ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.158 by root, Thu Nov 29 17:28:13 2007 UTC vs.
Revision 1.289 by root, Sat Jun 6 11:13:16 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
46# endif 67# endif
47# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
49# endif 70# endif
50# else 71# else
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
54# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
56# endif 85# endif
57# endif 86# endif
58 87
59# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 131# else
103# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
104# endif 133# endif
105# endif 134# endif
106 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
107#endif 144#endif
108 145
109#include <math.h> 146#include <math.h>
110#include <stdlib.h> 147#include <stdlib.h>
111#include <fcntl.h> 148#include <fcntl.h>
129#ifndef _WIN32 166#ifndef _WIN32
130# include <sys/time.h> 167# include <sys/time.h>
131# include <sys/wait.h> 168# include <sys/wait.h>
132# include <unistd.h> 169# include <unistd.h>
133#else 170#else
171# include <io.h>
134# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 173# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
138# endif 176# endif
139#endif 177#endif
140 178
141/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
142 188
143#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
144# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
145#endif 195#endif
146 196
147#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
149#endif 207#endif
150 208
151#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
153#endif 211#endif
159# define EV_USE_POLL 1 217# define EV_USE_POLL 1
160# endif 218# endif
161#endif 219#endif
162 220
163#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
164# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
165#endif 227#endif
166 228
167#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
169#endif 231#endif
171#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 234# define EV_USE_PORT 0
173#endif 235#endif
174 236
175#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
176# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
177#endif 243#endif
178 244
179#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 246# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
190# else 256# else
191# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
192# endif 258# endif
193#endif 259#endif
194 260
195/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 288
197#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
200#endif 292#endif
202#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
205#endif 297#endif
206 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
207#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 322# include <winsock.h>
209#endif 323#endif
210 324
211#if !EV_STAT_ENABLE 325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
212# define EV_USE_INOTIFY 0 331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
213#endif 339# endif
214 340int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 341# ifdef __cplusplus
216# include <sys/inotify.h> 342}
343# endif
217#endif 344#endif
218 345
219/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 363
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 367
225#if __GNUC__ >= 3 368#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 371#else
236# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
240#endif 377#endif
241 378
242#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
244 388
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 391
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 392#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 393#define EMPTY2(a,b) /* used to suppress some warnings */
250 394
251typedef ev_watcher *W; 395typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
254 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
256 411
257#ifdef _WIN32 412#ifdef _WIN32
258# include "ev_win32.c" 413# include "ev_win32.c"
259#endif 414#endif
260 415
267{ 422{
268 syserr_cb = cb; 423 syserr_cb = cb;
269} 424}
270 425
271static void noinline 426static void noinline
272syserr (const char *msg) 427ev_syserr (const char *msg)
273{ 428{
274 if (!msg) 429 if (!msg)
275 msg = "(libev) system error"; 430 msg = "(libev) system error";
276 431
277 if (syserr_cb) 432 if (syserr_cb)
281 perror (msg); 436 perror (msg);
282 abort (); 437 abort ();
283 } 438 }
284} 439}
285 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
286static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 457
288void 458void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 460{
291 alloc = cb; 461 alloc = cb;
292} 462}
293 463
294inline_speed void * 464inline_speed void *
295ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
296{ 466{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
298 468
299 if (!ptr && size) 469 if (!ptr && size)
300 { 470 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 472 abort ();
308#define ev_malloc(size) ev_realloc (0, (size)) 478#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 479#define ev_free(ptr) ev_realloc ((ptr), 0)
310 480
311/*****************************************************************************/ 481/*****************************************************************************/
312 482
483/* file descriptor info structure */
313typedef struct 484typedef struct
314{ 485{
315 WL head; 486 WL head;
316 unsigned char events; 487 unsigned char events; /* the events watched for */
488 unsigned char reify; /* flag set when this ANFD needs reification */
489 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 490 unsigned char unused;
491#if EV_USE_EPOLL
492 unsigned int egen; /* generation counter to counter epoll bugs */
493#endif
318#if EV_SELECT_IS_WINSOCKET 494#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 495 SOCKET handle;
320#endif 496#endif
321} ANFD; 497} ANFD;
322 498
499/* stores the pending event set for a given watcher */
323typedef struct 500typedef struct
324{ 501{
325 W w; 502 W w;
326 int events; 503 int events; /* the pending event set for the given watcher */
327} ANPENDING; 504} ANPENDING;
328 505
329#if EV_USE_INOTIFY 506#if EV_USE_INOTIFY
507/* hash table entry per inotify-id */
330typedef struct 508typedef struct
331{ 509{
332 WL head; 510 WL head;
333} ANFS; 511} ANFS;
512#endif
513
514/* Heap Entry */
515#if EV_HEAP_CACHE_AT
516 /* a heap element */
517 typedef struct {
518 ev_tstamp at;
519 WT w;
520 } ANHE;
521
522 #define ANHE_w(he) (he).w /* access watcher, read-write */
523 #define ANHE_at(he) (he).at /* access cached at, read-only */
524 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
525#else
526 /* a heap element */
527 typedef WT ANHE;
528
529 #define ANHE_w(he) (he)
530 #define ANHE_at(he) (he)->at
531 #define ANHE_at_cache(he)
334#endif 532#endif
335 533
336#if EV_MULTIPLICITY 534#if EV_MULTIPLICITY
337 535
338 struct ev_loop 536 struct ev_loop
363 561
364ev_tstamp 562ev_tstamp
365ev_time (void) 563ev_time (void)
366{ 564{
367#if EV_USE_REALTIME 565#if EV_USE_REALTIME
566 if (expect_true (have_realtime))
567 {
368 struct timespec ts; 568 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 569 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 570 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 571 }
572#endif
573
372 struct timeval tv; 574 struct timeval tv;
373 gettimeofday (&tv, 0); 575 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 576 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 577}
377 578
378ev_tstamp inline_size 579inline_size ev_tstamp
379get_clock (void) 580get_clock (void)
380{ 581{
381#if EV_USE_MONOTONIC 582#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 583 if (expect_true (have_monotonic))
383 { 584 {
396{ 597{
397 return ev_rt_now; 598 return ev_rt_now;
398} 599}
399#endif 600#endif
400 601
401#define array_roundsize(type,n) (((n) | 4) & ~3) 602void
603ev_sleep (ev_tstamp delay)
604{
605 if (delay > 0.)
606 {
607#if EV_USE_NANOSLEEP
608 struct timespec ts;
609
610 ts.tv_sec = (time_t)delay;
611 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
612
613 nanosleep (&ts, 0);
614#elif defined(_WIN32)
615 Sleep ((unsigned long)(delay * 1e3));
616#else
617 struct timeval tv;
618
619 tv.tv_sec = (time_t)delay;
620 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
621
622 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
623 /* somehting nto guaranteed by newer posix versions, but guaranteed */
624 /* by older ones */
625 select (0, 0, 0, 0, &tv);
626#endif
627 }
628}
629
630/*****************************************************************************/
631
632#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
633
634/* find a suitable new size for the given array, */
635/* hopefully by rounding to a ncie-to-malloc size */
636inline_size int
637array_nextsize (int elem, int cur, int cnt)
638{
639 int ncur = cur + 1;
640
641 do
642 ncur <<= 1;
643 while (cnt > ncur);
644
645 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
646 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
647 {
648 ncur *= elem;
649 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
650 ncur = ncur - sizeof (void *) * 4;
651 ncur /= elem;
652 }
653
654 return ncur;
655}
656
657static noinline void *
658array_realloc (int elem, void *base, int *cur, int cnt)
659{
660 *cur = array_nextsize (elem, *cur, cnt);
661 return ev_realloc (base, elem * *cur);
662}
663
664#define array_init_zero(base,count) \
665 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 666
403#define array_needsize(type,base,cur,cnt,init) \ 667#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 668 if (expect_false ((cnt) > (cur))) \
405 { \ 669 { \
406 int newcnt = cur; \ 670 int ocur_ = (cur); \
407 do \ 671 (base) = (type *)array_realloc \
408 { \ 672 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 673 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 674 }
417 675
676#if 0
418#define array_slim(type,stem) \ 677#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 678 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 679 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 680 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 681 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 682 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 683 }
684#endif
425 685
426#define array_free(stem, idx) \ 686#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 687 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 688
429/*****************************************************************************/ 689/*****************************************************************************/
690
691/* dummy callback for pending events */
692static void noinline
693pendingcb (EV_P_ ev_prepare *w, int revents)
694{
695}
430 696
431void noinline 697void noinline
432ev_feed_event (EV_P_ void *w, int revents) 698ev_feed_event (EV_P_ void *w, int revents)
433{ 699{
434 W w_ = (W)w; 700 W w_ = (W)w;
701 int pri = ABSPRI (w_);
435 702
436 if (expect_false (w_->pending)) 703 if (expect_false (w_->pending))
704 pendings [pri][w_->pending - 1].events |= revents;
705 else
437 { 706 {
707 w_->pending = ++pendingcnt [pri];
708 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
709 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 710 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 711 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 712}
447 713
448void inline_size 714inline_speed void
715feed_reverse (EV_P_ W w)
716{
717 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
718 rfeeds [rfeedcnt++] = w;
719}
720
721inline_size void
722feed_reverse_done (EV_P_ int revents)
723{
724 do
725 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
726 while (rfeedcnt);
727}
728
729inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 730queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 731{
451 int i; 732 int i;
452 733
453 for (i = 0; i < eventcnt; ++i) 734 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 735 ev_feed_event (EV_A_ events [i], type);
455} 736}
456 737
457/*****************************************************************************/ 738/*****************************************************************************/
458 739
459void inline_size 740inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 741fd_event (EV_P_ int fd, int revents)
474{ 742{
475 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
476 ev_io *w; 744 ev_io *w;
477 745
485} 753}
486 754
487void 755void
488ev_feed_fd_event (EV_P_ int fd, int revents) 756ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 757{
758 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 759 fd_event (EV_A_ fd, revents);
491} 760}
492 761
493void inline_size 762/* make sure the external fd watch events are in-sync */
763/* with the kernel/libev internal state */
764inline_size void
494fd_reify (EV_P) 765fd_reify (EV_P)
495{ 766{
496 int i; 767 int i;
497 768
498 for (i = 0; i < fdchangecnt; ++i) 769 for (i = 0; i < fdchangecnt; ++i)
499 { 770 {
500 int fd = fdchanges [i]; 771 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
502 ev_io *w; 773 ev_io *w;
503 774
504 int events = 0; 775 unsigned char events = 0;
505 776
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 777 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 778 events |= (unsigned char)w->events;
508 779
509#if EV_SELECT_IS_WINSOCKET 780#if EV_SELECT_IS_WINSOCKET
510 if (events) 781 if (events)
511 { 782 {
512 unsigned long argp; 783 unsigned long arg;
784 #ifdef EV_FD_TO_WIN32_HANDLE
785 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
786 #else
513 anfd->handle = _get_osfhandle (fd); 787 anfd->handle = _get_osfhandle (fd);
788 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 789 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 790 }
516#endif 791#endif
517 792
793 {
794 unsigned char o_events = anfd->events;
795 unsigned char o_reify = anfd->reify;
796
518 anfd->reify = 0; 797 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 798 anfd->events = events;
799
800 if (o_events != events || o_reify & EV__IOFDSET)
801 backend_modify (EV_A_ fd, o_events, events);
802 }
522 } 803 }
523 804
524 fdchangecnt = 0; 805 fdchangecnt = 0;
525} 806}
526 807
527void inline_size 808/* something about the given fd changed */
809inline_size void
528fd_change (EV_P_ int fd) 810fd_change (EV_P_ int fd, int flags)
529{ 811{
530 if (expect_false (anfds [fd].reify)) 812 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 813 anfds [fd].reify |= flags;
534 814
815 if (expect_true (!reify))
816 {
535 ++fdchangecnt; 817 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 818 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 819 fdchanges [fdchangecnt - 1] = fd;
820 }
538} 821}
539 822
540void inline_speed 823/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
824inline_speed void
541fd_kill (EV_P_ int fd) 825fd_kill (EV_P_ int fd)
542{ 826{
543 ev_io *w; 827 ev_io *w;
544 828
545 while ((w = (ev_io *)anfds [fd].head)) 829 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 831 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 832 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 833 }
550} 834}
551 835
552int inline_size 836/* check whether the given fd is atcually valid, for error recovery */
837inline_size int
553fd_valid (int fd) 838fd_valid (int fd)
554{ 839{
555#ifdef _WIN32 840#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 841 return _get_osfhandle (fd) != -1;
557#else 842#else
565{ 850{
566 int fd; 851 int fd;
567 852
568 for (fd = 0; fd < anfdmax; ++fd) 853 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 854 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 855 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 856 fd_kill (EV_A_ fd);
572} 857}
573 858
574/* called on ENOMEM in select/poll to kill some fds and retry */ 859/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 860static void noinline
593 878
594 for (fd = 0; fd < anfdmax; ++fd) 879 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 880 if (anfds [fd].events)
596 { 881 {
597 anfds [fd].events = 0; 882 anfds [fd].events = 0;
883 anfds [fd].emask = 0;
598 fd_change (EV_A_ fd); 884 fd_change (EV_A_ fd, EV__IOFDSET | 1);
599 } 885 }
600} 886}
601 887
602/*****************************************************************************/ 888/*****************************************************************************/
603 889
604void inline_speed 890/*
605upheap (WT *heap, int k) 891 * the heap functions want a real array index. array index 0 uis guaranteed to not
606{ 892 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
607 WT w = heap [k]; 893 * the branching factor of the d-tree.
894 */
608 895
609 while (k && heap [k >> 1]->at > w->at) 896/*
610 { 897 * at the moment we allow libev the luxury of two heaps,
611 heap [k] = heap [k >> 1]; 898 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
612 ((W)heap [k])->active = k + 1; 899 * which is more cache-efficient.
613 k >>= 1; 900 * the difference is about 5% with 50000+ watchers.
614 } 901 */
902#if EV_USE_4HEAP
615 903
616 heap [k] = w; 904#define DHEAP 4
617 ((W)heap [k])->active = k + 1; 905#define HEAP0 (DHEAP - 1) /* index of first element in heap */
906#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
907#define UPHEAP_DONE(p,k) ((p) == (k))
618 908
619} 909/* away from the root */
620 910inline_speed void
621void inline_speed
622downheap (WT *heap, int N, int k) 911downheap (ANHE *heap, int N, int k)
623{ 912{
624 WT w = heap [k]; 913 ANHE he = heap [k];
914 ANHE *E = heap + N + HEAP0;
625 915
626 while (k < (N >> 1)) 916 for (;;)
627 { 917 {
628 int j = k << 1; 918 ev_tstamp minat;
919 ANHE *minpos;
920 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
629 921
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 922 /* find minimum child */
923 if (expect_true (pos + DHEAP - 1 < E))
631 ++j; 924 {
632 925 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
633 if (w->at <= heap [j]->at) 926 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
927 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
928 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
929 }
930 else if (pos < E)
931 {
932 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
933 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
934 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
935 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
936 }
937 else
634 break; 938 break;
635 939
940 if (ANHE_at (he) <= minat)
941 break;
942
943 heap [k] = *minpos;
944 ev_active (ANHE_w (*minpos)) = k;
945
946 k = minpos - heap;
947 }
948
949 heap [k] = he;
950 ev_active (ANHE_w (he)) = k;
951}
952
953#else /* 4HEAP */
954
955#define HEAP0 1
956#define HPARENT(k) ((k) >> 1)
957#define UPHEAP_DONE(p,k) (!(p))
958
959/* away from the root */
960inline_speed void
961downheap (ANHE *heap, int N, int k)
962{
963 ANHE he = heap [k];
964
965 for (;;)
966 {
967 int c = k << 1;
968
969 if (c > N + HEAP0 - 1)
970 break;
971
972 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
973 ? 1 : 0;
974
975 if (ANHE_at (he) <= ANHE_at (heap [c]))
976 break;
977
636 heap [k] = heap [j]; 978 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 979 ev_active (ANHE_w (heap [k])) = k;
980
638 k = j; 981 k = c;
639 } 982 }
640 983
641 heap [k] = w; 984 heap [k] = he;
642 ((W)heap [k])->active = k + 1; 985 ev_active (ANHE_w (he)) = k;
643} 986}
987#endif
644 988
645void inline_size 989/* towards the root */
990inline_speed void
991upheap (ANHE *heap, int k)
992{
993 ANHE he = heap [k];
994
995 for (;;)
996 {
997 int p = HPARENT (k);
998
999 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1000 break;
1001
1002 heap [k] = heap [p];
1003 ev_active (ANHE_w (heap [k])) = k;
1004 k = p;
1005 }
1006
1007 heap [k] = he;
1008 ev_active (ANHE_w (he)) = k;
1009}
1010
1011/* move an element suitably so it is in a correct place */
1012inline_size void
646adjustheap (WT *heap, int N, int k) 1013adjustheap (ANHE *heap, int N, int k)
647{ 1014{
1015 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
648 upheap (heap, k); 1016 upheap (heap, k);
1017 else
649 downheap (heap, N, k); 1018 downheap (heap, N, k);
1019}
1020
1021/* rebuild the heap: this function is used only once and executed rarely */
1022inline_size void
1023reheap (ANHE *heap, int N)
1024{
1025 int i;
1026
1027 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1028 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1029 for (i = 0; i < N; ++i)
1030 upheap (heap, i + HEAP0);
650} 1031}
651 1032
652/*****************************************************************************/ 1033/*****************************************************************************/
653 1034
1035/* associate signal watchers to a signal signal */
654typedef struct 1036typedef struct
655{ 1037{
656 WL head; 1038 WL head;
657 sig_atomic_t volatile gotsig; 1039 EV_ATOMIC_T gotsig;
658} ANSIG; 1040} ANSIG;
659 1041
660static ANSIG *signals; 1042static ANSIG *signals;
661static int signalmax; 1043static int signalmax;
662 1044
663static int sigpipe [2]; 1045static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 1046
667void inline_size 1047/*****************************************************************************/
668signals_init (ANSIG *base, int count)
669{
670 while (count--)
671 {
672 base->head = 0;
673 base->gotsig = 0;
674 1048
675 ++base; 1049/* used to prepare libev internal fd's */
676 } 1050/* this is not fork-safe */
677} 1051inline_speed void
678
679static void
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size
731fd_intern (int fd) 1052fd_intern (int fd)
732{ 1053{
733#ifdef _WIN32 1054#ifdef _WIN32
734 int arg = 1; 1055 unsigned long arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1056 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
736#else 1057#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC); 1058 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 1059 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 1060#endif
740} 1061}
741 1062
742static void noinline 1063static void noinline
743siginit (EV_P) 1064evpipe_init (EV_P)
744{ 1065{
1066 if (!ev_is_active (&pipe_w))
1067 {
1068#if EV_USE_EVENTFD
1069 if ((evfd = eventfd (0, 0)) >= 0)
1070 {
1071 evpipe [0] = -1;
1072 fd_intern (evfd);
1073 ev_io_set (&pipe_w, evfd, EV_READ);
1074 }
1075 else
1076#endif
1077 {
1078 while (pipe (evpipe))
1079 ev_syserr ("(libev) error creating signal/async pipe");
1080
745 fd_intern (sigpipe [0]); 1081 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1082 fd_intern (evpipe [1]);
1083 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1084 }
747 1085
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1086 ev_io_start (EV_A_ &pipe_w);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1087 ev_unref (EV_A); /* watcher should not keep loop alive */
1088 }
1089}
1090
1091inline_size void
1092evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1093{
1094 if (!*flag)
1095 {
1096 int old_errno = errno; /* save errno because write might clobber it */
1097
1098 *flag = 1;
1099
1100#if EV_USE_EVENTFD
1101 if (evfd >= 0)
1102 {
1103 uint64_t counter = 1;
1104 write (evfd, &counter, sizeof (uint64_t));
1105 }
1106 else
1107#endif
1108 write (evpipe [1], &old_errno, 1);
1109
1110 errno = old_errno;
1111 }
1112}
1113
1114/* called whenever the libev signal pipe */
1115/* got some events (signal, async) */
1116static void
1117pipecb (EV_P_ ev_io *iow, int revents)
1118{
1119#if EV_USE_EVENTFD
1120 if (evfd >= 0)
1121 {
1122 uint64_t counter;
1123 read (evfd, &counter, sizeof (uint64_t));
1124 }
1125 else
1126#endif
1127 {
1128 char dummy;
1129 read (evpipe [0], &dummy, 1);
1130 }
1131
1132 if (gotsig && ev_is_default_loop (EV_A))
1133 {
1134 int signum;
1135 gotsig = 0;
1136
1137 for (signum = signalmax; signum--; )
1138 if (signals [signum].gotsig)
1139 ev_feed_signal_event (EV_A_ signum + 1);
1140 }
1141
1142#if EV_ASYNC_ENABLE
1143 if (gotasync)
1144 {
1145 int i;
1146 gotasync = 0;
1147
1148 for (i = asynccnt; i--; )
1149 if (asyncs [i]->sent)
1150 {
1151 asyncs [i]->sent = 0;
1152 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1153 }
1154 }
1155#endif
751} 1156}
752 1157
753/*****************************************************************************/ 1158/*****************************************************************************/
754 1159
1160static void
1161ev_sighandler (int signum)
1162{
1163#if EV_MULTIPLICITY
1164 struct ev_loop *loop = &default_loop_struct;
1165#endif
1166
1167#if _WIN32
1168 signal (signum, ev_sighandler);
1169#endif
1170
1171 signals [signum - 1].gotsig = 1;
1172 evpipe_write (EV_A_ &gotsig);
1173}
1174
1175void noinline
1176ev_feed_signal_event (EV_P_ int signum)
1177{
1178 WL w;
1179
1180#if EV_MULTIPLICITY
1181 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1182#endif
1183
1184 --signum;
1185
1186 if (signum < 0 || signum >= signalmax)
1187 return;
1188
1189 signals [signum].gotsig = 0;
1190
1191 for (w = signals [signum].head; w; w = w->next)
1192 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1193}
1194
1195/*****************************************************************************/
1196
755static ev_child *childs [EV_PID_HASHSIZE]; 1197static WL childs [EV_PID_HASHSIZE];
756 1198
757#ifndef _WIN32 1199#ifndef _WIN32
758 1200
759static ev_signal childev; 1201static ev_signal childev;
760 1202
761void inline_speed 1203#ifndef WIFCONTINUED
1204# define WIFCONTINUED(status) 0
1205#endif
1206
1207/* handle a single child status event */
1208inline_speed void
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1209child_reap (EV_P_ int chain, int pid, int status)
763{ 1210{
764 ev_child *w; 1211 ev_child *w;
1212 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1213
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1214 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1215 {
767 if (w->pid == pid || !w->pid) 1216 if ((w->pid == pid || !w->pid)
1217 && (!traced || (w->flags & 1)))
768 { 1218 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1219 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1220 w->rpid = pid;
771 w->rstatus = status; 1221 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1222 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1223 }
1224 }
774} 1225}
775 1226
776#ifndef WCONTINUED 1227#ifndef WCONTINUED
777# define WCONTINUED 0 1228# define WCONTINUED 0
778#endif 1229#endif
779 1230
1231/* called on sigchld etc., calls waitpid */
780static void 1232static void
781childcb (EV_P_ ev_signal *sw, int revents) 1233childcb (EV_P_ ev_signal *sw, int revents)
782{ 1234{
783 int pid, status; 1235 int pid, status;
784 1236
787 if (!WCONTINUED 1239 if (!WCONTINUED
788 || errno != EINVAL 1240 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1241 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1242 return;
791 1243
792 /* make sure we are called again until all childs have been reaped */ 1244 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1245 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1246 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1247
796 child_reap (EV_A_ sw, pid, pid, status); 1248 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1249 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1250 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1251}
800 1252
801#endif 1253#endif
802 1254
803/*****************************************************************************/ 1255/*****************************************************************************/
865 /* kqueue is borked on everything but netbsd apparently */ 1317 /* kqueue is borked on everything but netbsd apparently */
866 /* it usually doesn't work correctly on anything but sockets and pipes */ 1318 /* it usually doesn't work correctly on anything but sockets and pipes */
867 flags &= ~EVBACKEND_KQUEUE; 1319 flags &= ~EVBACKEND_KQUEUE;
868#endif 1320#endif
869#ifdef __APPLE__ 1321#ifdef __APPLE__
870 // flags &= ~EVBACKEND_KQUEUE; for documentation 1322 /* only select works correctly on that "unix-certified" platform */
871 flags &= ~EVBACKEND_POLL; 1323 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1324 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
872#endif 1325#endif
873 1326
874 return flags; 1327 return flags;
875} 1328}
876 1329
877unsigned int 1330unsigned int
878ev_embeddable_backends (void) 1331ev_embeddable_backends (void)
879{ 1332{
880 return EVBACKEND_EPOLL 1333 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1334
882 | EVBACKEND_PORT; 1335 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1336 /* please fix it and tell me how to detect the fix */
1337 flags &= ~EVBACKEND_EPOLL;
1338
1339 return flags;
883} 1340}
884 1341
885unsigned int 1342unsigned int
886ev_backend (EV_P) 1343ev_backend (EV_P)
887{ 1344{
888 return backend; 1345 return backend;
889} 1346}
890 1347
1348unsigned int
1349ev_loop_count (EV_P)
1350{
1351 return loop_count;
1352}
1353
1354void
1355ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1356{
1357 io_blocktime = interval;
1358}
1359
1360void
1361ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1362{
1363 timeout_blocktime = interval;
1364}
1365
1366/* initialise a loop structure, must be zero-initialised */
891static void noinline 1367static void noinline
892loop_init (EV_P_ unsigned int flags) 1368loop_init (EV_P_ unsigned int flags)
893{ 1369{
894 if (!backend) 1370 if (!backend)
895 { 1371 {
1372#if EV_USE_REALTIME
1373 if (!have_realtime)
1374 {
1375 struct timespec ts;
1376
1377 if (!clock_gettime (CLOCK_REALTIME, &ts))
1378 have_realtime = 1;
1379 }
1380#endif
1381
896#if EV_USE_MONOTONIC 1382#if EV_USE_MONOTONIC
1383 if (!have_monotonic)
897 { 1384 {
898 struct timespec ts; 1385 struct timespec ts;
1386
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1387 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1388 have_monotonic = 1;
901 } 1389 }
902#endif 1390#endif
903 1391
904 ev_rt_now = ev_time (); 1392 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1393 mn_now = get_clock ();
906 now_floor = mn_now; 1394 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1395 rtmn_diff = ev_rt_now - mn_now;
1396
1397 io_blocktime = 0.;
1398 timeout_blocktime = 0.;
1399 backend = 0;
1400 backend_fd = -1;
1401 gotasync = 0;
1402#if EV_USE_INOTIFY
1403 fs_fd = -2;
1404#endif
908 1405
909 /* pid check not overridable via env */ 1406 /* pid check not overridable via env */
910#ifndef _WIN32 1407#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1408 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1409 curpid = getpid ();
915 if (!(flags & EVFLAG_NOENV) 1412 if (!(flags & EVFLAG_NOENV)
916 && !enable_secure () 1413 && !enable_secure ()
917 && getenv ("LIBEV_FLAGS")) 1414 && getenv ("LIBEV_FLAGS"))
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1415 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1416
920 if (!(flags & 0x0000ffffUL)) 1417 if (!(flags & 0x0000ffffU))
921 flags |= ev_recommended_backends (); 1418 flags |= ev_recommended_backends ();
922
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY
926 fs_fd = -2;
927#endif
928 1419
929#if EV_USE_PORT 1420#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1421 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1422#endif
932#if EV_USE_KQUEUE 1423#if EV_USE_KQUEUE
940#endif 1431#endif
941#if EV_USE_SELECT 1432#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1433 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1434#endif
944 1435
1436 ev_prepare_init (&pending_w, pendingcb);
1437
945 ev_init (&sigev, sigcb); 1438 ev_init (&pipe_w, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1439 ev_set_priority (&pipe_w, EV_MAXPRI);
947 } 1440 }
948} 1441}
949 1442
1443/* free up a loop structure */
950static void noinline 1444static void noinline
951loop_destroy (EV_P) 1445loop_destroy (EV_P)
952{ 1446{
953 int i; 1447 int i;
1448
1449 if (ev_is_active (&pipe_w))
1450 {
1451 ev_ref (EV_A); /* signal watcher */
1452 ev_io_stop (EV_A_ &pipe_w);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1461 close (evpipe [0]);
1462 close (evpipe [1]);
1463 }
1464 }
954 1465
955#if EV_USE_INOTIFY 1466#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1467 if (fs_fd >= 0)
957 close (fs_fd); 1468 close (fs_fd);
958#endif 1469#endif
975#if EV_USE_SELECT 1486#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1487 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1488#endif
978 1489
979 for (i = NUMPRI; i--; ) 1490 for (i = NUMPRI; i--; )
1491 {
980 array_free (pending, [i]); 1492 array_free (pending, [i]);
1493#if EV_IDLE_ENABLE
1494 array_free (idle, [i]);
1495#endif
1496 }
1497
1498 ev_free (anfds); anfdmax = 0;
981 1499
982 /* have to use the microsoft-never-gets-it-right macro */ 1500 /* have to use the microsoft-never-gets-it-right macro */
1501 array_free (rfeed, EMPTY);
983 array_free (fdchange, EMPTY0); 1502 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1503 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1504#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1505 array_free (periodic, EMPTY);
987#endif 1506#endif
1507#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1508 array_free (fork, EMPTY);
1509#endif
989 array_free (prepare, EMPTY0); 1510 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1511 array_free (check, EMPTY);
1512#if EV_ASYNC_ENABLE
1513 array_free (async, EMPTY);
1514#endif
991 1515
992 backend = 0; 1516 backend = 0;
993} 1517}
994 1518
1519#if EV_USE_INOTIFY
995void inline_size infy_fork (EV_P); 1520inline_size void infy_fork (EV_P);
1521#endif
996 1522
997void inline_size 1523inline_size void
998loop_fork (EV_P) 1524loop_fork (EV_P)
999{ 1525{
1000#if EV_USE_PORT 1526#if EV_USE_PORT
1001 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1527 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1002#endif 1528#endif
1008#endif 1534#endif
1009#if EV_USE_INOTIFY 1535#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1536 infy_fork (EV_A);
1011#endif 1537#endif
1012 1538
1013 if (ev_is_active (&sigev)) 1539 if (ev_is_active (&pipe_w))
1014 { 1540 {
1015 /* default loop */ 1541 /* this "locks" the handlers against writing to the pipe */
1542 /* while we modify the fd vars */
1543 gotsig = 1;
1544#if EV_ASYNC_ENABLE
1545 gotasync = 1;
1546#endif
1016 1547
1017 ev_ref (EV_A); 1548 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1549 ev_io_stop (EV_A_ &pipe_w);
1550
1551#if EV_USE_EVENTFD
1552 if (evfd >= 0)
1553 close (evfd);
1554#endif
1555
1556 if (evpipe [0] >= 0)
1557 {
1019 close (sigpipe [0]); 1558 close (evpipe [0]);
1020 close (sigpipe [1]); 1559 close (evpipe [1]);
1560 }
1021 1561
1022 while (pipe (sigpipe))
1023 syserr ("(libev) error creating pipe");
1024
1025 siginit (EV_A); 1562 evpipe_init (EV_A);
1563 /* now iterate over everything, in case we missed something */
1564 pipecb (EV_A_ &pipe_w, EV_READ);
1026 } 1565 }
1027 1566
1028 postfork = 0; 1567 postfork = 0;
1029} 1568}
1030 1569
1031#if EV_MULTIPLICITY 1570#if EV_MULTIPLICITY
1571
1032struct ev_loop * 1572struct ev_loop *
1033ev_loop_new (unsigned int flags) 1573ev_loop_new (unsigned int flags)
1034{ 1574{
1035 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1575 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1036 1576
1052} 1592}
1053 1593
1054void 1594void
1055ev_loop_fork (EV_P) 1595ev_loop_fork (EV_P)
1056{ 1596{
1057 postfork = 1; 1597 postfork = 1; /* must be in line with ev_default_fork */
1058} 1598}
1059 1599
1600#if EV_VERIFY
1601static void noinline
1602verify_watcher (EV_P_ W w)
1603{
1604 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1605
1606 if (w->pending)
1607 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1608}
1609
1610static void noinline
1611verify_heap (EV_P_ ANHE *heap, int N)
1612{
1613 int i;
1614
1615 for (i = HEAP0; i < N + HEAP0; ++i)
1616 {
1617 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1618 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1619 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1620
1621 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1622 }
1623}
1624
1625static void noinline
1626array_verify (EV_P_ W *ws, int cnt)
1627{
1628 while (cnt--)
1629 {
1630 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1631 verify_watcher (EV_A_ ws [cnt]);
1632 }
1633}
1634#endif
1635
1636void
1637ev_loop_verify (EV_P)
1638{
1639#if EV_VERIFY
1640 int i;
1641 WL w;
1642
1643 assert (activecnt >= -1);
1644
1645 assert (fdchangemax >= fdchangecnt);
1646 for (i = 0; i < fdchangecnt; ++i)
1647 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1648
1649 assert (anfdmax >= 0);
1650 for (i = 0; i < anfdmax; ++i)
1651 for (w = anfds [i].head; w; w = w->next)
1652 {
1653 verify_watcher (EV_A_ (W)w);
1654 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1655 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1656 }
1657
1658 assert (timermax >= timercnt);
1659 verify_heap (EV_A_ timers, timercnt);
1660
1661#if EV_PERIODIC_ENABLE
1662 assert (periodicmax >= periodiccnt);
1663 verify_heap (EV_A_ periodics, periodiccnt);
1664#endif
1665
1666 for (i = NUMPRI; i--; )
1667 {
1668 assert (pendingmax [i] >= pendingcnt [i]);
1669#if EV_IDLE_ENABLE
1670 assert (idleall >= 0);
1671 assert (idlemax [i] >= idlecnt [i]);
1672 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1673#endif
1674 }
1675
1676#if EV_FORK_ENABLE
1677 assert (forkmax >= forkcnt);
1678 array_verify (EV_A_ (W *)forks, forkcnt);
1679#endif
1680
1681#if EV_ASYNC_ENABLE
1682 assert (asyncmax >= asynccnt);
1683 array_verify (EV_A_ (W *)asyncs, asynccnt);
1684#endif
1685
1686 assert (preparemax >= preparecnt);
1687 array_verify (EV_A_ (W *)prepares, preparecnt);
1688
1689 assert (checkmax >= checkcnt);
1690 array_verify (EV_A_ (W *)checks, checkcnt);
1691
1692# if 0
1693 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1694 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1060#endif 1695# endif
1696#endif
1697}
1698
1699#endif /* multiplicity */
1061 1700
1062#if EV_MULTIPLICITY 1701#if EV_MULTIPLICITY
1063struct ev_loop * 1702struct ev_loop *
1064ev_default_loop_init (unsigned int flags) 1703ev_default_loop_init (unsigned int flags)
1065#else 1704#else
1066int 1705int
1067ev_default_loop (unsigned int flags) 1706ev_default_loop (unsigned int flags)
1068#endif 1707#endif
1069{ 1708{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 1709 if (!ev_default_loop_ptr)
1075 { 1710 {
1076#if EV_MULTIPLICITY 1711#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1712 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1078#else 1713#else
1081 1716
1082 loop_init (EV_A_ flags); 1717 loop_init (EV_A_ flags);
1083 1718
1084 if (ev_backend (EV_A)) 1719 if (ev_backend (EV_A))
1085 { 1720 {
1086 siginit (EV_A);
1087
1088#ifndef _WIN32 1721#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 1722 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 1723 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 1724 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1725 ev_unref (EV_A); /* child watcher should not keep loop alive */
1104{ 1737{
1105#if EV_MULTIPLICITY 1738#if EV_MULTIPLICITY
1106 struct ev_loop *loop = ev_default_loop_ptr; 1739 struct ev_loop *loop = ev_default_loop_ptr;
1107#endif 1740#endif
1108 1741
1742 ev_default_loop_ptr = 0;
1743
1109#ifndef _WIN32 1744#ifndef _WIN32
1110 ev_ref (EV_A); /* child watcher */ 1745 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev); 1746 ev_signal_stop (EV_A_ &childev);
1112#endif 1747#endif
1113 1748
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A); 1749 loop_destroy (EV_A);
1121} 1750}
1122 1751
1123void 1752void
1124ev_default_fork (void) 1753ev_default_fork (void)
1125{ 1754{
1126#if EV_MULTIPLICITY 1755#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 1756 struct ev_loop *loop = ev_default_loop_ptr;
1128#endif 1757#endif
1129 1758
1130 if (backend) 1759 postfork = 1; /* must be in line with ev_loop_fork */
1131 postfork = 1;
1132} 1760}
1133 1761
1134/*****************************************************************************/ 1762/*****************************************************************************/
1135 1763
1136int inline_size 1764void
1137any_pending (EV_P) 1765ev_invoke (EV_P_ void *w, int revents)
1138{ 1766{
1139 int pri; 1767 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1768}
1147 1769
1148void inline_speed 1770inline_speed void
1149call_pending (EV_P) 1771call_pending (EV_P)
1150{ 1772{
1151 int pri; 1773 int pri;
1152 1774
1153 for (pri = NUMPRI; pri--; ) 1775 for (pri = NUMPRI; pri--; )
1154 while (pendingcnt [pri]) 1776 while (pendingcnt [pri])
1155 { 1777 {
1156 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1778 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1157 1779
1158 if (expect_true (p->w))
1159 {
1160 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1780 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1781 /* ^ this is no longer true, as pending_w could be here */
1161 1782
1162 p->w->pending = 0; 1783 p->w->pending = 0;
1163 EV_CB_INVOKE (p->w, p->events); 1784 EV_CB_INVOKE (p->w, p->events);
1164 } 1785 EV_FREQUENT_CHECK;
1165 } 1786 }
1166} 1787}
1167 1788
1168void inline_size 1789#if EV_IDLE_ENABLE
1790/* make idle watchers pending. this handles the "call-idle */
1791/* only when higher priorities are idle" logic */
1792inline_size void
1793idle_reify (EV_P)
1794{
1795 if (expect_false (idleall))
1796 {
1797 int pri;
1798
1799 for (pri = NUMPRI; pri--; )
1800 {
1801 if (pendingcnt [pri])
1802 break;
1803
1804 if (idlecnt [pri])
1805 {
1806 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1807 break;
1808 }
1809 }
1810 }
1811}
1812#endif
1813
1814/* make timers pending */
1815inline_size void
1169timers_reify (EV_P) 1816timers_reify (EV_P)
1170{ 1817{
1818 EV_FREQUENT_CHECK;
1819
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 1820 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1172 { 1821 {
1173 ev_timer *w = timers [0]; 1822 do
1174
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176
1177 /* first reschedule or stop timer */
1178 if (w->repeat)
1179 { 1823 {
1824 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1825
1826 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1827
1828 /* first reschedule or stop timer */
1829 if (w->repeat)
1830 {
1831 ev_at (w) += w->repeat;
1832 if (ev_at (w) < mn_now)
1833 ev_at (w) = mn_now;
1834
1180 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1835 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1181 1836
1182 ((WT)w)->at += w->repeat; 1837 ANHE_at_cache (timers [HEAP0]);
1183 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now;
1185
1186 downheap ((WT *)timers, timercnt, 0); 1838 downheap (timers, timercnt, HEAP0);
1839 }
1840 else
1841 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1842
1843 EV_FREQUENT_CHECK;
1844 feed_reverse (EV_A_ (W)w);
1187 } 1845 }
1188 else 1846 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 1847
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1848 feed_reverse_done (EV_A_ EV_TIMEOUT);
1192 } 1849 }
1193} 1850}
1194 1851
1195#if EV_PERIODIC_ENABLE 1852#if EV_PERIODIC_ENABLE
1196void inline_size 1853/* make periodics pending */
1854inline_size void
1197periodics_reify (EV_P) 1855periodics_reify (EV_P)
1198{ 1856{
1857 EV_FREQUENT_CHECK;
1858
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1859 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1200 { 1860 {
1201 ev_periodic *w = periodics [0]; 1861 int feed_count = 0;
1202 1862
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1863 do
1204
1205 /* first reschedule or stop timer */
1206 if (w->reschedule_cb)
1207 { 1864 {
1865 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1866
1867 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1868
1869 /* first reschedule or stop timer */
1870 if (w->reschedule_cb)
1871 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1872 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1873
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1874 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1875
1876 ANHE_at_cache (periodics [HEAP0]);
1210 downheap ((WT *)periodics, periodiccnt, 0); 1877 downheap (periodics, periodiccnt, HEAP0);
1878 }
1879 else if (w->interval)
1880 {
1881 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1882 /* if next trigger time is not sufficiently in the future, put it there */
1883 /* this might happen because of floating point inexactness */
1884 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1885 {
1886 ev_at (w) += w->interval;
1887
1888 /* if interval is unreasonably low we might still have a time in the past */
1889 /* so correct this. this will make the periodic very inexact, but the user */
1890 /* has effectively asked to get triggered more often than possible */
1891 if (ev_at (w) < ev_rt_now)
1892 ev_at (w) = ev_rt_now;
1893 }
1894
1895 ANHE_at_cache (periodics [HEAP0]);
1896 downheap (periodics, periodiccnt, HEAP0);
1897 }
1898 else
1899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1900
1901 EV_FREQUENT_CHECK;
1902 feed_reverse (EV_A_ (W)w);
1211 } 1903 }
1212 else if (w->interval) 1904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1213 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0);
1217 }
1218 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 1905
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1906 feed_reverse_done (EV_A_ EV_PERIODIC);
1222 } 1907 }
1223} 1908}
1224 1909
1910/* simply recalculate all periodics */
1911/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1225static void noinline 1912static void noinline
1226periodics_reschedule (EV_P) 1913periodics_reschedule (EV_P)
1227{ 1914{
1228 int i; 1915 int i;
1229 1916
1230 /* adjust periodics after time jump */ 1917 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 1918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1232 { 1919 {
1233 ev_periodic *w = periodics [i]; 1920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1234 1921
1235 if (w->reschedule_cb) 1922 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 1924 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1925 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1926
1927 ANHE_at_cache (periodics [i]);
1928 }
1929
1930 reheap (periodics, periodiccnt);
1931}
1932#endif
1933
1934/* adjust all timers by a given offset */
1935static void noinline
1936timers_reschedule (EV_P_ ev_tstamp adjust)
1937{
1938 int i;
1939
1940 for (i = 0; i < timercnt; ++i)
1239 } 1941 {
1240 1942 ANHE *he = timers + i + HEAP0;
1241 /* now rebuild the heap */ 1943 ANHE_w (*he)->at += adjust;
1242 for (i = periodiccnt >> 1; i--; ) 1944 ANHE_at_cache (*he);
1243 downheap ((WT *)periodics, periodiccnt, i); 1945 }
1244} 1946}
1245#endif
1246 1947
1247int inline_size 1948/* fetch new monotonic and realtime times from the kernel */
1248time_update_monotonic (EV_P) 1949/* also detetc if there was a timejump, and act accordingly */
1950inline_speed void
1951time_update (EV_P_ ev_tstamp max_block)
1249{ 1952{
1953#if EV_USE_MONOTONIC
1954 if (expect_true (have_monotonic))
1955 {
1956 int i;
1957 ev_tstamp odiff = rtmn_diff;
1958
1250 mn_now = get_clock (); 1959 mn_now = get_clock ();
1251 1960
1961 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1962 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1963 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1964 {
1254 ev_rt_now = rtmn_diff + mn_now; 1965 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1966 return;
1256 } 1967 }
1257 else 1968
1258 {
1259 now_floor = mn_now; 1969 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1970 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1971
1265void inline_size 1972 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1973 * on the choice of "4": one iteration isn't enough,
1267{ 1974 * in case we get preempted during the calls to
1268 int i; 1975 * ev_time and get_clock. a second call is almost guaranteed
1269 1976 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1977 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1978 * in the unlikely event of having been preempted here.
1272 { 1979 */
1273 if (time_update_monotonic (EV_A)) 1980 for (i = 4; --i; )
1274 { 1981 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1982 rtmn_diff = ev_rt_now - mn_now;
1288 1983
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1984 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1290 return; /* all is well */ 1985 return; /* all is well */
1291 1986
1292 ev_rt_now = ev_time (); 1987 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1988 mn_now = get_clock ();
1294 now_floor = mn_now; 1989 now_floor = mn_now;
1295 } 1990 }
1296 1991
1992 /* no timer adjustment, as the monotonic clock doesn't jump */
1993 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297# if EV_PERIODIC_ENABLE 1994# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1995 periodics_reschedule (EV_A);
1299# endif 1996# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1997 }
1304 else 1998 else
1305#endif 1999#endif
1306 { 2000 {
1307 ev_rt_now = ev_time (); 2001 ev_rt_now = ev_time ();
1308 2002
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2003 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 2004 {
2005 /* adjust timers. this is easy, as the offset is the same for all of them */
2006 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1311#if EV_PERIODIC_ENABLE 2007#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 2008 periodics_reschedule (EV_A);
1313#endif 2009#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 2010 }
1319 2011
1320 mn_now = ev_rt_now; 2012 mn_now = ev_rt_now;
1321 } 2013 }
1322} 2014}
1323 2015
1324void
1325ev_ref (EV_P)
1326{
1327 ++activecnt;
1328}
1329
1330void
1331ev_unref (EV_P)
1332{
1333 --activecnt;
1334}
1335
1336static int loop_done; 2016static int loop_done;
1337 2017
1338void 2018void
1339ev_loop (EV_P_ int flags) 2019ev_loop (EV_P_ int flags)
1340{ 2020{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2021 loop_done = EVUNLOOP_CANCEL;
1342 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL;
1344 2022
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2023 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 2024
1347 while (activecnt) 2025 do
1348 { 2026 {
2027#if EV_VERIFY >= 2
2028 ev_loop_verify (EV_A);
2029#endif
2030
1349#ifndef _WIN32 2031#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 2032 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 2033 if (expect_false (getpid () != curpid))
1352 { 2034 {
1353 curpid = getpid (); 2035 curpid = getpid ();
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2045 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 2046 call_pending (EV_A);
1365 } 2047 }
1366#endif 2048#endif
1367 2049
1368 /* queue check watchers (and execute them) */ 2050 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 2051 if (expect_false (preparecnt))
1370 { 2052 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2053 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 2054 call_pending (EV_A);
1373 } 2055 }
1379 /* update fd-related kernel structures */ 2061 /* update fd-related kernel structures */
1380 fd_reify (EV_A); 2062 fd_reify (EV_A);
1381 2063
1382 /* calculate blocking time */ 2064 /* calculate blocking time */
1383 { 2065 {
1384 ev_tstamp block; 2066 ev_tstamp waittime = 0.;
2067 ev_tstamp sleeptime = 0.;
1385 2068
1386 if (flags & EVLOOP_NONBLOCK || idlecnt) 2069 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1387 block = 0.; /* do not block at all */
1388 else
1389 { 2070 {
1390 /* update time to cancel out callback processing overhead */ 2071 /* update time to cancel out callback processing overhead */
1391#if EV_USE_MONOTONIC
1392 if (expect_true (have_monotonic))
1393 time_update_monotonic (EV_A); 2072 time_update (EV_A_ 1e100);
1394 else
1395#endif
1396 {
1397 ev_rt_now = ev_time ();
1398 mn_now = ev_rt_now;
1399 }
1400 2073
1401 block = MAX_BLOCKTIME; 2074 waittime = MAX_BLOCKTIME;
1402 2075
1403 if (timercnt) 2076 if (timercnt)
1404 { 2077 {
1405 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2078 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1406 if (block > to) block = to; 2079 if (waittime > to) waittime = to;
1407 } 2080 }
1408 2081
1409#if EV_PERIODIC_ENABLE 2082#if EV_PERIODIC_ENABLE
1410 if (periodiccnt) 2083 if (periodiccnt)
1411 { 2084 {
1412 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2085 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1413 if (block > to) block = to; 2086 if (waittime > to) waittime = to;
1414 } 2087 }
1415#endif 2088#endif
1416 2089
1417 if (expect_false (block < 0.)) block = 0.; 2090 if (expect_false (waittime < timeout_blocktime))
2091 waittime = timeout_blocktime;
2092
2093 sleeptime = waittime - backend_fudge;
2094
2095 if (expect_true (sleeptime > io_blocktime))
2096 sleeptime = io_blocktime;
2097
2098 if (sleeptime)
2099 {
2100 ev_sleep (sleeptime);
2101 waittime -= sleeptime;
2102 }
1418 } 2103 }
1419 2104
2105 ++loop_count;
1420 backend_poll (EV_A_ block); 2106 backend_poll (EV_A_ waittime);
2107
2108 /* update ev_rt_now, do magic */
2109 time_update (EV_A_ waittime + sleeptime);
1421 } 2110 }
1422
1423 /* update ev_rt_now, do magic */
1424 time_update (EV_A);
1425 2111
1426 /* queue pending timers and reschedule them */ 2112 /* queue pending timers and reschedule them */
1427 timers_reify (EV_A); /* relative timers called last */ 2113 timers_reify (EV_A); /* relative timers called last */
1428#if EV_PERIODIC_ENABLE 2114#if EV_PERIODIC_ENABLE
1429 periodics_reify (EV_A); /* absolute timers called first */ 2115 periodics_reify (EV_A); /* absolute timers called first */
1430#endif 2116#endif
1431 2117
2118#if EV_IDLE_ENABLE
1432 /* queue idle watchers unless other events are pending */ 2119 /* queue idle watchers unless other events are pending */
1433 if (idlecnt && !any_pending (EV_A)) 2120 idle_reify (EV_A);
1434 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2121#endif
1435 2122
1436 /* queue check watchers, to be executed first */ 2123 /* queue check watchers, to be executed first */
1437 if (expect_false (checkcnt)) 2124 if (expect_false (checkcnt))
1438 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2125 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1439 2126
1440 call_pending (EV_A); 2127 call_pending (EV_A);
1441
1442 if (expect_false (loop_done))
1443 break;
1444 } 2128 }
2129 while (expect_true (
2130 activecnt
2131 && !loop_done
2132 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2133 ));
1445 2134
1446 if (loop_done == EVUNLOOP_ONE) 2135 if (loop_done == EVUNLOOP_ONE)
1447 loop_done = EVUNLOOP_CANCEL; 2136 loop_done = EVUNLOOP_CANCEL;
1448} 2137}
1449 2138
1451ev_unloop (EV_P_ int how) 2140ev_unloop (EV_P_ int how)
1452{ 2141{
1453 loop_done = how; 2142 loop_done = how;
1454} 2143}
1455 2144
2145void
2146ev_ref (EV_P)
2147{
2148 ++activecnt;
2149}
2150
2151void
2152ev_unref (EV_P)
2153{
2154 --activecnt;
2155}
2156
2157void
2158ev_now_update (EV_P)
2159{
2160 time_update (EV_A_ 1e100);
2161}
2162
2163void
2164ev_suspend (EV_P)
2165{
2166 ev_now_update (EV_A);
2167}
2168
2169void
2170ev_resume (EV_P)
2171{
2172 ev_tstamp mn_prev = mn_now;
2173
2174 ev_now_update (EV_A);
2175 timers_reschedule (EV_A_ mn_now - mn_prev);
2176#if EV_PERIODIC_ENABLE
2177 /* TODO: really do this? */
2178 periodics_reschedule (EV_A);
2179#endif
2180}
2181
1456/*****************************************************************************/ 2182/*****************************************************************************/
2183/* singly-linked list management, used when the expected list length is short */
1457 2184
1458void inline_size 2185inline_size void
1459wlist_add (WL *head, WL elem) 2186wlist_add (WL *head, WL elem)
1460{ 2187{
1461 elem->next = *head; 2188 elem->next = *head;
1462 *head = elem; 2189 *head = elem;
1463} 2190}
1464 2191
1465void inline_size 2192inline_size void
1466wlist_del (WL *head, WL elem) 2193wlist_del (WL *head, WL elem)
1467{ 2194{
1468 while (*head) 2195 while (*head)
1469 { 2196 {
1470 if (*head == elem) 2197 if (*head == elem)
1475 2202
1476 head = &(*head)->next; 2203 head = &(*head)->next;
1477 } 2204 }
1478} 2205}
1479 2206
1480void inline_speed 2207/* internal, faster, version of ev_clear_pending */
2208inline_speed void
1481ev_clear_pending (EV_P_ W w) 2209clear_pending (EV_P_ W w)
1482{ 2210{
1483 if (w->pending) 2211 if (w->pending)
1484 { 2212 {
1485 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2213 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1486 w->pending = 0; 2214 w->pending = 0;
1487 } 2215 }
1488} 2216}
1489 2217
1490void inline_speed 2218int
2219ev_clear_pending (EV_P_ void *w)
2220{
2221 W w_ = (W)w;
2222 int pending = w_->pending;
2223
2224 if (expect_true (pending))
2225 {
2226 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2227 p->w = (W)&pending_w;
2228 w_->pending = 0;
2229 return p->events;
2230 }
2231 else
2232 return 0;
2233}
2234
2235inline_size void
2236pri_adjust (EV_P_ W w)
2237{
2238 int pri = w->priority;
2239 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2240 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2241 w->priority = pri;
2242}
2243
2244inline_speed void
1491ev_start (EV_P_ W w, int active) 2245ev_start (EV_P_ W w, int active)
1492{ 2246{
1493 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2247 pri_adjust (EV_A_ w);
1494 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1495
1496 w->active = active; 2248 w->active = active;
1497 ev_ref (EV_A); 2249 ev_ref (EV_A);
1498} 2250}
1499 2251
1500void inline_size 2252inline_size void
1501ev_stop (EV_P_ W w) 2253ev_stop (EV_P_ W w)
1502{ 2254{
1503 ev_unref (EV_A); 2255 ev_unref (EV_A);
1504 w->active = 0; 2256 w->active = 0;
1505} 2257}
1506 2258
1507/*****************************************************************************/ 2259/*****************************************************************************/
1508 2260
1509void 2261void noinline
1510ev_io_start (EV_P_ ev_io *w) 2262ev_io_start (EV_P_ ev_io *w)
1511{ 2263{
1512 int fd = w->fd; 2264 int fd = w->fd;
1513 2265
1514 if (expect_false (ev_is_active (w))) 2266 if (expect_false (ev_is_active (w)))
1515 return; 2267 return;
1516 2268
1517 assert (("ev_io_start called with negative fd", fd >= 0)); 2269 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2270 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2271
2272 EV_FREQUENT_CHECK;
1518 2273
1519 ev_start (EV_A_ (W)w, 1); 2274 ev_start (EV_A_ (W)w, 1);
1520 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2275 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1521 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2276 wlist_add (&anfds[fd].head, (WL)w);
1522 2277
1523 fd_change (EV_A_ fd); 2278 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1524} 2279 w->events &= ~EV__IOFDSET;
1525 2280
1526void 2281 EV_FREQUENT_CHECK;
2282}
2283
2284void noinline
1527ev_io_stop (EV_P_ ev_io *w) 2285ev_io_stop (EV_P_ ev_io *w)
1528{ 2286{
1529 ev_clear_pending (EV_A_ (W)w); 2287 clear_pending (EV_A_ (W)w);
1530 if (expect_false (!ev_is_active (w))) 2288 if (expect_false (!ev_is_active (w)))
1531 return; 2289 return;
1532 2290
1533 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2291 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1534 2292
2293 EV_FREQUENT_CHECK;
2294
1535 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2295 wlist_del (&anfds[w->fd].head, (WL)w);
1536 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1537 2297
1538 fd_change (EV_A_ w->fd); 2298 fd_change (EV_A_ w->fd, 1);
1539}
1540 2299
1541void 2300 EV_FREQUENT_CHECK;
2301}
2302
2303void noinline
1542ev_timer_start (EV_P_ ev_timer *w) 2304ev_timer_start (EV_P_ ev_timer *w)
1543{ 2305{
1544 if (expect_false (ev_is_active (w))) 2306 if (expect_false (ev_is_active (w)))
1545 return; 2307 return;
1546 2308
1547 ((WT)w)->at += mn_now; 2309 ev_at (w) += mn_now;
1548 2310
1549 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2311 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1550 2312
2313 EV_FREQUENT_CHECK;
2314
2315 ++timercnt;
1551 ev_start (EV_A_ (W)w, ++timercnt); 2316 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1552 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2317 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1553 timers [timercnt - 1] = w; 2318 ANHE_w (timers [ev_active (w)]) = (WT)w;
1554 upheap ((WT *)timers, timercnt - 1); 2319 ANHE_at_cache (timers [ev_active (w)]);
2320 upheap (timers, ev_active (w));
1555 2321
2322 EV_FREQUENT_CHECK;
2323
1556 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2324 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1557} 2325}
1558 2326
1559void 2327void noinline
1560ev_timer_stop (EV_P_ ev_timer *w) 2328ev_timer_stop (EV_P_ ev_timer *w)
1561{ 2329{
1562 ev_clear_pending (EV_A_ (W)w); 2330 clear_pending (EV_A_ (W)w);
1563 if (expect_false (!ev_is_active (w))) 2331 if (expect_false (!ev_is_active (w)))
1564 return; 2332 return;
1565 2333
1566 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2334 EV_FREQUENT_CHECK;
1567 2335
1568 { 2336 {
1569 int active = ((W)w)->active; 2337 int active = ev_active (w);
1570 2338
2339 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2340
2341 --timercnt;
2342
1571 if (expect_true (--active < --timercnt)) 2343 if (expect_true (active < timercnt + HEAP0))
1572 { 2344 {
1573 timers [active] = timers [timercnt]; 2345 timers [active] = timers [timercnt + HEAP0];
1574 adjustheap ((WT *)timers, timercnt, active); 2346 adjustheap (timers, timercnt, active);
1575 } 2347 }
1576 } 2348 }
1577 2349
1578 ((WT)w)->at -= mn_now; 2350 EV_FREQUENT_CHECK;
2351
2352 ev_at (w) -= mn_now;
1579 2353
1580 ev_stop (EV_A_ (W)w); 2354 ev_stop (EV_A_ (W)w);
1581} 2355}
1582 2356
1583void 2357void noinline
1584ev_timer_again (EV_P_ ev_timer *w) 2358ev_timer_again (EV_P_ ev_timer *w)
1585{ 2359{
2360 EV_FREQUENT_CHECK;
2361
1586 if (ev_is_active (w)) 2362 if (ev_is_active (w))
1587 { 2363 {
1588 if (w->repeat) 2364 if (w->repeat)
1589 { 2365 {
1590 ((WT)w)->at = mn_now + w->repeat; 2366 ev_at (w) = mn_now + w->repeat;
2367 ANHE_at_cache (timers [ev_active (w)]);
1591 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2368 adjustheap (timers, timercnt, ev_active (w));
1592 } 2369 }
1593 else 2370 else
1594 ev_timer_stop (EV_A_ w); 2371 ev_timer_stop (EV_A_ w);
1595 } 2372 }
1596 else if (w->repeat) 2373 else if (w->repeat)
1597 { 2374 {
1598 w->at = w->repeat; 2375 ev_at (w) = w->repeat;
1599 ev_timer_start (EV_A_ w); 2376 ev_timer_start (EV_A_ w);
1600 } 2377 }
2378
2379 EV_FREQUENT_CHECK;
1601} 2380}
1602 2381
1603#if EV_PERIODIC_ENABLE 2382#if EV_PERIODIC_ENABLE
1604void 2383void noinline
1605ev_periodic_start (EV_P_ ev_periodic *w) 2384ev_periodic_start (EV_P_ ev_periodic *w)
1606{ 2385{
1607 if (expect_false (ev_is_active (w))) 2386 if (expect_false (ev_is_active (w)))
1608 return; 2387 return;
1609 2388
1610 if (w->reschedule_cb) 2389 if (w->reschedule_cb)
1611 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2390 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1612 else if (w->interval) 2391 else if (w->interval)
1613 { 2392 {
1614 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2393 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1615 /* this formula differs from the one in periodic_reify because we do not always round up */ 2394 /* this formula differs from the one in periodic_reify because we do not always round up */
1616 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2395 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1617 } 2396 }
2397 else
2398 ev_at (w) = w->offset;
1618 2399
2400 EV_FREQUENT_CHECK;
2401
2402 ++periodiccnt;
1619 ev_start (EV_A_ (W)w, ++periodiccnt); 2403 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1620 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2404 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1621 periodics [periodiccnt - 1] = w; 2405 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1622 upheap ((WT *)periodics, periodiccnt - 1); 2406 ANHE_at_cache (periodics [ev_active (w)]);
2407 upheap (periodics, ev_active (w));
1623 2408
2409 EV_FREQUENT_CHECK;
2410
1624 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2411 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1625} 2412}
1626 2413
1627void 2414void noinline
1628ev_periodic_stop (EV_P_ ev_periodic *w) 2415ev_periodic_stop (EV_P_ ev_periodic *w)
1629{ 2416{
1630 ev_clear_pending (EV_A_ (W)w); 2417 clear_pending (EV_A_ (W)w);
1631 if (expect_false (!ev_is_active (w))) 2418 if (expect_false (!ev_is_active (w)))
1632 return; 2419 return;
1633 2420
1634 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2421 EV_FREQUENT_CHECK;
1635 2422
1636 { 2423 {
1637 int active = ((W)w)->active; 2424 int active = ev_active (w);
1638 2425
2426 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2427
2428 --periodiccnt;
2429
1639 if (expect_true (--active < --periodiccnt)) 2430 if (expect_true (active < periodiccnt + HEAP0))
1640 { 2431 {
1641 periodics [active] = periodics [periodiccnt]; 2432 periodics [active] = periodics [periodiccnt + HEAP0];
1642 adjustheap ((WT *)periodics, periodiccnt, active); 2433 adjustheap (periodics, periodiccnt, active);
1643 } 2434 }
1644 } 2435 }
1645 2436
2437 EV_FREQUENT_CHECK;
2438
1646 ev_stop (EV_A_ (W)w); 2439 ev_stop (EV_A_ (W)w);
1647} 2440}
1648 2441
1649void 2442void noinline
1650ev_periodic_again (EV_P_ ev_periodic *w) 2443ev_periodic_again (EV_P_ ev_periodic *w)
1651{ 2444{
1652 /* TODO: use adjustheap and recalculation */ 2445 /* TODO: use adjustheap and recalculation */
1653 ev_periodic_stop (EV_A_ w); 2446 ev_periodic_stop (EV_A_ w);
1654 ev_periodic_start (EV_A_ w); 2447 ev_periodic_start (EV_A_ w);
1657 2450
1658#ifndef SA_RESTART 2451#ifndef SA_RESTART
1659# define SA_RESTART 0 2452# define SA_RESTART 0
1660#endif 2453#endif
1661 2454
1662void 2455void noinline
1663ev_signal_start (EV_P_ ev_signal *w) 2456ev_signal_start (EV_P_ ev_signal *w)
1664{ 2457{
1665#if EV_MULTIPLICITY 2458#if EV_MULTIPLICITY
1666 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2459 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1667#endif 2460#endif
1668 if (expect_false (ev_is_active (w))) 2461 if (expect_false (ev_is_active (w)))
1669 return; 2462 return;
1670 2463
1671 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2464 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2465
2466 evpipe_init (EV_A);
2467
2468 EV_FREQUENT_CHECK;
2469
2470 {
2471#ifndef _WIN32
2472 sigset_t full, prev;
2473 sigfillset (&full);
2474 sigprocmask (SIG_SETMASK, &full, &prev);
2475#endif
2476
2477 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2478
2479#ifndef _WIN32
2480 sigprocmask (SIG_SETMASK, &prev, 0);
2481#endif
2482 }
1672 2483
1673 ev_start (EV_A_ (W)w, 1); 2484 ev_start (EV_A_ (W)w, 1);
1674 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1675 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2485 wlist_add (&signals [w->signum - 1].head, (WL)w);
1676 2486
1677 if (!((WL)w)->next) 2487 if (!((WL)w)->next)
1678 { 2488 {
1679#if _WIN32 2489#if _WIN32
1680 signal (w->signum, sighandler); 2490 signal (w->signum, ev_sighandler);
1681#else 2491#else
1682 struct sigaction sa; 2492 struct sigaction sa;
1683 sa.sa_handler = sighandler; 2493 sa.sa_handler = ev_sighandler;
1684 sigfillset (&sa.sa_mask); 2494 sigfillset (&sa.sa_mask);
1685 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2495 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1686 sigaction (w->signum, &sa, 0); 2496 sigaction (w->signum, &sa, 0);
1687#endif 2497#endif
1688 } 2498 }
1689}
1690 2499
1691void 2500 EV_FREQUENT_CHECK;
2501}
2502
2503void noinline
1692ev_signal_stop (EV_P_ ev_signal *w) 2504ev_signal_stop (EV_P_ ev_signal *w)
1693{ 2505{
1694 ev_clear_pending (EV_A_ (W)w); 2506 clear_pending (EV_A_ (W)w);
1695 if (expect_false (!ev_is_active (w))) 2507 if (expect_false (!ev_is_active (w)))
1696 return; 2508 return;
1697 2509
2510 EV_FREQUENT_CHECK;
2511
1698 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2512 wlist_del (&signals [w->signum - 1].head, (WL)w);
1699 ev_stop (EV_A_ (W)w); 2513 ev_stop (EV_A_ (W)w);
1700 2514
1701 if (!signals [w->signum - 1].head) 2515 if (!signals [w->signum - 1].head)
1702 signal (w->signum, SIG_DFL); 2516 signal (w->signum, SIG_DFL);
2517
2518 EV_FREQUENT_CHECK;
1703} 2519}
1704 2520
1705void 2521void
1706ev_child_start (EV_P_ ev_child *w) 2522ev_child_start (EV_P_ ev_child *w)
1707{ 2523{
1708#if EV_MULTIPLICITY 2524#if EV_MULTIPLICITY
1709 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2525 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1710#endif 2526#endif
1711 if (expect_false (ev_is_active (w))) 2527 if (expect_false (ev_is_active (w)))
1712 return; 2528 return;
1713 2529
2530 EV_FREQUENT_CHECK;
2531
1714 ev_start (EV_A_ (W)w, 1); 2532 ev_start (EV_A_ (W)w, 1);
1715 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2533 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2534
2535 EV_FREQUENT_CHECK;
1716} 2536}
1717 2537
1718void 2538void
1719ev_child_stop (EV_P_ ev_child *w) 2539ev_child_stop (EV_P_ ev_child *w)
1720{ 2540{
1721 ev_clear_pending (EV_A_ (W)w); 2541 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 2542 if (expect_false (!ev_is_active (w)))
1723 return; 2543 return;
1724 2544
2545 EV_FREQUENT_CHECK;
2546
1725 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2547 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1726 ev_stop (EV_A_ (W)w); 2548 ev_stop (EV_A_ (W)w);
2549
2550 EV_FREQUENT_CHECK;
1727} 2551}
1728 2552
1729#if EV_STAT_ENABLE 2553#if EV_STAT_ENABLE
1730 2554
1731# ifdef _WIN32 2555# ifdef _WIN32
1732# undef lstat 2556# undef lstat
1733# define lstat(a,b) _stati64 (a,b) 2557# define lstat(a,b) _stati64 (a,b)
1734# endif 2558# endif
1735 2559
1736#define DEF_STAT_INTERVAL 5.0074891 2560#define DEF_STAT_INTERVAL 5.0074891
2561#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1737#define MIN_STAT_INTERVAL 0.1074891 2562#define MIN_STAT_INTERVAL 0.1074891
1738 2563
1739static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2564static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1740 2565
1741#if EV_USE_INOTIFY 2566#if EV_USE_INOTIFY
1742# define EV_INOTIFY_BUFSIZE 8192 2567# define EV_INOTIFY_BUFSIZE 8192
1746{ 2571{
1747 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2572 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1748 2573
1749 if (w->wd < 0) 2574 if (w->wd < 0)
1750 { 2575 {
2576 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1751 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2577 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1752 2578
1753 /* monitor some parent directory for speedup hints */ 2579 /* monitor some parent directory for speedup hints */
2580 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2581 /* but an efficiency issue only */
1754 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2582 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1755 { 2583 {
1756 char path [4096]; 2584 char path [4096];
1757 strcpy (path, w->path); 2585 strcpy (path, w->path);
1758 2586
1761 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2589 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1762 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2590 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1763 2591
1764 char *pend = strrchr (path, '/'); 2592 char *pend = strrchr (path, '/');
1765 2593
1766 if (!pend) 2594 if (!pend || pend == path)
1767 break; /* whoops, no '/', complain to your admin */ 2595 break;
1768 2596
1769 *pend = 0; 2597 *pend = 0;
1770 w->wd = inotify_add_watch (fs_fd, path, mask); 2598 w->wd = inotify_add_watch (fs_fd, path, mask);
1771 } 2599 }
1772 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2600 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1773 } 2601 }
1774 } 2602 }
1775 else
1776 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1777 2603
1778 if (w->wd >= 0) 2604 if (w->wd >= 0)
2605 {
1779 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2606 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2607
2608 /* now local changes will be tracked by inotify, but remote changes won't */
2609 /* unless the filesystem it known to be local, we therefore still poll */
2610 /* also do poll on <2.6.25, but with normal frequency */
2611 struct statfs sfs;
2612
2613 if (fs_2625 && !statfs (w->path, &sfs))
2614 if (sfs.f_type == 0x1373 /* devfs */
2615 || sfs.f_type == 0xEF53 /* ext2/3 */
2616 || sfs.f_type == 0x3153464a /* jfs */
2617 || sfs.f_type == 0x52654973 /* reiser3 */
2618 || sfs.f_type == 0x01021994 /* tempfs */
2619 || sfs.f_type == 0x58465342 /* xfs */)
2620 return;
2621
2622 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2623 ev_timer_again (EV_A_ &w->timer);
2624 }
1780} 2625}
1781 2626
1782static void noinline 2627static void noinline
1783infy_del (EV_P_ ev_stat *w) 2628infy_del (EV_P_ ev_stat *w)
1784{ 2629{
1798 2643
1799static void noinline 2644static void noinline
1800infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2645infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1801{ 2646{
1802 if (slot < 0) 2647 if (slot < 0)
1803 /* overflow, need to check for all hahs slots */ 2648 /* overflow, need to check for all hash slots */
1804 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2649 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1805 infy_wd (EV_A_ slot, wd, ev); 2650 infy_wd (EV_A_ slot, wd, ev);
1806 else 2651 else
1807 { 2652 {
1808 WL w_; 2653 WL w_;
1814 2659
1815 if (w->wd == wd || wd == -1) 2660 if (w->wd == wd || wd == -1)
1816 { 2661 {
1817 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2662 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1818 { 2663 {
2664 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1819 w->wd = -1; 2665 w->wd = -1;
1820 infy_add (EV_A_ w); /* re-add, no matter what */ 2666 infy_add (EV_A_ w); /* re-add, no matter what */
1821 } 2667 }
1822 2668
1823 stat_timer_cb (EV_A_ &w->timer, 0); 2669 stat_timer_cb (EV_A_ &w->timer, 0);
1836 2682
1837 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2683 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1838 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2684 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1839} 2685}
1840 2686
1841void inline_size 2687inline_size void
2688check_2625 (EV_P)
2689{
2690 /* kernels < 2.6.25 are borked
2691 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2692 */
2693 struct utsname buf;
2694 int major, minor, micro;
2695
2696 if (uname (&buf))
2697 return;
2698
2699 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2700 return;
2701
2702 if (major < 2
2703 || (major == 2 && minor < 6)
2704 || (major == 2 && minor == 6 && micro < 25))
2705 return;
2706
2707 fs_2625 = 1;
2708}
2709
2710inline_size void
1842infy_init (EV_P) 2711infy_init (EV_P)
1843{ 2712{
1844 if (fs_fd != -2) 2713 if (fs_fd != -2)
1845 return; 2714 return;
2715
2716 fs_fd = -1;
2717
2718 check_2625 (EV_A);
1846 2719
1847 fs_fd = inotify_init (); 2720 fs_fd = inotify_init ();
1848 2721
1849 if (fs_fd >= 0) 2722 if (fs_fd >= 0)
1850 { 2723 {
1852 ev_set_priority (&fs_w, EV_MAXPRI); 2725 ev_set_priority (&fs_w, EV_MAXPRI);
1853 ev_io_start (EV_A_ &fs_w); 2726 ev_io_start (EV_A_ &fs_w);
1854 } 2727 }
1855} 2728}
1856 2729
1857void inline_size 2730inline_size void
1858infy_fork (EV_P) 2731infy_fork (EV_P)
1859{ 2732{
1860 int slot; 2733 int slot;
1861 2734
1862 if (fs_fd < 0) 2735 if (fs_fd < 0)
1878 w->wd = -1; 2751 w->wd = -1;
1879 2752
1880 if (fs_fd >= 0) 2753 if (fs_fd >= 0)
1881 infy_add (EV_A_ w); /* re-add, no matter what */ 2754 infy_add (EV_A_ w); /* re-add, no matter what */
1882 else 2755 else
1883 ev_timer_start (EV_A_ &w->timer); 2756 ev_timer_again (EV_A_ &w->timer);
1884 } 2757 }
1885
1886 } 2758 }
1887} 2759}
1888 2760
2761#endif
2762
2763#ifdef _WIN32
2764# define EV_LSTAT(p,b) _stati64 (p, b)
2765#else
2766# define EV_LSTAT(p,b) lstat (p, b)
1889#endif 2767#endif
1890 2768
1891void 2769void
1892ev_stat_stat (EV_P_ ev_stat *w) 2770ev_stat_stat (EV_P_ ev_stat *w)
1893{ 2771{
1920 || w->prev.st_atime != w->attr.st_atime 2798 || w->prev.st_atime != w->attr.st_atime
1921 || w->prev.st_mtime != w->attr.st_mtime 2799 || w->prev.st_mtime != w->attr.st_mtime
1922 || w->prev.st_ctime != w->attr.st_ctime 2800 || w->prev.st_ctime != w->attr.st_ctime
1923 ) { 2801 ) {
1924 #if EV_USE_INOTIFY 2802 #if EV_USE_INOTIFY
2803 if (fs_fd >= 0)
2804 {
1925 infy_del (EV_A_ w); 2805 infy_del (EV_A_ w);
1926 infy_add (EV_A_ w); 2806 infy_add (EV_A_ w);
1927 ev_stat_stat (EV_A_ w); /* avoid race... */ 2807 ev_stat_stat (EV_A_ w); /* avoid race... */
2808 }
1928 #endif 2809 #endif
1929 2810
1930 ev_feed_event (EV_A_ w, EV_STAT); 2811 ev_feed_event (EV_A_ w, EV_STAT);
1931 } 2812 }
1932} 2813}
1935ev_stat_start (EV_P_ ev_stat *w) 2816ev_stat_start (EV_P_ ev_stat *w)
1936{ 2817{
1937 if (expect_false (ev_is_active (w))) 2818 if (expect_false (ev_is_active (w)))
1938 return; 2819 return;
1939 2820
1940 /* since we use memcmp, we need to clear any padding data etc. */
1941 memset (&w->prev, 0, sizeof (ev_statdata));
1942 memset (&w->attr, 0, sizeof (ev_statdata));
1943
1944 ev_stat_stat (EV_A_ w); 2821 ev_stat_stat (EV_A_ w);
1945 2822
2823 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1946 if (w->interval < MIN_STAT_INTERVAL) 2824 w->interval = MIN_STAT_INTERVAL;
1947 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1948 2825
1949 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2826 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1950 ev_set_priority (&w->timer, ev_priority (w)); 2827 ev_set_priority (&w->timer, ev_priority (w));
1951 2828
1952#if EV_USE_INOTIFY 2829#if EV_USE_INOTIFY
1953 infy_init (EV_A); 2830 infy_init (EV_A);
1954 2831
1955 if (fs_fd >= 0) 2832 if (fs_fd >= 0)
1956 infy_add (EV_A_ w); 2833 infy_add (EV_A_ w);
1957 else 2834 else
1958#endif 2835#endif
1959 ev_timer_start (EV_A_ &w->timer); 2836 ev_timer_again (EV_A_ &w->timer);
1960 2837
1961 ev_start (EV_A_ (W)w, 1); 2838 ev_start (EV_A_ (W)w, 1);
2839
2840 EV_FREQUENT_CHECK;
1962} 2841}
1963 2842
1964void 2843void
1965ev_stat_stop (EV_P_ ev_stat *w) 2844ev_stat_stop (EV_P_ ev_stat *w)
1966{ 2845{
1967 ev_clear_pending (EV_A_ (W)w); 2846 clear_pending (EV_A_ (W)w);
1968 if (expect_false (!ev_is_active (w))) 2847 if (expect_false (!ev_is_active (w)))
1969 return; 2848 return;
1970 2849
2850 EV_FREQUENT_CHECK;
2851
1971#if EV_USE_INOTIFY 2852#if EV_USE_INOTIFY
1972 infy_del (EV_A_ w); 2853 infy_del (EV_A_ w);
1973#endif 2854#endif
1974 ev_timer_stop (EV_A_ &w->timer); 2855 ev_timer_stop (EV_A_ &w->timer);
1975 2856
1976 ev_stop (EV_A_ (W)w); 2857 ev_stop (EV_A_ (W)w);
1977}
1978#endif
1979 2858
2859 EV_FREQUENT_CHECK;
2860}
2861#endif
2862
2863#if EV_IDLE_ENABLE
1980void 2864void
1981ev_idle_start (EV_P_ ev_idle *w) 2865ev_idle_start (EV_P_ ev_idle *w)
1982{ 2866{
1983 if (expect_false (ev_is_active (w))) 2867 if (expect_false (ev_is_active (w)))
1984 return; 2868 return;
1985 2869
2870 pri_adjust (EV_A_ (W)w);
2871
2872 EV_FREQUENT_CHECK;
2873
2874 {
2875 int active = ++idlecnt [ABSPRI (w)];
2876
2877 ++idleall;
1986 ev_start (EV_A_ (W)w, ++idlecnt); 2878 ev_start (EV_A_ (W)w, active);
2879
1987 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2880 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1988 idles [idlecnt - 1] = w; 2881 idles [ABSPRI (w)][active - 1] = w;
2882 }
2883
2884 EV_FREQUENT_CHECK;
1989} 2885}
1990 2886
1991void 2887void
1992ev_idle_stop (EV_P_ ev_idle *w) 2888ev_idle_stop (EV_P_ ev_idle *w)
1993{ 2889{
1994 ev_clear_pending (EV_A_ (W)w); 2890 clear_pending (EV_A_ (W)w);
1995 if (expect_false (!ev_is_active (w))) 2891 if (expect_false (!ev_is_active (w)))
1996 return; 2892 return;
1997 2893
2894 EV_FREQUENT_CHECK;
2895
1998 { 2896 {
1999 int active = ((W)w)->active; 2897 int active = ev_active (w);
2000 idles [active - 1] = idles [--idlecnt]; 2898
2001 ((W)idles [active - 1])->active = active; 2899 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2900 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2901
2902 ev_stop (EV_A_ (W)w);
2903 --idleall;
2002 } 2904 }
2003 2905
2004 ev_stop (EV_A_ (W)w); 2906 EV_FREQUENT_CHECK;
2005} 2907}
2908#endif
2006 2909
2007void 2910void
2008ev_prepare_start (EV_P_ ev_prepare *w) 2911ev_prepare_start (EV_P_ ev_prepare *w)
2009{ 2912{
2010 if (expect_false (ev_is_active (w))) 2913 if (expect_false (ev_is_active (w)))
2011 return; 2914 return;
2915
2916 EV_FREQUENT_CHECK;
2012 2917
2013 ev_start (EV_A_ (W)w, ++preparecnt); 2918 ev_start (EV_A_ (W)w, ++preparecnt);
2014 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2919 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2015 prepares [preparecnt - 1] = w; 2920 prepares [preparecnt - 1] = w;
2921
2922 EV_FREQUENT_CHECK;
2016} 2923}
2017 2924
2018void 2925void
2019ev_prepare_stop (EV_P_ ev_prepare *w) 2926ev_prepare_stop (EV_P_ ev_prepare *w)
2020{ 2927{
2021 ev_clear_pending (EV_A_ (W)w); 2928 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 2929 if (expect_false (!ev_is_active (w)))
2023 return; 2930 return;
2024 2931
2932 EV_FREQUENT_CHECK;
2933
2025 { 2934 {
2026 int active = ((W)w)->active; 2935 int active = ev_active (w);
2936
2027 prepares [active - 1] = prepares [--preparecnt]; 2937 prepares [active - 1] = prepares [--preparecnt];
2028 ((W)prepares [active - 1])->active = active; 2938 ev_active (prepares [active - 1]) = active;
2029 } 2939 }
2030 2940
2031 ev_stop (EV_A_ (W)w); 2941 ev_stop (EV_A_ (W)w);
2942
2943 EV_FREQUENT_CHECK;
2032} 2944}
2033 2945
2034void 2946void
2035ev_check_start (EV_P_ ev_check *w) 2947ev_check_start (EV_P_ ev_check *w)
2036{ 2948{
2037 if (expect_false (ev_is_active (w))) 2949 if (expect_false (ev_is_active (w)))
2038 return; 2950 return;
2951
2952 EV_FREQUENT_CHECK;
2039 2953
2040 ev_start (EV_A_ (W)w, ++checkcnt); 2954 ev_start (EV_A_ (W)w, ++checkcnt);
2041 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2955 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2042 checks [checkcnt - 1] = w; 2956 checks [checkcnt - 1] = w;
2957
2958 EV_FREQUENT_CHECK;
2043} 2959}
2044 2960
2045void 2961void
2046ev_check_stop (EV_P_ ev_check *w) 2962ev_check_stop (EV_P_ ev_check *w)
2047{ 2963{
2048 ev_clear_pending (EV_A_ (W)w); 2964 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 2965 if (expect_false (!ev_is_active (w)))
2050 return; 2966 return;
2051 2967
2968 EV_FREQUENT_CHECK;
2969
2052 { 2970 {
2053 int active = ((W)w)->active; 2971 int active = ev_active (w);
2972
2054 checks [active - 1] = checks [--checkcnt]; 2973 checks [active - 1] = checks [--checkcnt];
2055 ((W)checks [active - 1])->active = active; 2974 ev_active (checks [active - 1]) = active;
2056 } 2975 }
2057 2976
2058 ev_stop (EV_A_ (W)w); 2977 ev_stop (EV_A_ (W)w);
2978
2979 EV_FREQUENT_CHECK;
2059} 2980}
2060 2981
2061#if EV_EMBED_ENABLE 2982#if EV_EMBED_ENABLE
2062void noinline 2983void noinline
2063ev_embed_sweep (EV_P_ ev_embed *w) 2984ev_embed_sweep (EV_P_ ev_embed *w)
2064{ 2985{
2065 ev_loop (w->loop, EVLOOP_NONBLOCK); 2986 ev_loop (w->other, EVLOOP_NONBLOCK);
2066} 2987}
2067 2988
2068static void 2989static void
2069embed_cb (EV_P_ ev_io *io, int revents) 2990embed_io_cb (EV_P_ ev_io *io, int revents)
2070{ 2991{
2071 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2992 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2072 2993
2073 if (ev_cb (w)) 2994 if (ev_cb (w))
2074 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2995 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2075 else 2996 else
2076 ev_embed_sweep (loop, w); 2997 ev_loop (w->other, EVLOOP_NONBLOCK);
2077} 2998}
2999
3000static void
3001embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3002{
3003 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3004
3005 {
3006 struct ev_loop *loop = w->other;
3007
3008 while (fdchangecnt)
3009 {
3010 fd_reify (EV_A);
3011 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3012 }
3013 }
3014}
3015
3016static void
3017embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3018{
3019 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3020
3021 ev_embed_stop (EV_A_ w);
3022
3023 {
3024 struct ev_loop *loop = w->other;
3025
3026 ev_loop_fork (EV_A);
3027 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3028 }
3029
3030 ev_embed_start (EV_A_ w);
3031}
3032
3033#if 0
3034static void
3035embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3036{
3037 ev_idle_stop (EV_A_ idle);
3038}
3039#endif
2078 3040
2079void 3041void
2080ev_embed_start (EV_P_ ev_embed *w) 3042ev_embed_start (EV_P_ ev_embed *w)
2081{ 3043{
2082 if (expect_false (ev_is_active (w))) 3044 if (expect_false (ev_is_active (w)))
2083 return; 3045 return;
2084 3046
2085 { 3047 {
2086 struct ev_loop *loop = w->loop; 3048 struct ev_loop *loop = w->other;
2087 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3049 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2088 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3050 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2089 } 3051 }
3052
3053 EV_FREQUENT_CHECK;
2090 3054
2091 ev_set_priority (&w->io, ev_priority (w)); 3055 ev_set_priority (&w->io, ev_priority (w));
2092 ev_io_start (EV_A_ &w->io); 3056 ev_io_start (EV_A_ &w->io);
2093 3057
3058 ev_prepare_init (&w->prepare, embed_prepare_cb);
3059 ev_set_priority (&w->prepare, EV_MINPRI);
3060 ev_prepare_start (EV_A_ &w->prepare);
3061
3062 ev_fork_init (&w->fork, embed_fork_cb);
3063 ev_fork_start (EV_A_ &w->fork);
3064
3065 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3066
2094 ev_start (EV_A_ (W)w, 1); 3067 ev_start (EV_A_ (W)w, 1);
3068
3069 EV_FREQUENT_CHECK;
2095} 3070}
2096 3071
2097void 3072void
2098ev_embed_stop (EV_P_ ev_embed *w) 3073ev_embed_stop (EV_P_ ev_embed *w)
2099{ 3074{
2100 ev_clear_pending (EV_A_ (W)w); 3075 clear_pending (EV_A_ (W)w);
2101 if (expect_false (!ev_is_active (w))) 3076 if (expect_false (!ev_is_active (w)))
2102 return; 3077 return;
2103 3078
3079 EV_FREQUENT_CHECK;
3080
2104 ev_io_stop (EV_A_ &w->io); 3081 ev_io_stop (EV_A_ &w->io);
3082 ev_prepare_stop (EV_A_ &w->prepare);
3083 ev_fork_stop (EV_A_ &w->fork);
2105 3084
2106 ev_stop (EV_A_ (W)w); 3085 EV_FREQUENT_CHECK;
2107} 3086}
2108#endif 3087#endif
2109 3088
2110#if EV_FORK_ENABLE 3089#if EV_FORK_ENABLE
2111void 3090void
2112ev_fork_start (EV_P_ ev_fork *w) 3091ev_fork_start (EV_P_ ev_fork *w)
2113{ 3092{
2114 if (expect_false (ev_is_active (w))) 3093 if (expect_false (ev_is_active (w)))
2115 return; 3094 return;
3095
3096 EV_FREQUENT_CHECK;
2116 3097
2117 ev_start (EV_A_ (W)w, ++forkcnt); 3098 ev_start (EV_A_ (W)w, ++forkcnt);
2118 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3099 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2119 forks [forkcnt - 1] = w; 3100 forks [forkcnt - 1] = w;
3101
3102 EV_FREQUENT_CHECK;
2120} 3103}
2121 3104
2122void 3105void
2123ev_fork_stop (EV_P_ ev_fork *w) 3106ev_fork_stop (EV_P_ ev_fork *w)
2124{ 3107{
2125 ev_clear_pending (EV_A_ (W)w); 3108 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 3109 if (expect_false (!ev_is_active (w)))
2127 return; 3110 return;
2128 3111
3112 EV_FREQUENT_CHECK;
3113
2129 { 3114 {
2130 int active = ((W)w)->active; 3115 int active = ev_active (w);
3116
2131 forks [active - 1] = forks [--forkcnt]; 3117 forks [active - 1] = forks [--forkcnt];
2132 ((W)forks [active - 1])->active = active; 3118 ev_active (forks [active - 1]) = active;
2133 } 3119 }
2134 3120
2135 ev_stop (EV_A_ (W)w); 3121 ev_stop (EV_A_ (W)w);
3122
3123 EV_FREQUENT_CHECK;
3124}
3125#endif
3126
3127#if EV_ASYNC_ENABLE
3128void
3129ev_async_start (EV_P_ ev_async *w)
3130{
3131 if (expect_false (ev_is_active (w)))
3132 return;
3133
3134 evpipe_init (EV_A);
3135
3136 EV_FREQUENT_CHECK;
3137
3138 ev_start (EV_A_ (W)w, ++asynccnt);
3139 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3140 asyncs [asynccnt - 1] = w;
3141
3142 EV_FREQUENT_CHECK;
3143}
3144
3145void
3146ev_async_stop (EV_P_ ev_async *w)
3147{
3148 clear_pending (EV_A_ (W)w);
3149 if (expect_false (!ev_is_active (w)))
3150 return;
3151
3152 EV_FREQUENT_CHECK;
3153
3154 {
3155 int active = ev_active (w);
3156
3157 asyncs [active - 1] = asyncs [--asynccnt];
3158 ev_active (asyncs [active - 1]) = active;
3159 }
3160
3161 ev_stop (EV_A_ (W)w);
3162
3163 EV_FREQUENT_CHECK;
3164}
3165
3166void
3167ev_async_send (EV_P_ ev_async *w)
3168{
3169 w->sent = 1;
3170 evpipe_write (EV_A_ &gotasync);
2136} 3171}
2137#endif 3172#endif
2138 3173
2139/*****************************************************************************/ 3174/*****************************************************************************/
2140 3175
2150once_cb (EV_P_ struct ev_once *once, int revents) 3185once_cb (EV_P_ struct ev_once *once, int revents)
2151{ 3186{
2152 void (*cb)(int revents, void *arg) = once->cb; 3187 void (*cb)(int revents, void *arg) = once->cb;
2153 void *arg = once->arg; 3188 void *arg = once->arg;
2154 3189
2155 ev_io_stop (EV_A_ &once->io); 3190 ev_io_stop (EV_A_ &once->io);
2156 ev_timer_stop (EV_A_ &once->to); 3191 ev_timer_stop (EV_A_ &once->to);
2157 ev_free (once); 3192 ev_free (once);
2158 3193
2159 cb (revents, arg); 3194 cb (revents, arg);
2160} 3195}
2161 3196
2162static void 3197static void
2163once_cb_io (EV_P_ ev_io *w, int revents) 3198once_cb_io (EV_P_ ev_io *w, int revents)
2164{ 3199{
2165 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3200 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3201
3202 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2166} 3203}
2167 3204
2168static void 3205static void
2169once_cb_to (EV_P_ ev_timer *w, int revents) 3206once_cb_to (EV_P_ ev_timer *w, int revents)
2170{ 3207{
2171 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3208 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3209
3210 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2172} 3211}
2173 3212
2174void 3213void
2175ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3214ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2176{ 3215{
2198 ev_timer_set (&once->to, timeout, 0.); 3237 ev_timer_set (&once->to, timeout, 0.);
2199 ev_timer_start (EV_A_ &once->to); 3238 ev_timer_start (EV_A_ &once->to);
2200 } 3239 }
2201} 3240}
2202 3241
3242/*****************************************************************************/
3243
3244#if EV_WALK_ENABLE
3245void
3246ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3247{
3248 int i, j;
3249 ev_watcher_list *wl, *wn;
3250
3251 if (types & (EV_IO | EV_EMBED))
3252 for (i = 0; i < anfdmax; ++i)
3253 for (wl = anfds [i].head; wl; )
3254 {
3255 wn = wl->next;
3256
3257#if EV_EMBED_ENABLE
3258 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3259 {
3260 if (types & EV_EMBED)
3261 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3262 }
3263 else
3264#endif
3265#if EV_USE_INOTIFY
3266 if (ev_cb ((ev_io *)wl) == infy_cb)
3267 ;
3268 else
3269#endif
3270 if ((ev_io *)wl != &pipe_w)
3271 if (types & EV_IO)
3272 cb (EV_A_ EV_IO, wl);
3273
3274 wl = wn;
3275 }
3276
3277 if (types & (EV_TIMER | EV_STAT))
3278 for (i = timercnt + HEAP0; i-- > HEAP0; )
3279#if EV_STAT_ENABLE
3280 /*TODO: timer is not always active*/
3281 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3282 {
3283 if (types & EV_STAT)
3284 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3285 }
3286 else
3287#endif
3288 if (types & EV_TIMER)
3289 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3290
3291#if EV_PERIODIC_ENABLE
3292 if (types & EV_PERIODIC)
3293 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3294 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3295#endif
3296
3297#if EV_IDLE_ENABLE
3298 if (types & EV_IDLE)
3299 for (j = NUMPRI; i--; )
3300 for (i = idlecnt [j]; i--; )
3301 cb (EV_A_ EV_IDLE, idles [j][i]);
3302#endif
3303
3304#if EV_FORK_ENABLE
3305 if (types & EV_FORK)
3306 for (i = forkcnt; i--; )
3307 if (ev_cb (forks [i]) != embed_fork_cb)
3308 cb (EV_A_ EV_FORK, forks [i]);
3309#endif
3310
3311#if EV_ASYNC_ENABLE
3312 if (types & EV_ASYNC)
3313 for (i = asynccnt; i--; )
3314 cb (EV_A_ EV_ASYNC, asyncs [i]);
3315#endif
3316
3317 if (types & EV_PREPARE)
3318 for (i = preparecnt; i--; )
3319#if EV_EMBED_ENABLE
3320 if (ev_cb (prepares [i]) != embed_prepare_cb)
3321#endif
3322 cb (EV_A_ EV_PREPARE, prepares [i]);
3323
3324 if (types & EV_CHECK)
3325 for (i = checkcnt; i--; )
3326 cb (EV_A_ EV_CHECK, checks [i]);
3327
3328 if (types & EV_SIGNAL)
3329 for (i = 0; i < signalmax; ++i)
3330 for (wl = signals [i].head; wl; )
3331 {
3332 wn = wl->next;
3333 cb (EV_A_ EV_SIGNAL, wl);
3334 wl = wn;
3335 }
3336
3337 if (types & EV_CHILD)
3338 for (i = EV_PID_HASHSIZE; i--; )
3339 for (wl = childs [i]; wl; )
3340 {
3341 wn = wl->next;
3342 cb (EV_A_ EV_CHILD, wl);
3343 wl = wn;
3344 }
3345/* EV_STAT 0x00001000 /* stat data changed */
3346/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3347}
3348#endif
3349
3350#if EV_MULTIPLICITY
3351 #include "ev_wrap.h"
3352#endif
3353
2203#ifdef __cplusplus 3354#ifdef __cplusplus
2204} 3355}
2205#endif 3356#endif
2206 3357

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines