131 w->sent = 1;
3132 evpipe_write (EV_A_ &gotasync);
2136} 3133}
2137#endif 3134#endif
2138 3135
2139/*****************************************************************************/ 3136/*****************************************************************************/
2140 3137
2150once_cb (EV_P_ struct ev_once *once, int revents) 3147once_cb (EV_P_ struct ev_once *once, int revents)
2151{ 3148{
2152 void (*cb)(int revents, void *arg) = once->cb; 3149 void (*cb)(int revents, void *arg) = once->cb;
2153 void *arg = once->arg; 3150 void *arg = once->arg;
2154 3151
2155 ev_io_stop (EV_A_ &once->io); 3152 ev_io_stop (EV_A_ &once->io);
2156 ev_timer_stop (EV_A_ &once->to); 3153 ev_timer_stop (EV_A_ &once->to);
2157 ev_free (once); 3154 ev_free (once);
2158 3155
2159 cb (revents, arg); 3156 cb (revents, arg);
2160} 3157}
2161 3158
2162static void 3159static void
2163once_cb_io (EV_P_ ev_io *w, int revents) 3160once_cb_io (EV_P_ ev_io *w, int revents)
2164{ 3161{
2165 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3162 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3163
3164 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2166} 3165}
2167 3166
2168static void 3167static void
2169once_cb_to (EV_P_ ev_timer *w, int revents) 3168once_cb_to (EV_P_ ev_timer *w, int revents)
2170{ 3169{
2171 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3170 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3171
3172 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2172} 3173}
2173 3174
2174void 3175void
2175ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3176ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2176{ 3177{
2198 ev_timer_set (&once->to, timeout, 0.); 3199 ev_timer_set (&once->to, timeout, 0.);
2199 ev_timer_start (EV_A_ &once->to); 3200 ev_timer_start (EV_A_ &once->to);
2200 } 3201 }
2201} 3202}
2202 3203
3204/*****************************************************************************/
3205
3206#if 0
3207void
3208ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3209{
3210 int i, j;
3211 ev_watcher_list *wl, *wn;
3212
3213 if (types & (EV_IO | EV_EMBED))
3214 for (i = 0; i < anfdmax; ++i)
3215 for (wl = anfds [i].head; wl; )
3216 {
3217 wn = wl->next;
3218
3219#if EV_EMBED_ENABLE
3220 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3221 {
3222 if (types & EV_EMBED)
3223 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3224 }
3225 else
3226#endif
3227#if EV_USE_INOTIFY
3228 if (ev_cb ((ev_io *)wl) == infy_cb)
3229 ;
3230 else
3231#endif
3232 if ((ev_io *)wl != &pipeev)
3233 if (types & EV_IO)
3234 cb (EV_A_ EV_IO, wl);
3235
3236 wl = wn;
3237 }
3238
3239 if (types & (EV_TIMER | EV_STAT))
3240 for (i = timercnt + HEAP0; i-- > HEAP0; )
3241#if EV_STAT_ENABLE
3242 /*TODO: timer is not always active*/
3243 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3244 {
3245 if (types & EV_STAT)
3246 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3247 }
3248 else
3249#endif
3250 if (types & EV_TIMER)
3251 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3252
3253#if EV_PERIODIC_ENABLE
3254 if (types & EV_PERIODIC)
3255 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3256 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3257#endif
3258
3259#if EV_IDLE_ENABLE
3260 if (types & EV_IDLE)
3261 for (j = NUMPRI; i--; )
3262 for (i = idlecnt [j]; i--; )
3263 cb (EV_A_ EV_IDLE, idles [j][i]);
3264#endif
3265
3266#if EV_FORK_ENABLE
3267 if (types & EV_FORK)
3268 for (i = forkcnt; i--; )
3269 if (ev_cb (forks [i]) != embed_fork_cb)
3270 cb (EV_A_ EV_FORK, forks [i]);
3271#endif
3272
3273#if EV_ASYNC_ENABLE
3274 if (types & EV_ASYNC)
3275 for (i = asynccnt; i--; )
3276 cb (EV_A_ EV_ASYNC, asyncs [i]);
3277#endif
3278
3279 if (types & EV_PREPARE)
3280 for (i = preparecnt; i--; )
3281#if EV_EMBED_ENABLE
3282 if (ev_cb (prepares [i]) != embed_prepare_cb)
3283#endif
3284 cb (EV_A_ EV_PREPARE, prepares [i]);
3285
3286 if (types & EV_CHECK)
3287 for (i = checkcnt; i--; )
3288 cb (EV_A_ EV_CHECK, checks [i]);
3289
3290 if (types & EV_SIGNAL)
3291 for (i = 0; i < signalmax; ++i)
3292 for (wl = signals [i].head; wl; )
3293 {
3294 wn = wl->next;
3295 cb (EV_A_ EV_SIGNAL, wl);
3296 wl = wn;
3297 }
3298
3299 if (types & EV_CHILD)
3300 for (i = EV_PID_HASHSIZE; i--; )
3301 for (wl = childs [i]; wl; )
3302 {
3303 wn = wl->next;
3304 cb (EV_A_ EV_CHILD, wl);
3305 wl = wn;
3306 }
3307/* EV_STAT 0x00001000 /* stat data changed */
3308/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3309}
3310#endif
3311
3312#if EV_MULTIPLICITY
3313 #include "ev_wrap.h"
3314#endif
3315
2203#ifdef __cplusplus 3316#ifdef __cplusplus
2204} 3317}
2205#endif 3318#endif
2206 3319

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines