ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.158 by root, Thu Nov 29 17:28:13 2007 UTC vs.
Revision 1.329 by root, Tue Feb 16 09:32:39 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
79# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
80# endif 111# endif
81# endif 112# endif
82 113
83# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
85# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
86# else 117# else
87# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
88# endif 119# endif
89# endif 120# endif
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
111#include <fcntl.h> 159#include <fcntl.h>
112#include <stddef.h> 160#include <stddef.h>
113 161
114#include <stdio.h> 162#include <stdio.h>
115 163
116#include <assert.h> 164#include <assert.h>
117#include <errno.h> 165#include <errno.h>
118#include <sys/types.h> 166#include <sys/types.h>
119#include <time.h> 167#include <time.h>
168#include <limits.h>
120 169
121#include <signal.h> 170#include <signal.h>
122 171
123#ifdef EV_H 172#ifdef EV_H
124# include EV_H 173# include EV_H
129#ifndef _WIN32 178#ifndef _WIN32
130# include <sys/time.h> 179# include <sys/time.h>
131# include <sys/wait.h> 180# include <sys/wait.h>
132# include <unistd.h> 181# include <unistd.h>
133#else 182#else
183# include <io.h>
134# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 185# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
138# endif 188# endif
139#endif 189#endif
140 190
141/**/ 191/* this block tries to deduce configuration from header-defined symbols and defaults */
192
193/* try to deduce the maximum number of signals on this platform */
194#if defined (EV_NSIG)
195/* use what's provided */
196#elif defined (NSIG)
197# define EV_NSIG (NSIG)
198#elif defined(_NSIG)
199# define EV_NSIG (_NSIG)
200#elif defined (SIGMAX)
201# define EV_NSIG (SIGMAX+1)
202#elif defined (SIG_MAX)
203# define EV_NSIG (SIG_MAX+1)
204#elif defined (_SIG_MAX)
205# define EV_NSIG (_SIG_MAX+1)
206#elif defined (MAXSIG)
207# define EV_NSIG (MAXSIG+1)
208#elif defined (MAX_SIG)
209# define EV_NSIG (MAX_SIG+1)
210#elif defined (SIGARRAYSIZE)
211# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
212#elif defined (_sys_nsig)
213# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
214#else
215# error "unable to find value for NSIG, please report"
216/* to make it compile regardless, just remove the above line */
217# define EV_NSIG 65
218#endif
219
220#ifndef EV_USE_CLOCK_SYSCALL
221# if __linux && __GLIBC__ >= 2
222# define EV_USE_CLOCK_SYSCALL 1
223# else
224# define EV_USE_CLOCK_SYSCALL 0
225# endif
226#endif
142 227
143#ifndef EV_USE_MONOTONIC 228#ifndef EV_USE_MONOTONIC
229# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
230# define EV_USE_MONOTONIC 1
231# else
144# define EV_USE_MONOTONIC 0 232# define EV_USE_MONOTONIC 0
233# endif
145#endif 234#endif
146 235
147#ifndef EV_USE_REALTIME 236#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 237# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
238#endif
239
240#ifndef EV_USE_NANOSLEEP
241# if _POSIX_C_SOURCE >= 199309L
242# define EV_USE_NANOSLEEP 1
243# else
244# define EV_USE_NANOSLEEP 0
245# endif
149#endif 246#endif
150 247
151#ifndef EV_USE_SELECT 248#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 249# define EV_USE_SELECT 1
153#endif 250#endif
159# define EV_USE_POLL 1 256# define EV_USE_POLL 1
160# endif 257# endif
161#endif 258#endif
162 259
163#ifndef EV_USE_EPOLL 260#ifndef EV_USE_EPOLL
261# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
262# define EV_USE_EPOLL 1
263# else
164# define EV_USE_EPOLL 0 264# define EV_USE_EPOLL 0
265# endif
165#endif 266#endif
166 267
167#ifndef EV_USE_KQUEUE 268#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 269# define EV_USE_KQUEUE 0
169#endif 270#endif
171#ifndef EV_USE_PORT 272#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 273# define EV_USE_PORT 0
173#endif 274#endif
174 275
175#ifndef EV_USE_INOTIFY 276#ifndef EV_USE_INOTIFY
277# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
278# define EV_USE_INOTIFY 1
279# else
176# define EV_USE_INOTIFY 0 280# define EV_USE_INOTIFY 0
281# endif
177#endif 282#endif
178 283
179#ifndef EV_PID_HASHSIZE 284#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 285# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 286# define EV_PID_HASHSIZE 1
190# else 295# else
191# define EV_INOTIFY_HASHSIZE 16 296# define EV_INOTIFY_HASHSIZE 16
192# endif 297# endif
193#endif 298#endif
194 299
195/**/ 300#ifndef EV_USE_EVENTFD
301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
302# define EV_USE_EVENTFD 1
303# else
304# define EV_USE_EVENTFD 0
305# endif
306#endif
307
308#ifndef EV_USE_SIGNALFD
309# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
310# define EV_USE_SIGNALFD 1
311# else
312# define EV_USE_SIGNALFD 0
313# endif
314#endif
315
316#if 0 /* debugging */
317# define EV_VERIFY 3
318# define EV_USE_4HEAP 1
319# define EV_HEAP_CACHE_AT 1
320#endif
321
322#ifndef EV_VERIFY
323# define EV_VERIFY !EV_MINIMAL
324#endif
325
326#ifndef EV_USE_4HEAP
327# define EV_USE_4HEAP !EV_MINIMAL
328#endif
329
330#ifndef EV_HEAP_CACHE_AT
331# define EV_HEAP_CACHE_AT !EV_MINIMAL
332#endif
333
334/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
335/* which makes programs even slower. might work on other unices, too. */
336#if EV_USE_CLOCK_SYSCALL
337# include <syscall.h>
338# ifdef SYS_clock_gettime
339# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
340# undef EV_USE_MONOTONIC
341# define EV_USE_MONOTONIC 1
342# else
343# undef EV_USE_CLOCK_SYSCALL
344# define EV_USE_CLOCK_SYSCALL 0
345# endif
346#endif
347
348/* this block fixes any misconfiguration where we know we run into trouble otherwise */
349
350#ifdef _AIX
351/* AIX has a completely broken poll.h header */
352# undef EV_USE_POLL
353# define EV_USE_POLL 0
354#endif
196 355
197#ifndef CLOCK_MONOTONIC 356#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 357# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 358# define EV_USE_MONOTONIC 0
200#endif 359#endif
202#ifndef CLOCK_REALTIME 361#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 362# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 363# define EV_USE_REALTIME 0
205#endif 364#endif
206 365
366#if !EV_STAT_ENABLE
367# undef EV_USE_INOTIFY
368# define EV_USE_INOTIFY 0
369#endif
370
371#if !EV_USE_NANOSLEEP
372# ifndef _WIN32
373# include <sys/select.h>
374# endif
375#endif
376
377#if EV_USE_INOTIFY
378# include <sys/utsname.h>
379# include <sys/statfs.h>
380# include <sys/inotify.h>
381/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
382# ifndef IN_DONT_FOLLOW
383# undef EV_USE_INOTIFY
384# define EV_USE_INOTIFY 0
385# endif
386#endif
387
207#if EV_SELECT_IS_WINSOCKET 388#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 389# include <winsock.h>
209#endif 390#endif
210 391
211#if !EV_STAT_ENABLE 392#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 393/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
394# include <stdint.h>
395# ifndef EFD_NONBLOCK
396# define EFD_NONBLOCK O_NONBLOCK
213#endif 397# endif
214 398# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 399# ifdef O_CLOEXEC
216# include <sys/inotify.h> 400# define EFD_CLOEXEC O_CLOEXEC
401# else
402# define EFD_CLOEXEC 02000000
403# endif
217#endif 404# endif
405# ifdef __cplusplus
406extern "C" {
407# endif
408int (eventfd) (unsigned int initval, int flags);
409# ifdef __cplusplus
410}
411# endif
412#endif
413
414#if EV_USE_SIGNALFD
415/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
416# include <stdint.h>
417# ifndef SFD_NONBLOCK
418# define SFD_NONBLOCK O_NONBLOCK
419# endif
420# ifndef SFD_CLOEXEC
421# ifdef O_CLOEXEC
422# define SFD_CLOEXEC O_CLOEXEC
423# else
424# define SFD_CLOEXEC 02000000
425# endif
426# endif
427# ifdef __cplusplus
428extern "C" {
429# endif
430int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437# ifdef __cplusplus
438}
439# endif
440#endif
441
218 442
219/**/ 443/**/
444
445#if EV_VERIFY >= 3
446# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
447#else
448# define EV_FREQUENT_CHECK do { } while (0)
449#endif
450
451/*
452 * This is used to avoid floating point rounding problems.
453 * It is added to ev_rt_now when scheduling periodics
454 * to ensure progress, time-wise, even when rounding
455 * errors are against us.
456 * This value is good at least till the year 4000.
457 * Better solutions welcome.
458 */
459#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 460
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 463
225#if __GNUC__ >= 3 464#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 465# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 466# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 467#else
236# define expect(expr,value) (expr) 468# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 469# define noinline
470# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
471# define inline
472# endif
240#endif 473#endif
241 474
242#define expect_false(expr) expect ((expr) != 0, 0) 475#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 476#define expect_true(expr) expect ((expr) != 0, 1)
477#define inline_size static inline
244 478
479#if EV_MINIMAL
480# define inline_speed static noinline
481#else
482# define inline_speed static inline
483#endif
484
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 485#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
486
487#if EV_MINPRI == EV_MAXPRI
488# define ABSPRI(w) (((W)w), 0)
489#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 490# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
491#endif
247 492
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 493#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 494#define EMPTY2(a,b) /* used to suppress some warnings */
250 495
251typedef ev_watcher *W; 496typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 497typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 498typedef ev_watcher_time *WT;
254 499
500#define ev_active(w) ((W)(w))->active
501#define ev_at(w) ((WT)(w))->at
502
503#if EV_USE_REALTIME
504/* sig_atomic_t is used to avoid per-thread variables or locking but still */
505/* giving it a reasonably high chance of working on typical architetcures */
506static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
507#endif
508
509#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 510static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
511#endif
512
513#ifndef EV_FD_TO_WIN32_HANDLE
514# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
515#endif
516#ifndef EV_WIN32_HANDLE_TO_FD
517# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
518#endif
519#ifndef EV_WIN32_CLOSE_FD
520# define EV_WIN32_CLOSE_FD(fd) close (fd)
521#endif
256 522
257#ifdef _WIN32 523#ifdef _WIN32
258# include "ev_win32.c" 524# include "ev_win32.c"
259#endif 525#endif
260 526
267{ 533{
268 syserr_cb = cb; 534 syserr_cb = cb;
269} 535}
270 536
271static void noinline 537static void noinline
272syserr (const char *msg) 538ev_syserr (const char *msg)
273{ 539{
274 if (!msg) 540 if (!msg)
275 msg = "(libev) system error"; 541 msg = "(libev) system error";
276 542
277 if (syserr_cb) 543 if (syserr_cb)
281 perror (msg); 547 perror (msg);
282 abort (); 548 abort ();
283 } 549 }
284} 550}
285 551
552static void *
553ev_realloc_emul (void *ptr, long size)
554{
555 /* some systems, notably openbsd and darwin, fail to properly
556 * implement realloc (x, 0) (as required by both ansi c-98 and
557 * the single unix specification, so work around them here.
558 */
559
560 if (size)
561 return realloc (ptr, size);
562
563 free (ptr);
564 return 0;
565}
566
286static void *(*alloc)(void *ptr, long size); 567static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 568
288void 569void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 570ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 571{
291 alloc = cb; 572 alloc = cb;
292} 573}
293 574
294inline_speed void * 575inline_speed void *
295ev_realloc (void *ptr, long size) 576ev_realloc (void *ptr, long size)
296{ 577{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 578 ptr = alloc (ptr, size);
298 579
299 if (!ptr && size) 580 if (!ptr && size)
300 { 581 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 582 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 583 abort ();
308#define ev_malloc(size) ev_realloc (0, (size)) 589#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 590#define ev_free(ptr) ev_realloc ((ptr), 0)
310 591
311/*****************************************************************************/ 592/*****************************************************************************/
312 593
594/* set in reify when reification needed */
595#define EV_ANFD_REIFY 1
596
597/* file descriptor info structure */
313typedef struct 598typedef struct
314{ 599{
315 WL head; 600 WL head;
316 unsigned char events; 601 unsigned char events; /* the events watched for */
602 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
603 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 604 unsigned char unused;
605#if EV_USE_EPOLL
606 unsigned int egen; /* generation counter to counter epoll bugs */
607#endif
318#if EV_SELECT_IS_WINSOCKET 608#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 609 SOCKET handle;
320#endif 610#endif
321} ANFD; 611} ANFD;
322 612
613/* stores the pending event set for a given watcher */
323typedef struct 614typedef struct
324{ 615{
325 W w; 616 W w;
326 int events; 617 int events; /* the pending event set for the given watcher */
327} ANPENDING; 618} ANPENDING;
328 619
329#if EV_USE_INOTIFY 620#if EV_USE_INOTIFY
621/* hash table entry per inotify-id */
330typedef struct 622typedef struct
331{ 623{
332 WL head; 624 WL head;
333} ANFS; 625} ANFS;
626#endif
627
628/* Heap Entry */
629#if EV_HEAP_CACHE_AT
630 /* a heap element */
631 typedef struct {
632 ev_tstamp at;
633 WT w;
634 } ANHE;
635
636 #define ANHE_w(he) (he).w /* access watcher, read-write */
637 #define ANHE_at(he) (he).at /* access cached at, read-only */
638 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
639#else
640 /* a heap element */
641 typedef WT ANHE;
642
643 #define ANHE_w(he) (he)
644 #define ANHE_at(he) (he)->at
645 #define ANHE_at_cache(he)
334#endif 646#endif
335 647
336#if EV_MULTIPLICITY 648#if EV_MULTIPLICITY
337 649
338 struct ev_loop 650 struct ev_loop
357 669
358 static int ev_default_loop_ptr; 670 static int ev_default_loop_ptr;
359 671
360#endif 672#endif
361 673
674#if EV_MINIMAL < 2
675# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
676# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
677# define EV_INVOKE_PENDING invoke_cb (EV_A)
678#else
679# define EV_RELEASE_CB (void)0
680# define EV_ACQUIRE_CB (void)0
681# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
682#endif
683
684#define EVUNLOOP_RECURSE 0x80
685
362/*****************************************************************************/ 686/*****************************************************************************/
363 687
688#ifndef EV_HAVE_EV_TIME
364ev_tstamp 689ev_tstamp
365ev_time (void) 690ev_time (void)
366{ 691{
367#if EV_USE_REALTIME 692#if EV_USE_REALTIME
693 if (expect_true (have_realtime))
694 {
368 struct timespec ts; 695 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 696 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 697 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 698 }
699#endif
700
372 struct timeval tv; 701 struct timeval tv;
373 gettimeofday (&tv, 0); 702 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 703 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 704}
705#endif
377 706
378ev_tstamp inline_size 707inline_size ev_tstamp
379get_clock (void) 708get_clock (void)
380{ 709{
381#if EV_USE_MONOTONIC 710#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 711 if (expect_true (have_monotonic))
383 { 712 {
396{ 725{
397 return ev_rt_now; 726 return ev_rt_now;
398} 727}
399#endif 728#endif
400 729
401#define array_roundsize(type,n) (((n) | 4) & ~3) 730void
731ev_sleep (ev_tstamp delay)
732{
733 if (delay > 0.)
734 {
735#if EV_USE_NANOSLEEP
736 struct timespec ts;
737
738 ts.tv_sec = (time_t)delay;
739 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
740
741 nanosleep (&ts, 0);
742#elif defined(_WIN32)
743 Sleep ((unsigned long)(delay * 1e3));
744#else
745 struct timeval tv;
746
747 tv.tv_sec = (time_t)delay;
748 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
749
750 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
751 /* something not guaranteed by newer posix versions, but guaranteed */
752 /* by older ones */
753 select (0, 0, 0, 0, &tv);
754#endif
755 }
756}
757
758/*****************************************************************************/
759
760#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
761
762/* find a suitable new size for the given array, */
763/* hopefully by rounding to a ncie-to-malloc size */
764inline_size int
765array_nextsize (int elem, int cur, int cnt)
766{
767 int ncur = cur + 1;
768
769 do
770 ncur <<= 1;
771 while (cnt > ncur);
772
773 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
774 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
775 {
776 ncur *= elem;
777 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
778 ncur = ncur - sizeof (void *) * 4;
779 ncur /= elem;
780 }
781
782 return ncur;
783}
784
785static noinline void *
786array_realloc (int elem, void *base, int *cur, int cnt)
787{
788 *cur = array_nextsize (elem, *cur, cnt);
789 return ev_realloc (base, elem * *cur);
790}
791
792#define array_init_zero(base,count) \
793 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 794
403#define array_needsize(type,base,cur,cnt,init) \ 795#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 796 if (expect_false ((cnt) > (cur))) \
405 { \ 797 { \
406 int newcnt = cur; \ 798 int ocur_ = (cur); \
407 do \ 799 (base) = (type *)array_realloc \
408 { \ 800 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 801 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 802 }
417 803
804#if 0
418#define array_slim(type,stem) \ 805#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 806 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 807 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 808 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 809 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 810 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 811 }
812#endif
425 813
426#define array_free(stem, idx) \ 814#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 815 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 816
429/*****************************************************************************/ 817/*****************************************************************************/
818
819/* dummy callback for pending events */
820static void noinline
821pendingcb (EV_P_ ev_prepare *w, int revents)
822{
823}
430 824
431void noinline 825void noinline
432ev_feed_event (EV_P_ void *w, int revents) 826ev_feed_event (EV_P_ void *w, int revents)
433{ 827{
434 W w_ = (W)w; 828 W w_ = (W)w;
829 int pri = ABSPRI (w_);
435 830
436 if (expect_false (w_->pending)) 831 if (expect_false (w_->pending))
832 pendings [pri][w_->pending - 1].events |= revents;
833 else
437 { 834 {
835 w_->pending = ++pendingcnt [pri];
836 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
837 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 838 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 839 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 840}
447 841
448void inline_size 842inline_speed void
843feed_reverse (EV_P_ W w)
844{
845 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
846 rfeeds [rfeedcnt++] = w;
847}
848
849inline_size void
850feed_reverse_done (EV_P_ int revents)
851{
852 do
853 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
854 while (rfeedcnt);
855}
856
857inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 858queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 859{
451 int i; 860 int i;
452 861
453 for (i = 0; i < eventcnt; ++i) 862 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 863 ev_feed_event (EV_A_ events [i], type);
455} 864}
456 865
457/*****************************************************************************/ 866/*****************************************************************************/
458 867
459void inline_size 868inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 869fd_event_nc (EV_P_ int fd, int revents)
474{ 870{
475 ANFD *anfd = anfds + fd; 871 ANFD *anfd = anfds + fd;
476 ev_io *w; 872 ev_io *w;
477 873
478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 874 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
482 if (ev) 878 if (ev)
483 ev_feed_event (EV_A_ (W)w, ev); 879 ev_feed_event (EV_A_ (W)w, ev);
484 } 880 }
485} 881}
486 882
883/* do not submit kernel events for fds that have reify set */
884/* because that means they changed while we were polling for new events */
885inline_speed void
886fd_event (EV_P_ int fd, int revents)
887{
888 ANFD *anfd = anfds + fd;
889
890 if (expect_true (!anfd->reify))
891 fd_event_nc (EV_A_ fd, revents);
892}
893
487void 894void
488ev_feed_fd_event (EV_P_ int fd, int revents) 895ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 896{
897 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 898 fd_event_nc (EV_A_ fd, revents);
491} 899}
492 900
493void inline_size 901/* make sure the external fd watch events are in-sync */
902/* with the kernel/libev internal state */
903inline_size void
494fd_reify (EV_P) 904fd_reify (EV_P)
495{ 905{
496 int i; 906 int i;
497 907
498 for (i = 0; i < fdchangecnt; ++i) 908 for (i = 0; i < fdchangecnt; ++i)
499 { 909 {
500 int fd = fdchanges [i]; 910 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 911 ANFD *anfd = anfds + fd;
502 ev_io *w; 912 ev_io *w;
503 913
504 int events = 0; 914 unsigned char events = 0;
505 915
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 916 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 917 events |= (unsigned char)w->events;
508 918
509#if EV_SELECT_IS_WINSOCKET 919#if EV_SELECT_IS_WINSOCKET
510 if (events) 920 if (events)
511 { 921 {
512 unsigned long argp; 922 unsigned long arg;
513 anfd->handle = _get_osfhandle (fd); 923 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 924 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 925 }
516#endif 926#endif
517 927
928 {
929 unsigned char o_events = anfd->events;
930 unsigned char o_reify = anfd->reify;
931
518 anfd->reify = 0; 932 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 933 anfd->events = events;
934
935 if (o_events != events || o_reify & EV__IOFDSET)
936 backend_modify (EV_A_ fd, o_events, events);
937 }
522 } 938 }
523 939
524 fdchangecnt = 0; 940 fdchangecnt = 0;
525} 941}
526 942
527void inline_size 943/* something about the given fd changed */
944inline_size void
528fd_change (EV_P_ int fd) 945fd_change (EV_P_ int fd, int flags)
529{ 946{
530 if (expect_false (anfds [fd].reify)) 947 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 948 anfds [fd].reify |= flags;
534 949
950 if (expect_true (!reify))
951 {
535 ++fdchangecnt; 952 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 953 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 954 fdchanges [fdchangecnt - 1] = fd;
955 }
538} 956}
539 957
540void inline_speed 958/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
959inline_speed void
541fd_kill (EV_P_ int fd) 960fd_kill (EV_P_ int fd)
542{ 961{
543 ev_io *w; 962 ev_io *w;
544 963
545 while ((w = (ev_io *)anfds [fd].head)) 964 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 966 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 967 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 968 }
550} 969}
551 970
552int inline_size 971/* check whether the given fd is atcually valid, for error recovery */
972inline_size int
553fd_valid (int fd) 973fd_valid (int fd)
554{ 974{
555#ifdef _WIN32 975#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 976 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
557#else 977#else
558 return fcntl (fd, F_GETFD) != -1; 978 return fcntl (fd, F_GETFD) != -1;
559#endif 979#endif
560} 980}
561 981
565{ 985{
566 int fd; 986 int fd;
567 987
568 for (fd = 0; fd < anfdmax; ++fd) 988 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 989 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 990 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 991 fd_kill (EV_A_ fd);
572} 992}
573 993
574/* called on ENOMEM in select/poll to kill some fds and retry */ 994/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 995static void noinline
579 999
580 for (fd = anfdmax; fd--; ) 1000 for (fd = anfdmax; fd--; )
581 if (anfds [fd].events) 1001 if (anfds [fd].events)
582 { 1002 {
583 fd_kill (EV_A_ fd); 1003 fd_kill (EV_A_ fd);
584 return; 1004 break;
585 } 1005 }
586} 1006}
587 1007
588/* usually called after fork if backend needs to re-arm all fds from scratch */ 1008/* usually called after fork if backend needs to re-arm all fds from scratch */
589static void noinline 1009static void noinline
593 1013
594 for (fd = 0; fd < anfdmax; ++fd) 1014 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 1015 if (anfds [fd].events)
596 { 1016 {
597 anfds [fd].events = 0; 1017 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 1018 anfds [fd].emask = 0;
1019 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
599 } 1020 }
600} 1021}
601 1022
602/*****************************************************************************/ 1023/*****************************************************************************/
603 1024
604void inline_speed 1025/*
605upheap (WT *heap, int k) 1026 * the heap functions want a real array index. array index 0 uis guaranteed to not
606{ 1027 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
607 WT w = heap [k]; 1028 * the branching factor of the d-tree.
1029 */
608 1030
609 while (k && heap [k >> 1]->at > w->at) 1031/*
610 { 1032 * at the moment we allow libev the luxury of two heaps,
611 heap [k] = heap [k >> 1]; 1033 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
612 ((W)heap [k])->active = k + 1; 1034 * which is more cache-efficient.
613 k >>= 1; 1035 * the difference is about 5% with 50000+ watchers.
614 } 1036 */
1037#if EV_USE_4HEAP
615 1038
616 heap [k] = w; 1039#define DHEAP 4
617 ((W)heap [k])->active = k + 1; 1040#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1041#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1042#define UPHEAP_DONE(p,k) ((p) == (k))
618 1043
619} 1044/* away from the root */
620 1045inline_speed void
621void inline_speed
622downheap (WT *heap, int N, int k) 1046downheap (ANHE *heap, int N, int k)
623{ 1047{
624 WT w = heap [k]; 1048 ANHE he = heap [k];
1049 ANHE *E = heap + N + HEAP0;
625 1050
626 while (k < (N >> 1)) 1051 for (;;)
627 { 1052 {
628 int j = k << 1; 1053 ev_tstamp minat;
1054 ANHE *minpos;
1055 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
629 1056
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1057 /* find minimum child */
1058 if (expect_true (pos + DHEAP - 1 < E))
631 ++j; 1059 {
632 1060 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
633 if (w->at <= heap [j]->at) 1061 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else if (pos < E)
1066 {
1067 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1068 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1069 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1070 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1071 }
1072 else
634 break; 1073 break;
635 1074
1075 if (ANHE_at (he) <= minat)
1076 break;
1077
1078 heap [k] = *minpos;
1079 ev_active (ANHE_w (*minpos)) = k;
1080
1081 k = minpos - heap;
1082 }
1083
1084 heap [k] = he;
1085 ev_active (ANHE_w (he)) = k;
1086}
1087
1088#else /* 4HEAP */
1089
1090#define HEAP0 1
1091#define HPARENT(k) ((k) >> 1)
1092#define UPHEAP_DONE(p,k) (!(p))
1093
1094/* away from the root */
1095inline_speed void
1096downheap (ANHE *heap, int N, int k)
1097{
1098 ANHE he = heap [k];
1099
1100 for (;;)
1101 {
1102 int c = k << 1;
1103
1104 if (c >= N + HEAP0)
1105 break;
1106
1107 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1108 ? 1 : 0;
1109
1110 if (ANHE_at (he) <= ANHE_at (heap [c]))
1111 break;
1112
636 heap [k] = heap [j]; 1113 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 1114 ev_active (ANHE_w (heap [k])) = k;
1115
638 k = j; 1116 k = c;
639 } 1117 }
640 1118
641 heap [k] = w; 1119 heap [k] = he;
642 ((W)heap [k])->active = k + 1; 1120 ev_active (ANHE_w (he)) = k;
643} 1121}
1122#endif
644 1123
645void inline_size 1124/* towards the root */
1125inline_speed void
1126upheap (ANHE *heap, int k)
1127{
1128 ANHE he = heap [k];
1129
1130 for (;;)
1131 {
1132 int p = HPARENT (k);
1133
1134 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1135 break;
1136
1137 heap [k] = heap [p];
1138 ev_active (ANHE_w (heap [k])) = k;
1139 k = p;
1140 }
1141
1142 heap [k] = he;
1143 ev_active (ANHE_w (he)) = k;
1144}
1145
1146/* move an element suitably so it is in a correct place */
1147inline_size void
646adjustheap (WT *heap, int N, int k) 1148adjustheap (ANHE *heap, int N, int k)
647{ 1149{
1150 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
648 upheap (heap, k); 1151 upheap (heap, k);
1152 else
649 downheap (heap, N, k); 1153 downheap (heap, N, k);
1154}
1155
1156/* rebuild the heap: this function is used only once and executed rarely */
1157inline_size void
1158reheap (ANHE *heap, int N)
1159{
1160 int i;
1161
1162 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1163 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1164 for (i = 0; i < N; ++i)
1165 upheap (heap, i + HEAP0);
650} 1166}
651 1167
652/*****************************************************************************/ 1168/*****************************************************************************/
653 1169
1170/* associate signal watchers to a signal signal */
654typedef struct 1171typedef struct
655{ 1172{
1173 EV_ATOMIC_T pending;
1174#if EV_MULTIPLICITY
1175 EV_P;
1176#endif
656 WL head; 1177 WL head;
657 sig_atomic_t volatile gotsig;
658} ANSIG; 1178} ANSIG;
659 1179
660static ANSIG *signals; 1180static ANSIG signals [EV_NSIG - 1];
661static int signalmax;
662 1181
663static int sigpipe [2]; 1182/*****************************************************************************/
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 1183
667void inline_size 1184/* used to prepare libev internal fd's */
668signals_init (ANSIG *base, int count) 1185/* this is not fork-safe */
669{ 1186inline_speed void
670 while (count--)
671 {
672 base->head = 0;
673 base->gotsig = 0;
674
675 ++base;
676 }
677}
678
679static void
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size
731fd_intern (int fd) 1187fd_intern (int fd)
732{ 1188{
733#ifdef _WIN32 1189#ifdef _WIN32
734 int arg = 1; 1190 unsigned long arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1191 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
736#else 1192#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC); 1193 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 1194 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 1195#endif
740} 1196}
741 1197
742static void noinline 1198static void noinline
743siginit (EV_P) 1199evpipe_init (EV_P)
744{ 1200{
1201 if (!ev_is_active (&pipe_w))
1202 {
1203#if EV_USE_EVENTFD
1204 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1205 if (evfd < 0 && errno == EINVAL)
1206 evfd = eventfd (0, 0);
1207
1208 if (evfd >= 0)
1209 {
1210 evpipe [0] = -1;
1211 fd_intern (evfd); /* doing it twice doesn't hurt */
1212 ev_io_set (&pipe_w, evfd, EV_READ);
1213 }
1214 else
1215#endif
1216 {
1217 while (pipe (evpipe))
1218 ev_syserr ("(libev) error creating signal/async pipe");
1219
745 fd_intern (sigpipe [0]); 1220 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1221 fd_intern (evpipe [1]);
1222 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1223 }
747 1224
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1225 ev_io_start (EV_A_ &pipe_w);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1226 ev_unref (EV_A); /* watcher should not keep loop alive */
1227 }
1228}
1229
1230inline_size void
1231evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1232{
1233 if (!*flag)
1234 {
1235 int old_errno = errno; /* save errno because write might clobber it */
1236
1237 *flag = 1;
1238
1239#if EV_USE_EVENTFD
1240 if (evfd >= 0)
1241 {
1242 uint64_t counter = 1;
1243 write (evfd, &counter, sizeof (uint64_t));
1244 }
1245 else
1246#endif
1247 write (evpipe [1], &old_errno, 1);
1248
1249 errno = old_errno;
1250 }
1251}
1252
1253/* called whenever the libev signal pipe */
1254/* got some events (signal, async) */
1255static void
1256pipecb (EV_P_ ev_io *iow, int revents)
1257{
1258 int i;
1259
1260#if EV_USE_EVENTFD
1261 if (evfd >= 0)
1262 {
1263 uint64_t counter;
1264 read (evfd, &counter, sizeof (uint64_t));
1265 }
1266 else
1267#endif
1268 {
1269 char dummy;
1270 read (evpipe [0], &dummy, 1);
1271 }
1272
1273 if (sig_pending)
1274 {
1275 sig_pending = 0;
1276
1277 for (i = EV_NSIG - 1; i--; )
1278 if (expect_false (signals [i].pending))
1279 ev_feed_signal_event (EV_A_ i + 1);
1280 }
1281
1282#if EV_ASYNC_ENABLE
1283 if (async_pending)
1284 {
1285 async_pending = 0;
1286
1287 for (i = asynccnt; i--; )
1288 if (asyncs [i]->sent)
1289 {
1290 asyncs [i]->sent = 0;
1291 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1292 }
1293 }
1294#endif
751} 1295}
752 1296
753/*****************************************************************************/ 1297/*****************************************************************************/
754 1298
1299static void
1300ev_sighandler (int signum)
1301{
1302#if EV_MULTIPLICITY
1303 EV_P = signals [signum - 1].loop;
1304#endif
1305
1306#ifdef _WIN32
1307 signal (signum, ev_sighandler);
1308#endif
1309
1310 signals [signum - 1].pending = 1;
1311 evpipe_write (EV_A_ &sig_pending);
1312}
1313
1314void noinline
1315ev_feed_signal_event (EV_P_ int signum)
1316{
1317 WL w;
1318
1319 if (expect_false (signum <= 0 || signum > EV_NSIG))
1320 return;
1321
1322 --signum;
1323
1324#if EV_MULTIPLICITY
1325 /* it is permissible to try to feed a signal to the wrong loop */
1326 /* or, likely more useful, feeding a signal nobody is waiting for */
1327
1328 if (expect_false (signals [signum].loop != EV_A))
1329 return;
1330#endif
1331
1332 signals [signum].pending = 0;
1333
1334 for (w = signals [signum].head; w; w = w->next)
1335 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1336}
1337
1338#if EV_USE_SIGNALFD
1339static void
1340sigfdcb (EV_P_ ev_io *iow, int revents)
1341{
1342 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1343
1344 for (;;)
1345 {
1346 ssize_t res = read (sigfd, si, sizeof (si));
1347
1348 /* not ISO-C, as res might be -1, but works with SuS */
1349 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1350 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1351
1352 if (res < (ssize_t)sizeof (si))
1353 break;
1354 }
1355}
1356#endif
1357
1358/*****************************************************************************/
1359
755static ev_child *childs [EV_PID_HASHSIZE]; 1360static WL childs [EV_PID_HASHSIZE];
756 1361
757#ifndef _WIN32 1362#ifndef _WIN32
758 1363
759static ev_signal childev; 1364static ev_signal childev;
760 1365
761void inline_speed 1366#ifndef WIFCONTINUED
1367# define WIFCONTINUED(status) 0
1368#endif
1369
1370/* handle a single child status event */
1371inline_speed void
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1372child_reap (EV_P_ int chain, int pid, int status)
763{ 1373{
764 ev_child *w; 1374 ev_child *w;
1375 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1376
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1377 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1378 {
767 if (w->pid == pid || !w->pid) 1379 if ((w->pid == pid || !w->pid)
1380 && (!traced || (w->flags & 1)))
768 { 1381 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1382 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1383 w->rpid = pid;
771 w->rstatus = status; 1384 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1385 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1386 }
1387 }
774} 1388}
775 1389
776#ifndef WCONTINUED 1390#ifndef WCONTINUED
777# define WCONTINUED 0 1391# define WCONTINUED 0
778#endif 1392#endif
779 1393
1394/* called on sigchld etc., calls waitpid */
780static void 1395static void
781childcb (EV_P_ ev_signal *sw, int revents) 1396childcb (EV_P_ ev_signal *sw, int revents)
782{ 1397{
783 int pid, status; 1398 int pid, status;
784 1399
787 if (!WCONTINUED 1402 if (!WCONTINUED
788 || errno != EINVAL 1403 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1404 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1405 return;
791 1406
792 /* make sure we are called again until all childs have been reaped */ 1407 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1408 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1409 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1410
796 child_reap (EV_A_ sw, pid, pid, status); 1411 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1412 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1413 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1414}
800 1415
801#endif 1416#endif
802 1417
803/*****************************************************************************/ 1418/*****************************************************************************/
865 /* kqueue is borked on everything but netbsd apparently */ 1480 /* kqueue is borked on everything but netbsd apparently */
866 /* it usually doesn't work correctly on anything but sockets and pipes */ 1481 /* it usually doesn't work correctly on anything but sockets and pipes */
867 flags &= ~EVBACKEND_KQUEUE; 1482 flags &= ~EVBACKEND_KQUEUE;
868#endif 1483#endif
869#ifdef __APPLE__ 1484#ifdef __APPLE__
870 // flags &= ~EVBACKEND_KQUEUE; for documentation 1485 /* only select works correctly on that "unix-certified" platform */
871 flags &= ~EVBACKEND_POLL; 1486 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1487 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
872#endif 1488#endif
873 1489
874 return flags; 1490 return flags;
875} 1491}
876 1492
877unsigned int 1493unsigned int
878ev_embeddable_backends (void) 1494ev_embeddable_backends (void)
879{ 1495{
880 return EVBACKEND_EPOLL 1496 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1497
882 | EVBACKEND_PORT; 1498 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1499 /* please fix it and tell me how to detect the fix */
1500 flags &= ~EVBACKEND_EPOLL;
1501
1502 return flags;
883} 1503}
884 1504
885unsigned int 1505unsigned int
886ev_backend (EV_P) 1506ev_backend (EV_P)
887{ 1507{
888 return backend; 1508 return backend;
889} 1509}
890 1510
1511#if EV_MINIMAL < 2
1512unsigned int
1513ev_loop_count (EV_P)
1514{
1515 return loop_count;
1516}
1517
1518unsigned int
1519ev_loop_depth (EV_P)
1520{
1521 return loop_depth;
1522}
1523
1524void
1525ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1526{
1527 io_blocktime = interval;
1528}
1529
1530void
1531ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1532{
1533 timeout_blocktime = interval;
1534}
1535
1536void
1537ev_set_userdata (EV_P_ void *data)
1538{
1539 userdata = data;
1540}
1541
1542void *
1543ev_userdata (EV_P)
1544{
1545 return userdata;
1546}
1547
1548void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1549{
1550 invoke_cb = invoke_pending_cb;
1551}
1552
1553void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1554{
1555 release_cb = release;
1556 acquire_cb = acquire;
1557}
1558#endif
1559
1560/* initialise a loop structure, must be zero-initialised */
891static void noinline 1561static void noinline
892loop_init (EV_P_ unsigned int flags) 1562loop_init (EV_P_ unsigned int flags)
893{ 1563{
894 if (!backend) 1564 if (!backend)
895 { 1565 {
1566#if EV_USE_REALTIME
1567 if (!have_realtime)
1568 {
1569 struct timespec ts;
1570
1571 if (!clock_gettime (CLOCK_REALTIME, &ts))
1572 have_realtime = 1;
1573 }
1574#endif
1575
896#if EV_USE_MONOTONIC 1576#if EV_USE_MONOTONIC
1577 if (!have_monotonic)
897 { 1578 {
898 struct timespec ts; 1579 struct timespec ts;
1580
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1581 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1582 have_monotonic = 1;
901 } 1583 }
902#endif 1584#endif
903
904 ev_rt_now = ev_time ();
905 mn_now = get_clock ();
906 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now;
908 1585
909 /* pid check not overridable via env */ 1586 /* pid check not overridable via env */
910#ifndef _WIN32 1587#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1588 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1589 curpid = getpid ();
915 if (!(flags & EVFLAG_NOENV) 1592 if (!(flags & EVFLAG_NOENV)
916 && !enable_secure () 1593 && !enable_secure ()
917 && getenv ("LIBEV_FLAGS")) 1594 && getenv ("LIBEV_FLAGS"))
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1595 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1596
1597 ev_rt_now = ev_time ();
1598 mn_now = get_clock ();
1599 now_floor = mn_now;
1600 rtmn_diff = ev_rt_now - mn_now;
1601#if EV_MINIMAL < 2
1602 invoke_cb = ev_invoke_pending;
1603#endif
1604
1605 io_blocktime = 0.;
1606 timeout_blocktime = 0.;
1607 backend = 0;
1608 backend_fd = -1;
1609 sig_pending = 0;
1610#if EV_ASYNC_ENABLE
1611 async_pending = 0;
1612#endif
1613#if EV_USE_INOTIFY
1614 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1615#endif
1616#if EV_USE_SIGNALFD
1617 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1618#endif
1619
920 if (!(flags & 0x0000ffffUL)) 1620 if (!(flags & 0x0000ffffU))
921 flags |= ev_recommended_backends (); 1621 flags |= ev_recommended_backends ();
922
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY
926 fs_fd = -2;
927#endif
928 1622
929#if EV_USE_PORT 1623#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1624 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1625#endif
932#if EV_USE_KQUEUE 1626#if EV_USE_KQUEUE
940#endif 1634#endif
941#if EV_USE_SELECT 1635#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1636 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1637#endif
944 1638
1639 ev_prepare_init (&pending_w, pendingcb);
1640
945 ev_init (&sigev, sigcb); 1641 ev_init (&pipe_w, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1642 ev_set_priority (&pipe_w, EV_MAXPRI);
947 } 1643 }
948} 1644}
949 1645
1646/* free up a loop structure */
950static void noinline 1647static void noinline
951loop_destroy (EV_P) 1648loop_destroy (EV_P)
952{ 1649{
953 int i; 1650 int i;
1651
1652 if (ev_is_active (&pipe_w))
1653 {
1654 /*ev_ref (EV_A);*/
1655 /*ev_io_stop (EV_A_ &pipe_w);*/
1656
1657#if EV_USE_EVENTFD
1658 if (evfd >= 0)
1659 close (evfd);
1660#endif
1661
1662 if (evpipe [0] >= 0)
1663 {
1664 EV_WIN32_CLOSE_FD (evpipe [0]);
1665 EV_WIN32_CLOSE_FD (evpipe [1]);
1666 }
1667 }
1668
1669#if EV_USE_SIGNALFD
1670 if (ev_is_active (&sigfd_w))
1671 close (sigfd);
1672#endif
954 1673
955#if EV_USE_INOTIFY 1674#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1675 if (fs_fd >= 0)
957 close (fs_fd); 1676 close (fs_fd);
958#endif 1677#endif
975#if EV_USE_SELECT 1694#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1695 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1696#endif
978 1697
979 for (i = NUMPRI; i--; ) 1698 for (i = NUMPRI; i--; )
1699 {
980 array_free (pending, [i]); 1700 array_free (pending, [i]);
1701#if EV_IDLE_ENABLE
1702 array_free (idle, [i]);
1703#endif
1704 }
1705
1706 ev_free (anfds); anfds = 0; anfdmax = 0;
981 1707
982 /* have to use the microsoft-never-gets-it-right macro */ 1708 /* have to use the microsoft-never-gets-it-right macro */
1709 array_free (rfeed, EMPTY);
983 array_free (fdchange, EMPTY0); 1710 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1711 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1712#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1713 array_free (periodic, EMPTY);
987#endif 1714#endif
1715#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1716 array_free (fork, EMPTY);
1717#endif
989 array_free (prepare, EMPTY0); 1718 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1719 array_free (check, EMPTY);
1720#if EV_ASYNC_ENABLE
1721 array_free (async, EMPTY);
1722#endif
991 1723
992 backend = 0; 1724 backend = 0;
993} 1725}
994 1726
1727#if EV_USE_INOTIFY
995void inline_size infy_fork (EV_P); 1728inline_size void infy_fork (EV_P);
1729#endif
996 1730
997void inline_size 1731inline_size void
998loop_fork (EV_P) 1732loop_fork (EV_P)
999{ 1733{
1000#if EV_USE_PORT 1734#if EV_USE_PORT
1001 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1735 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1002#endif 1736#endif
1008#endif 1742#endif
1009#if EV_USE_INOTIFY 1743#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1744 infy_fork (EV_A);
1011#endif 1745#endif
1012 1746
1013 if (ev_is_active (&sigev)) 1747 if (ev_is_active (&pipe_w))
1014 { 1748 {
1015 /* default loop */ 1749 /* this "locks" the handlers against writing to the pipe */
1750 /* while we modify the fd vars */
1751 sig_pending = 1;
1752#if EV_ASYNC_ENABLE
1753 async_pending = 1;
1754#endif
1016 1755
1017 ev_ref (EV_A); 1756 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1757 ev_io_stop (EV_A_ &pipe_w);
1019 close (sigpipe [0]);
1020 close (sigpipe [1]);
1021 1758
1022 while (pipe (sigpipe)) 1759#if EV_USE_EVENTFD
1023 syserr ("(libev) error creating pipe"); 1760 if (evfd >= 0)
1761 close (evfd);
1762#endif
1024 1763
1764 if (evpipe [0] >= 0)
1765 {
1766 EV_WIN32_CLOSE_FD (evpipe [0]);
1767 EV_WIN32_CLOSE_FD (evpipe [1]);
1768 }
1769
1025 siginit (EV_A); 1770 evpipe_init (EV_A);
1771 /* now iterate over everything, in case we missed something */
1772 pipecb (EV_A_ &pipe_w, EV_READ);
1026 } 1773 }
1027 1774
1028 postfork = 0; 1775 postfork = 0;
1029} 1776}
1030 1777
1031#if EV_MULTIPLICITY 1778#if EV_MULTIPLICITY
1779
1032struct ev_loop * 1780struct ev_loop *
1033ev_loop_new (unsigned int flags) 1781ev_loop_new (unsigned int flags)
1034{ 1782{
1035 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1783 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1036 1784
1037 memset (loop, 0, sizeof (struct ev_loop)); 1785 memset (EV_A, 0, sizeof (struct ev_loop));
1038
1039 loop_init (EV_A_ flags); 1786 loop_init (EV_A_ flags);
1040 1787
1041 if (ev_backend (EV_A)) 1788 if (ev_backend (EV_A))
1042 return loop; 1789 return EV_A;
1043 1790
1044 return 0; 1791 return 0;
1045} 1792}
1046 1793
1047void 1794void
1052} 1799}
1053 1800
1054void 1801void
1055ev_loop_fork (EV_P) 1802ev_loop_fork (EV_P)
1056{ 1803{
1057 postfork = 1; 1804 postfork = 1; /* must be in line with ev_default_fork */
1058} 1805}
1806#endif /* multiplicity */
1059 1807
1808#if EV_VERIFY
1809static void noinline
1810verify_watcher (EV_P_ W w)
1811{
1812 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1813
1814 if (w->pending)
1815 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1816}
1817
1818static void noinline
1819verify_heap (EV_P_ ANHE *heap, int N)
1820{
1821 int i;
1822
1823 for (i = HEAP0; i < N + HEAP0; ++i)
1824 {
1825 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1826 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1827 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1828
1829 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1830 }
1831}
1832
1833static void noinline
1834array_verify (EV_P_ W *ws, int cnt)
1835{
1836 while (cnt--)
1837 {
1838 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1839 verify_watcher (EV_A_ ws [cnt]);
1840 }
1841}
1842#endif
1843
1844#if EV_MINIMAL < 2
1845void
1846ev_loop_verify (EV_P)
1847{
1848#if EV_VERIFY
1849 int i;
1850 WL w;
1851
1852 assert (activecnt >= -1);
1853
1854 assert (fdchangemax >= fdchangecnt);
1855 for (i = 0; i < fdchangecnt; ++i)
1856 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1857
1858 assert (anfdmax >= 0);
1859 for (i = 0; i < anfdmax; ++i)
1860 for (w = anfds [i].head; w; w = w->next)
1861 {
1862 verify_watcher (EV_A_ (W)w);
1863 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1864 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1865 }
1866
1867 assert (timermax >= timercnt);
1868 verify_heap (EV_A_ timers, timercnt);
1869
1870#if EV_PERIODIC_ENABLE
1871 assert (periodicmax >= periodiccnt);
1872 verify_heap (EV_A_ periodics, periodiccnt);
1873#endif
1874
1875 for (i = NUMPRI; i--; )
1876 {
1877 assert (pendingmax [i] >= pendingcnt [i]);
1878#if EV_IDLE_ENABLE
1879 assert (idleall >= 0);
1880 assert (idlemax [i] >= idlecnt [i]);
1881 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1882#endif
1883 }
1884
1885#if EV_FORK_ENABLE
1886 assert (forkmax >= forkcnt);
1887 array_verify (EV_A_ (W *)forks, forkcnt);
1888#endif
1889
1890#if EV_ASYNC_ENABLE
1891 assert (asyncmax >= asynccnt);
1892 array_verify (EV_A_ (W *)asyncs, asynccnt);
1893#endif
1894
1895 assert (preparemax >= preparecnt);
1896 array_verify (EV_A_ (W *)prepares, preparecnt);
1897
1898 assert (checkmax >= checkcnt);
1899 array_verify (EV_A_ (W *)checks, checkcnt);
1900
1901# if 0
1902 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1903 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1904# endif
1905#endif
1906}
1060#endif 1907#endif
1061 1908
1062#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
1063struct ev_loop * 1910struct ev_loop *
1064ev_default_loop_init (unsigned int flags) 1911ev_default_loop_init (unsigned int flags)
1065#else 1912#else
1066int 1913int
1067ev_default_loop (unsigned int flags) 1914ev_default_loop (unsigned int flags)
1068#endif 1915#endif
1069{ 1916{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 1917 if (!ev_default_loop_ptr)
1075 { 1918 {
1076#if EV_MULTIPLICITY 1919#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1920 EV_P = ev_default_loop_ptr = &default_loop_struct;
1078#else 1921#else
1079 ev_default_loop_ptr = 1; 1922 ev_default_loop_ptr = 1;
1080#endif 1923#endif
1081 1924
1082 loop_init (EV_A_ flags); 1925 loop_init (EV_A_ flags);
1083 1926
1084 if (ev_backend (EV_A)) 1927 if (ev_backend (EV_A))
1085 { 1928 {
1086 siginit (EV_A);
1087
1088#ifndef _WIN32 1929#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 1930 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 1931 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 1932 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1933 ev_unref (EV_A); /* child watcher should not keep loop alive */
1101 1942
1102void 1943void
1103ev_default_destroy (void) 1944ev_default_destroy (void)
1104{ 1945{
1105#if EV_MULTIPLICITY 1946#if EV_MULTIPLICITY
1106 struct ev_loop *loop = ev_default_loop_ptr; 1947 EV_P = ev_default_loop_ptr;
1107#endif 1948#endif
1949
1950 ev_default_loop_ptr = 0;
1108 1951
1109#ifndef _WIN32 1952#ifndef _WIN32
1110 ev_ref (EV_A); /* child watcher */ 1953 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev); 1954 ev_signal_stop (EV_A_ &childev);
1112#endif 1955#endif
1113 1956
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A); 1957 loop_destroy (EV_A);
1121} 1958}
1122 1959
1123void 1960void
1124ev_default_fork (void) 1961ev_default_fork (void)
1125{ 1962{
1126#if EV_MULTIPLICITY 1963#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 1964 EV_P = ev_default_loop_ptr;
1128#endif 1965#endif
1129 1966
1130 if (backend) 1967 postfork = 1; /* must be in line with ev_loop_fork */
1131 postfork = 1;
1132} 1968}
1133 1969
1134/*****************************************************************************/ 1970/*****************************************************************************/
1135 1971
1136int inline_size 1972void
1137any_pending (EV_P) 1973ev_invoke (EV_P_ void *w, int revents)
1974{
1975 EV_CB_INVOKE ((W)w, revents);
1976}
1977
1978unsigned int
1979ev_pending_count (EV_P)
1138{ 1980{
1139 int pri; 1981 int pri;
1982 unsigned int count = 0;
1140 1983
1141 for (pri = NUMPRI; pri--; ) 1984 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri]) 1985 count += pendingcnt [pri];
1143 return 1;
1144 1986
1145 return 0; 1987 return count;
1146} 1988}
1147 1989
1148void inline_speed 1990void noinline
1149call_pending (EV_P) 1991ev_invoke_pending (EV_P)
1150{ 1992{
1151 int pri; 1993 int pri;
1152 1994
1153 for (pri = NUMPRI; pri--; ) 1995 for (pri = NUMPRI; pri--; )
1154 while (pendingcnt [pri]) 1996 while (pendingcnt [pri])
1155 { 1997 {
1156 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1998 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1157 1999
1158 if (expect_true (p->w))
1159 {
1160 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2000 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2001 /* ^ this is no longer true, as pending_w could be here */
1161 2002
1162 p->w->pending = 0; 2003 p->w->pending = 0;
1163 EV_CB_INVOKE (p->w, p->events); 2004 EV_CB_INVOKE (p->w, p->events);
1164 } 2005 EV_FREQUENT_CHECK;
1165 } 2006 }
1166} 2007}
1167 2008
1168void inline_size 2009#if EV_IDLE_ENABLE
2010/* make idle watchers pending. this handles the "call-idle */
2011/* only when higher priorities are idle" logic */
2012inline_size void
2013idle_reify (EV_P)
2014{
2015 if (expect_false (idleall))
2016 {
2017 int pri;
2018
2019 for (pri = NUMPRI; pri--; )
2020 {
2021 if (pendingcnt [pri])
2022 break;
2023
2024 if (idlecnt [pri])
2025 {
2026 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2027 break;
2028 }
2029 }
2030 }
2031}
2032#endif
2033
2034/* make timers pending */
2035inline_size void
1169timers_reify (EV_P) 2036timers_reify (EV_P)
1170{ 2037{
2038 EV_FREQUENT_CHECK;
2039
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 2040 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1172 { 2041 {
1173 ev_timer *w = timers [0]; 2042 do
1174
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176
1177 /* first reschedule or stop timer */
1178 if (w->repeat)
1179 { 2043 {
2044 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2045
2046 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2047
2048 /* first reschedule or stop timer */
2049 if (w->repeat)
2050 {
2051 ev_at (w) += w->repeat;
2052 if (ev_at (w) < mn_now)
2053 ev_at (w) = mn_now;
2054
1180 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2055 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1181 2056
1182 ((WT)w)->at += w->repeat; 2057 ANHE_at_cache (timers [HEAP0]);
1183 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now;
1185
1186 downheap ((WT *)timers, timercnt, 0); 2058 downheap (timers, timercnt, HEAP0);
2059 }
2060 else
2061 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2062
2063 EV_FREQUENT_CHECK;
2064 feed_reverse (EV_A_ (W)w);
1187 } 2065 }
1188 else 2066 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 2067
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2068 feed_reverse_done (EV_A_ EV_TIMEOUT);
1192 } 2069 }
1193} 2070}
1194 2071
1195#if EV_PERIODIC_ENABLE 2072#if EV_PERIODIC_ENABLE
1196void inline_size 2073/* make periodics pending */
2074inline_size void
1197periodics_reify (EV_P) 2075periodics_reify (EV_P)
1198{ 2076{
2077 EV_FREQUENT_CHECK;
2078
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2079 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1200 { 2080 {
1201 ev_periodic *w = periodics [0]; 2081 int feed_count = 0;
1202 2082
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2083 do
1204
1205 /* first reschedule or stop timer */
1206 if (w->reschedule_cb)
1207 { 2084 {
2085 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2086
2087 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2088
2089 /* first reschedule or stop timer */
2090 if (w->reschedule_cb)
2091 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2092 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2093
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2094 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2095
2096 ANHE_at_cache (periodics [HEAP0]);
1210 downheap ((WT *)periodics, periodiccnt, 0); 2097 downheap (periodics, periodiccnt, HEAP0);
2098 }
2099 else if (w->interval)
2100 {
2101 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2102 /* if next trigger time is not sufficiently in the future, put it there */
2103 /* this might happen because of floating point inexactness */
2104 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2105 {
2106 ev_at (w) += w->interval;
2107
2108 /* if interval is unreasonably low we might still have a time in the past */
2109 /* so correct this. this will make the periodic very inexact, but the user */
2110 /* has effectively asked to get triggered more often than possible */
2111 if (ev_at (w) < ev_rt_now)
2112 ev_at (w) = ev_rt_now;
2113 }
2114
2115 ANHE_at_cache (periodics [HEAP0]);
2116 downheap (periodics, periodiccnt, HEAP0);
2117 }
2118 else
2119 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2120
2121 EV_FREQUENT_CHECK;
2122 feed_reverse (EV_A_ (W)w);
1211 } 2123 }
1212 else if (w->interval) 2124 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1213 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0);
1217 }
1218 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 2125
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2126 feed_reverse_done (EV_A_ EV_PERIODIC);
1222 } 2127 }
1223} 2128}
1224 2129
2130/* simply recalculate all periodics */
2131/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1225static void noinline 2132static void noinline
1226periodics_reschedule (EV_P) 2133periodics_reschedule (EV_P)
1227{ 2134{
1228 int i; 2135 int i;
1229 2136
1230 /* adjust periodics after time jump */ 2137 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 2138 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1232 { 2139 {
1233 ev_periodic *w = periodics [i]; 2140 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1234 2141
1235 if (w->reschedule_cb) 2142 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2143 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 2144 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2145 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2146
2147 ANHE_at_cache (periodics [i]);
2148 }
2149
2150 reheap (periodics, periodiccnt);
2151}
2152#endif
2153
2154/* adjust all timers by a given offset */
2155static void noinline
2156timers_reschedule (EV_P_ ev_tstamp adjust)
2157{
2158 int i;
2159
2160 for (i = 0; i < timercnt; ++i)
1239 } 2161 {
1240 2162 ANHE *he = timers + i + HEAP0;
1241 /* now rebuild the heap */ 2163 ANHE_w (*he)->at += adjust;
1242 for (i = periodiccnt >> 1; i--; ) 2164 ANHE_at_cache (*he);
1243 downheap ((WT *)periodics, periodiccnt, i); 2165 }
1244} 2166}
1245#endif
1246 2167
1247int inline_size 2168/* fetch new monotonic and realtime times from the kernel */
1248time_update_monotonic (EV_P) 2169/* also detect if there was a timejump, and act accordingly */
2170inline_speed void
2171time_update (EV_P_ ev_tstamp max_block)
1249{ 2172{
2173#if EV_USE_MONOTONIC
2174 if (expect_true (have_monotonic))
2175 {
2176 int i;
2177 ev_tstamp odiff = rtmn_diff;
2178
1250 mn_now = get_clock (); 2179 mn_now = get_clock ();
1251 2180
2181 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2182 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2183 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 2184 {
1254 ev_rt_now = rtmn_diff + mn_now; 2185 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 2186 return;
1256 } 2187 }
1257 else 2188
1258 {
1259 now_floor = mn_now; 2189 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 2190 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 2191
1265void inline_size 2192 /* loop a few times, before making important decisions.
1266time_update (EV_P) 2193 * on the choice of "4": one iteration isn't enough,
1267{ 2194 * in case we get preempted during the calls to
1268 int i; 2195 * ev_time and get_clock. a second call is almost guaranteed
1269 2196 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 2197 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 2198 * in the unlikely event of having been preempted here.
1272 { 2199 */
1273 if (time_update_monotonic (EV_A)) 2200 for (i = 4; --i; )
1274 { 2201 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 2202 rtmn_diff = ev_rt_now - mn_now;
1288 2203
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2204 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1290 return; /* all is well */ 2205 return; /* all is well */
1291 2206
1292 ev_rt_now = ev_time (); 2207 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 2208 mn_now = get_clock ();
1294 now_floor = mn_now; 2209 now_floor = mn_now;
1295 } 2210 }
1296 2211
2212 /* no timer adjustment, as the monotonic clock doesn't jump */
2213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297# if EV_PERIODIC_ENABLE 2214# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 2215 periodics_reschedule (EV_A);
1299# endif 2216# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 2217 }
1304 else 2218 else
1305#endif 2219#endif
1306 { 2220 {
1307 ev_rt_now = ev_time (); 2221 ev_rt_now = ev_time ();
1308 2222
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2223 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 2224 {
2225 /* adjust timers. this is easy, as the offset is the same for all of them */
2226 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1311#if EV_PERIODIC_ENABLE 2227#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 2228 periodics_reschedule (EV_A);
1313#endif 2229#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 2230 }
1319 2231
1320 mn_now = ev_rt_now; 2232 mn_now = ev_rt_now;
1321 } 2233 }
1322} 2234}
1323 2235
1324void 2236void
1325ev_ref (EV_P)
1326{
1327 ++activecnt;
1328}
1329
1330void
1331ev_unref (EV_P)
1332{
1333 --activecnt;
1334}
1335
1336static int loop_done;
1337
1338void
1339ev_loop (EV_P_ int flags) 2237ev_loop (EV_P_ int flags)
1340{ 2238{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2239#if EV_MINIMAL < 2
1342 ? EVUNLOOP_ONE 2240 ++loop_depth;
1343 : EVUNLOOP_CANCEL; 2241#endif
1344 2242
2243 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2244
2245 loop_done = EVUNLOOP_CANCEL;
2246
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2247 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1346 2248
1347 while (activecnt) 2249 do
1348 { 2250 {
2251#if EV_VERIFY >= 2
2252 ev_loop_verify (EV_A);
2253#endif
2254
1349#ifndef _WIN32 2255#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 2256 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 2257 if (expect_false (getpid () != curpid))
1352 { 2258 {
1353 curpid = getpid (); 2259 curpid = getpid ();
1359 /* we might have forked, so queue fork handlers */ 2265 /* we might have forked, so queue fork handlers */
1360 if (expect_false (postfork)) 2266 if (expect_false (postfork))
1361 if (forkcnt) 2267 if (forkcnt)
1362 { 2268 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2269 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 2270 EV_INVOKE_PENDING;
1365 } 2271 }
1366#endif 2272#endif
1367 2273
1368 /* queue check watchers (and execute them) */ 2274 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 2275 if (expect_false (preparecnt))
1370 { 2276 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2277 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 2278 EV_INVOKE_PENDING;
1373 } 2279 }
2280
2281 if (expect_false (loop_done))
2282 break;
1374 2283
1375 /* we might have forked, so reify kernel state if necessary */ 2284 /* we might have forked, so reify kernel state if necessary */
1376 if (expect_false (postfork)) 2285 if (expect_false (postfork))
1377 loop_fork (EV_A); 2286 loop_fork (EV_A);
1378 2287
1379 /* update fd-related kernel structures */ 2288 /* update fd-related kernel structures */
1380 fd_reify (EV_A); 2289 fd_reify (EV_A);
1381 2290
1382 /* calculate blocking time */ 2291 /* calculate blocking time */
1383 { 2292 {
1384 ev_tstamp block; 2293 ev_tstamp waittime = 0.;
2294 ev_tstamp sleeptime = 0.;
1385 2295
1386 if (flags & EVLOOP_NONBLOCK || idlecnt) 2296 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1387 block = 0.; /* do not block at all */
1388 else
1389 { 2297 {
2298 /* remember old timestamp for io_blocktime calculation */
2299 ev_tstamp prev_mn_now = mn_now;
2300
1390 /* update time to cancel out callback processing overhead */ 2301 /* update time to cancel out callback processing overhead */
1391#if EV_USE_MONOTONIC
1392 if (expect_true (have_monotonic))
1393 time_update_monotonic (EV_A); 2302 time_update (EV_A_ 1e100);
1394 else
1395#endif
1396 {
1397 ev_rt_now = ev_time ();
1398 mn_now = ev_rt_now;
1399 }
1400 2303
1401 block = MAX_BLOCKTIME; 2304 waittime = MAX_BLOCKTIME;
1402 2305
1403 if (timercnt) 2306 if (timercnt)
1404 { 2307 {
1405 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2308 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1406 if (block > to) block = to; 2309 if (waittime > to) waittime = to;
1407 } 2310 }
1408 2311
1409#if EV_PERIODIC_ENABLE 2312#if EV_PERIODIC_ENABLE
1410 if (periodiccnt) 2313 if (periodiccnt)
1411 { 2314 {
1412 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2315 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1413 if (block > to) block = to; 2316 if (waittime > to) waittime = to;
1414 } 2317 }
1415#endif 2318#endif
1416 2319
2320 /* don't let timeouts decrease the waittime below timeout_blocktime */
2321 if (expect_false (waittime < timeout_blocktime))
2322 waittime = timeout_blocktime;
2323
2324 /* extra check because io_blocktime is commonly 0 */
1417 if (expect_false (block < 0.)) block = 0.; 2325 if (expect_false (io_blocktime))
2326 {
2327 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2328
2329 if (sleeptime > waittime - backend_fudge)
2330 sleeptime = waittime - backend_fudge;
2331
2332 if (expect_true (sleeptime > 0.))
2333 {
2334 ev_sleep (sleeptime);
2335 waittime -= sleeptime;
2336 }
2337 }
1418 } 2338 }
1419 2339
2340#if EV_MINIMAL < 2
2341 ++loop_count;
2342#endif
2343 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1420 backend_poll (EV_A_ block); 2344 backend_poll (EV_A_ waittime);
2345 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2346
2347 /* update ev_rt_now, do magic */
2348 time_update (EV_A_ waittime + sleeptime);
1421 } 2349 }
1422
1423 /* update ev_rt_now, do magic */
1424 time_update (EV_A);
1425 2350
1426 /* queue pending timers and reschedule them */ 2351 /* queue pending timers and reschedule them */
1427 timers_reify (EV_A); /* relative timers called last */ 2352 timers_reify (EV_A); /* relative timers called last */
1428#if EV_PERIODIC_ENABLE 2353#if EV_PERIODIC_ENABLE
1429 periodics_reify (EV_A); /* absolute timers called first */ 2354 periodics_reify (EV_A); /* absolute timers called first */
1430#endif 2355#endif
1431 2356
2357#if EV_IDLE_ENABLE
1432 /* queue idle watchers unless other events are pending */ 2358 /* queue idle watchers unless other events are pending */
1433 if (idlecnt && !any_pending (EV_A)) 2359 idle_reify (EV_A);
1434 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2360#endif
1435 2361
1436 /* queue check watchers, to be executed first */ 2362 /* queue check watchers, to be executed first */
1437 if (expect_false (checkcnt)) 2363 if (expect_false (checkcnt))
1438 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2364 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1439 2365
1440 call_pending (EV_A); 2366 EV_INVOKE_PENDING;
1441
1442 if (expect_false (loop_done))
1443 break;
1444 } 2367 }
2368 while (expect_true (
2369 activecnt
2370 && !loop_done
2371 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2372 ));
1445 2373
1446 if (loop_done == EVUNLOOP_ONE) 2374 if (loop_done == EVUNLOOP_ONE)
1447 loop_done = EVUNLOOP_CANCEL; 2375 loop_done = EVUNLOOP_CANCEL;
2376
2377#if EV_MINIMAL < 2
2378 --loop_depth;
2379#endif
1448} 2380}
1449 2381
1450void 2382void
1451ev_unloop (EV_P_ int how) 2383ev_unloop (EV_P_ int how)
1452{ 2384{
1453 loop_done = how; 2385 loop_done = how;
1454} 2386}
1455 2387
2388void
2389ev_ref (EV_P)
2390{
2391 ++activecnt;
2392}
2393
2394void
2395ev_unref (EV_P)
2396{
2397 --activecnt;
2398}
2399
2400void
2401ev_now_update (EV_P)
2402{
2403 time_update (EV_A_ 1e100);
2404}
2405
2406void
2407ev_suspend (EV_P)
2408{
2409 ev_now_update (EV_A);
2410}
2411
2412void
2413ev_resume (EV_P)
2414{
2415 ev_tstamp mn_prev = mn_now;
2416
2417 ev_now_update (EV_A);
2418 timers_reschedule (EV_A_ mn_now - mn_prev);
2419#if EV_PERIODIC_ENABLE
2420 /* TODO: really do this? */
2421 periodics_reschedule (EV_A);
2422#endif
2423}
2424
1456/*****************************************************************************/ 2425/*****************************************************************************/
2426/* singly-linked list management, used when the expected list length is short */
1457 2427
1458void inline_size 2428inline_size void
1459wlist_add (WL *head, WL elem) 2429wlist_add (WL *head, WL elem)
1460{ 2430{
1461 elem->next = *head; 2431 elem->next = *head;
1462 *head = elem; 2432 *head = elem;
1463} 2433}
1464 2434
1465void inline_size 2435inline_size void
1466wlist_del (WL *head, WL elem) 2436wlist_del (WL *head, WL elem)
1467{ 2437{
1468 while (*head) 2438 while (*head)
1469 { 2439 {
1470 if (*head == elem) 2440 if (expect_true (*head == elem))
1471 { 2441 {
1472 *head = elem->next; 2442 *head = elem->next;
1473 return; 2443 break;
1474 } 2444 }
1475 2445
1476 head = &(*head)->next; 2446 head = &(*head)->next;
1477 } 2447 }
1478} 2448}
1479 2449
1480void inline_speed 2450/* internal, faster, version of ev_clear_pending */
2451inline_speed void
1481ev_clear_pending (EV_P_ W w) 2452clear_pending (EV_P_ W w)
1482{ 2453{
1483 if (w->pending) 2454 if (w->pending)
1484 { 2455 {
1485 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2456 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1486 w->pending = 0; 2457 w->pending = 0;
1487 } 2458 }
1488} 2459}
1489 2460
1490void inline_speed 2461int
2462ev_clear_pending (EV_P_ void *w)
2463{
2464 W w_ = (W)w;
2465 int pending = w_->pending;
2466
2467 if (expect_true (pending))
2468 {
2469 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2470 p->w = (W)&pending_w;
2471 w_->pending = 0;
2472 return p->events;
2473 }
2474 else
2475 return 0;
2476}
2477
2478inline_size void
2479pri_adjust (EV_P_ W w)
2480{
2481 int pri = ev_priority (w);
2482 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2483 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2484 ev_set_priority (w, pri);
2485}
2486
2487inline_speed void
1491ev_start (EV_P_ W w, int active) 2488ev_start (EV_P_ W w, int active)
1492{ 2489{
1493 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2490 pri_adjust (EV_A_ w);
1494 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1495
1496 w->active = active; 2491 w->active = active;
1497 ev_ref (EV_A); 2492 ev_ref (EV_A);
1498} 2493}
1499 2494
1500void inline_size 2495inline_size void
1501ev_stop (EV_P_ W w) 2496ev_stop (EV_P_ W w)
1502{ 2497{
1503 ev_unref (EV_A); 2498 ev_unref (EV_A);
1504 w->active = 0; 2499 w->active = 0;
1505} 2500}
1506 2501
1507/*****************************************************************************/ 2502/*****************************************************************************/
1508 2503
1509void 2504void noinline
1510ev_io_start (EV_P_ ev_io *w) 2505ev_io_start (EV_P_ ev_io *w)
1511{ 2506{
1512 int fd = w->fd; 2507 int fd = w->fd;
1513 2508
1514 if (expect_false (ev_is_active (w))) 2509 if (expect_false (ev_is_active (w)))
1515 return; 2510 return;
1516 2511
1517 assert (("ev_io_start called with negative fd", fd >= 0)); 2512 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2513 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2514
2515 EV_FREQUENT_CHECK;
1518 2516
1519 ev_start (EV_A_ (W)w, 1); 2517 ev_start (EV_A_ (W)w, 1);
1520 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2518 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1521 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2519 wlist_add (&anfds[fd].head, (WL)w);
1522 2520
1523 fd_change (EV_A_ fd); 2521 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1524} 2522 w->events &= ~EV__IOFDSET;
1525 2523
1526void 2524 EV_FREQUENT_CHECK;
2525}
2526
2527void noinline
1527ev_io_stop (EV_P_ ev_io *w) 2528ev_io_stop (EV_P_ ev_io *w)
1528{ 2529{
1529 ev_clear_pending (EV_A_ (W)w); 2530 clear_pending (EV_A_ (W)w);
1530 if (expect_false (!ev_is_active (w))) 2531 if (expect_false (!ev_is_active (w)))
1531 return; 2532 return;
1532 2533
1533 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2534 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1534 2535
2536 EV_FREQUENT_CHECK;
2537
1535 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2538 wlist_del (&anfds[w->fd].head, (WL)w);
1536 ev_stop (EV_A_ (W)w); 2539 ev_stop (EV_A_ (W)w);
1537 2540
1538 fd_change (EV_A_ w->fd); 2541 fd_change (EV_A_ w->fd, 1);
1539}
1540 2542
1541void 2543 EV_FREQUENT_CHECK;
2544}
2545
2546void noinline
1542ev_timer_start (EV_P_ ev_timer *w) 2547ev_timer_start (EV_P_ ev_timer *w)
1543{ 2548{
1544 if (expect_false (ev_is_active (w))) 2549 if (expect_false (ev_is_active (w)))
1545 return; 2550 return;
1546 2551
1547 ((WT)w)->at += mn_now; 2552 ev_at (w) += mn_now;
1548 2553
1549 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2554 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1550 2555
2556 EV_FREQUENT_CHECK;
2557
2558 ++timercnt;
1551 ev_start (EV_A_ (W)w, ++timercnt); 2559 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1552 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2560 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1553 timers [timercnt - 1] = w; 2561 ANHE_w (timers [ev_active (w)]) = (WT)w;
1554 upheap ((WT *)timers, timercnt - 1); 2562 ANHE_at_cache (timers [ev_active (w)]);
2563 upheap (timers, ev_active (w));
1555 2564
2565 EV_FREQUENT_CHECK;
2566
1556 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2567 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1557} 2568}
1558 2569
1559void 2570void noinline
1560ev_timer_stop (EV_P_ ev_timer *w) 2571ev_timer_stop (EV_P_ ev_timer *w)
1561{ 2572{
1562 ev_clear_pending (EV_A_ (W)w); 2573 clear_pending (EV_A_ (W)w);
1563 if (expect_false (!ev_is_active (w))) 2574 if (expect_false (!ev_is_active (w)))
1564 return; 2575 return;
1565 2576
1566 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2577 EV_FREQUENT_CHECK;
1567 2578
1568 { 2579 {
1569 int active = ((W)w)->active; 2580 int active = ev_active (w);
1570 2581
2582 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2583
2584 --timercnt;
2585
1571 if (expect_true (--active < --timercnt)) 2586 if (expect_true (active < timercnt + HEAP0))
1572 { 2587 {
1573 timers [active] = timers [timercnt]; 2588 timers [active] = timers [timercnt + HEAP0];
1574 adjustheap ((WT *)timers, timercnt, active); 2589 adjustheap (timers, timercnt, active);
1575 } 2590 }
1576 } 2591 }
1577 2592
1578 ((WT)w)->at -= mn_now; 2593 ev_at (w) -= mn_now;
1579 2594
1580 ev_stop (EV_A_ (W)w); 2595 ev_stop (EV_A_ (W)w);
1581}
1582 2596
1583void 2597 EV_FREQUENT_CHECK;
2598}
2599
2600void noinline
1584ev_timer_again (EV_P_ ev_timer *w) 2601ev_timer_again (EV_P_ ev_timer *w)
1585{ 2602{
2603 EV_FREQUENT_CHECK;
2604
1586 if (ev_is_active (w)) 2605 if (ev_is_active (w))
1587 { 2606 {
1588 if (w->repeat) 2607 if (w->repeat)
1589 { 2608 {
1590 ((WT)w)->at = mn_now + w->repeat; 2609 ev_at (w) = mn_now + w->repeat;
2610 ANHE_at_cache (timers [ev_active (w)]);
1591 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2611 adjustheap (timers, timercnt, ev_active (w));
1592 } 2612 }
1593 else 2613 else
1594 ev_timer_stop (EV_A_ w); 2614 ev_timer_stop (EV_A_ w);
1595 } 2615 }
1596 else if (w->repeat) 2616 else if (w->repeat)
1597 { 2617 {
1598 w->at = w->repeat; 2618 ev_at (w) = w->repeat;
1599 ev_timer_start (EV_A_ w); 2619 ev_timer_start (EV_A_ w);
1600 } 2620 }
2621
2622 EV_FREQUENT_CHECK;
2623}
2624
2625ev_tstamp
2626ev_timer_remaining (EV_P_ ev_timer *w)
2627{
2628 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1601} 2629}
1602 2630
1603#if EV_PERIODIC_ENABLE 2631#if EV_PERIODIC_ENABLE
1604void 2632void noinline
1605ev_periodic_start (EV_P_ ev_periodic *w) 2633ev_periodic_start (EV_P_ ev_periodic *w)
1606{ 2634{
1607 if (expect_false (ev_is_active (w))) 2635 if (expect_false (ev_is_active (w)))
1608 return; 2636 return;
1609 2637
1610 if (w->reschedule_cb) 2638 if (w->reschedule_cb)
1611 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2639 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1612 else if (w->interval) 2640 else if (w->interval)
1613 { 2641 {
1614 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2642 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1615 /* this formula differs from the one in periodic_reify because we do not always round up */ 2643 /* this formula differs from the one in periodic_reify because we do not always round up */
1616 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2644 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1617 } 2645 }
2646 else
2647 ev_at (w) = w->offset;
1618 2648
2649 EV_FREQUENT_CHECK;
2650
2651 ++periodiccnt;
1619 ev_start (EV_A_ (W)w, ++periodiccnt); 2652 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1620 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2653 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1621 periodics [periodiccnt - 1] = w; 2654 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1622 upheap ((WT *)periodics, periodiccnt - 1); 2655 ANHE_at_cache (periodics [ev_active (w)]);
2656 upheap (periodics, ev_active (w));
1623 2657
2658 EV_FREQUENT_CHECK;
2659
1624 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2660 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1625} 2661}
1626 2662
1627void 2663void noinline
1628ev_periodic_stop (EV_P_ ev_periodic *w) 2664ev_periodic_stop (EV_P_ ev_periodic *w)
1629{ 2665{
1630 ev_clear_pending (EV_A_ (W)w); 2666 clear_pending (EV_A_ (W)w);
1631 if (expect_false (!ev_is_active (w))) 2667 if (expect_false (!ev_is_active (w)))
1632 return; 2668 return;
1633 2669
1634 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2670 EV_FREQUENT_CHECK;
1635 2671
1636 { 2672 {
1637 int active = ((W)w)->active; 2673 int active = ev_active (w);
1638 2674
2675 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2676
2677 --periodiccnt;
2678
1639 if (expect_true (--active < --periodiccnt)) 2679 if (expect_true (active < periodiccnt + HEAP0))
1640 { 2680 {
1641 periodics [active] = periodics [periodiccnt]; 2681 periodics [active] = periodics [periodiccnt + HEAP0];
1642 adjustheap ((WT *)periodics, periodiccnt, active); 2682 adjustheap (periodics, periodiccnt, active);
1643 } 2683 }
1644 } 2684 }
1645 2685
1646 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
1647}
1648 2687
1649void 2688 EV_FREQUENT_CHECK;
2689}
2690
2691void noinline
1650ev_periodic_again (EV_P_ ev_periodic *w) 2692ev_periodic_again (EV_P_ ev_periodic *w)
1651{ 2693{
1652 /* TODO: use adjustheap and recalculation */ 2694 /* TODO: use adjustheap and recalculation */
1653 ev_periodic_stop (EV_A_ w); 2695 ev_periodic_stop (EV_A_ w);
1654 ev_periodic_start (EV_A_ w); 2696 ev_periodic_start (EV_A_ w);
1657 2699
1658#ifndef SA_RESTART 2700#ifndef SA_RESTART
1659# define SA_RESTART 0 2701# define SA_RESTART 0
1660#endif 2702#endif
1661 2703
1662void 2704void noinline
1663ev_signal_start (EV_P_ ev_signal *w) 2705ev_signal_start (EV_P_ ev_signal *w)
1664{ 2706{
1665#if EV_MULTIPLICITY
1666 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1667#endif
1668 if (expect_false (ev_is_active (w))) 2707 if (expect_false (ev_is_active (w)))
1669 return; 2708 return;
1670 2709
1671 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2710 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2711
2712#if EV_MULTIPLICITY
2713 assert (("libev: a signal must not be attached to two different loops",
2714 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2715
2716 signals [w->signum - 1].loop = EV_A;
2717#endif
2718
2719 EV_FREQUENT_CHECK;
2720
2721#if EV_USE_SIGNALFD
2722 if (sigfd == -2)
2723 {
2724 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2725 if (sigfd < 0 && errno == EINVAL)
2726 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2727
2728 if (sigfd >= 0)
2729 {
2730 fd_intern (sigfd); /* doing it twice will not hurt */
2731
2732 sigemptyset (&sigfd_set);
2733
2734 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2735 ev_set_priority (&sigfd_w, EV_MAXPRI);
2736 ev_io_start (EV_A_ &sigfd_w);
2737 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2738 }
2739 }
2740
2741 if (sigfd >= 0)
2742 {
2743 /* TODO: check .head */
2744 sigaddset (&sigfd_set, w->signum);
2745 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2746
2747 signalfd (sigfd, &sigfd_set, 0);
2748 }
2749#endif
1672 2750
1673 ev_start (EV_A_ (W)w, 1); 2751 ev_start (EV_A_ (W)w, 1);
1674 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1675 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2752 wlist_add (&signals [w->signum - 1].head, (WL)w);
1676 2753
1677 if (!((WL)w)->next) 2754 if (!((WL)w)->next)
2755# if EV_USE_SIGNALFD
2756 if (sigfd < 0) /*TODO*/
2757# endif
1678 { 2758 {
1679#if _WIN32 2759# ifdef _WIN32
2760 evpipe_init (EV_A);
2761
1680 signal (w->signum, sighandler); 2762 signal (w->signum, ev_sighandler);
1681#else 2763# else
1682 struct sigaction sa; 2764 struct sigaction sa;
2765
2766 evpipe_init (EV_A);
2767
1683 sa.sa_handler = sighandler; 2768 sa.sa_handler = ev_sighandler;
1684 sigfillset (&sa.sa_mask); 2769 sigfillset (&sa.sa_mask);
1685 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2770 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1686 sigaction (w->signum, &sa, 0); 2771 sigaction (w->signum, &sa, 0);
2772
2773 sigemptyset (&sa.sa_mask);
2774 sigaddset (&sa.sa_mask, w->signum);
2775 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1687#endif 2776#endif
1688 } 2777 }
1689}
1690 2778
1691void 2779 EV_FREQUENT_CHECK;
2780}
2781
2782void noinline
1692ev_signal_stop (EV_P_ ev_signal *w) 2783ev_signal_stop (EV_P_ ev_signal *w)
1693{ 2784{
1694 ev_clear_pending (EV_A_ (W)w); 2785 clear_pending (EV_A_ (W)w);
1695 if (expect_false (!ev_is_active (w))) 2786 if (expect_false (!ev_is_active (w)))
1696 return; 2787 return;
1697 2788
2789 EV_FREQUENT_CHECK;
2790
1698 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2791 wlist_del (&signals [w->signum - 1].head, (WL)w);
1699 ev_stop (EV_A_ (W)w); 2792 ev_stop (EV_A_ (W)w);
1700 2793
1701 if (!signals [w->signum - 1].head) 2794 if (!signals [w->signum - 1].head)
2795 {
2796#if EV_MULTIPLICITY
2797 signals [w->signum - 1].loop = 0; /* unattach from signal */
2798#endif
2799#if EV_USE_SIGNALFD
2800 if (sigfd >= 0)
2801 {
2802 sigset_t ss;
2803
2804 sigemptyset (&ss);
2805 sigaddset (&ss, w->signum);
2806 sigdelset (&sigfd_set, w->signum);
2807
2808 signalfd (sigfd, &sigfd_set, 0);
2809 sigprocmask (SIG_UNBLOCK, &ss, 0);
2810 }
2811 else
2812#endif
1702 signal (w->signum, SIG_DFL); 2813 signal (w->signum, SIG_DFL);
2814 }
2815
2816 EV_FREQUENT_CHECK;
1703} 2817}
1704 2818
1705void 2819void
1706ev_child_start (EV_P_ ev_child *w) 2820ev_child_start (EV_P_ ev_child *w)
1707{ 2821{
1708#if EV_MULTIPLICITY 2822#if EV_MULTIPLICITY
1709 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2823 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1710#endif 2824#endif
1711 if (expect_false (ev_is_active (w))) 2825 if (expect_false (ev_is_active (w)))
1712 return; 2826 return;
1713 2827
2828 EV_FREQUENT_CHECK;
2829
1714 ev_start (EV_A_ (W)w, 1); 2830 ev_start (EV_A_ (W)w, 1);
1715 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2831 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2832
2833 EV_FREQUENT_CHECK;
1716} 2834}
1717 2835
1718void 2836void
1719ev_child_stop (EV_P_ ev_child *w) 2837ev_child_stop (EV_P_ ev_child *w)
1720{ 2838{
1721 ev_clear_pending (EV_A_ (W)w); 2839 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 2840 if (expect_false (!ev_is_active (w)))
1723 return; 2841 return;
1724 2842
2843 EV_FREQUENT_CHECK;
2844
1725 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2845 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1726 ev_stop (EV_A_ (W)w); 2846 ev_stop (EV_A_ (W)w);
2847
2848 EV_FREQUENT_CHECK;
1727} 2849}
1728 2850
1729#if EV_STAT_ENABLE 2851#if EV_STAT_ENABLE
1730 2852
1731# ifdef _WIN32 2853# ifdef _WIN32
1732# undef lstat 2854# undef lstat
1733# define lstat(a,b) _stati64 (a,b) 2855# define lstat(a,b) _stati64 (a,b)
1734# endif 2856# endif
1735 2857
1736#define DEF_STAT_INTERVAL 5.0074891 2858#define DEF_STAT_INTERVAL 5.0074891
2859#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1737#define MIN_STAT_INTERVAL 0.1074891 2860#define MIN_STAT_INTERVAL 0.1074891
1738 2861
1739static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2862static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1740 2863
1741#if EV_USE_INOTIFY 2864#if EV_USE_INOTIFY
1742# define EV_INOTIFY_BUFSIZE 8192 2865
2866/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2867# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1743 2868
1744static void noinline 2869static void noinline
1745infy_add (EV_P_ ev_stat *w) 2870infy_add (EV_P_ ev_stat *w)
1746{ 2871{
1747 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2872 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1748 2873
1749 if (w->wd < 0) 2874 if (w->wd >= 0)
2875 {
2876 struct statfs sfs;
2877
2878 /* now local changes will be tracked by inotify, but remote changes won't */
2879 /* unless the filesystem is known to be local, we therefore still poll */
2880 /* also do poll on <2.6.25, but with normal frequency */
2881
2882 if (!fs_2625)
2883 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2884 else if (!statfs (w->path, &sfs)
2885 && (sfs.f_type == 0x1373 /* devfs */
2886 || sfs.f_type == 0xEF53 /* ext2/3 */
2887 || sfs.f_type == 0x3153464a /* jfs */
2888 || sfs.f_type == 0x52654973 /* reiser3 */
2889 || sfs.f_type == 0x01021994 /* tempfs */
2890 || sfs.f_type == 0x58465342 /* xfs */))
2891 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2892 else
2893 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1750 { 2894 }
1751 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2895 else
2896 {
2897 /* can't use inotify, continue to stat */
2898 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1752 2899
1753 /* monitor some parent directory for speedup hints */ 2900 /* if path is not there, monitor some parent directory for speedup hints */
2901 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2902 /* but an efficiency issue only */
1754 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2903 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1755 { 2904 {
1756 char path [4096]; 2905 char path [4096];
1757 strcpy (path, w->path); 2906 strcpy (path, w->path);
1758 2907
1761 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2910 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1762 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2911 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1763 2912
1764 char *pend = strrchr (path, '/'); 2913 char *pend = strrchr (path, '/');
1765 2914
1766 if (!pend) 2915 if (!pend || pend == path)
1767 break; /* whoops, no '/', complain to your admin */ 2916 break;
1768 2917
1769 *pend = 0; 2918 *pend = 0;
1770 w->wd = inotify_add_watch (fs_fd, path, mask); 2919 w->wd = inotify_add_watch (fs_fd, path, mask);
1771 } 2920 }
1772 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2921 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1773 } 2922 }
1774 } 2923 }
1775 else
1776 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1777 2924
1778 if (w->wd >= 0) 2925 if (w->wd >= 0)
1779 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2926 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2927
2928 /* now re-arm timer, if required */
2929 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2930 ev_timer_again (EV_A_ &w->timer);
2931 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1780} 2932}
1781 2933
1782static void noinline 2934static void noinline
1783infy_del (EV_P_ ev_stat *w) 2935infy_del (EV_P_ ev_stat *w)
1784{ 2936{
1798 2950
1799static void noinline 2951static void noinline
1800infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2952infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1801{ 2953{
1802 if (slot < 0) 2954 if (slot < 0)
1803 /* overflow, need to check for all hahs slots */ 2955 /* overflow, need to check for all hash slots */
1804 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2956 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1805 infy_wd (EV_A_ slot, wd, ev); 2957 infy_wd (EV_A_ slot, wd, ev);
1806 else 2958 else
1807 { 2959 {
1808 WL w_; 2960 WL w_;
1814 2966
1815 if (w->wd == wd || wd == -1) 2967 if (w->wd == wd || wd == -1)
1816 { 2968 {
1817 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2969 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1818 { 2970 {
2971 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1819 w->wd = -1; 2972 w->wd = -1;
1820 infy_add (EV_A_ w); /* re-add, no matter what */ 2973 infy_add (EV_A_ w); /* re-add, no matter what */
1821 } 2974 }
1822 2975
1823 stat_timer_cb (EV_A_ &w->timer, 0); 2976 stat_timer_cb (EV_A_ &w->timer, 0);
1828 2981
1829static void 2982static void
1830infy_cb (EV_P_ ev_io *w, int revents) 2983infy_cb (EV_P_ ev_io *w, int revents)
1831{ 2984{
1832 char buf [EV_INOTIFY_BUFSIZE]; 2985 char buf [EV_INOTIFY_BUFSIZE];
1833 struct inotify_event *ev = (struct inotify_event *)buf;
1834 int ofs; 2986 int ofs;
1835 int len = read (fs_fd, buf, sizeof (buf)); 2987 int len = read (fs_fd, buf, sizeof (buf));
1836 2988
1837 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2989 for (ofs = 0; ofs < len; )
2990 {
2991 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1838 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2992 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2993 ofs += sizeof (struct inotify_event) + ev->len;
2994 }
1839} 2995}
1840 2996
1841void inline_size 2997inline_size void
2998check_2625 (EV_P)
2999{
3000 /* kernels < 2.6.25 are borked
3001 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3002 */
3003 struct utsname buf;
3004 int major, minor, micro;
3005
3006 if (uname (&buf))
3007 return;
3008
3009 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
3010 return;
3011
3012 if (major < 2
3013 || (major == 2 && minor < 6)
3014 || (major == 2 && minor == 6 && micro < 25))
3015 return;
3016
3017 fs_2625 = 1;
3018}
3019
3020inline_size int
3021infy_newfd (void)
3022{
3023#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3024 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3025 if (fd >= 0)
3026 return fd;
3027#endif
3028 return inotify_init ();
3029}
3030
3031inline_size void
1842infy_init (EV_P) 3032infy_init (EV_P)
1843{ 3033{
1844 if (fs_fd != -2) 3034 if (fs_fd != -2)
1845 return; 3035 return;
1846 3036
3037 fs_fd = -1;
3038
3039 check_2625 (EV_A);
3040
1847 fs_fd = inotify_init (); 3041 fs_fd = infy_newfd ();
1848 3042
1849 if (fs_fd >= 0) 3043 if (fs_fd >= 0)
1850 { 3044 {
3045 fd_intern (fs_fd);
1851 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3046 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1852 ev_set_priority (&fs_w, EV_MAXPRI); 3047 ev_set_priority (&fs_w, EV_MAXPRI);
1853 ev_io_start (EV_A_ &fs_w); 3048 ev_io_start (EV_A_ &fs_w);
3049 ev_unref (EV_A);
1854 } 3050 }
1855} 3051}
1856 3052
1857void inline_size 3053inline_size void
1858infy_fork (EV_P) 3054infy_fork (EV_P)
1859{ 3055{
1860 int slot; 3056 int slot;
1861 3057
1862 if (fs_fd < 0) 3058 if (fs_fd < 0)
1863 return; 3059 return;
1864 3060
3061 ev_ref (EV_A);
3062 ev_io_stop (EV_A_ &fs_w);
1865 close (fs_fd); 3063 close (fs_fd);
1866 fs_fd = inotify_init (); 3064 fs_fd = infy_newfd ();
3065
3066 if (fs_fd >= 0)
3067 {
3068 fd_intern (fs_fd);
3069 ev_io_set (&fs_w, fs_fd, EV_READ);
3070 ev_io_start (EV_A_ &fs_w);
3071 ev_unref (EV_A);
3072 }
1867 3073
1868 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3074 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1869 { 3075 {
1870 WL w_ = fs_hash [slot].head; 3076 WL w_ = fs_hash [slot].head;
1871 fs_hash [slot].head = 0; 3077 fs_hash [slot].head = 0;
1878 w->wd = -1; 3084 w->wd = -1;
1879 3085
1880 if (fs_fd >= 0) 3086 if (fs_fd >= 0)
1881 infy_add (EV_A_ w); /* re-add, no matter what */ 3087 infy_add (EV_A_ w); /* re-add, no matter what */
1882 else 3088 else
3089 {
3090 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3091 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1883 ev_timer_start (EV_A_ &w->timer); 3092 ev_timer_again (EV_A_ &w->timer);
3093 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3094 }
1884 } 3095 }
1885
1886 } 3096 }
1887} 3097}
1888 3098
3099#endif
3100
3101#ifdef _WIN32
3102# define EV_LSTAT(p,b) _stati64 (p, b)
3103#else
3104# define EV_LSTAT(p,b) lstat (p, b)
1889#endif 3105#endif
1890 3106
1891void 3107void
1892ev_stat_stat (EV_P_ ev_stat *w) 3108ev_stat_stat (EV_P_ ev_stat *w)
1893{ 3109{
1900static void noinline 3116static void noinline
1901stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3117stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1902{ 3118{
1903 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3119 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1904 3120
1905 /* we copy this here each the time so that */ 3121 ev_statdata prev = w->attr;
1906 /* prev has the old value when the callback gets invoked */
1907 w->prev = w->attr;
1908 ev_stat_stat (EV_A_ w); 3122 ev_stat_stat (EV_A_ w);
1909 3123
1910 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3124 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1911 if ( 3125 if (
1912 w->prev.st_dev != w->attr.st_dev 3126 prev.st_dev != w->attr.st_dev
1913 || w->prev.st_ino != w->attr.st_ino 3127 || prev.st_ino != w->attr.st_ino
1914 || w->prev.st_mode != w->attr.st_mode 3128 || prev.st_mode != w->attr.st_mode
1915 || w->prev.st_nlink != w->attr.st_nlink 3129 || prev.st_nlink != w->attr.st_nlink
1916 || w->prev.st_uid != w->attr.st_uid 3130 || prev.st_uid != w->attr.st_uid
1917 || w->prev.st_gid != w->attr.st_gid 3131 || prev.st_gid != w->attr.st_gid
1918 || w->prev.st_rdev != w->attr.st_rdev 3132 || prev.st_rdev != w->attr.st_rdev
1919 || w->prev.st_size != w->attr.st_size 3133 || prev.st_size != w->attr.st_size
1920 || w->prev.st_atime != w->attr.st_atime 3134 || prev.st_atime != w->attr.st_atime
1921 || w->prev.st_mtime != w->attr.st_mtime 3135 || prev.st_mtime != w->attr.st_mtime
1922 || w->prev.st_ctime != w->attr.st_ctime 3136 || prev.st_ctime != w->attr.st_ctime
1923 ) { 3137 ) {
3138 /* we only update w->prev on actual differences */
3139 /* in case we test more often than invoke the callback, */
3140 /* to ensure that prev is always different to attr */
3141 w->prev = prev;
3142
1924 #if EV_USE_INOTIFY 3143 #if EV_USE_INOTIFY
3144 if (fs_fd >= 0)
3145 {
1925 infy_del (EV_A_ w); 3146 infy_del (EV_A_ w);
1926 infy_add (EV_A_ w); 3147 infy_add (EV_A_ w);
1927 ev_stat_stat (EV_A_ w); /* avoid race... */ 3148 ev_stat_stat (EV_A_ w); /* avoid race... */
3149 }
1928 #endif 3150 #endif
1929 3151
1930 ev_feed_event (EV_A_ w, EV_STAT); 3152 ev_feed_event (EV_A_ w, EV_STAT);
1931 } 3153 }
1932} 3154}
1935ev_stat_start (EV_P_ ev_stat *w) 3157ev_stat_start (EV_P_ ev_stat *w)
1936{ 3158{
1937 if (expect_false (ev_is_active (w))) 3159 if (expect_false (ev_is_active (w)))
1938 return; 3160 return;
1939 3161
1940 /* since we use memcmp, we need to clear any padding data etc. */
1941 memset (&w->prev, 0, sizeof (ev_statdata));
1942 memset (&w->attr, 0, sizeof (ev_statdata));
1943
1944 ev_stat_stat (EV_A_ w); 3162 ev_stat_stat (EV_A_ w);
1945 3163
3164 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1946 if (w->interval < MIN_STAT_INTERVAL) 3165 w->interval = MIN_STAT_INTERVAL;
1947 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1948 3166
1949 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3167 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1950 ev_set_priority (&w->timer, ev_priority (w)); 3168 ev_set_priority (&w->timer, ev_priority (w));
1951 3169
1952#if EV_USE_INOTIFY 3170#if EV_USE_INOTIFY
1953 infy_init (EV_A); 3171 infy_init (EV_A);
1954 3172
1955 if (fs_fd >= 0) 3173 if (fs_fd >= 0)
1956 infy_add (EV_A_ w); 3174 infy_add (EV_A_ w);
1957 else 3175 else
1958#endif 3176#endif
3177 {
1959 ev_timer_start (EV_A_ &w->timer); 3178 ev_timer_again (EV_A_ &w->timer);
3179 ev_unref (EV_A);
3180 }
1960 3181
1961 ev_start (EV_A_ (W)w, 1); 3182 ev_start (EV_A_ (W)w, 1);
3183
3184 EV_FREQUENT_CHECK;
1962} 3185}
1963 3186
1964void 3187void
1965ev_stat_stop (EV_P_ ev_stat *w) 3188ev_stat_stop (EV_P_ ev_stat *w)
1966{ 3189{
1967 ev_clear_pending (EV_A_ (W)w); 3190 clear_pending (EV_A_ (W)w);
1968 if (expect_false (!ev_is_active (w))) 3191 if (expect_false (!ev_is_active (w)))
1969 return; 3192 return;
1970 3193
3194 EV_FREQUENT_CHECK;
3195
1971#if EV_USE_INOTIFY 3196#if EV_USE_INOTIFY
1972 infy_del (EV_A_ w); 3197 infy_del (EV_A_ w);
1973#endif 3198#endif
3199
3200 if (ev_is_active (&w->timer))
3201 {
3202 ev_ref (EV_A);
1974 ev_timer_stop (EV_A_ &w->timer); 3203 ev_timer_stop (EV_A_ &w->timer);
3204 }
1975 3205
1976 ev_stop (EV_A_ (W)w); 3206 ev_stop (EV_A_ (W)w);
1977}
1978#endif
1979 3207
3208 EV_FREQUENT_CHECK;
3209}
3210#endif
3211
3212#if EV_IDLE_ENABLE
1980void 3213void
1981ev_idle_start (EV_P_ ev_idle *w) 3214ev_idle_start (EV_P_ ev_idle *w)
1982{ 3215{
1983 if (expect_false (ev_is_active (w))) 3216 if (expect_false (ev_is_active (w)))
1984 return; 3217 return;
1985 3218
3219 pri_adjust (EV_A_ (W)w);
3220
3221 EV_FREQUENT_CHECK;
3222
3223 {
3224 int active = ++idlecnt [ABSPRI (w)];
3225
3226 ++idleall;
1986 ev_start (EV_A_ (W)w, ++idlecnt); 3227 ev_start (EV_A_ (W)w, active);
3228
1987 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3229 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1988 idles [idlecnt - 1] = w; 3230 idles [ABSPRI (w)][active - 1] = w;
3231 }
3232
3233 EV_FREQUENT_CHECK;
1989} 3234}
1990 3235
1991void 3236void
1992ev_idle_stop (EV_P_ ev_idle *w) 3237ev_idle_stop (EV_P_ ev_idle *w)
1993{ 3238{
1994 ev_clear_pending (EV_A_ (W)w); 3239 clear_pending (EV_A_ (W)w);
1995 if (expect_false (!ev_is_active (w))) 3240 if (expect_false (!ev_is_active (w)))
1996 return; 3241 return;
1997 3242
3243 EV_FREQUENT_CHECK;
3244
1998 { 3245 {
1999 int active = ((W)w)->active; 3246 int active = ev_active (w);
2000 idles [active - 1] = idles [--idlecnt]; 3247
2001 ((W)idles [active - 1])->active = active; 3248 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3249 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3250
3251 ev_stop (EV_A_ (W)w);
3252 --idleall;
2002 } 3253 }
2003 3254
2004 ev_stop (EV_A_ (W)w); 3255 EV_FREQUENT_CHECK;
2005} 3256}
3257#endif
2006 3258
2007void 3259void
2008ev_prepare_start (EV_P_ ev_prepare *w) 3260ev_prepare_start (EV_P_ ev_prepare *w)
2009{ 3261{
2010 if (expect_false (ev_is_active (w))) 3262 if (expect_false (ev_is_active (w)))
2011 return; 3263 return;
3264
3265 EV_FREQUENT_CHECK;
2012 3266
2013 ev_start (EV_A_ (W)w, ++preparecnt); 3267 ev_start (EV_A_ (W)w, ++preparecnt);
2014 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3268 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2015 prepares [preparecnt - 1] = w; 3269 prepares [preparecnt - 1] = w;
3270
3271 EV_FREQUENT_CHECK;
2016} 3272}
2017 3273
2018void 3274void
2019ev_prepare_stop (EV_P_ ev_prepare *w) 3275ev_prepare_stop (EV_P_ ev_prepare *w)
2020{ 3276{
2021 ev_clear_pending (EV_A_ (W)w); 3277 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 3278 if (expect_false (!ev_is_active (w)))
2023 return; 3279 return;
2024 3280
3281 EV_FREQUENT_CHECK;
3282
2025 { 3283 {
2026 int active = ((W)w)->active; 3284 int active = ev_active (w);
3285
2027 prepares [active - 1] = prepares [--preparecnt]; 3286 prepares [active - 1] = prepares [--preparecnt];
2028 ((W)prepares [active - 1])->active = active; 3287 ev_active (prepares [active - 1]) = active;
2029 } 3288 }
2030 3289
2031 ev_stop (EV_A_ (W)w); 3290 ev_stop (EV_A_ (W)w);
3291
3292 EV_FREQUENT_CHECK;
2032} 3293}
2033 3294
2034void 3295void
2035ev_check_start (EV_P_ ev_check *w) 3296ev_check_start (EV_P_ ev_check *w)
2036{ 3297{
2037 if (expect_false (ev_is_active (w))) 3298 if (expect_false (ev_is_active (w)))
2038 return; 3299 return;
3300
3301 EV_FREQUENT_CHECK;
2039 3302
2040 ev_start (EV_A_ (W)w, ++checkcnt); 3303 ev_start (EV_A_ (W)w, ++checkcnt);
2041 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3304 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2042 checks [checkcnt - 1] = w; 3305 checks [checkcnt - 1] = w;
3306
3307 EV_FREQUENT_CHECK;
2043} 3308}
2044 3309
2045void 3310void
2046ev_check_stop (EV_P_ ev_check *w) 3311ev_check_stop (EV_P_ ev_check *w)
2047{ 3312{
2048 ev_clear_pending (EV_A_ (W)w); 3313 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 3314 if (expect_false (!ev_is_active (w)))
2050 return; 3315 return;
2051 3316
3317 EV_FREQUENT_CHECK;
3318
2052 { 3319 {
2053 int active = ((W)w)->active; 3320 int active = ev_active (w);
3321
2054 checks [active - 1] = checks [--checkcnt]; 3322 checks [active - 1] = checks [--checkcnt];
2055 ((W)checks [active - 1])->active = active; 3323 ev_active (checks [active - 1]) = active;
2056 } 3324 }
2057 3325
2058 ev_stop (EV_A_ (W)w); 3326 ev_stop (EV_A_ (W)w);
3327
3328 EV_FREQUENT_CHECK;
2059} 3329}
2060 3330
2061#if EV_EMBED_ENABLE 3331#if EV_EMBED_ENABLE
2062void noinline 3332void noinline
2063ev_embed_sweep (EV_P_ ev_embed *w) 3333ev_embed_sweep (EV_P_ ev_embed *w)
2064{ 3334{
2065 ev_loop (w->loop, EVLOOP_NONBLOCK); 3335 ev_loop (w->other, EVLOOP_NONBLOCK);
2066} 3336}
2067 3337
2068static void 3338static void
2069embed_cb (EV_P_ ev_io *io, int revents) 3339embed_io_cb (EV_P_ ev_io *io, int revents)
2070{ 3340{
2071 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3341 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2072 3342
2073 if (ev_cb (w)) 3343 if (ev_cb (w))
2074 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3344 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2075 else 3345 else
2076 ev_embed_sweep (loop, w); 3346 ev_loop (w->other, EVLOOP_NONBLOCK);
2077} 3347}
3348
3349static void
3350embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3351{
3352 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3353
3354 {
3355 EV_P = w->other;
3356
3357 while (fdchangecnt)
3358 {
3359 fd_reify (EV_A);
3360 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3361 }
3362 }
3363}
3364
3365static void
3366embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3367{
3368 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3369
3370 ev_embed_stop (EV_A_ w);
3371
3372 {
3373 EV_P = w->other;
3374
3375 ev_loop_fork (EV_A);
3376 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3377 }
3378
3379 ev_embed_start (EV_A_ w);
3380}
3381
3382#if 0
3383static void
3384embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3385{
3386 ev_idle_stop (EV_A_ idle);
3387}
3388#endif
2078 3389
2079void 3390void
2080ev_embed_start (EV_P_ ev_embed *w) 3391ev_embed_start (EV_P_ ev_embed *w)
2081{ 3392{
2082 if (expect_false (ev_is_active (w))) 3393 if (expect_false (ev_is_active (w)))
2083 return; 3394 return;
2084 3395
2085 { 3396 {
2086 struct ev_loop *loop = w->loop; 3397 EV_P = w->other;
2087 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3398 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2088 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3399 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2089 } 3400 }
3401
3402 EV_FREQUENT_CHECK;
2090 3403
2091 ev_set_priority (&w->io, ev_priority (w)); 3404 ev_set_priority (&w->io, ev_priority (w));
2092 ev_io_start (EV_A_ &w->io); 3405 ev_io_start (EV_A_ &w->io);
2093 3406
3407 ev_prepare_init (&w->prepare, embed_prepare_cb);
3408 ev_set_priority (&w->prepare, EV_MINPRI);
3409 ev_prepare_start (EV_A_ &w->prepare);
3410
3411 ev_fork_init (&w->fork, embed_fork_cb);
3412 ev_fork_start (EV_A_ &w->fork);
3413
3414 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3415
2094 ev_start (EV_A_ (W)w, 1); 3416 ev_start (EV_A_ (W)w, 1);
3417
3418 EV_FREQUENT_CHECK;
2095} 3419}
2096 3420
2097void 3421void
2098ev_embed_stop (EV_P_ ev_embed *w) 3422ev_embed_stop (EV_P_ ev_embed *w)
2099{ 3423{
2100 ev_clear_pending (EV_A_ (W)w); 3424 clear_pending (EV_A_ (W)w);
2101 if (expect_false (!ev_is_active (w))) 3425 if (expect_false (!ev_is_active (w)))
2102 return; 3426 return;
2103 3427
3428 EV_FREQUENT_CHECK;
3429
2104 ev_io_stop (EV_A_ &w->io); 3430 ev_io_stop (EV_A_ &w->io);
3431 ev_prepare_stop (EV_A_ &w->prepare);
3432 ev_fork_stop (EV_A_ &w->fork);
2105 3433
2106 ev_stop (EV_A_ (W)w); 3434 ev_stop (EV_A_ (W)w);
3435
3436 EV_FREQUENT_CHECK;
2107} 3437}
2108#endif 3438#endif
2109 3439
2110#if EV_FORK_ENABLE 3440#if EV_FORK_ENABLE
2111void 3441void
2112ev_fork_start (EV_P_ ev_fork *w) 3442ev_fork_start (EV_P_ ev_fork *w)
2113{ 3443{
2114 if (expect_false (ev_is_active (w))) 3444 if (expect_false (ev_is_active (w)))
2115 return; 3445 return;
3446
3447 EV_FREQUENT_CHECK;
2116 3448
2117 ev_start (EV_A_ (W)w, ++forkcnt); 3449 ev_start (EV_A_ (W)w, ++forkcnt);
2118 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3450 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2119 forks [forkcnt - 1] = w; 3451 forks [forkcnt - 1] = w;
3452
3453 EV_FREQUENT_CHECK;
2120} 3454}
2121 3455
2122void 3456void
2123ev_fork_stop (EV_P_ ev_fork *w) 3457ev_fork_stop (EV_P_ ev_fork *w)
2124{ 3458{
2125 ev_clear_pending (EV_A_ (W)w); 3459 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 3460 if (expect_false (!ev_is_active (w)))
2127 return; 3461 return;
2128 3462
3463 EV_FREQUENT_CHECK;
3464
2129 { 3465 {
2130 int active = ((W)w)->active; 3466 int active = ev_active (w);
3467
2131 forks [active - 1] = forks [--forkcnt]; 3468 forks [active - 1] = forks [--forkcnt];
2132 ((W)forks [active - 1])->active = active; 3469 ev_active (forks [active - 1]) = active;
2133 } 3470 }
2134 3471
2135 ev_stop (EV_A_ (W)w); 3472 ev_stop (EV_A_ (W)w);
3473
3474 EV_FREQUENT_CHECK;
3475}
3476#endif
3477
3478#if EV_ASYNC_ENABLE
3479void
3480ev_async_start (EV_P_ ev_async *w)
3481{
3482 if (expect_false (ev_is_active (w)))
3483 return;
3484
3485 evpipe_init (EV_A);
3486
3487 EV_FREQUENT_CHECK;
3488
3489 ev_start (EV_A_ (W)w, ++asynccnt);
3490 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3491 asyncs [asynccnt - 1] = w;
3492
3493 EV_FREQUENT_CHECK;
3494}
3495
3496void
3497ev_async_stop (EV_P_ ev_async *w)
3498{
3499 clear_pending (EV_A_ (W)w);
3500 if (expect_false (!ev_is_active (w)))
3501 return;
3502
3503 EV_FREQUENT_CHECK;
3504
3505 {
3506 int active = ev_active (w);
3507
3508 asyncs [active - 1] = asyncs [--asynccnt];
3509 ev_active (asyncs [active - 1]) = active;
3510 }
3511
3512 ev_stop (EV_A_ (W)w);
3513
3514 EV_FREQUENT_CHECK;
3515}
3516
3517void
3518ev_async_send (EV_P_ ev_async *w)
3519{
3520 w->sent = 1;
3521 evpipe_write (EV_A_ &async_pending);
2136} 3522}
2137#endif 3523#endif
2138 3524
2139/*****************************************************************************/ 3525/*****************************************************************************/
2140 3526
2150once_cb (EV_P_ struct ev_once *once, int revents) 3536once_cb (EV_P_ struct ev_once *once, int revents)
2151{ 3537{
2152 void (*cb)(int revents, void *arg) = once->cb; 3538 void (*cb)(int revents, void *arg) = once->cb;
2153 void *arg = once->arg; 3539 void *arg = once->arg;
2154 3540
2155 ev_io_stop (EV_A_ &once->io); 3541 ev_io_stop (EV_A_ &once->io);
2156 ev_timer_stop (EV_A_ &once->to); 3542 ev_timer_stop (EV_A_ &once->to);
2157 ev_free (once); 3543 ev_free (once);
2158 3544
2159 cb (revents, arg); 3545 cb (revents, arg);
2160} 3546}
2161 3547
2162static void 3548static void
2163once_cb_io (EV_P_ ev_io *w, int revents) 3549once_cb_io (EV_P_ ev_io *w, int revents)
2164{ 3550{
2165 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3551 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3552
3553 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2166} 3554}
2167 3555
2168static void 3556static void
2169once_cb_to (EV_P_ ev_timer *w, int revents) 3557once_cb_to (EV_P_ ev_timer *w, int revents)
2170{ 3558{
2171 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3559 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3560
3561 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2172} 3562}
2173 3563
2174void 3564void
2175ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3565ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2176{ 3566{
2198 ev_timer_set (&once->to, timeout, 0.); 3588 ev_timer_set (&once->to, timeout, 0.);
2199 ev_timer_start (EV_A_ &once->to); 3589 ev_timer_start (EV_A_ &once->to);
2200 } 3590 }
2201} 3591}
2202 3592
3593/*****************************************************************************/
3594
3595#if EV_WALK_ENABLE
3596void
3597ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3598{
3599 int i, j;
3600 ev_watcher_list *wl, *wn;
3601
3602 if (types & (EV_IO | EV_EMBED))
3603 for (i = 0; i < anfdmax; ++i)
3604 for (wl = anfds [i].head; wl; )
3605 {
3606 wn = wl->next;
3607
3608#if EV_EMBED_ENABLE
3609 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3610 {
3611 if (types & EV_EMBED)
3612 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3613 }
3614 else
3615#endif
3616#if EV_USE_INOTIFY
3617 if (ev_cb ((ev_io *)wl) == infy_cb)
3618 ;
3619 else
3620#endif
3621 if ((ev_io *)wl != &pipe_w)
3622 if (types & EV_IO)
3623 cb (EV_A_ EV_IO, wl);
3624
3625 wl = wn;
3626 }
3627
3628 if (types & (EV_TIMER | EV_STAT))
3629 for (i = timercnt + HEAP0; i-- > HEAP0; )
3630#if EV_STAT_ENABLE
3631 /*TODO: timer is not always active*/
3632 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3633 {
3634 if (types & EV_STAT)
3635 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3636 }
3637 else
3638#endif
3639 if (types & EV_TIMER)
3640 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3641
3642#if EV_PERIODIC_ENABLE
3643 if (types & EV_PERIODIC)
3644 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3645 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3646#endif
3647
3648#if EV_IDLE_ENABLE
3649 if (types & EV_IDLE)
3650 for (j = NUMPRI; i--; )
3651 for (i = idlecnt [j]; i--; )
3652 cb (EV_A_ EV_IDLE, idles [j][i]);
3653#endif
3654
3655#if EV_FORK_ENABLE
3656 if (types & EV_FORK)
3657 for (i = forkcnt; i--; )
3658 if (ev_cb (forks [i]) != embed_fork_cb)
3659 cb (EV_A_ EV_FORK, forks [i]);
3660#endif
3661
3662#if EV_ASYNC_ENABLE
3663 if (types & EV_ASYNC)
3664 for (i = asynccnt; i--; )
3665 cb (EV_A_ EV_ASYNC, asyncs [i]);
3666#endif
3667
3668 if (types & EV_PREPARE)
3669 for (i = preparecnt; i--; )
3670#if EV_EMBED_ENABLE
3671 if (ev_cb (prepares [i]) != embed_prepare_cb)
3672#endif
3673 cb (EV_A_ EV_PREPARE, prepares [i]);
3674
3675 if (types & EV_CHECK)
3676 for (i = checkcnt; i--; )
3677 cb (EV_A_ EV_CHECK, checks [i]);
3678
3679 if (types & EV_SIGNAL)
3680 for (i = 0; i < EV_NSIG - 1; ++i)
3681 for (wl = signals [i].head; wl; )
3682 {
3683 wn = wl->next;
3684 cb (EV_A_ EV_SIGNAL, wl);
3685 wl = wn;
3686 }
3687
3688 if (types & EV_CHILD)
3689 for (i = EV_PID_HASHSIZE; i--; )
3690 for (wl = childs [i]; wl; )
3691 {
3692 wn = wl->next;
3693 cb (EV_A_ EV_CHILD, wl);
3694 wl = wn;
3695 }
3696/* EV_STAT 0x00001000 /* stat data changed */
3697/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3698}
3699#endif
3700
3701#if EV_MULTIPLICITY
3702 #include "ev_wrap.h"
3703#endif
3704
2203#ifdef __cplusplus 3705#ifdef __cplusplus
2204} 3706}
2205#endif 3707#endif
2206 3708

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines